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Abstract

Recently, numerous cross-modal hashing (CMH)
methods have been proposed, yielding remark-
able progress. As a static learning paradigm,
existing CMH methods often implicitly assume
that all modalities are prepared before processing.
However, in practical applications (such as multi-
modal medical diagnosis), it is very challenging
to collect paired multi-modal data simultaneously.
Specifically, they are collected chronologically,
forming streaming-media data (SMA). To handle
this, all previous CMH methods require retrain-
ing on data from all modalities, which inevitably
limits the scalability and flexibility of the model.
In this paper, we propose a novel CMH paradigm
named Streaming-media Hashing rEtrieval (SHE)
that enables parallel training of each modality.
Specifically, we first propose a knowledge library
mining module (KLM) that extracts a prototype
knowledge library for each modality, thereby re-
vealing the commonality distribution of the in-
stances from each modality. Then, we propose a
knowledge library transfer module (KLT) that up-
dates and aligns the new knowledge by utilizing
the historical knowledge library, ensuring seman-
tic consistency. Finally, to enhance intra-class
semantic relevance and inter-class semantic dis-
parity, we develop a discriminative hashing learn-
ing module (DHL). Comprehensive experiments
on four benchmark datasets demonstrate the supe-
riority of our SHE compared to 14 competitors.
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1. Introduction
Recently, with the rapid development of smart devices and
social media, multimedia data (such as images, audio, video,
etc) has shown an explosive growth trend. Cross-modal
retrieval (CMR) for massive and complex multimedia data
has attracted widespread attention in academia and industry
(Zhu et al., 2023; Liang et al., 2024). CMR aims to use
data from one modality as the query to retrieve semanti-
cally related samples in another modality. However, due to
different feature distributions, there is an inherent hetero-
geneity gap between different modalities. How to establish
effective cross-modal mapping relationships to achieve ac-
curate semantic retrieval between different modalities is a
key challenge.

To bridge the heterogeneity gap, numerous CMR methods
(Sun et al., 2024; Li et al., 2025b; Liu et al., 2024)have
been proposed to capture the shared semantic information
between different modalities, which could be roughly di-
vided into unsupervised (Hu et al., 2022; Li et al., 2025a;
2024) and supervised methods (Wang et al., 2024a;b; Pu
et al., 2025b). Among them, unsupervised CMR methods
aim to directly explore the semantic similarity relationships
between multi-modal data according to the original features.
However, due to the lack of available semantic labels, un-
supervised methods suffer from a performance bottleneck.
Thus, many supervised CMR methods are proposed that
utilize label information to guide the learning of semantic
similarity relationships between instances, thereby obtaining
the discriminative common representations. Most of these
methods employ a joint learning manner to learn common
representations for multi-modal data. In other words, they
necessitate that data from all modalities be available simulta-
neously and collaboratively incorporated to learn a common
representation. Although these methods have demonstrated
promising performance, their success heavily relies on the
implicit assumption of complete data availability. In practi-
cal application scenarios, it is difficult to collect data from
all modalities simultaneously, such as emergency medical
aid. Due to the asynchronous characteristics of multi-modal
data collection, these data from different modalities are of-
ten continuously collected and processed at different time
points, thus forming streaming-media data (SMA). When
dealing with SMA, the aforementioned methods must fre-
quently retrain all the sub-networks for all modalities, which
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Figure 1. The framework of our SHE. Hash codes from different modalities are represented in blue, green, and yellow. Circles and
rectangles represent different categories, while pentagrams denote class prototypes. Specifically, KLM extracts essential class prototypes,
thereby explicitly constructing an implicit knowledge library for each modality. KLT aligns the knowledge library from the newly arrived
modality with the historical knowledge library to maintain semantic consistency across modalities. DHL ensures the discriminability and
compactness of hash codes by maximizing semantic similarity within the same class and semantic disparity across different classes.

undoubtedly increases the learning cost and limits the scala-
bility and flexibility of CMR.

To enhance the flexibility of processing SMA, the CMR
community has introduced a scalable paradigm (Wang &
Peng, 2021; Pu et al., 2025a), which independently trains
data from each modality. When new modality data arrives,
the paradigm only requires training the sub-network specific
to the new modality without retraining all sub-networks. For
instance, MARS (Wang & Peng, 2021) leverages the shared
label parsing module to achieve semantic alignment without
interaction across modalities, thereby providing the funda-
mental conditions for independent training. Although these
methods have achieved considerable performance, their low
retrieval efficiency falls short of meeting the demands of
large-scale data retrieval. Cross-modal hashing (CMH) has
become an effective solution, due to its low storage require-
ments and high efficiency. However, how to construct the
CMH framework to deal with SMA still remains an open
research problem. In fact, this learning framework for SMA
has the following key challenges: 1) Independent training
of each modality in the CMH framework could amplify
quantization errors, thereby leading to significant semantic
information loss. 2) The absence of cross-modal seman-
tic interaction hinders the learning of common semantic
knowledge from SMA, thereby potentially degrading the
quality of the generated hash codes. 3) When streaming
data becomes unpaired, existing CMH methods fail to es-
tablish cross-modal semantic correspondences, thereby sig-

nificantly reducing their effectiveness.

To address the above challenges, we propose a novel
Streaming-media Hashing rEtrieval (SHE) method to
achieve asynchronous retrieval for streaming-media data.
Different from existing static CMH methods that require all
modalities to be prepared before processing, our proposed
SHE can learn hash codes of each modality in parallel to
process streaming-media data without retraining all histori-
cal modalities, thus reducing the training complexity. The
framework of our SHE is shown in Fig.1, which consists
of a Knowledge Library Mining module (KLM), a Knowl-
edge Library Transfer module (KLT), and a Discriminative
Hashing Learning module (DHL). Specifically, we first pro-
pose the KLM module to extract essential class prototypes,
thereby explicitly constructing an implicit knowledge library
for each modality. Then, we propose the KLT module to
align the knowledge of the newly arrived modality with the
historical knowledge library, thereby preserving semantic
consistency across modalities. Finally, we present DHL to
learn compact and discriminative hash codes by maximiz-
ing the semantic relevance of intra-class samples and the
semantic disparity of inter-class samples. In general, the
major contributions of this work are shown as follows:

• This paper reveals and studies a practical but
less-touched problem in cross-modal hashing, i.e.,
streaming-media hashing retrieval. To overcome this
problem, we propose a novel cross-modal hashing
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(CMH) retrieval framework dubbed streaming-media
hashing retrieval (SHE). To the best of our knowledge,
this could be the first work that addresses the problem
of streaming-media data using a CMH paradigm.

• We propose a knowledge library mining module (KLM)
and a knowledge library transfer (KLT) module that
jointly extract an implicit knowledge library from the
newcome data and align the commonality distribution
from the new knowledge with ones from the historical
knowledge library. This ensures that our SHE can
process the newly arrived media data without retraining
the whole historical data, thus reducing the training
complexity.

• Extensive experiments of streaming-media retrieval
on four widely used multi-modal datasets demonstrate
the superiority and effectiveness of our proposed SHE
compared with 14 state-of-the-art methods.

2. Related Work
Technically, cross-modal retrieval (CMR) aims at learn-
ing a series of modality-specific sub-networks to project
multimodal data into a common space, enabling the di-
rect measurement of similarity between data from different
modalities (Sun et al., 2023; Duan et al., 2025; Pu et al.,
2025b). Among these, cross-modal hashing (CMH), as an
efficient and storage-friendly CMR technique, has garnered
widespread attention from academia and industry. CMH
methods are generally classified into unsupervised and su-
pervised ones. Further, unsupervised ones (Qin et al., 2023;
Liu et al., 2020; Shi et al., 2022) aim to capture the hidden
semantic information by preserving the original structure of
the multimodal data. For example, JDSH (Liu et al., 2020)
constructs a joint-modal similarity matrix to maintain the
multimodal semantic correlations among instances while
incorporating a sampling and weighting mechanism to en-
courage the discriminative quality of hash codes. However,
most existing unsupervised ones overly prioritize semantic
consistency, overlooking the varying capacities of different
hash functions to learn similarity. This imbalance often
results in the hash function for one modality being weaker
than those for others. To this end, DAEH (Shi et al., 2022)
introduces an Information Mixed Similarity Estimation to
estimate the similarity relations with discriminability while
deploying an adaptive teacher guided enhancement opti-
mization scheme to identify and strengthen weaker hash
functions.

However, these methods still face performance bottlenecks
due to the absence of semantic labels. In contrast, supervised
methods (Qian et al., 2022; Qin et al., 2022; Wang et al.,
2024c) enjoy a more considerable performance by leverag-
ing semantic information in labels. For example, to leverage

the semantic multilevel advantages of the entire database
and bridge the semantic and heterogeneity gaps between dif-
ferent modalities, MIAN (Zhang et al., 2022) explores asym-
metric intra- and inter-modal similarity preservation under a
probabilistic modality alignment framework. Unlike MIAN,
which overlooks the relationship between the relative rank-
ing of adjacent instances and the fine-grained label-level
similarity, DCH-SCR (Liu et al., 2023) narrows the inherent
gap between modalities by developing a ranking alignment
loss function and introduces Normalized Discounted Cumu-
lative Gain (NDCG) to achieve varying optimization inten-
sities for data pairs with different similarities. Despite their
decent performance, insufficient consideration is given to
the fact that there is a spatial gap between real-number space
and Hamming space, which may lead to solution space com-
pression and loss function oscillation, thereby degrading
performance. For this issue, SCH (Hu et al., 2024) divides
sample pairs into fully semantically similar, partially seman-
tically similar, and semantically dissimilar categories based
on their similarity, and applies different constraints to each
category to ensure the utilization of the entire Hamming
space. Additionally, SCH introduces semantic channels to
alleviate the issue of loss function oscillation.

The aforementioned CMH methods are implemented on the
assumption that all media are simultaneously accessible,
which is often impractical in real-world scenarios. When
facing streaming-media data (SMD), i.e., the ever-emerging
media, these methods must frequently retrain all modality-
specific sub-networks, compromising the flexibility and
scalability of CMR. In this regard, several real-valued CMR
methods (Wang & Peng, 2021; Pu et al., 2025a) are proposed
to allow for training only the newly added modality-specific
network when new modality data arrives, greatly facilitat-
ing the flexibility of CMR. However, they are real-valued
based representation methods, which involve high computa-
tional complexity and memory overhead, making it difficult
to meet the fast retrieval demands of large-scale datasets.
CMH, a technique celebrated for its high retrieval capabili-
ties, presents a promising solution. However, how to design
an effective CMH framework to deal with SMA remains
an unresolved research gap. In this paper, we propose a
novel CMH framework named streaming-media hashing re-
trieval(SHE), which integrates both high retrieval efficiency
and flexibility in handling SMD.

3. The Proposed Method
3.1. Problem Formulation

Without loss of generality, given a multi-media dataset
D = {Xm,Ym}Mm=1 with M modalities, where Xm and
Ym denote the data set and label set from the m-th modality
respectively. Further, the data set and label set from the
m-th modality are denoted as Xm =

{
x1
m, x2

m, ..., xnm
m

}
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and Ym =
{
y1m, y2m, ..., ynm

m

}
respectively, where xi

m

denotes the i-th sample from the m-th modality, yim ={
yi,1m , yi,2m , ..., yi,Cm

}
∈ {0, 1}1×C denotes the correspond-

ing label, C is the number of categories, and nm means the
number of samples in Xm. For a sample xi

m, if it belongs to
the c-th category, yi,cm = 1, otherwise yi,cm = 0. In our paper,
the hash code of a sample xi

m is denoted as bim ∈ {−1, 1}L,
where L denotes the length of the binary code. Our main
goal is to project M modalities into the Hamming space
to generate hash codes so that the similarity between dif-
ferent instances can be measured efficiently. To obtain dis-
criminative hash codes, we first learn M modality-specific
sub-networks H = {Hm(·,Φm)}Mm=1 for multi-media in-
put. Note here that Hm represents the sub-network of the
m-th modality and Φm denotes its corresponding learnable
parameters. Then, the binary code of each sample xi

m could
be generated by the sign function, i,e.,

bim = sign(Hm(xi
m,Φm)). (1)

Considering that the sign function cannot be used for
gradient-based optimization due to its non-differentiability,
we replace the sign function with the tanh function to gen-
erate binary-like codes during training.

3.2. Overview

Different from traditional static learning methods that re-
quire all modalities to be prepared before processing, our
SHE method can handle streaming-media data while mul-
timedia data is continuously collected. In this paper, we
propose a new streaming-media hashing retrieval (SHE)
method, which is specifically designed to handle such
streaming data. Since class prototypes could capture the
consistency and specific information, we use them as the
abstract knowledge library to preserve the instance com-
monality distribution of latent representations in streaming-
media data. Moreover, such a library also alleviates the size
pressure of historical multimedia data. Thus, the core of our
SHE lies in extracting a prototype knowledge library that
evolves over time. In general, SHE mainly consists of three
modules, i.e., Knowledge Library Mining (KLM), Knowl-
edge Library Transfer (KLT), and Discriminative Hashing
Learning (DHL). To be specific, the KLM module constructs
a knowledge library for every modality by extracting essen-
tial prototype knowledge, thereby serving as a semantic
consistency maintenance medium. The KLT module aims
to adaptively align the knowledge library extracted from
the newly arrived modality with the historical knowledge
library, thereby capturing the semantic consistency of multi-
ple modalities. The DHL module focuses on reinforcing the
compactness of intra-class samples and the separability of
inter-class samples.

With the arrival of streaming-media data, the training
pipeline of our SHE mainly contains two stages. In the

first stage, for the first available modality, we first employ
KLM to extract an abstract knowledge library and push hash
codes close to the corresponding class prototype knowledge.
Then, we adopt DHL to learn high-quality hash codes. Thus,
the objective loss could be formulated as

Lm = Lklm + αLklr + βLdhl, (2)

where α and β are two hyper-parameters. Lklm, Lklr, and
Ldhl represent the KLM loss, the KLR loss, and the DHL
loss, respectively. In the second stage, for the new incoming
media data, the knowledge library is updated by KLT to
align the new knowledge with the historical knowledge
library, thereby integrating the semantic information of the
new modality into the knowledge library. Mathematically,
the objective loss of the m-th modality (m ≥ 2) can be
written as

Lm = Lklm + α(Lklr + Lklt) + βLdhl. (3)

Therefore, the overall objective loss can be summarized as
follows:

L =

{
Lklm + αLklr + βLdhl, if m = 1

Lklm + α(Lklr + Lklt) + βLdhl if m ≥ 2
. (4)

3.3. Knowledge Library Mining

Due to the absence of modality interaction, independently
training modality-specific sub-networks for streaming media
data is prone to semantic discrepancies. To this end, we uti-
lize class prototypes to act as the abstract knowledge library,
thereby preserving the semantic information of streaming
data while alleviating the computational burden of main-
taining historical data. When the data with a new modality
arrives, we hope to extract the latent semantic information
and convert it into a knowledge library, thereby building a
bridge to reduce the heterogeneity gap between historical
data and new data. Thus, we propose Knowledge Library
Mining (KLM) to extract the abstract essential knowledge,
thereby constructing a knowledge library for each modality
as the medium. Specifically, we first utilize class prototypes
as the abstract knowledge library. Considering the vari-
ability of intra-class samples, using only a single prototype
for each class might result in a compromised representa-
tional capacity, potentially leading to suboptimal semantic
alignment across modalities. Therefore, we assign multiple
(i.e., K) prototypes to each class to better capture diverse
semantic information, facilitating a more effective consis-
tency among intra-class samples. Further, we randomly
initialize and construct a learnable abstract knowledge li-
brary Pm =

{
p1m, p2m, ..., pCm

}
for modality m (m ≥ 1),

where pcm =
[
pc,1m , pc,2m , ..., pc,Km

]T ∈ RK×L denotes K
normalized and binary prototypes for the c-th class. Then,
we encourage hash codes and their closest homo-category
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prototype to move closer to each other. To this end, we
denote the similarity between any sample xi

m from the m-th
modality and its k-th corresponding prototype as follows,

s(xi
m|k) =

∑C
c=1 y

i,c
m · Γ(bim, pc,km ) + 1

2
, (5)

where Γ(·, ·) is the cosine similarity function. Thus, the loss
function could be formalized as follows:

Lklm = − 1

nm

nm∑
i=1

log

(
max

k=1,...,K
s
(
xi
m|k

))
. (6)

The above loss aims to encourage each training sample to be
close to the nearest prototype with the same category. How-
ever, this KLM loss could lead to a trivial solution where
all prototypes collapse into one point, thus weakening the
discriminative ability of hash codes. To this end, we develop
a Knowledge Library Regularization (KLR) mechanism to
enhance the distinctiveness between inter-class prototypes
while ensuring semantic consistency between intra-class
prototypes. The KLR loss can be written as:

Lklr = − 1

CK

C∑
c=1

K∑
k=1

log

∑K
k′=1,k′ ̸=ke

Γ(pc,km ,pc,k
′

m )∑C
ĉ=1

∑K
k̂=1e

Γ(p
c,k
m ,p

ĉ,k̂
m ) − e

. (7)

3.4. Knowledge Library Transfer

Since streaming media data is constantly changing and up-
dating, the model needs to have good generalization ability
to adapt to such changes. To this end, we propose Knowl-
edge Library Transfer (KLT) to extract knowledge from
new media data and transfer its semantic information to the
benchmark knowledge library. This allows our SHE to pro-
cess new media without retraining the entire historical media
data, thereby reducing computational complexity while en-
suring semantic consistency between streaming modal data.
Therefore, for the modality m (m ≥ 2), the KLT loss is
defined as follows, i.e.,

Lklt = −
1

CK

C∑
c=1

K∑
k=1

log
[
min(1,max(0,Γ(p

c,k
1 , p

c,k
m ) − σ + 1))

]
,

(8)

where σ is the similarity boundary.

3.5. Discriminative Hashing Learning

To strengthen the compactness of intra-class samples and
the scatter of inter-class samples, we employ a Discrimi-
native Hashing Learning (DHL) module to constrain the
learning of all sub-networks. Specifically, DHL strives to
maximize the similarity of hash codes within the same class
while minimizing the similarity of hash codes from different
classes. For modality m (m ≥ 1), the DHL loss could be
expressed as the following formula, i.e.,

Ldhl = − 1

nm

nm∑
i=1

log

∑nm

j=1Θ
i,j
m Γ(bim, bjm)∑nm

j=1Γ(b
i
m, bjm)

, (9)

where Θi,j
m is an indicator that measures the similarity be-

tween two samples, and its value is 1 if xi
m and xj

m are
intra-class samples, otherwise 0.

3.6. Optimization

To learn the optimal hashing functions, we jointly minimize
the above losses. Specifically, for the m-th modality, the
overall loss function is defined as follows:

L =

{
Lklm + αLklr + βLdhl, if m = 1

Lklm + α(Lklr + Lklt) + βLdhl if m ≥ 2
. (10)

To offer a comprehensive overview of our SHE framework,
we summarize the training process in Algorithm 1, which
outlines the optimization pipeline across modalities.

4. Experiments
4.1. Dataset

In our experiment, we evaluate the proposed SHE on four
widely used multimedia datasets, namely, Wikipedia (Rasi-
wasia et al., 2010), NUS-WIDE (Chua et al., 2009), XMedia
(Peng et al., 2015), and XMediaNet (Peng et al., 2018). In
Tab.1, we summarize the statistics of the datasets. Notably,
to align with the streaming-media scenario, we gradually
incorporate the modalities into the training process in the
order they are collected within the datasets. More details
about the four datasets are presented in the appendix.

Table 1. General statistics of the four datasets, where “*/*/*” in the
“Instance” column indicates the number of samples for training,
testing, and retrieval database, respectively.

Dataset Modality Instance Feature

Wikipedia Image 2,173/693/2,866 4,096d VGG
Text 2,173/693/2,866 300d Doc2Vec

NUS-WIDE Image 8,000/2,000/10,000 4,096d VGG
Text 8,000/2,000/10,000 300d Doc2Vec

XMedia

Image 4,000/1,000/5,000 4,096d VGG
Text 4,000/1,000/5,000 3,000d Bow

Audio clip 800/200/1,000 29d MFCC
3D 400/100/500 4,700d LightField

Video 969/174/1,143 4,096d C3D

XMediaNet

Image 32,000/8,000/40,000 4,096d VGG
Text 32,000/8,000/40,000 300d Doc2Vec

Audio clip 8,000/2,000/10,000 672d MFCC
3D 1,600/400/2,000 4,700d LightField

Video 8,000/2,000/10,000 4,096d C3D

4.2. Experimental Settings and Evaluation Metric

In our SHE, all modality-specific sub-networks com-
prise three fully connected layers, with the ReLU acti-
vation function applied after the first two layers and a
ℓ2-normalization operation applied to the last layer. Their
dimensions are [d∗ → 4096 → 4096 → L], where d∗ rep-
resents the input feature dimensions of the corresponding
modality. For all datasets, we set the batch size nb as 256,
the similarity boundary σ as 0.95, the iteration number T
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Algorithm 1 The training process of our SHE

Input: Multi-modal data D = {Xm,Ym}Mm=1, α, β, the
number of prototypes K, the similarity boundary σ, sub-
networks H = {Hm(·,Φm)}Mm=1, hash length L, batch size
nb, learning rate lr, and iteration number T .
// The first stage (m = 1)

1: Randomly generate a learnable abstract knowledge li-
brary P1 =

{
p11, p

2
1, ..., p

C
1

}
.

2: Randomly initialize Φ1.
3: for iter = 1, 2, . . . , to T do
4: for step = 1, 2, . . . , to

⌊
n1

nb

⌋
do

5: Get a mini-batch (X̃1, Ỹ1) from (X1,Y1).
6: Compute hash codes for X̃1 by the sub-network

H = {H1(·,Φ1)}.
7: Update the knowledge library P1 by tanh function

and normalization.
8: Compute the loss L according to Eq.10.
9: Compute gradients of Φ1 and P1 and update them:

Φ1 = Φ1 − lr
∂L
∂Φ1

P1 = P1 − lr
∂L
∂P1

.
10: end for
11: end for
// The second stage (m ≥ 2)

1: Use the mined knowledge library CK1 to steer the
semantic alignment for subsequent modalities.

2: for m = 2, 3, . . . , to M do
3: Randomly generate a learnable abstract knowledge

library Pm =
{
P 1
m, P 2

m, ..., PC
m

}
.

4: Randomly initialize Φm.
5: for iter = 1, 2, . . . , to T do
6: for step = 1, 2, . . . , to

⌊
nm

nb

⌋
do

7: Get a mini-batch (X̃m, Ỹm) from (Xm,Ym).
8: Compute hash codes for X̃1 by the sub-network

H = {Hm(·,Φm)}.
9: Update the knowledge library Pm by tanh func-

tion and normalization.
10: Compute the loss L according to Eq.10.
11: Compute gradients of Φm and Pm and update

them:
Φm = Φm − lr

∂L̂
∂Φm

Pm = Pm − lr
∂L̂
∂Pm

.
12: end for
13: end for
14: end for
Output: The optimized parameters {Φm}Mm=1.

as 300, the number of prototype vectors K as 3, and the
hyperparameter α as 1. For four datasets, we set the hyper-
parameter β as 4, 5, 1, and 6, respectively. Additionally,
the SHE framework is implemented by the PyTorch toolkit,

and all experiments are conducted on a single GeForce
RTX3090Ti 24GB GPU.

Following previous works (Wang & Peng, 2021; Pu et al.,
2025a), we evaluate the performance of SHE by perform-
ing cross-modal retrieval (CMR) tasks, i.e., retrieving one
modality using queries from another modality. For instance,
we designate images as queries to retrieve text (i.e., I2T)
and text as queries to retrieve images(i.e., T2I). Besides, the
Mean Average Precision (MAP) score, a widely adopted
metric in the CMR community, is employed as the evalua-
tion metric in our experiment since it simultaneously reflects
both the precision and recall of the retrieved results.

4.3. Comparison methods

To demonstrate the superiority of the proposed SHE, we
compare it against 14 state-of-the-art (SOTA) methods, in-
cluding three real-valued methods (i.e., MARS (Wang &
Peng, 2021), GNN4CMR (Qian et al., 2022), and HOPE
(Zhang et al., 2024) ), three unsupervised hashing methods
(i.e., DGCPN (Yu et al., 2021), CIRH (Zhu et al., 2022),
and UCCH (Hu et al., 2022)), and eight supervised hashing
methods (i.e., HMAH (Tan et al., 2022), CMMQ (Yang
et al., 2022), MIAN (Zhang et al., 2023), DSPH (Huo et al.,
2023), DHRL (Shu et al., 2024), DHaPH (Huo et al., 2024),
DNpH (Qin et al., 2024), and SCH (Hu et al., 2024)). All
methods except MARS and our SHE are limited to training
on paired data from two modalities, and we refer to these
methods as paired-oriented methods in the section. When
paired-oriented methods face datasets with five modalities,
we first construct pseudo-instance pairs through label-based
repeat sampling and then conduct training on every two
modalities, resulting in a total of 5× 4/2 training processes.
For the Wikipedia and NUS-WIDE datasets, we only com-
pare hashing methods. For the XMedia and XMediaNet
datasets, we compare both hashing methods and real-valued
methods.

4.4. Comparisons with State-of-the-Art Methods

Quantitative Comparisons: To demonstrate the superiority
of our SHE, we compare it with SOTA methods in terms
of MAP scores. Tab.2 reports the comparison between our
SHE and SOTA methods on the Wikipedia and NUS-WIDE
datasets with different bit lengths (i.e., 16, 32, 64, and 128).
For the XMedia and XMediaNet datasets, we only present
experimental results with 128 bits in Tab.3 and Tab.4, and a
detailed analysis of the impact of bit length on performance
is provided in the appendix. From these results, it can be
concluded: 1) Due to the lack of label supervision, unsuper-
vised methods suffer from a compromise in performance,
compared with supervised ones. 2) The XMediaNet dataset,
with more categories (200), presents increased learning diffi-
culty, leading to a significant performance decline across all
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Table 2. The MAP scores with different bit lengths on the Wikipedia and NUS-WIDE datasets.
Wikipedia NUS-WIDE

I2T T2I I2T T2IMethod Ref.
16 32 64 128 Avg 16 32 64 128 Avg 16 32 64 128 Avg 16 32 64 128 Avg

DGCPN AAAI’21 21.6 23.8 29.0 29.9 26.1 21.7 24.7 30.5 30.4 26.8 50.9 50.8 51.8 52.3 51.5 48.7 49.3 50.3 51.1 49.9
CIRH TKDE’22 29.1 31.0 29.9 25.0 28.8 27.8 31.3 28.5 24.0 27.9 41.8 45.4 46.0 46.6 45.0 43.0 47.1 47.4 47.9 46.4
UCCH TPAMI’23 25.7 29.3 30.9 32.6 29.6 24.7 28.9 30.3 33.2 29.3 42.9 44.9 48.2 49.4 46.4 42.2 44.0 47.8 48.5 45.6
HMAH TMM’22 50.2 51.9 51.7 51.2 51.3 69.9 74.0 75.7 76.2 74.0 59.7 61.0 61.9 61.9 61.1 64.4 66.7 67.8 67.8 66.7
CMMQ CVPR’22 55.8 55.6 56.5 56.2 56.0 66.5 72.6 75.7 76.0 72.7 58.3 59.2 59.5 59.5 59.1 63.3 66.0 66.1 65.2 65.2
MIAN TKDE’23 46.1 43.7 45.6 47.4 45.7 38.2 38.6 39.6 43.5 40.0 60.3 62.8 62.1 62.8 62.0 47.9 52.6 54.3 56.5 52.8
DSPH TCSVT’23 45.3 46.2 48.2 48.7 47.1 52.0 59.4 59.1 57.0 56.9 56.1 57.7 58.7 58.2 57.7 63.0 64.5 65.1 65.8 64.6
DHRL TBD’24 46.8 48.2 50.7 51.5 49.3 46.9 47.1 52.3 51.6 49.5 55.1 64.6 60.5 64.3 61.1 54.8 61.2 61.4 62.2 59.9
DHaPH TKDE’24 45.7 48.6 51.0 51.7 49.3 59.7 59.7 65.9 61.6 61.7 56.6 58.8 60.3 60.2 59.0 63.0 63.3 64.6 64.1 63.8
DNpH TMM’24 46.8 48.2 50.6 50.9 49.1 62.1 58.4 64.2 56.7 60.4 55.9 58.4 59.2 59.6 58.3 63.5 65.5 65.3 65.7 65.0
SCH TPAMI’24 51.0 55.4 57.1 56.3 55.0 67.1 74.0 76.4 77.2 73.7 60.1 60.3 62.2 61.6 61.1 64.6 65.3 66.6 65.9 65.6
SHE Ours 56.3 58.6 59.5 59.4 58.5 71.7 74.6 77.7 77.9 75.5 67.0 68.0 70.7 69.8 68.9 67.2 65.9 69.4 69.2 67.9

Table 3. The MAP scores with 128 bits on the XMedia dataset.
XMedia

Image Text Audio 3D VideoMethods Ref.
Text Audio 3D Video Image Audio 3D Video Image Text 3D Video Image Text Audio Video Image Text Audio 3D Avg

DGCPN AAAI’21 57.0 30.9 10.1 80.0 45.8 28.2 7.1 33.1 24.5 32.3 6.0 6.7 7.7 6.2 5.7 5.7 56.3 30.6 5.6 6.1 24.3
CIRH TKDE’22 85.9 11.6 51.3 74.4 86.3 8.4 35.7 52.2 11.0 8.2 9.8 11.6 44.5 35.8 10.0 29.0 50.7 42.3 8.4 24.0 34.6
UCCH TPAMI’23 84.0 31.0 29.3 75.0 88.4 22.8 9.9 56.4 27.0 23.8 12.2 19.0 14.8 10.1 6.8 4.9 52.8 43.6 14.6 7.3 31.7
HMAH TMM’22 91.4 53.9 87.3 86.5 95.8 57.6 92.0 91.4 54.2 52.4 40.4 29.1 61.6 63.8 30.1 57.4 57.9 56.0 19.1 52.6 61.5
CMMQ CVPR’22 91.4 26.4 87.5 83.9 94.9 9.8 31.2 30.8 29.5 10.7 12.1 8.5 69.1 27.1 7.6 34.0 47.6 19.0 6.4 23.4 37.5
MIAN TKDE’23 85.2 29.0 80.2 76.8 88.0 6.5 9.7 9.5 24.5 5.2 8.4 9.2 56.7 5.2 5.8 5.8 51.8 5.3 5.8 6.1 28.7
DSPH TCSVT’23 91.7 41.7 24.5 86.0 95.8 41.4 20.1 90.8 50.6 47.8 8.9 21.4 14.9 10.3 7.0 6.4 56.4 57.0 14.6 11.1 39.9
DHRL TBD’24 90.1 74.9 81.6 84.3 94.4 81.6 86.5 84.1 60.0 61.9 45.6 37.0 61.8 63.5 43.3 45.1 56.9 51.7 29.0 38.9 63.6
DHaPH TKDE’24 91.9 45.2 48.5 86.3 96.2 44.7 40.6 91.4 52.3 48.5 11.7 33.7 43.8 35.3 8.1 19.8 60.2 59.6 17.4 16.8 47.6
DNpH TMM’24 91.8 36.9 36.8 85.4 96.2 40.0 33.6 91.5 47.4 46.2 12.1 27.8 43.2 37.3 10.6 10.2 58.0 59.8 16.2 15.2 44.8
SCH TPAMI’24 90.1 85.9 80.5 87.2 94.4 62.2 52.6 88.3 64.4 45.2 12.8 28.7 66.0 44.8 15.3 8.9 59.7 54.9 20.0 9.6 53.6

MARS TCSVT’22 91.4 84.3 88.3 85.5 92.9 85.8 90.2 87.3 63.5 64.3 61.4 57.0 70.8 71.2 65.2 65.6 55.8 55.5 50.3 53.3 72.0
GNN4CMR TPAMI’23 90.9 40.7 86.8 84.9 92.2 36.4 87.2 87.6 46.8 44.9 40.0 37.9 62.6 62.8 26.0 57.0 54.3 55.5 19.5 47.8 58.1

HOPE TPAMI’24 91.0 71.1 86.8 84.8 95.4 66.2 87.3 82.7 59.4 54.0 47.6 40.3 63.5 61.8 41.7 49.9 53.5 51.4 27.0 36.6 62.6
SHE Ours 92.1 87.3 89.6 87.2 95.8 92.0 94.0 91.7 65.3 66.5 64.8 62.3 70.2 70.4 67.7 66.4 60.7 61.3 57.2 58.4 75.0

Table 4. The MAP scores with 128 bits on the XMediaNet dataset, where ‘/’ means out of memory.
XMediaNet

Image Text Audio 3D VideoMethods Ref.
Text Audio 3D Video Image Audio 3D Video Image Text 3D Video Image Text Audio Video Image Text Audio 3D Avg

DGCPN AAAI’21 / / / / / / / / / / / / / / / / / / / / /
CIRH TKDE’22 / / / / / / / / / / / / / / / / / / / / /
UCCH TPAMI’23 32.6 35.1 10.1 47.1 25.1 8.8 3.7 14.5 22.8 8.8 2.7 0.8 2.0 1.5 1.4 1.2 30.0 13.9 0.8 1.5 13.2
HMAH TMM’22 44.2 59.6 70.2 72.0 42.5 5.1 29.6 19.1 33.1 7.3 19.4 0.6 37.6 24.4 12.7 31.6 39.4 18.4 0.6 34.5 30.1
CMMQ CVPR’22 / / / / / / / / / / / / / / / / / / / / /
MIAN TKDE’23 / / / / / / / / / / / / / / / / / / / / /
DSPH TCSVT’23 18.3 23.8 14.1 52.9 33.4 4.3 4.1 12.4 26.7 3.1 1.5 0.6 3.3 1.1 0.7 1.5 35.0 6.9 0.9 1.7 12.3
DHRL TBD’24 54.3 55.9 64.4 61.7 40.5 33.1 35.8 37.4 38.2 26.9 25.4 0.7 33.3 25.0 14.6 25.2 32.9 24.7 0.9 26.3 32.9
DHaPH TKDE’24 29.0 27.3 32.3 60.9 42.0 5.1 6.6 22.4 27.2 3.6 2.2 0.7 18.8 2.3 1.0 5.6 39.3 12.3 0.6 4.2 17.2
DNpH TMM’24 18.4 21.7 27.5 44.4 31.8 4.8 6.4 16.2 26.8 3.6 2.4 0.8 19.7 2.4 1.3 4.7 34.3 8.5 0.7 4.5 14.0
SCH TPAMI’24 67.4 42.4 56.6 75.6 66.0 3.7 12.0 23.3 35.1 1.3 2.1 0.7 33.3 10.4 1.7 6.5 46.8 15.6 0.6 5.4 25.3

MARS TCSVT’22 70.0 67.5 67.3 61.6 63.9 57.2 57.4 51.1 40.2 36.7 35.9 30.6 40.8 37.2 35.0 31.7 37.4 34.0 32.4 33.2 46.1
GNN4CMR TPAMI’23 47.0 51.6 70.2 73.3 61.3 12.3 52.4 49.4 36.1 8.9 17.2 0.7 36.7 20.7 7.6 25.2 43.5 22.7 0.8 30.8 33.4

HOPE TPAMI’24 51.8 58.3 67.5 68.2 54.0 43.8 56.2 57.0 45.0 39.2 32.3 0.6 38.7 35.2 18.7 21.1 40.1 35.9 1.1 23.8 39.4
SHE Ours 75.1 70.6 70.3 72.8 70.5 62.8 63.5 65.8 42.2 39.8 36.7 38.2 41.2 39.3 34.0 37.7 43.1 41.0 36.4 38.3 51.0

methods. 3) Paired-oriented methods typically rely on true-
instance pairs to bridge the cross-modal gap, which hinders

their performance on unpaired datasets (i.e., the XMedia
and XMediaNet datasets), resulting in performance inferior
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Figure 2. Precision-recall curves with 128 bits on the Wikipedia and NUS-WIDE datasets.

to MARS and our SHE. 4) MARS simply deploys a shared
label parsing module to guide the learning process across
all modalities. In comparison, our SHE outperforms them
by mining knowledge libraries, regularizing knowledge li-
braries, and aligning knowledge libraries for consistency.
This holistic strategy greatly enhances the quality of the
hash codes, resulting in performance that surpasses that of
MARS.

Qualitative Comparisons: To further evaluate the retrieval
performance of SHE, we compare it with SOTA methods
in terms of precision-recall curves (PR-curves). Fig.2 plots
PR-curves with 128 bits on the Wikipedia and NUS-WIDE
datasets. As shown in the figure, our proposed SHE consis-
tently achieves higher curves compared to SOTA methods,
indicating superior precision at the same recall levels. This
further confirms the superiority of SHE.

4.5. Ablation Study

To verify the effectiveness of our components, we conduct
an ablation study with 128 bits on four datasets and report
the corresponding mean MAP scores of all cross-modal re-
trieval tasks. The results are presented in Tab.5, where SHE
w/o KLM represents the removal of KLM loss, SHE w/o
KLR indicates the exclusion of KLR loss, SHE w/o KLT
denotes the deletion of KLT loss, and SHE w/o DHL refers
to the absence of DHL loss. From these results, we can
obtain the following findings: 1) The absence of KLM suf-
fers a significant performance degradation, likely because
KLM is capable of extracting essential prototype knowledge
and building effective knowledge libraries. 2) The perfor-
mance degradation without KLR could be attributed to the
fact that KLR can enhance the discrimination of inter-class
prototypes in the knowledge library, which is beneficial
for learning high-quality hash codes. 3) The removal of
KLT leads to a performance decline. This is likely due to
the ability of KLT to align knowledge libraries mined on
different modalities, thereby preserving semantic consis-
tency across modalities. 4) The exclusion of DHL similarly
results in lower performance, likely due to the ability of

DHL to enhance the discriminability of inter-class samples
and the compactness of intra-class samples. In conclusion,
the removal of any single component leads to performance
degradation, highlighting the importance of each proposed
component in addressing the cross-modal retrieval problem
in streaming-media scenarios.

Table 5. Ablation study with 128 bits.
WikipediaNUS-WIDEXMediaXMediaNet

SHE w/o KLM 21.6 12.2 13.4 0.9
SHE w/o KLR 54.3 68.2 73.8 33.3
SHE w/o KLT 68.0 69.0 39.8 29.0
SHE w/o DHL 56.7 64.3 38.2 31.4
SHE 68.6 69.5 75.0 51.0

4.6. Parameter Analysis

To investigate the sensitivity of two parameters (i.e., α and
β), we conduct experiments with 128 bits on the XMedia
and XMediaNet datasets. Specifically, we try one parame-
ter with different values while keeping another parameter
fixed to evaluate its individual impact on performance. As
presented in Fig.3, the performance of our proposed SHE
method on both datasets initially improves as the parameter
value increases, and then either stabilizes or slightly de-
clines. These results demonstrate that our method maintains
decent performance across a relatively wide range of param-
eter values. In general, the performance is more stable when
α is set between 4 and 8, and the best results are achieved
when β is set to 1.

4.7. The Impact of Media Learning Sequence

To delve into the impact of media learning sequences with
128 bits on the XMedia and XMediaNet datasets, we se-
quentially utilize the Image, Text, Audio, 3D, and Video
modalities as the first available modality for knowledge li-
brary mining, with the corresponding mean MAP scores of
all cross-modal retrieval tasks presented in Fig.4. The re-
sults show that for the XMediaNet dataset, the performance
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Figure 3. Parameter analysis with 128 bits on the XMedia and
XMediaNet datasets.

remains relatively stable regardless of the choice of the first
available modality. However, for the XMedia dataset, while
the performance is similarly stable across most modality
choices, it exhibits a notable decline for the Audio modality.
This discrepancy is likely attributable to the reliance of the
Audio modality in the XMedia dataset on low-dimensional
MFCC features (i.e., 29-dimensional MFCC), which lack
sufficient representational capacity. Consequently, this lim-
itation results in a lower-quality knowledge library, ulti-
mately leading to significantly degraded performance.
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Figure 4. The mean MAP scores of all cross-modal retrieval tasks
with 128 bits for different choices of the first available modality
on the XMedia and XMediaNet datasets.

4.8. The Impact of Similarity Boundary

In our KLT, for intra-class prototypes across different modal-
ities, we focus on maintaining a certain level of semantic
similarity between them by setting a similarity boundary
rather than forcing them to be identical. To investigate the
impact of different similarity boundaries on performance
and verify the effectiveness of the above strategy, we con-
duct experiments with 128 bits on the XMedia dataset by
varying the similarity boundary σ and report the correspond-
ing mean MAP scores of all cross-modal retrieval tasks. As
presented in Fig.5(a), the performance follows a single peak
trend as σ increases, reaching the optimal result at σ = 0.95.
The finding highlights that maintaining a certain level of
semantic similarity is more effective in guiding the learn-
ing of different modalities compared to directly enforcing

identical prototype knowledge (i.e., σ = 1.0).

4.9. The Impact of Knowledge Library Scale

The number of class prototypes K can influence the scale of
the knowledge library, which may in turn impact the quality
of the mined prototype knowledge. To investigate the impact
of the knowledge library scale on performance, we perform
experiments with 128 bits on the XMedia dataset by varying
K. As depicted in Fig.5(b), when K takes most values (i.e.,
3, 5, and 9), the performance consistently surpasses that
at K = 1. This observation underscores the advantage of
assigning multiple prototypes to each category, as it can
alleviate semantic information loss, strengthen semantic
consistency, and ultimately enhance overall performance.
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Figure 5. The impact of similarity boundary and knowledge library
scale on the XMedia dataset. a) The mean MAP scores of all
cross-modal retrieval tasks with 128 bits under different similarity
boundaries σ. b) The mean MAP scores of all cross-modal retrieval
tasks with 128 bits under different numbers of class prototypes K.

5. Conclusion
In this work, we reveal and study a practical but less-touched
problem in cross-modal hashing (CMH), i.e., streaming-
media hashing retrieval. To overcome this issue, we propose
a novel CMH paradigm dubbed SHE, which could train con-
tinuously incoming streaming-media data in parallel. The
proposed SHE mainly consists of three core modules, i.e.,
Knowledge Library Mining module (KLM), Knowledge
Library Transfer module (KLT), and Discriminative Hash-
ing Learning module (DHL). Specifically, KLM extracts
essential class prototypes, thereby constructing an implicit
knowledge library for each modality. KLT aligns the knowl-
edge of the newly arrived modality with the historical knowl-
edge library, thereby preserving semantic consistency across
modalities. DHL maximizes intra-class semantic relevance
and inter-class semantic disparity, resulting in compact and
discriminative hash codes. Extensive experiments on four
benchmark datasets highlight the superiority of our SHE
compared to 14 state-of-the-art methods.
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APPENDIX
This document provides supplementary material to our
manuscript, which aims to offer a comprehensive under-
standing of our SHE framework. Specifically, we mainly
present the dataset description, additional experimental re-
sults, more detailed analysis about the media learning se-
quence, the analysis about the impact of bit length, and the
discussion of limitations of this work to support the main
submission. For convenience, we provided jumpable links
to each supplementary section in Tab.6.

Dataset Please click here.
The impact of bit length Please click here.
Precision-recall curves Please click here.

The impact of media learning sequence Please click here.
Limitations Please click here.

Table 6. The hyperlinks for each supplementary section.

A. Dataset
The following is a detailed introduction to each dataset:
Wikipedia is a dataset comprising 2,866 image-text pairs
with 10 categories. For our experiment, we randomly al-
locate 2,173 and 693 pairs for training and testing, respec-
tively, while all pairs are used as the retrieval database.
NUS-WIDE is a dataset comprising over 260,000 image-
text pairs with 81 categories. In this work, we utilize a
subset of 10,000 pairs with 10 semantic labels to perform
experiments. In more detail, we randomly assign 8,000
and 2,000 pairs for training and testing, respectively, while
all pairs are used as the retrieval database. XMedia is a
dataset covering five modalities with 20 categories, com-
prising 5,000 image-text pairs, 1,000 audio clips, 500 3D
models, and 1,143 videos. For our experiment, we select
4,000 image-text pairs, 800 audio clips, 400 3D models, and
969 videos as the training set, while the remaining samples
are used as the test set. Besides, all samples from the dataset
are included in the retrieval database. XMediaNet is a
dataset covering five modalities with 20 categories, compris-
ing 40,000 image-text pairs, 10,000 audio clips, 2,000 3D
models, and 10,000 videos. For our experiment, we select
32,000 image-text pairs, 8,000 audio clips, 1,600 3D mod-
els, and 8,000 videos as the training set, while the remaining
samples are used as the test set. Besides, all samples from
the dataset are included in the retrieval database.

For Wikipedia and NUS-WIDE, the initial features of the
image modality are extracted using the pre-trained VGG-
19 (Simonyan, 2014) model, while the features of the text
modality are obtained using the pre-trained Doc2vec (Lau &
Baldwin, 2016) model. For XMedia and XMediaNet, their
original features are provided by the authors (Wang & Peng,
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Figure 6. The MAP scores with different bit lengths on the XMedia
and XMediaNet datasets.

2021).

B. The Impact of Bit Length
To examine the impact of bit length on retrieval performance,
we perform experiments on the XMedia and XMediaNet
datasets. The corresponding mean MAP scores of all cross-
modal retrieval tasks are illustrated in Fig.6. The results
reveal the following insights: 1) Hash codes with longer bit
lengths can carry more semantic information, thus enjoying
better performance. 2) Given that the XMedia and XMe-
diaNet datasets contain five modalities with considerable
differences, hash codes with shorter bit lengths (e.g., 16
and 32 bits) may fail to effectively capture the underlying
semantic features, leading to subpar performance.

C. Precision-recall Curves
To comprehensively evaluate the retrieval performance of
our proposed SHE, we provide precision-recall curves with
different bit lengths (i.e., 16, 32, and 64 bits) on the
Wikipedia and NUS-WIDE datasets. As shown in Fig.7,
SHE consistently exhibits higher precision at almost all
recall rates compared to SOTA methods, exhibiting its
stronger discriminative power and retrieval performance.

D. The Impact of Media Learning Sequence
In the manuscript, we have delved into the impact of me-
dia learning sequences with 128 bits on the XMedia and
XMediaNet datasets in terms of mean MAP scores of all
cross-modal retrieval tasks. To offer a more detailed anal-
ysis, we provide the MAP scores for each cross-modal re-
trieval task in Tab.7. From the results, we can get the same
findings as the manuscript. Besides, we also find that when
the audio modality is selected as the first available modality
on the XMedia dataset, the performance on the audio, 3D,
and video modalities degrades significantly. This may be
due to: 1) The audio modality being represented by low-
dimensional (29D) MFCC features with weak expressive
power, leading to poor-quality knowledge initialization. 2)
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Figure 7. Precision-recall curves with different bit lengths on the Wikipedia and NUS-WIDE datasets, where (a-d), (e-h), and (i-l) show
the curve results under 16 bits, 32 bits, and 64 bits, respectively.

Table 7. The MAP scores with 128 bits for different choices of the first available modality on the XMedia and XMediaNet datasets.

Dataset Image Text Audio 3D Video AvgText Audio 3D Video Image Audio 3D Video Image Text 3D Video Image Text Audio Video Image Text Audio 3D

XMedia

Image 92.1 87.3 89.6 87.2 95.8 92.0 94.0 91.7 65.3 66.5 64.8 62.3 70.2 70.4 67.7 66.4 60.7 61.3 57.2 58.4 75.0
Text 91.8 86.7 88.4 87.4 95.4 91.3 93.6 92.5 63.4 64.5 62.3 60.6 68.6 69.4 64.0 64.7 60.5 62.2 56.5 58.2 74.1

Audio 90.0 6.0 8.4 61.1 91.4 5.5 7.8 56.5 10.4 10.3 7.0 11.5 9.6 13.7 5.8 10.7 40.7 39.1 5.3 6.7 24.9
3D 91.6 71.9 84.1 84.0 94.6 75.0 88.1 86.1 52.9 55.1 49.8 47.5 59.7 58.6 51.2 54.5 59.8 60.5 47.2 54.4 66.3

Video 91.9 85.0 88.9 87.4 95.6 89.9 93.9 92.0 63.0 63.2 60.8 59.3 68.3 69.3 63.2 64.3 60.8 61.6 55.6 57.2 73.6

XMediaNet

Image 75.1 70.6 70.3 72.8 70.5 62.8 63.5 65.8 42.4 39.8 36.7 38.2 41.2 39.3 34.0 37.7 43.1 41.0 36.4 38.3 51.0
Text 73.4 67.7 68.1 71.4 69.0 60.8 61.2 64.0 41.1 38.4 35.4 36.9 38.2 36.6 32.8 35.3 43.3 41.0 36.9 37.9 49.5

Audio 74.9 63.8 67.8 72.6 69.9 55.4 60.2 65.0 42.4 39.5 35.7 38.2 38.9 36.8 27.6 35.8 43.1 41.5 33.1 37.2 49.0
3D 74.6 70.0 67.4 72.3 69.9 62.9 60.2 65.0 41.1 39.0 33.6 37.3 36.9 35.2 30.9 34.5 42.7 41.1 37.3 36.2 49.4

Video 75.4 70.4 70.4 73.3 71.0 62.8 63.5 66.0 41.1 38.8 35.8 36.9 40.4 38.7 34.1 37.6 43.6 41.1 36.7 39.0 50.8

The insufficient number of training samples in the audio,
3D, and video modalities, which causes underfitting.

E. Limitations
This paper proposes a novel cross-modal hashing (CMH)
retrieval framework tailored for streaming-media hashing

retrieval. To the best of our knowledge, this could be the
first work to address the problem of streaming-media data
(SMD) using a CMH paradigm. However, we have not yet
accounted for the scenario that SMD may contain noisy
annotations, which may be one of our future research direc-
tions.
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