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ABSTRACT

Membership inference attacks have become the de facto standard for assessing pri-
vacy breaches across various machine learning (ML) models. However, existing
approaches often require substantial resources, including large numbers of shadow
models and auxiliary datasets, to achieve high true positive rates (TPR) in the low
false positive rate (FPR) region. This makes these attacks prohibitively expensive
and less practical. In this work, we propose a novel membership inference attack
that exploits feature density gaps by progressively removing features from both
members and non-members and evaluating the corresponding model outputs as a
new membership signal. Our method requires only a few dozen queries and does
not rely on large auxiliary datasets or the training of numerous shadow models.
Extensive evaluations on both classification and diffusion models demonstrate that
our method significantly improves the TPR at low FPR across multiple scenarios.

1 INTRODUCTION

Enabled by the availability of extensive, high-quality datasets, the field of machine learning (ML)
has seen remarkable progress (Hu et al., 2022), with ML-driven technologies increasingly integrated
into critical societal operations (Maslej et al., 2023). However, since these datasets often contain
sensitive personal information, such as medical records, it is essential to ensure that ML models do
not compromise the confidentiality of their training data. Membership inference attacks (MIAs),
which aim to determine whether a specific data point was included in a model’s training set, have
become the de facto standard for quantifying privacy leakage in various ML models (Shokri et al.,
2017; Salem et al., 2018; Song & Mittal, 2021; Carlini et al., 2022; Liu et al., 2022a). Furthermore,
the widespread use of public datasets raises legal concerns, particularly regarding the European
General Data Protection Regulation (GDPR)’s right to be forgotten (Shastri et al., 2019). In this
context, MIAs enable individuals to verify if ML service providers are using their personal data,
allowing them to request its removal in compliance with GDPR regulations.

Most existing MIA studies directly use the model’s output posteriors or derived metrics (e.g., loss)
to launch attacks (Yeom et al., 2018; Sablayrolles et al., 2019; Shokri et al., 2017; Salem et al., 2018;
Song & Mittal, 2021). While effective on average-case metrics such as accuracy and AUC, these
methods perform poorly in true-positive rate (TPR) at low false-positive rate (FPR), which is the de
facto standard for evaluating MIA established by Carlini et al. (2022). This limitation arises because
certain non-member samples with distinctive features can closely resemble members in terms of
model output, leading to higher false-positive rates in these approaches. Recent techniques address
this issue from three main perspectives. The first approach involves quantifying the difficulty of
individual sample points and using this information to adjust the model’s original outputs (Watson
et al., 2022; Shi et al., 2024). This is typically done by calculating the membership score as the
difference between the outputs of the target model and a reference model trained on auxiliary data
drawn from the same distribution. The second approach learns per-sample hardness by training a
large number (e.g., several hundred) of shadow models (Carlini et al., 2022; Wen et al., 2023). These
models are used to estimate the distribution of output logits for examples both inside and outside
the training set. The third approach identifies new membership signals. Liu et al. (2022a) observe
that easy non-members show consistently low losses during training, and they leverage an auxiliary
dataset to perform knowledge distillation and use intermediate loss trajectories for membership in-
ference. However, these approaches all require substantial resources, either auxiliary datasets drawn
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from the same distribution as the target model or the training of a large number of shadow models.
This makes membership inference attacks prohibitively expensive and less practical.

To reduce the required resources while maintaining attack effectiveness, we propose a scalable mem-
bership inference attack that significantly improves the TPR at low FPR. Our method requires only
a few dozen queries and does not rely on large auxiliary datasets or the training of numerous shadow
models. Leveraging the insight that member samples reside in high-density regions of the learned
feature space, the model is expected to maintain higher confidence in these samples, even with par-
tial feature removal. We progressively remove features from both groups and evaluate the model’s
predictions as the new membership signal. Extensive evaluations on both classification and diffusion
models across various benchmark datasets, architectures, and adversarial settings demonstrate that
our attack consistently outperforms state-of-the-art methods across multiple scenarios. Furthermore,
a major advantage of our approach is its applicability to pre-trained models without the need to train
shadow models, which makes our method particularly efficient when applied to large-scale models.

Our contributions are summarized as follows: (1) We introduce a novel feature removal strategy to
identify a new membership signal. (2) Our approach is resource-efficient, eliminating the need to
train numerous shadow models or use large auxiliary datasets. (3) We conduct extensive empirical
validation, demonstrating that our approach significantly improves the TPR at low FPR and gener-
alizes to both classification and diffusion models across various datasets and model architectures.

2 BACKGROUND AND RELATED WORK

Membership inference attacks (MIAs) aim to determine whether a particular record or data sample
was part of the training dataset used for the ML model, which has been acknowledged as the de
facto standard for evaluating ML models’ privacy risks (Carlini et al., 2022; Liu et al., 2022a).

MIAs have been developed across different threat models with varying levels of adversarial knowl-
edge. They can be performed in the white-box settings (Leino & Fredrikson, 2020; Nasr et al., 2019)
in which the adversary has the knowledge of the model’s architecture and parameters, but most of
the attacks have been developed for more practical black-box settings (Shokri et al., 2017; Salem
et al., 2018; Carlini et al., 2022; Liu et al., 2022a) in which the adversary only has the query ac-
cess to the target ML model. Early MIAs exploit the insight that ML models, trained to minimize
the loss of their training data, often exhibit generalization gaps between training and testing sam-
ples. These attacks directly leverage this performance disparity to infer membership status based on
metrics such as loss (Yeom et al., 2018; Sablayrolles et al., 2019), confidence scores (Shokri et al.,
2017; Salem et al., 2018), and entropy (Song & Mittal, 2021). On the other hand, Jayaraman et al.
(2021) infers membership status by measuring changes in model loss when small random noise is
added to inputs. While this method shares some similarities with our feature manipulation approach,
there are key differences: First, our method emphasizes the contribution of individual features to the
model’s decision, recognizing that not all image regions equally affect the output (Selvaraju et al.,
2017). In contrast, adding random noise indiscriminately may overlook these fine-grained dispari-
ties between member and non-member samples. Second, the effectiveness of a perturbation-based
attack heavily relies on the perturbation accurately reflecting the importance of the features being
perturbed, making any resulting changes in predictions directly attributable to these perturbations. In
Jayaraman et al. (2021), random noise can lead to distribution shifts (Hooker et al., 2019) and adver-
sarial artifacts (Fong & Vedaldi, 2017), obscuring the source of prediction changes and potentially
confounding the analysis. While effective on average-case metrics like accuracy and AUC, these
methods struggle to perform well at low false-positive rates (FPR), a de facto standard established
by Carlini et al. (2022) for evaluating MIA.

Recent techniques tackle this issue from three main perspectives. The first line of approaches quan-
tify the difficulty of sample points and use this value to adjust the model’s original outputs (Shi
et al., 2024; Watson et al., 2022). Shi et al. (2024) proposed a learning-based difficulty calibration
(LDC) attack. Their method requires an auxiliary dataset in addition to shadow datasets to train
a reference model, which is used to calibrate both the shadow model’s and the target model’s be-
havior on a data record by computing the loss difference between the respective models and the
reference model. The second line of approach learns per-sample hardness by using statistical testing
(Carlini et al., 2022; Wen et al., 2023). Carlini et al. (2022) trained a large number (e.g., several
hundred) of shadow models to learn the distribution of model output logits on examples in and out
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of the training set. The third line of approaches identify new membership signals to differentiate
members and non-members that exhibit similar low losses (Liu et al., 2022a). Liu et al. (2022a)
exploited the model training process and observed that easy non-members exhibit consistently low
losses. They assume the adversary possesses an auxiliary dataset to perform knowledge distillation,
simulating the actual model training process, and use the obtained intermediate loss trajectories to
facilitate membership inference. However, these approaches require substantial resources. The first
and third approaches necessitate a large auxiliary dataset drawn from the same distribution as the
target model’s training set, in addition to the shadow datasets used for training shadow models. The
third approach requires training a large number of shadow models, which can be computationally
expensive, especially when attacking large-scale models such as diffusion models (Ko et al., 2023).

Similarly, generative models are also vulnerable to membership inference attacks (Hayes et al.,
2019; Chen et al., 2020). Given diffusion models have recently surpassed GANs as the leading
generative technique (Yang et al., 2023), they have become an emerging focus of MIA research
(Wu et al., 2022; Matsumoto et al., 2023; Duan et al., 2023). Matsumoto et al. (2023) investigated
MIAs against diffusion models in white-box settings, utilizing the models’ loss values (i.e., noise
estimation errors) to infer membership status. Recently, Duan et al. (2023) proposed the Step-wise
Error Comparing Membership Inference (SecMI) attack, achieving superior performance against
diffusion models. The key insight of their approach is that member samples have smaller posterior
estimation errors compared to non-member samples during the forward posterior estimation.

3 EXPLOITING FEATURE DENSITY

3.1 THREAT MODEL

We assume a commonly adopted black-box scenario in which the adversary has access only to the
output posterior of the target model, without knowledge of its internal parameters. Additionally,
we assume that the adversary is aware of the target model’s architecture and possesses an auxiliary
dataset that shares the same distribution as the target models’ training dataset. This setting is com-
monly used for training shadow models in most existing works (Li et al., 2022; Salem et al., 2018;
Song & Mittal, 2021; Li & Zhang, 2021; Carlini et al., 2022; Liu et al., 2024). During the experi-
ment, we further explore scenarios where the adversary has access to a large supplementary dataset
in addition to the shadow datasets as in Liu et al. (2022a) and Shi et al. (2024), and is capable of
training a substantial number of shadow models as in Carlini et al. (2022). Furthermore, we inves-
tigate the attack effectiveness under more practical scenarios where the adversary lacks knowledge
of the target model’s architecture and training data distribution.

3.2 DESIGN INTUITION

To address the resource demands and improve performance at low FPRs, we aim to propose a new
MIA signal that more effectively exploits the gaps between members and non-members.

Machine learning models are known to generalize better on examples similar to those on which
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Figure 1: The confidence score drops for members and non-
members that have similar small (< 0.01) losses of different
removal strategies on models trained on CIFAR-100.

they have been trained (Goodfellow,
2016). Previous membership infer-
ence attacks leverage the generaliza-
tion gaps between training data and
testing data, based on the insight that
models behave differently on data
they have seen during training com-
pared to unseen data. In this pa-
per, we extend this observation by
demonstrating that these generaliza-
tion gaps not only occur between ex-
act copies of the training and testing
data but also between similar vari-
ants. This phenomenon can be ex-
plained through the lens of feature
learning theory (Cao et al., 2022; Kou et al., 2023), which suggests that a model’s generalization
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Figure 2: Overview of our proposed attack framework.

capability is directly related to the sample size and the signal-to-noise ratio of the features. Dur-
ing training, models are repeatedly exposed to member samples, causing these samples to lie in
high-density regions of the learned feature space. In contrast, non-member samples are less likely
to fall into these high-density regions, especially in complex models. More specifically, we define
the density of the learned representation as follows: Let ϕ(x) represent the feature embedding of a
sample x in a model, then the density at ϕ(x) can be defined in terms of its proximity to neighboring
samples: p(ϕ(x)) =

∑
xi∈N(x) exp(−||ϕ(x) − ϕ(xi)||2), where N(x) are the k-nearest neighbors

of ϕ(x) in the dataset. Member samples exhibit higher p(ϕ(x)) values than non-member samples
because the model has learned more densely around these points. We empirically validate this, with
details given in Appendix D. Based on this hypothesis, we propose that systematically removing or
altering features from the input should affect the model’s confidence differently for members and
non-members. Specifically, the model’s ability to make confident predictions should be more re-
silient for member samples than for non-member samples. This is because member samples, being
close to other similar samples in the feature space, can still be recognized by the model even with
partial feature removal, allowing it to predict confidently. To verify this hypothesis, we visualize the
results for members and non-members exhibiting similarly small losses (i.e., less than 0.01) using
two different models trained on CIFAR-100 and applying two proposed feature removal strategies.
In this case, loss alone is insufficient to distinguish between members and non-members. As shown
in Figure 1, the confidence scores of members decrease more gradually, especially during the early
stages of feature removal. Since we assume black-box threat model, the adversary cannot directly
manipulate the intermediate feature representation. Instead, the adversary, having control over the
input, can leverage pixel removal to approximate the feature removal process. This approach relies
on the inherent functionality of neural networks, where input modifications (such as pixel removal)
propagate through the network and result in changes to the intermediate feature representations. By
simulating feature removal in this way, the adversary effectively influences the learned feature space,
enabling the attack within the constraints of the threat model.

3.3 ATTACK METHOD

Building on this insight, we propose a novel membership inference attack centered around the fea-
ture removal scheme. An overview of our attack framework is provided in Figure 2, which contains
four stages: shadow model training, removal feature extraction, attack model training, and member-
ship inference attack.

Shadow Model Training. As mentioned in Section 3.1, the adversary has access to an auxiliary
dataset Dshadow drawn from the same distribution as the training dataset of the target model. The
adversary then splits the auxiliary dataset into two disjoint subsets: Dtrain

shadow and Dtest
shadow. The

former subset is utilized to train the shadow model MS and acts as the member samples, while the
latter serves as non-member samples.

Removal Feature Extraction. During this stage, the adversary performs feature removal on
Dshadow to extract features crucial for the attack. For a sample x, the adversary chooses a re-
moval ratio and applies a removal strategy to select features and perform removal operations. We
introduce two strategies: (1) Random-based Removal (Ours. Random.), which randomly removes a
specified ratio of pixels from the input, and (2) Guided-based Removal (Ours. Guided.) ranks the
predicted mask values from the mask prediction model in ascending order and removes features of x
whose mask values fall below a given percentile threshold, based on the specified removal ratio. The
adversary then measures the model output changes (e.g., confidence score changes in classification
models, and forward posterior estimation errors in diffusion models). By varying the removal ratio,
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a trajectory of output is obtained, which is regarded as the new membership feature. Further details
on the feature removal operations, strategy, and behavior selection will be provided in Section 3.4.

Attack Model Training. The adversary aggregates the extracted shadow removal-based member-
ship features, along with the loss computed by querying the shadow model MS and the one-hot
encoding of the true classes, as the final membership features. For diffusion models, we only use
removal-based membership features as the final membership feature vector. In cases where the
adversary has additional capabilities, the respective membership features can be further integrated
within the feature set. Subsequently, the adversary trains an attack model on the membership fea-
tures using a Multi-Layer Perceptron (MLP) network.

Membership Inference Attack. In the final stage of the MIA, the adversary applies the same
feature removal process to the target sample. The resulting features, along with the loss, one-hot
encoding of the classes, and any additional attack features (e.g., concatenation with loss trajectories
as described in Liu et al. (2022a) (Ours w/ loss traj.)), are input into the previously trained attack
model to determine the membership status of the target sample.

3.4 FEATURE REMOVAL SCHEME

The design of our feature removal scheme is centered around our design intuition, that is, how to
design a feature removal scheme that effectively exploits the density gaps between members and
non-members. To this end, we address three key questions: (1) How are features removed (e.g.,
setting them to default values)? (2) What strategy guides the removal of features (e.g., sequential
removal following a specific order)? (3) Which aspects of model behavior are analyzed following
feature removal (e.g., confidence score changes)? These elements collectively define our approach.

Feature Removal Operation. Ideally, feature removal operations should accurately reflect the
importance of the removed features, so that the changes in the model’s predictions can be directly
attributed to the removal of those features. Feature removal has been widely studied in the context
of explainable ML as a means to quantify the impact of individual features on a model’s predictions
(Fong & Vedaldi, 2017; Covert et al., 2021). A common method involves setting the removed pixels
to a fixed value (e.g., zero) (Petsiuk et al., 2018). However, such removal operations have been
shown to induce distribution shifts (Hooker et al., 2019) and adversarial artifacts (Fong & Vedaldi,
2017), complicating the determination of whether prediction changes result from the feature removal
itself or from the induced distribution shifts and artifacts. To address this challenge, we leverage
Noisy Linear Imputation (Rong et al., 2022), which estimates the values of removed pixels using a
weighted mean of their neighboring pixels. When multiple pixels are removed, this process forms
a system of equations where known pixel values are used directly, while removed pixels are treated
as unknown variables, resulting in a linear equation system, that is sparse and can be effectively
solved. The strong correlation between a removed pixel and its neighbors mitigates the distribution
shift, as the imputed values are consistent with the underlying distribution. Additionally, averaging
neighbors inherently smooth these regions, which helps mitigate adversarial artifacts by reducing
abrupt changes (Fong & Vedaldi, 2017).

Feature Removal Strategy. Images typically have high dimensionality (Deng et al., 2009), which
poses challenges when removing pixels one by one for analysis, as this process would require a large
number of queries. To address this, we randomly group pixels into clusters and then progressively
remove an increasing percentage of these pixel groups. By doing so, we effectively reduce the
dimensionality from a large number of pixels to a manageable number of clusters. However, this
approach overlooks the varying importance of image features in decision-making (see Appendix
H), limiting its ability to exploit the feature density gaps between members and non-members. To
overcome this, we devise an approach to estimate feature importance by identifying the smallest
region of the image that still allows for confident classification. This involves masking the image:

x̂ = x⊙m+ r ⊙ (1−m), (1)

where x is the original image, m is the mask, r represents the features replacing the removed areas,
and ⊙ means element-wise multiplication. m has the same shape as x, with each element taking a
continuous value between 0 and 1. We measure the impact of feature removal on model performance
using the Carlini & Wagner (C&W) loss function (Carlini & Wagner, 2017):
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CW (x̂, t) = max(max
i ̸=t

MC(x̂)i −MC(x̂)t,−k), (2)

where MC represents the classifier model, t represents the original class predicted by MC before
removal. We also need to restrict the area of the mask, so we take the l1 norm of the mask to en-
sure the sparsity of the elements. The design of r is important, as it could incur class information
leakage and adversarial artifacts. Initially, we aimed to leverage noisy linear imputation to generate
r. However, this operation requires a binary mask to clearly identify the removal pixels, making the
optimization non-differentiable. To tackle this, we alternately use a Gaussian-blurred version of the
original image and a random color image with added Gaussian noise, selected with a certain prob-
ability. This approach mitigates the class information leakage resulting from the removal operation
while ensuring an end-to-end differentiable optimization. Furthermore, to mitigate adversarial arti-
facts, which generally arise from unnatural noises (Goodfellow et al., 2014; Fong & Vedaldi, 2017),
we adopt the total variation penalty to regulate the mask m to have a more natural and smooth shape:

TV (m) =
∑
i,j

(mi,j −mi,j+1)
2 + (mi,j −mi+1,j)

2. (3)

Consequently, our loss function is formulated as:

L(m) = CW (x⊙m+ r ⊙ (1−m), t) + α · TV (m) + β · l1(m). (4)

We then train a mask prediction model, P , using the above loss function. We adopt the U-net
architecture (Ronneberger et al., 2015) for P . The details of the models are given in Appendix B.

Model Behavior Selection. For classification models, we use the confidence score of the original
class as the metric. For diffusion-based generative models, since they do not provide prediction
results, we cannot obtain such confidence scores. Inspired by Duan et al. (2023), who showed that
diffusion models are trained to match the forward process posterior distribution at each timestep, and
thus members have smaller posterior estimation errors compared to non-members. We also leverage
this posterior estimation error as the model behavior metric.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Models. For our experiments, we employ three benchmark datasets commonly
used in membership inference attack studies: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
and CINIC-10 (Darlow et al., 2018). Consistent with existing works (Salem et al., 2018; Yuan &
Zhang, 2022; Li et al., 2022; Liu et al., 2022a), each dataset is divided into four equal subsets:
Dtrain

target, Dtest
target, Dtrain

shadow, and Dtest
shadow. The Dtrain

target subset is used to train the target model M,
and Dtrain

shadow is utilized to train the shadow model MS . We mainly employ two widely used neural
network architectures for our experiments, ResNet-18 (He et al., 2016) and WideResNet-32 (WRN-
32) (Zagoruyko & Komodakis, 2016). Additionally, we further investigate VGG-16 (Simonyan &
Zisserman, 2014) and DenseNet-161 (Huang et al., 2017) during the ablation study. For diffusion
models, we employ the popular DDPM (Ho et al., 2020). To mitigate model overfitting, we employ
standard training techniques such as weight decay (Krogh & Hertz, 1991) and train-time augmenta-
tions (Cubuk et al., 2018). Detailed dataset and model settings are provided in Appendix A.

Evaluation Metrics. In alignment with state-of-the-art studies (Liu et al., 2022a; Carlini et al.,
2022), we primarily evaluate the attack performance at a low False Positive Rate (FPR). Specifi-
cally, we employ the following metrics: (1) Full Log-scale Receiver Operating Characteristic (ROC)
Curve; (2) True Positive Rate (TPR) at Low False Positive Rate (FPR), which measures attack per-
formance at a specific FPR (e.g., 0.1%). For completeness, we also report average case metrics
commonly used in membership inference attacks (Shokri et al., 2017; Song & Mittal, 2021; Salem
et al., 2018), including: (3) Balanced Accuracy and Area Under the ROC Curve (AUC). To maintain
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consistency, the balanced accuracy is calculated using a fixed threshold of 0.5 on the softmax output
of MLP to determine membership status.
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(c) CINIC-10

Figure 3: ROC curves for attacks on three different datasets and two model architectures. The first
row shows the results of ResNet-18, and the bottom row shows the results of WideResNet-32.

Comparison Baselines. We compare with the state-of-the-art attacks across various adversarial
scenarios. In the standard MIA setting as discussed in Section 3.1, we select Yeom et al. (2018),
Shokri et al. (2017), Salem et al. (2018), and Song & Mittal (2021) as baselines. For scenarios where
the adversary has access to a large supplementary dataset, we choose Liu et al. (2022a) and Shi et al.
(2024) as baselines. In scenarios where the adversary can train a large number of shadow models,
we adopt Carlini et al. (2022) as our baseline. Additionally, for membership inference attacks on
diffusion models, we compare our approach with Duan et al. (2023). Across all these scenarios,
our attacks are implemented and evaluated under the same experimental settings as the respective
baseline methods. To ensure a fair evaluation, we utilize the same set of shadow and target models
throughout our experiments.

Implementation Details: To implement our guided-based removal strategy, we first train a classi-
fier model MC using the shadow dataset Dshadow, which follows the same architecture and training
procedures as the shadow model. Next, we train the mask prediction model P by applying the loss
function defined in Eq. 4 on Dshadow, with parameters set as α = 2 and β = 0.02. For both the
random-based and guided-based removal strategies, we select 50 removal ratios ranging from 0.1 to
1 in equal intervals to generate attack features. In the guided-based strategy, we rank the predicted
mask values from lowest to highest, then remove features whose mask value percentiles fall below
the specified removal ratio. The attack model is a five-layer MLP with ReLU activation functions,
followed by a softmax output layer. We use the Softmax output of MLP as membership scores,
indicating the model’s prediction confidence. We vary the threshold between 0 and 1 to calculate
the TPR at each swept FPR, simulating the adversary’s power and error based on these scores.

4.2 QUANTITATIVE EVALUATION OF CLASSIFICATION MODELS.

Evaluation of standard settings. We have implemented both random-based and guided-based
attacks and compared them with baseline methods within the same adversarial setting. The results
are presented in Figure 3 and Table 1. We mainly focus the TPR at 0.1% FPR as it is established by
Carlini et al. (2022) as the standard in evaluating MIA. We observe that our methods can significantly
improve the attack performance at the low FPR, even when employing the random removal-based
strategy. This indicates that an adversary can still achieve notable gains with minimal resources
by using random removal. Furthermore, our guided removal-based attack outperforms the random
strategy, which is attributed to the efficacy of mask prediction models in exploiting the density gaps
between members and non-members by accurately estimating the location of important features.
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Table 1: Attack performance against different models and datasets. The best and the second-best
result at low FPR in each model, dataset and adversarial setting is bold and underlined respectively.

Target
Model Attack Method TPR at 0.1% FPR Balanced Accuracy AUC

CIFAR-100 CIFAR-10 CINIC-10 CIFAR-100 CIFAR-10 CINIC-10 CIFAR-100 CIFAR-10 CINIC-10

ResNet-18

Yeom et al. 0.3% 0.1% 0.2% 0.770 0.610 0.783 0.770 0.610 0.783
Shokri et al. 0.7% 0.1% 0.5% 0.692 0.562 0.735 0.751 0.583 0.802
Salem et al. 0.6% 0.1% 0.2% 0.712 0.561 0.751 0.765 0.577 0.802

Song & Mittal 0.3% 0.1% 0.3% 0.771 0.610 0.784 0.771 0.610 0.784
Ours. Random. 4.1% 0.7% 1.7% 0.810 0.639 0.760 0.938 0.732 0.853
Ours. Guided. 4.6% 0.8% 1.8% 0.825 0.646 0.780 0.946 0.737 0.840

Shi et al. 2.8% 1.6% 1.1% 0.873 0.689 0.778 0.935 0.759 0.851
Liu et al. 8.2% 2.9% 7.7% 0.854 0.657 0.767 0.931 0.740 0.862

Ours w/ loss traj. 12.0% 6.3% 12.8% 0.882 0.688 0.812 0.952 0.797 0.908

WRN-32

Yeom et al. 0.3% 0.1% 0.2% 0.781 0.603 0.721 0.781 0.603 0.721
Shokri et al. 0.5% 0.2% 0.3% 0.732 0.560 0.684 0.799 0.585 0.739
Salem et al. 0.3% 0.2% 0.2% 0.754 0.570 0.696 0.805 0.590 0.734

Song & Mittal 0.3% 0.1% 0.2% 0.780 0.603 0.722 0.780 0.603 0.722
Ours. Random. 2.1% 0.5% 1.3% 0.761 0.592 0.705 0.882 0.645 0.788
Ours. Guided. 2.4% 0.7% 1.5% 0.763 0.601 0.721 0.881 0.645 0.788

Shi et al. 1.6% 0.8% 1.8% 0.810 0.614 0.726 0.886 0.663 0.797
Liu et al. 5.9% 2.6% 6.0% 0.768 0.603 0.693 0.867 0.661 0.788

Ours w/ loss traj. 9.4% 2.9% 9.8% 0.803 0.617 0.742 0.903 0.681 0.847

Evaluation of settings with large supplementary dataset. In this setting, we compare our ap-
proach with two state-of-the-art baselines: Liu et al. (2022a) and Shi et al. (2024). For Liu et al.
(2022a), we utilize the additional datasets to perform model distillation and obtain the loss trajec-
tories. For Shi et al. (2024), we leverage such datasets to train a reference model to calibrate the
difficulty of the target data record. Additionally, we implement our attack in this adversarial setting
by concatenating our random removal based attack features with the loss trajectories obtained fol-
lowing Liu et al. (2022a) (Ours w/ loss traj.). The results are presented in Figure 3 and Table 1. We
observe that in this scenario, our attack performance still surpasses the baselines, especially at the
low FPR. This demonstrates that our exploited attack features are applicable to different scenarios.

Table 2: Attack performance in the settings with numerous shadow models.

Attack Method Number of Shadow Models TPR at 0.1% FPR AUC
LiRA 8 1.8% 0.591

Ours w/ LiRA 8 3.2% 0.652
LiRA 16 2.7% 0.655

Ours w/ LiRA 16 3.8% 0.676
LiRA 64 7.7% 0.693

Ours w/ LiRA 64 8.4% 0.701
LiRA Aug. 64 8.1% 0.722

Ours w/ LiRA Aug. 64 8.6% 0.728
R - logit rescale 16 1.6% 0.636

R - linear itp 16 1.2% 0.641
R - min linear logit 16 0.6% 0.646

R - mean linear logit 16 0.5% 0.649
Ours w/ R 16 2.6% 0.686

RMIA 1 1.9% 0.658
Ours w/ RMIA 1 2.5% 0.679

RMIA 2 3.0% 0.668
Ours w/ RMIA 2 3.3% 0.689

RMIA 4 4.1% 0.673
Ours w/ RMIA 4 4.4% 0.698

Evaluation of settings with large number of shadow models. We compare our method with three
representative membership inference attacks: LiRA (Carlini et al., 2022), R (Ye et al., 2021), and
RMIA (Zarifzadeh et al., 2024). Due to our limited computational resources, we primarily conduct
the experiment on CIFAR-10. We reproduced these attacks using their official implementations on
WideResNet trained on CIFAR-10 and compared them with our attack in the same settings. To sim-
ulate different adversarial capabilities, we train one WideResNet target model and various number
of shadow models with random even splits of 50,000 images, each reaching approximately 92%
testing accuracy. For Carlini et al. (2022), we focused on the online setting and trained shadow
models of 8, 16, and 64. For Ye et al. (2021), we selected their Attack R strategy, which achieves
the highest TPR at low FPR. We trained 16 shadow models and implemented their specified attack
strategies. For Zarifzadeh et al. (2024), which aims to enhance membership inference performance
in low-cost scenarios, we followed their setup by training 1, 2, and 4 shadow models. The results,
presented in Table 2, demonstrate that our method outperforms these baseline approaches. Specif-
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ically, Compared to SOTA attack RMIA, our method achieves higher TPR and AUC, especially
when the number of shadow models. However, training such a large number of shadow models can
be highly expensive, especially for large-scale models such as diffusion models.

4.3 QUANTITATIVE EVALUATION OF DIFFUSION MODELS

Experimental setup. Recently, Duan et al. (2023) proposed SecMI attacks, which achieve
state-of-the-art performance on diffusion-based generative models. Their method works by cal-
culating the approximated estimation error of the sample x at a certain step. To adapt our at-
tack to diffusion models, we leverage our proposed random removal strategy to progressively re-
move features from x with removal ratios from 0.1 to 1, generating a series of perturbed ver-
sions x∗. We only generate 10 samples, as we found it to be sufficient to significantly im-
prove the attack. We then use these perturbed samples to conduct the membership inference.

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

Tr
ue

 P
os
iti
ve

 R
at
e

Ours w/ SecMI
SecMI-NNs
SecMI-Stat

(a) CIFAR-100

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

Tr
ue

 P
os
iti
ve

 R
at
e

Ours w/ SecMI
SecMI-NNs
SecMI-Stat

(b) CIFAR-10

Figure 4: ROC curves of different attacks against DDPM
trained on CIFAR-100 and CIFAR-10.

To ensure a fair comparison, we
follow the same experimental set-
tings as their method. We con-
duct the experiment on the DDPM
Ho et al. (2020) model, using the
CIFAR-100 and CIFAR-10 datasets.
They propose two attack methods:
the statistic-based inference (SecMI-
Stat) and the neural network-based
inference (SecMI-NNs), with the
neural network-based strategy per-
forming better. This strategy takes
the pixel-wise absolute value of the
estimation error and trains an NN to
predict the membership status. We
calculate the estimation error of every x∗ and concatenate them as input features. For evaluation,
their method uses the attack success rate (ASR) instead of balanced accuracy, which we also follow.

Evaluation results. The results are shown in Figure 4 and Table 3. Our method significantly
improves the attack performance at the low FPR. For example, our method achieves a TPR of 18.4%
at 0.1% FPR, compared to 9.7% in SecMI-NNs and 0.5% in SecMI-Stat. Our method also achieves
better AUC and ASR. This demonstrates the applicability of our approach to diffusion models.

Table 3: Comparison of attack performance against DDPM trained on CIFAR-100 and CIFAR-10.

Dataset Method TPR at 0.1% FPR ASR AUC

CIFAR-100
SecMI-Stat 0.5% 0.801 0.873
SecMI-NNs 9.7% 0.930 0.975

Ours w/ SecMI 18.4% 0.960 0.989

CIFAR-10
SecMI-Stat 0.6% 0.816 0.887
SecMI-NNs 9.6% 0.922 0.973

Ours w/ SecMI 20.4% 0.940 0.983

4.4 ABLATION STUDY

In this section, we evaluate the impact of various removal operations and steps, followed by an
assessments in practical adversarial settings. Further ablation studies are provided in Appendix C.

Different Removal Operations: In this section, we explore various removal operations commonly
used in the explainable machine learning (Rong et al., 2022; Yoon et al., 2018; Fong & Vedaldi,
2017): channel mean, Gaussian Noise, Gaussian Blur, and Generative Adversarial Network (GAN).
We compare these methods against our Noisy Linear Imputation strategy in terms of attack per-
formance. Specifically, the channel mean method fills the removed areas using the average color
intensity of each channel. Gaussian noise is introduced with a mean of 0 and a standard deviation of
0.1. Gaussian blur is applied using a kernel size of 11 and a standard deviation of 5. For the GAN
approach, we follow the approach described in Kachuee et al. (2020) to train the model. The ex-
periments were conducted on a ResNet-18 model trained on the CIFAR-100 dataset, and the results
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are presented in Table 4. The findings indicate that Noisy Linear Imputation outperforms the other
methods, which is attributed to its ability to mitigate the distribution shift and adversarial artifact.

Table 4: Attack performance of various removal operations.

Removal Operation TPR at 0.1% FPR Balanced Accuracy AUC
Channel Mean 2.7% 0.703 0.922
Gaussian Noise 3.5% 0.730 0.929
Gaussian Blur 3.4% 0.771 0.930

GAN 3.9% 0.809 0.936
Noisy Linear Imputation 4.1% 0.810 0.938

Number of Removal Steps. We conducted removal operations across 50 steps with ratios ranging
from 0.1 to 1 during our main evaluation. In this section, we explore the impact of the number of
steps on the attack performance, as it directly affects the number of queries made to the model. We
conducted the experiment on WideResNet-32 trained on the CIFAR-100 dataset. The experimental
results are presented in Table 5. We observe that the overall performance improves with an increas-
ing number of steps, as it provides more fine-grained information about the changes in the model’s
output. Nevertheless, our method also demonstrates decent performance at lower numbers of steps.
This demonstrates that our method is query-efficient, requiring only an additional few dozen queries.

Table 5: Attack performance of different removal steps.

Removal Step Number TPR at 0.1% FPR Balanced Accuracy AUC
5 1.9% 0.750 0.877

10 2.2% 0.737 0.880
20 2.4% 0.748 0.880
50 2.4% 0.763 0.881

Disjoint Distribution between Shadow and Target Dataset. In previous experiments, we as-
sumed that the adversary possesses shadow datasets that share the same distribution as the target
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Figure 5: ROC curves on scenarios of
disjoint shadow and target distribution.

dataset, which may not hold in practical settings. In
this section, we consider a scenario where the adversary
has access to a dataset that is disjoint from the target
datasets. Specifically, we utilize the CINIC-10 dataset,
which merges CIFAR-10 with an additional 210k images
from ImageNet that match classes contained in CIFAR-
10. For this experiment, the target model was trained us-
ing the CIFAR-10 portion, while the shadow model was
trained on the ImageNet portion, representing a different
distribution (i.e., diff. dist.). We also implement baseline
methods in this scenario for comparison. Additionally,
we implement an attack where both models were trained
on the CIFAR-10 dataset (i.e., same dist.). The ResNet-18 architecture was used for this experiment,
with results presented in Figure 5, which indicate that our attack’s performance remains robust when
using a disjoint dataset and notably outperforms the baseline methods in this setting.

5 CONCLUSION

In this paper, we introduce a novel membership inference attack that adapts effectively to various
models, datasets, and adversarial settings, achieving significant improvements in attack performance
across different scenarios with minimal resource requirements. The key insight behind our approach
is that member samples tend to reside in high-density regions of the learned feature space. Conse-
quently, even with partial feature removal, the model is likely to maintain higher confidence in these
samples. Building on this, we propose a progressive feature removal technique, where features are
incrementally removed from the input. We then leverage the model outputs within a progressively
increasing removal ratio as attack features to conduct membership inference. Extensive experiments
across multiple datasets, models, and threat models demonstrate that our approach consistently sur-
passes state-of-the-art methods in a variety of scenarios.
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A EXPERIMENTAL SETTINGS

A.1 DATA SPLITS ON DIFFERENT DATASETS

We follow the dataset splitting method in (Liu et al., 2022a; 2024). The detailed splits for different
datasets are provided in Table 6. The target model is trained using Dtrain

target, and the samples from
this set serve as the member samples of M, while the samples from Dtest

target are used as the non-
member samples. Similarly, the shadow model is trained using Dtrain

shadow, and the samples from this
set serve as the member samples of the model MS , while the samples from Dtest

shadow are used as
the non-member samples. The auxiliary dataset Daux is utilized for model distillation for Liu et al.
(2022a) and for training the reference model for Shi et al. (2024).

A.2 TRAINING CONFIGURATIONS

In the standard adversarial setting, we use one shadow model and one target model. For settings
with large supplementary datasets, we follow the approach of Liu et al. (2022), applying knowledge
distillation for both shadow and target models and storing intermediate model checkpoints. For
settings with a large number of shadow models, we follow the strategy of Carlini et al. (2022) and
employ 8, 16, and 64 shadow models alongside a single target model. We train each model for 100
epochs using an initial learning rate of 0.1. Additionally, we leverage a cosine annealing schedule
to gradually reduce the learning rate. To further improve model generalization, we employ standard
data augmentations and apply a weight decay rate of 0.0001. The training and testing accuracies for
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various models across different datasets are presented in Table 7. We have repeated the experiments
10 times with different random samplings of the datasets, except for the experiments based on Carlini
et al. (2022) due to the large computational costs associated with training shadow models.

Table 6: Data splits on different datasets.

Dataset Dtrain
target Dtest

target Dtrain
shadow Dtest

shadow Daux

CIFAR-100 10000 10000 10000 10000 20000
CIFAR-10 10000 10000 10000 10000 20000
CINIC-10 10000 10000 10000 10000 220000

Table 7: Training and testing accuracy for various model architectures on different datasets.

Model Dataset Training Accuracy Testing Accuracy

ResNet-18

CIFAR-100 1.000 0.443
CIFAR-10 0.996 0.763
CINIC-10 0.999 0.625

WideResNet-32

CIFAR-100 0.999 0.584
CIFAR-10 0.992 0.824
CINIC-10 0.998 0.704

B MASK PREDICTION MODEL

The rationale of using a mask prediction model instead of directly optimize the mask for every
input stems from several considerations. First, under the black-box threat model assumed in this
work, the adversary does not have access to gradient information from the target model. As a result,
directly optimizing the mask m using the proposed loss function is not feasible because gradient-
based updates cannot be performed. Additionally, while it is possible to use a shadow model to
estimate the mask, optimizing m for each sample individually would be computationally expensive.
This process involves multiple components of the proposed loss function and requires numerous
backpropagation steps for every sample. By contrast, training a U-Net model allows for efficient
mask generation. After training, the U-Net produces the mask in a single forward pass, significantly
improving the computational efficiency of the membership inference attack. Also, the U-Net model
is particularly well-suited for this task due to its established effectiveness in image generation, e.g.,
in DDPM (Ho et al., 2020). U-Net utilizes feature maps at multiple resolutions to generate sharp
and precise outputs. Additionally, since the threat models assume that the adversary is aware of the
target model’s architecture and has access to an auxiliary dataset that shares the same distribution as
the target model’s training data. Under this assumption, the shadow model, trained on the auxiliary
dataset, is designed to closely replicate the behavior of the target model. The mask prediction model,
trained using the outputs of the shadow model for both members and non-members, leverages this
similarity. As the shadow model and target model exhibit comparable decision-making patterns, the
model is expected to generalize effectively to predict masks for samples from the target model.

The proposed mask prediction model adopts an encoder-decoder U-Net architecture (Ronneberger
et al., 2015). The encoder is based on a pre-trained ResNet-50, which consists of an initial convo-
lutional layer followed by four scale levels, each containing multiple residual blocks. The encoder
progressively downsamples and extracts features from the input image. To incorporate class-specific
information into the model, the class label of the input image is embedded into a vector. This class
embedding is then element-wise multiplied with the features from the last encoder scale. By doing
so, the model can learn to generate masks that are conditioned on the specific class of the input
image. The decoder aims to recover spatial details by gradually upsampling the encoded features. It
comprises three upsampling blocks, each corresponding to a scale level in the encoder. The upsam-
pling blocks receive the output from the previous block and integrate corresponding encoder features
via skip connections. Finally, the output of the decoder’s last layer is passed through a convolutional
layer with two output channels. The absolute values of these channels are normalized to produce the
final mask prediction.
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C ADDITIONAL ABLATION STUDY

Different Removal Strategy. As discussed in Section 3.4, we employ random grouping to
tackle the challenges of high dimensionality. In this section, we empirically assess the impact
of other strategies on our attack performance. We have chosen five widely used superpixel seg-
mentation methods for comparison: Felzenszwalb (Felzenszwalb & Huttenlocher, 2004), Quick-
shift (Vedaldi & Soatto, 2008), SLIC (Achanta et al., 2012), Watershed (Neubert & Protzel, 2014),
and DISF (Belém et al., 2020). Additionally, we consider saliency map methods. Since we assume
a black-box threat model for the target model, we cannot utilize methods that require white-box
knowledge, such as GradCAM (Selvaraju et al., 2017). Therefore, we selected two widely used
saliency methods that work in black-box settings: LIME (Ribeiro et al., 2016) and SHAP (Lund-
berg & Lee, 2017). We compare these methods with our random-based removal and guided-removal
strategies. We conducted the experiment on ResNet-18 trained on CIFAR-100. The results are pre-
sented in Table 8. The findings demonstrate that all of these methods exhibit effectiveness compared
to the baselines in Table 1, with our guided removal strategy achieving the best performance. While
the saliency map methods only perform slightly lower than our approach, we want to highlight that
these black-box saliency methods are generally very computationally expensive. They require a
large number of queries to approximate feature importances—typically several hundred to a thou-
sand queries per sample to derive a saliency map. In contrast, our method is very efficient: training
a mask prediction model takes less than 2 minutes on an Nvidia 4090 GPU, and it does not require
access to the target model to derive the mask.

Table 8: Attack performance of different removal strategies.

Removal Strategy TPR at 0.1% FPR Balanced Accuracy AUC
Felzenszwalb (Felzenszwalb & Huttenlocher, 2004) 3.7% 0.760 0.929

Quickshift (Vedaldi & Soatto, 2008) 3.0% 0.717 0.926
SLIC (Achanta et al., 2012) 3.1% 0.788 0.930

Watershed (Neubert & Protzel, 2014) 3.5% 0.804 0.931
DISF (Belém et al., 2020) 3.0% 0.772 0.935

LIME (Ribeiro et al., 2016) 4.2% 0.821 0.940
SHAP (Lundberg & Lee, 2017) 4.0% 0.813 0.938

Ours. Random. 4.1% 0.810 0.938
Ours. Guided. 4.6% 0.825 0.946

Evaluation on Differential Privacy. Differential privacy (DP) (Abadi et al., 2016) is a widely used
mechanism to defend against membership inference attacks by providing a rigorous bound on the
ability to distinguish between two neighboring datasets that differ by only one data sample. We uti-
lize the Fast Differential Privacy library (Bu et al., 2023) to implement DP, which achieves notable
privacy-preserving performance while minimizing computational cost. We set the per-sample gra-
dient clipping threshold to automatic and choose MixOpt as our gradient clipping mode, applying
the clipping style to all layers. The experiments are conducted on ResNet-18 trained on the CIFAR-
100 dataset, with varying privacy budget values (ϵ) of 1, 100, and 1000. The results are detailed in
Table 9. We observe that stricter privacy budgets significantly reduce both the TPR and Balanced
Accuracy of the attack, indicating effective privacy protection. However, implementing differential
privacy impacts the model’s accuracy; for instance, there is a notable drop in top-1 accuracy of 0.28
when ϵ = 1000. These results highlight the challenging trade-off between defensive effectiveness
and performance utility in the application of differential privacy.

Table 9: Model accuracy and attack performance under DP with different privacy budget ϵ.

Privacy Budget Top-1 Acc. Drop Top-5 Acc. Drop TPR at 0.1% FPR Balanced Acc.
1 0.408 0.599 0.0% 0.499

100 0.331 0.368 0.1% 0.508
1000 0.280 0.268 0.2% 0.514

Different Architectures between Shadow and Target Model. We now relax another assumption
in the threat model, where the adversary knows the target model architecture. To this end, we use
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Figure 6: The impact of different model
architectures on the attack performance.

ResNet-18 as the target model architecture and vary
the architectures of the shadow models using VGG-16
(Simonyan & Zisserman, 2014), DenseNet-161 (Huang
et al., 2017), WideResNet-32, and ResNet-18. We con-
duct the experiment using CIFAR-100, the results are
given in Figure 6. We observe that when the shadow
model shares the same architecture as the target model,
our method achieves the best performance. Additionally,
the attack performance of other networks also achieves
decent results. This demonstrates that our attack remains
effective even when the adversary lacks knowledge of the
target model’s architecture.

Attack on Other Data Modalities. We primarily focus on the image modality to demonstrate the
effectiveness of our attack in this paper, as it is the most studied modality in existing works (Liu
et al., 2022a; Shokri et al., 2017; Song & Mittal, 2021). In this section, we extend our attacks to
other modalities. Our attacks are based on the insight that members exhibit more redundancy in
the features learned by ML models, as discussed in Section 3.2. While different feature removal
strategies are needed to tailor this attack to other data types, this insight generally enhances attack
performance across various modalities. We conducted a preliminary experiment using the tabular
dataset Adult (Becker & Kohavi, 1996) to test this hypothesis. We employed a three-layer MLP
model as the target model, consisting of one hidden layer with a ReLU activation function, fol-
lowed by a Softmax layer. We iteratively removed features by setting them to zero and recorded the
corresponding confidence score drop as attack features. The results, presented in Table 10, demon-
strate a performance boost compared to baselines. Our attack achieved a 0.8% TPR at a 0.1% FPR,
compared to a 0.2% TPR by Shokri et al. (2017) and a 0.1% TPR by other methods at a 0.1% FPR.

Table 10: Attack performance on other data modalities.

Method TPR at 0.1% FPR Balanced Accuracy AUC
Yeom et al. 0.1% 0.553 0.545
Song et al. 0.1% 0.554 0.546
Salem et al. 0.1% 0.518 0.514
Shokri et al. 0.2% 0.523 0.519
Our Method 0.8% 0.563 0.594

D EMPIRICAL EVALUATION OF FEATURE DENSITY

To empirically validate the feature density gaps between members and non-members, we conducted
experiments by extracting features from the layer immediately before the final classification layer
for both member and non-member samples. We calculated the average L2 distance of each sample
to its top 5 nearest neighbors in the feature space. The experiments were repeated across different
models and datasets, and the mean L2 distance is as follows: (1) ResNet-18 trained on CIFAR-
100: Members: 71.11 ± 1.08, non-members: 78.86 ± 0.97; (2) ResNet-18 trained on CIFAR-
10: Members: 13.42 ± 0.22, non-members: 15.52 ± 0.34; (3) WideResNet trained on CIFAR-
100: Members: 54.34± 0.78, non-members: 60.65± 0.66; (4) WideResNet trained on CIFAR-10:
Members: 2.99± 0.04, non-members: 3.22± 0.03. These results consistently indicate that member
samples have lower mean L2 distances to their nearest neighbors compared to non-member samples,
reflecting a higher feature density.

E ATTACK COST

In real-world scenarios, the cost of executing an attack is a crucial factor that needs to be considered
alongside its effectiveness. In certain use cases, a cost-efficient strategy, even if it sacrifices some
performance, can be more practical and advantageous (Shi et al., 2024). We address resource ineffi-
ciency in existing methods from two main perspectives: (1) Many existing methods (e.g., Liu et al.
(2022a), Shi et al. (2024)) require large auxiliary datasets with the same distribution of the target
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model’s training data (in addition to shadow datasets), which is often impractical in real-world sce-
narios. (2) Some approaches, such as Carlini et al. (2022), require training a large number of shadow
models, leading to significant computational costs. We provide a comparison of the additional num-
ber of trained models and total training time in Table 13, demonstrating that our method achieves
better computational efficiency. Additionally, by comparing Ours. Random. and Ours. Guided., we
show that the mask prediction model incurs minimal additional training time.

Table 11: Computational cost of different methods.

Method Number of Trained Models Training Time
Shi et al. 2 47.2 min
Liu et al. 2 51.7 min

Carlini et al. 64 1499.7 min
Ours. Random. 1 23.4 min
Ours. Guided. 2 24.6 min

F ATTACK PERFORMANCE WITHOUT SHADOW MODELS

A significant strength of our attack is its ability to be executed on pre-trained models without requir-
ing the training of shadow models. To validate this point, we conducted preliminary experiments
following the same settings as the population attacks in Ye et al. (2021), without training shadow
models. We implemented both attacks on ResNet-18 trained with CIFAR-100. The population at-
tack achieved a TPR of only 0.4% at a 0.1% FPR with an AUC of 0.771. In contrast, our method
achieved a TPR of 1.9% and an AUC of 0.916 under the same settings, significantly improving upon
the population attack. This demonstrates the advantage of our approach, which does not require
shadow models and is particularly beneficial for large-scale models, thereby significantly reducing
computational costs.

G ATTACK PERFORMANCE WITH PRE-TRAINED MODELS

Pre-training followed by fine-tuning has become a widely adopted paradigm in modern machine
learning (Liu et al., 2022b). To evaluate the performance of our attack under this setting, we con-
ducted an experiment using a pre-trained DenseNet-161 model on ImageNet. We applied transfer
learning to adapt this model on CIFAR-100 and then evaluated our random-based attack against the
baseline methods in standard adversarial settings. The results, presented in Table 12, clearly show
that our attack remains effective even when the defender employs a pre-trained feature extractor
during target model training.

Table 12: Comparison of attack performance with a pre-trained models.

Attack Method TPR at 0.1% FPR Balanced Accuracy AUC
Yeom et al. 0.2% 0.676 0.676
Shokri et al. 0.5% 0.576 0.599
Salem et al. 0.3% 0.571 0.596

Song & Mittal 0.2% 0.677 0.677
Ours. Random. 4.7% 0.866 0.941

H ANALYSIS OF FEATURE DIFFERENCE OF MEMBER AND NON-MEMBERS

To explore the differences in learned features between member and non-member samples, we con-
ducted an experiment using a common set of samples from CIFAR-100. In the first scenario, the
samples were used to train a model, thereby serving as member samples. In the second scenario,
the same samples were excluded from the training process, making them non-member samples. We
generated saliency maps for these samples in both scenarios using GradCAM and measured their
similarity using the Structural Similarity Index Measure (SSIM) (Wang et al., 2004). The SSIM
value was computed to be 0.51± 0.17. Figure 8 presents several demonstration examples, revealing
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Figure 7: ROC curves for LiRA attack and our attack under the different number of shadow models.

Table 13: The mean and standard deviation of different performance metrics.

Attack Method TPR at 0.1% FPR Balanced Accuracy AUCSection
Yeom et al. 0.3±0.0% 0.770±0.022 0.770±0.002
Shokri et al. 0.7±0.1% 0.692±0.015 0.751±0.004
Salem et al. 0.6±0.1% 0.712±0.024 0.765±0.003

Song & Mittal 0.3±0.0% 0.771±0.026 0.771±0.002
Ours. Random. 4.1±0.2% 0.810±0.030 0.938±0.006
Ours. Guided. 4.6±0.3% 0.825±0.026 0.946±0.003

Shi et al. 2.8±0.2% 0.873±0.020 0.935±0.003
Liu et al. 8.2±0.5% 0.854±0.014 0.931±0.007

Ours w/ loss traj. 12.0±0.5% 0.882±0.016 0.952±0.003

clear disparities between the saliency maps of member and non-member samples. Specifically, the
saliency maps for member samples focus more prominently on key semantic features (i.e., the main
object critical for classification), whereas non-member saliency maps either fail to concentrate on or
only partially engage with these critical features.

These observations explain the efficacy of our guided-based approach. By estimating feature impor-
tance and removing the least important features, our method minimizes the likelihood of affecting
critical features in member samples. In contrast, non-member samples, which exhibit a weaker focus
on key features, are less robust to feature removal.
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Figure 8: The comparison of the saliency map between member and non-member samples. The
first row shows the original images, the second row shows the saliency maps when they are member
samples, and the third row shows the saliency maps when they are non-member samples.
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