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ABSTRACT

We consider the lower bounds of differentially private empirical risk minimization
(DP-ERM) for convex functions in both constrained and unconstrained cases
concerning the general `p norm beyond the `2 norm considered by most of the
previous works.
We provide a simple black-box reduction approach that can generalize lower bounds
in constrained to unconstrained cases. Moreover, for (ε, δ)-DP, we achieve the

optimal Ω(

√
d log(1/δ)

εn ) lower bounds for both constrained and unconstrained cases
and any `p geometry where p ≥ 1 by considering `1 loss over the `∞ ball.

1 INTRODUCTION

Since the seminal work of Dwork et al. (2006), differential privacy (DP), defined below, has become
the standard and rigorous notion of privacy guarantee for machine learning algorithms.
Definition 1.1 (Differential privacy). A randomized mechanismM is (ε, δ)-differentially private1 if
for any event O ∈ Range(M) and for any neighboring databases D and D′ that differ by a single
data element, one has

Pr[M(D) ∈ O] ≤ exp(ε) Pr[M(D′) ∈ O] + δ.

Among the rich literature on DP, many fundamental problems are based on empirical risk minimization
(ERM), and DP-ERM becomes one of the most well-studied problems in the DP community. See
e.g., Chaudhuri & Monteleoni (2008); Rubinstein et al. (2009); Chaudhuri et al. (2011); Kifer et al.
(2012); Song et al. (2013); Bassily et al. (2014); Jain & Thakurta (2014); Talwar et al. (2015);
Kasiviswanathan & Jin (2016); Fukuchi et al. (2017); Wu et al. (2017); Zhang et al. (2017); Wang
et al. (2017); Iyengar et al. (2019); Bassily et al. (2020); Kulkarni et al. (2021); Asi et al. (2021);
Bassily et al. (2021b); Wang et al. (2021); Bassily et al. (2021a); Gopi et al. (2022); Arora et al.
(2022); Ganesh et al. (2022).

In DP-ERM, we are given a family convex functions where each function `(·; z) is defined on a
convex set K ⊆ Rd, and a data-set D = {z1, · · · , zn} to design a differentially private algorithm that
can minimize the loss function

L(θ;D) =
1

n

n∑
i=1

`(θ; zi), (1)

and the value L(θ;D)−minθ′∈K L(θ′;D) is called the excess empirical loss with respect to solution
θ, measuring how it compares with the best solution in K.

DP-ERM in the constrained case and Euclidean geometry (with respect to `2 norm) was studied
first, well-studied, and most of the previous literature belongs to this case. More specifically, the
Euclidean constrained case considers convex loss functions defined on a bounded convex set C ( Rd,
assuming the functions are 1-Lipschitz over the convex set of diameter 1 with respect to the `2 norm.
For pure-DP (i.e. (ε, 0)-DP), the seminal work Bassily et al. (2014) achieved tight upper and lower
bounds Θ( dεn ). As for approximate-DP (i.e. (ε, δ)-DP when δ > 0), previous works Bassily et al.

1When δ > 0, we may refer to it as approximate-DP, and we name the particular case when δ = 0 pure-DP
sometimes.
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(2014); Steinke & Ullman (2016); Wang et al. (2017); Bassily et al. (2019) achieved the tight bound

Θ(

√
d log(1/δ)

εn ).

DP-ERM in the unconstrained case was neglected before and gathered people’s attention recently.
Jain & Thakurta (2014); Song et al. (2021) found a tight bound Õ(

√
rank
εn ) for minimizing the

excess empirical risk of Generalized Linear Models (GLMs, see Definition A.1 in Appendix) in the
unconstrained case and evaded the curse of dimensionality, where rank is the rank of the feature
matrix in the GLM problem. As a comparison, the tight bound Θ̃(

√
d

εn ) holds for the constrained
DP-GLM, even for the overparameterized case when rank ≤ n� d. The dimension-independent
result is intriguing, as modern machine learning models are usually huge, with millions to billions of
parameters (dimensions).

A natural question arises whether one can get similar dimension-independent results for a more
general family of functions beyond GLMs. Unfortunately, Asi et al. (2021) provided a negative
answer and gave an Ω(

√
d

nε log d ) lower bound for some general convex functions. Their method
chooses appropriate objective functions and utilizes one-way marginals, but the extra logarithmic
term in their bound seems nontrivial to remove in the unconstrained case.

Another aspect is DP-ERM in non-Euclidean settings. Most previous works in the literature consider
the constrained Euclidean setting where the convex domain and (sub)gradients of objective functions
have bounded `2 norms, and DP-ERM concerning the general `p norm is much less well-understood.
Motivated by the importance and wide applications of non-Euclidean settings, some previous works
Talwar et al. (2015); Asi et al. (2021); Bassily et al. (2021b) analyzed constrained DP-ERM with
respect to the general `p norm with many exciting results, and there is still room for improvement in
many regimes.

Article Constrained? `p Loss Function Pure DP Approximate DP
Bassily et al. (2014) constrained p = 2 GLM Ω( d

nε
) Ω(

√
d

nε
)

Steinke & Ullman (2016) constrained `2 GLM N/A Ω(

√
d log(1/δ)

nε
)

Song et al. (2021) unconstrained p = 2 GLM N/A Ω(
√
rank
nε

)

Asi et al. (2021) both p = 1 general N/A Ω(
√
d

nε log d
)

Bassily et al. (2021b) constrained 1 < p ≤ 2 GLM N/A Ω((p− 1)

√
d log(1/δ)

nε
)

Ours both 1 ≤ p ≤ ∞ general Ω( d
nε

) Ω(

√
d log(1/δ)

nε
)

Table 1: Comparison of lower bounds for private convex ERM. One can easily extend our lower
bounds in the unconstrained case to the constrained case. The lower bound of Song et al. (2021) is
weaker than ours in the important over-parameterized d� n setting, as rank ≤ min{n, d}.

1.1 OUR CONTRIBUTIONS

This paper considers the lower bounds for DP-ERM under unconstrained and/or non-euclidean
settings. We summarize our main results as follows:

• We propose a black-box reduction approach, which directly generalizes the lower bounds in
constrained cases to the unconstrained case. Such a method is beneficial for its simplicity.
Nearly all exiting lower bounds in the constrained case can be extended to the unconstrained
case directly, and any new progress in the constrained case can be of immediate use due to
its black-box nature.

• We achieve Ω(

√
d log(1/δ)

εn ) lower bounds for both constrained and unconstrained cases and
any `p geometry for p ≥ 1 at the same time by considering `1 loss over the `∞ ball. This
bound improves previous results, exactly matches the upper bounds for 1 < p ≤ 2 and
obtains novel bounds for p > 2.2

2The current best upper bound is O(min{log d, 1
p−1
}
√
d log(1/δ)

εn
) for 1 ≤ p ≤ 2 and O(

d1−1/p
√

log(1/δ)

εn
)

for 2 < p ≤ ∞.
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As an example of the application of our simple reduction approach, we will show how to get the
Ω( dεn ) lower bound in the unconstrained pure-DP case from the result in constrained case Bassily
et al. (2014), which is the first lower bound in this setting to the best of our knowledge. This
reduction also demonstrates that evading the curse of dimensionality is impossible based on existing
dimension-dependent lower bounds, even in the (arguably less complicated) unconstrained case.

1.2 RELATED WORK

Previous studies on DP-ERM primarily focus on the constrained setting. The unconstrained case
recently attracted people’s interest because Jain & Thakurta (2014); Song et al. (2021) found an
O(
√
rank
εn ) upper bound for minimizing the excess risk of GLMs, which evades the curse of dimen-

sionality. It has been known that the constrained condition plays a crucial role in achieving dimension
independence, as pointed out by the Ω(

√
d

nε ) lower bound in Bassily et al. (2014), particularly for min-
imizing constrained GLMs for the case when “rank ≤ n� d”. There are fundamental differences
between constrained and unconstrained cases, and analyzing the unconstrained case is an important
direction.

Most existing lower bounds of DP-ERM use GLM functions. For example, the objective function
used in Bassily et al. (2014) is a linear function `(θ; z) = 〈θ, z〉 which cannot be applied in the
unconstrained case; otherwise, the loss value would be infinite. Considering this limitation, Song
et al. (2021) adopted the objective functions `(θ; z) = |〈θ, x〉 − y|. They transferred the problem of
minimizing GLM to estimating the mean of a set of vectors, then got the lower bound by tools from
the coding theory.

Kairouz et al. (2020); Zhou et al. (2020) considered how to evade the curse of dimensionality for
more general functions beyond GLMs with public data, which serves to identify a low-rank subspace
similar to Song et al. (2021) in spirit. DP Stochastic Convex Optimization (SCO) Feldman et al.
(2020); Bassily et al. (2020; 2019); Kulkarni et al. (2021); Asi et al. (2021); Bassily et al. (2021b) is
another important and fundamental problem which is closely related to DP-ERM. Roughly speaking,
in the SCO, the objective is to minimize the function Ez∼P [`(θ; z)] for some underlying distribution
P , which requires analyses on the generalization ability of the algorithms. The tight bound of
DP-SCO is usually the maximum among the informational lower bound on (non-private) SCO and
the lower bound on DP-ERM, and improved lower bounds on DP-ERM can also benefit research on
DP-SCO.

2 PRELIMINARY

We introduce the prior background knowledge required in the rest of the paper. Additional background
knowledge, such as the definition of GLM, can be found in the appendix. We start with defining
Lipschitz functions.

Definition 2.1 (G-Lipschitz Continuity). A function f : K → R is G-Lipschitz continuous with
respect to `p geometry if for all θ, θ′ ∈ K, one has:

|f(θ)− f(θ′)| ≤ G‖θ − θ′‖p. (2)

2.1 PROPERTIES OF DIFFERENTIAL PRIVACY

In this subsection, we introduce several very basic properties of differential privacy without proving
them (refer Dwork et al. (2014) for details).

Proposition 2.2 (Group privacy). IfM : Xn → Y is (ε, δ)-differentially private mechanism, then
for all pairs of datasets x, x′ ∈ Xn, thenM(x),M(x′) are (kε, kδekε)-indistinguishable when x, x′
differs on at most k locations.

Proposition 2.3 (Post processing). IfM : Xn → Y is (ε, δ)-differentially private and A : Y → Z
is any randomized function, then A ◦M : Xn → Z is also (ε, δ)-differentially private.
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3 REDUCTION APPROACH

In this section, we prove a general black-box reduction theorem, which can directly generalize the
lower bounds on DP-ERM in the constrained case to the unconstrained case. As an application, we
give an example for using our reduction approach to get pure-DP lower bound in the unconstrained
case from the constrained case Bassily et al. (2014).

To begin with, we introduce the following lemma from Cobzas & Mustata (1978), which gives a
Lipschitz extension of any convex Lipschitz function over some bounded convex set to the whole
domain Rd.

Lemma 3.1 (Theorem 1 in Cobzas & Mustata (1978)). Let f be a convex function which is η-
Lipschitz w.r.t. `2 and defined on a convex bounded set K ⊂ Rd. Define an auxiliary function gy(x)
as:

gy(x) := f(y) + η‖x− y‖2, y ∈ K,∀x ∈ Rd. (3)

Then consider the function f̃ : Rd → R defined as f̃(x) := miny∈K gy(x). We know f̃ is η-Lipschitz
w.r.t. `2 on Rd, and f̃(x) = f(x) for any x ∈ K.

For any y ∈ Rd, we define ΠK(y) := arg minx∈K ‖x− y‖2. It is well-known in the convex analysis,
that for a compact convex setK and any point y ∈ Rd, the the set {x ∈ K : ‖x−y‖2 < ‖z−y‖2,∀z ∈
K, z 6= x} is always non-empty and singleton Hazan (2019). In short, to prove lower bounds for
the unconstrained case, one can extend the loss function in the constrained domain to Rd with an
important observation on such convex extension: the loss L(θ;D) at a point θ does not increase after
projecting θ to the convex domain K, i.e. L(θ;D) ≥ L(ΠK(θ);D). One can derive this property
from the Pythagorean Theorem (Lemma 3.2) for any convex set by combining with the particular
structure of the extension.

Lemma 3.2 (Pythagorean Theorem for convex set). Letting K ⊂ Rd be a convex set, y ∈ Rd and
x = ΠK(y), then for any z ∈ K we have:

‖x− z‖2 ≤ ‖y − z‖2. (4)

In the unconstrained case, we usually assume a public prior knowledge on C where C ≥ ‖θ0 − θ∗‖2,
θ0 is the public initial point and θ∗ is the optimal solution to L(·;D) over Rd.

To proceed, we first assume some lower bound in the constrained case, which we use to reduce. The
definition below defines a witness function for any lower bound in the constrained case, for example
in Bassily et al. (2014) the (witness) loss function is simply linear and the lower bound is roughly
Ω(min{1,

√
d

nε }).

Definition 3.3. Let n, d be large enough, 0 ≤ δ ≤ 1 and ε > 0. We say functions ` is a witness
to the lower bound function f , if for any (ε, δ)-DP algorithm, there exist a convex set K ⊂ Rd of
diameter C, a family of G-Lipschitz convex functions `(θ; z) defined on K w.r.t. `2, a dataset D of
size n, such that with probability at least 1/2 (over the random coins of the algorithm),

L(θpriv;D)−min
θ∈K

L(θ;D) = Ω(f(d, n, ε, δ,G,C)),

where L(θ;D) := 1
n

∑n
i=1 `(θ; zi) and θpriv ∈ K is the output of the algorithm.

The function f can be any lower bound in the constrained case with dependence on the parameters,
and ` is the loss function used to construct the lower bound. We use the Lipschitz extension mentioned
above to define our loss function in the unconstrained case, i.e.,

˜̀(θ; z) = min
y∈K

`(y; z) +G‖θ − y‖2 (5)

which is convex, G-Lipschitz and equal to `(θ; z) when θ ∈ K by Lemma 3.1. Our intuition is simple:
if θpriv lies in K, then we are done by using the witness function and lower bound from Definition
3.3. If not, the projection of θpriv to K should lead to a smaller loss. However, the projected point
cannot have a minimal loss due to the lower bound in Definition 3.3, let alone θpriv itself. We have
the following theorem that achieves the general reduction approach in the unconstrained setting:
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Theorem 3.4. Assume `, f are the witness function and lower bound as in Definition 3.3. For any
(ε, δ)-DP algorithm and any initial point θ0 ∈ Rd, there exist a family ofG-Lipschitz convex functions
˜̀(θ; z) : Rd → R being the ` from Definition 3.3, a dataset D of size n and the same function f , such
that with probability at least 1/2 (over the random coins of the algorithm)

L̃(θpriv;D)− L̃(θ∗;D) = Ω(f(d, n, ε, δ,G,C)), (6)

where L̃(θ;D) := 1
n

∑
zi∈D

˜̀(θ; zi) is the ERM objective function, θ∗ = arg minθ∈Rd L̃(θ;D),
C ≥ ‖θ0 − θ∗‖2 and θpriv is the output of the algorithm.

Proof. Without loss of generality, let K = {θ : ‖θ − θ0‖2 ≤ C} be the `2 ball around θ0, let `(θ; z)
be the convex functions used in Definition 3.3, and as mentioned we can find our loss functions
˜̀(θ; z) = miny∈K `(y; z) +G‖θ − y‖2. As θ∗ ∈ K, we know that

L̃(θ∗;D) = min
θ∈K

L(θ;D). (7)

Denote θ̃priv = ΠK(θpriv) the projected point of θpriv to K. Because post-processing keeps privacy,
outputting θ̃priv is also (ε, δ)-DP. By Definition 3.3, we have

L(θ̃priv;D)−min
θ
L(θ;D) = Ω(f(d, n, ε, δ,G,C)). (8)

If θ̃priv = θpriv , which means θpriv ∈ K, then because ˜̀(θ; z) is equal to `(θ; z) for any θ ∈ K and
z, one has L̃(θpriv;D) = L̃(θ̃priv;D) = L(θ̃priv;D).

If θ̃priv 6= θpriv which means θpriv /∈ K, then since `(·; z) is G-Lipschitz, for any z, we have that
(denoting y∗ = arg miny∈K `(y; z) +G‖θpriv − y‖2):

˜̀(θpriv; z) = min
y∈K

`(y; z) +G‖θpriv − y‖2

= `(y∗; z) +G‖θpriv − y∗‖2
≥ `(y∗; z) +G‖θ̃priv − y∗‖2
≥ min

y∈K
`(y; z) +G‖θ̃priv − y‖2

= ˜̀(θ̃priv; z),

where the third line is by the Pythagorean Theorem for the convex set, see Lemma 3.2. We have
L̃(θpriv;D) ≥ L̃(θ̃priv;D) = L(θ̃priv;D). In a word, we get

L̃(θpriv;D) ≥ L̃(θ̃priv;D) = L(θ̃priv;D). (9)

Combining Equation (7), (8) and (9) together, we have that

L̃(θpriv;D)− L̃(θ∗;D)

= L̃(θpriv;D)−min
θ
L(θ;D)

≥ L(θ̃priv;D)−min
θ
L(θ;D)

≥ Ω(f(d, n, ε, δ,G,C)).

3.1 EXAMPLE FOR PURE-DP

This subsection gives a concrete example of the reduction method in the pure-DP setting. In the
construction of lower bounds for constrained DP-ERM in Bassily et al. (2014), they chose the linear
function `(θ; z) = 〈θ, z〉 as the objective function, which is not applicable in the unconstrained
setting because it could decrease to negative infinity. Instead, we extend the linear loss in unit `2 ball
to the whole Rd while preserving its Lipschitzness and convexity. We use such an extension to define
our loss function in the unconstrained case. Namely, we define

`(θ; z) = min
‖y‖2≤1

−〈y, z〉+ ‖θ − y‖2 (10)
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for all θ, z in the unit `2 ball, which is convex, 1-Lipschitz and equal to −〈θ, z〉 when ‖θ‖2 ≤ 1
according to Lemma 3.1. Specifically, it’s easy to verify that `(θ; 0) = max{0, ‖θ‖2 − 1}. When
‖z‖2 = 1, one has

`(θ; z) ≥ min
‖y‖2≤1

−〈y, z〉 ≥ −1, (11)

where the equation holds if and only if θ = z.

For any dataset D = {z1, ..., zn}, we define L(θ;D) = 1
n

∑n
i=1 `(θ; zi). We need the following

lemma from Bassily et al. (2014) to prove the lower bound. The proof is similar to that of Lemma 5.1
in Bassily et al. (2014), except that we change the construction by adding points 0 (the all-zero d
dimensional vector) as our dummy points. For completeness, we include it here.
Lemma 3.5 (Part-One of Lemma 5.1 in Bassily et al. (2014) with slight modifications). Let n, d ≥ 2
and ε > 0. There is a number n∗ = Ω(min(n, dε )) such that for any ε-differentially private algorithm
A, there is a dataset D = {z1, ..., zn} ⊂ { 1√

d
,− 1√

d
}d ∪ {0} with ‖

∑n
i=1 zi‖2 = n∗ such that, with

probability at least 1/2 (taken over the algorithm random coins), we have

‖A(D)− q(D)‖2 = Ω(min(1,
d

nε
)), (12)

where q(D) = 1
n

∑n
i=1 zi.

Lemma 3.5 basically says that for any ε-DP algorithm, it’s impossible to for it to estimate the
average of some dataset z1, ..., zn with accuracy o(min(1, dnε )). Using the loss functions defined in
Equation (10), Lemma 3.5 and our reduction theorem 3.4, we have the following theorem, whose
proof can be found in the appendix.
Theorem 3.6 (Lower bound for ε-differentially private algorithms). Let n, d be large enough and
ε > 0. For every ε-differentially private algorithm with output θpriv ∈ Rd, there is a dataset
D = {z1, ..., zn} ⊂ { 1√

d
,− 1√

d
}d ∪ {0} such that, with probability at least 1/2 (over the algorithm

random coins), we must have that

L(θpriv;D)− min
θ∈Rd

L(θ;D) = Ω(min(1,
d

nε
)). (13)

4 IMPROVED BOUNDS

In this section, we consider lower bounds for approximate DP. We aim to improve previous results in
two ways: to tighten the previous lower bounds and extend this bound to any non-euclidean geometry
and the unconstrained case. We make the assumption that 2−O(n) < δ < o(1/n). The assumption on
δ is common in the literature, for example, in Steinke & Ullman (2016).

4.1 BACKGROUND

We briefly introduce previous lower bounds for constrained DP-ERM and how changing the loss to
be `1 and domain to be `∞ balls generalizes the lower bounds to the unconstrained non-euclidean
case.

As shown in Table 1, Bassily et al. (2014) demonstrates a lower bound Ω(
√
d

nε ) for the constrained
case. They choose K to be the unit `2 ball and the loss function be linear function `(θ; z) = −〈θ, z〉.
The empirical loss function is L(θ;D) = −〈θ;

∑n
i=1 zi/n〉 with minimizer θ∗ =

∑n
i=1 zi

‖
∑n

i=1 zi‖2
. Hence

for any solution θ, one has L(θ;D)− L(θ∗;D) =
‖
∑n

i=1 zi‖2
n (1− 〈θ, θ∗〉) ≥ ‖

∑n
i=1 zi‖2
2n ‖θ − θ∗‖22.

Therefore one can reduce the lower bound for DP-ERM to the lower bound for estimating the mean
of a dataset, for example, the following lemma:
Lemma 4.1 (Part-Two of Lemma 5.1 in Bassily et al. (2014)). Let ε > 0, δ = o(1/n) and
M = Ω(min(n,

√
d/ε)), for any (ε, δ)-DP algorithm A, there is a dataset D = {z1, · · · , zn} ⊆

{−1/
√
d, 1/
√
d}d with ‖

∑n
i=1 zi‖2 ∈ [M − 1,M + 1] such that with probability at least 1/3 (taken

over A’s random coins), we have

‖A(D)− q(D)‖2 = Ω(min(1,

√
d

εn
)),

where q(D) = 1
n

∑n
i=1 zi.
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In a word, Bassily et al. (2014) uses linear functions as the objective functions and reduces the lower
bound on DP-ERM to the lower bound on estimating the mean. Steinke & Ullman (2016) improved
the lower bound by a logarithmic factor by using the group privacy technique.

The previous framework fails in the unconstrained and non-euclidean case for two reasons. First, they
rely on the `2 ball as the domain, which lacks the generalizability to the general `p norm. Second, to
generalize the lower bound to the unconstrained case, linear functions are no longer appropriate to be
loss functions, as they can take minus infinity values and do not have a global minimum.

To address these concerns, we consider our problem in an `∞ ball and choose the loss function to be
`(θ; z) = ‖θ − z‖1. Formally, the loss function used is the following:

`(θ; z) = ‖θ − z‖1, θ ∈ Rd, z ∈ {−1, 1}d.
The convex domain K is the `∞ unit ball. For any data-set D = {z1, ..., zn}, we define

L(θ;D) =
1

|D|

|D|∑
i=1

`(θ; zi) =
1

|D|

|D|∑
i=1

‖θ − zi‖1.

One main reason for our choice is that `1 and `∞ are the ”strongest” norms for loss and domain,
respectively, implying lower bounds for general `p geometry by the Holder inequality. Moreover,
unlike linear functions, the `1 loss function can be generalized to the unconstrained case directly. It
suffices to figure out how to prove lower bounds for this constrained setting (with `1 loss functions in
an `∞ unit ball).

Looking into previous lower bounds, such as Bassily et al. (2014) and Steinke & Ullman (2016), one
finds that the core idea is two-step: reduce the lower bound of the DP-ERM to the lower bound of
mean estimation first, then build the mean estimation by coding theory, particularly the fingerprinting
code to be discussed later. In our case, we can not directly reduce the lower bound of the DP-ERM to
the lower bound of mean estimation due to the loss function and domain change. In particular, a large
mean estimation error does not necessarily imply a large empirical risk.

Consider a simple example. Recall that we want to minimize L(θ;D) =
∑n
i=1 `(θ; zi)/n over the `∞

unit ball K, where `(θ; z) = ‖θ− z‖1 and each zi ∈ {0, 1}d as the set up before. If 1
n

∑n
i=1 zi = 1

21
where 1 means the all-one vector, then we know L(θ;D) is a constant function, equaling to d/2 for
any θ ∈ K. In this example, for a bad estimator θbad, even if ‖θbad − 1

n

∑n
i=1 zi‖2 is large, it can

still be a minimizer to the loss function, i.e., L(θbad;D)−minθ∈K L(θ;D) = 0.

4.2 FINGERPRINTING CODES

Fingerprinting code was first introduced in Boneh & Shaw (1998a), developed and frequently used to
demonstrate lower bounds in the DP community Bun et al. (2018); Steinke & Ullman (2016; 2015).

To overcome the challenge discussed before, we slightly modify the definition of the fingerprinting
code used in this work.
Definition 4.2 (`1-loss Fingerprinting Code). A γ-complete, γ-sound, α-robust `1-loss fingerprinting
code for n users with length d is a pair of random variablesD ∈ {0, 1}n×d and Trace : [0, 1]d → 2[n]

such that the following hold:

Completeness: For any fixedM : {0, 1}n×d → [0, 1]d,

Pr

[
L(M(D);D)−min

θ
L(θ;D) ≤ αd ∧ (Trace(M(D)) = ∅)

]
≤ γ.

Soundness: For any i ∈ [n] and fixed M : {0, 1}n×d → [0, 1]d,

Pr[i ∈ Trace(M(D−i))] ≤ γ,
where D−i denotes D with the ith row replaced by some fixed element of {0, 1}d.

Definition 4.2 is similar to the one in Steinke & Ullman (2016) (See Definition 3.2 in Steinke &
Ullman (2016)), except that their requirement of completeness is Pr[||M(D) − q(D)‖1 ≤ αd ∧

7
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Trace(M(D)) = ∅] ≤ γ. As discussed before, they use the fingerprinting code in their version to
build a lower bound on the mean estimation, while we modify the definition and build a lower bound
on the DP-ERM under our set-up.

Following the optimal fingerprinting construction Tardos (2008), and subsequent works Bun et al.
(2018) Bassily et al. (2014), we have the following result demonstrating the existence of fingerprinting
code in our version.
Lemma 4.3. For every n ≥ 1, and γ ∈ (0, 1], there exists a γ-complete, γ-sound, 1/150-robust
`1-loss fingerprinting code for n users with length d where

d = O(n2 log(1/γ).

4.3 MAIN RESULT IN EUCLIDEAN GEOMETRY

Similar to Bun et al. (2018), we have the following standard lemma, which allows us to reduce any
ε < 1 to the ε = 1 case without losing generality. The proof is based on the well-known ’secrecy of
the sample’ lemma from Kasiviswanathan et al. (2011).
Lemma 4.4. For 0 < ε < 1, a conditionQ has sample complexity n∗ for algorithms with (1, o(1/n))-
differential privacy (n∗ is the smallest sample size that there exists an (1, o(1/n))-differentially
private algorithm A which satisfies Q), if and only if it also has sample complexity Θ(n∗/ε) for
algorithms with (ε, o(1/n))-differential privacy.

We apply the group privacy technique in Steinke & Ullman (2016), which needs the following
technical lemma:
Lemma 4.5. Let n, k be two large positive integers such that k < n/1000. Let nk = bn/kc. Let
z1, · · · , znk

be nk numbers where zi ∈ {0, 1, 1/2} for all i ∈ [nk]. For any real value q ∈ [0, 1], if
we copy each zi k times, and append n− knk ’0’ to get n numbers z′1, · · · , z′n, then we have

|
nk∑
i=1

|q − zi|/nk −
n∑
i=1

|q − z′i|/n| ≤ 3k/n.

Proof. Without loss of generality, we can assume z′k(i−1)+1 = z′k(i−1)+2 = · · · = z′ki = zi, and
z′n−knk+1 = z′knk+2 = · · · = z′n = 0. With this observation, we know

|
nk∑
i=1

|q − zi|/nk −
n∑
i=1

|q − z′i|/n|

= |
nk∑
i=1

|q − zi|(1/nk − k/n)−
n∑

i=n−knk+1

q/n|

≤ |
nk∑
i=1

|q − zi|(1/nk − k/n)|+ |
n∑

i=n−knk+1

q/n|

≤ nk(
1

k/n− 1
− k

n
) + k/n ≤ 3k/n.

This section’s main result is the following theorem, which modifies and generalizes the techniques in
Steinke & Ullman (2016); Bassily et al. (2014) to reach a tighter bound for the unconstrained case.
Theorem 4.6 (Lower bound for (ε, δ)-differentially private algorithms). Let n, d be large enough
and 1 ≥ ε > 0, 2−O(n) < δ < o(1/n). For every (ε, δ)-differentially private algorithm with output
θpriv ∈ Rd, there is a data-set D = {z1, ..., zn} ⊂ {0, 1}d ∪ { 12}

d such that

E[L(θpriv;D)− L(θ?;D)] = Ω(min(1,

√
d log(1/δ)

nε
)GC) (14)

where ` is G-Lipschitz w.r.t. `2 geometry, θ? is a minimizer of L(θ;D), and C =
√
d is the diameter

of K w.r.t. `2 geometry, where K is the unit `∞ ball containing all possible true minimizers and
differs from its usual definition in the constrained setting.

8
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Remark 4.7. The dependence on parameters GC makes sense. For example, one can scale the loss
function to be ˆ̀(x; z) = ‖ax− z‖1 for some constant a ∈ (0, 1), which decreases Lipschitz constant
G but increases the diameter C (we should choose K to contain all possible minimizes).

This bound improves a log factor over Bassily et al. (2014) and can be directly extended to the
constrained bounded setting, by setting the constrained domain to be the unit `∞ ball.

4.4 EXTENSION TO NON-EUCLIDEAN GEOMETRY

We illustrate the power of our construction in Theorem 4.6, by showing that the same bound holds
for any `p geometry where p ≥ 1 in the constrained setting, and the bound is tight for all 1 < p ≤ 2,
improving/generalizing existing results in Asi et al. (2021); Bassily et al. (2021b). Our construction
is advantageous in that it uses `1 loss and `∞-ball-like domain in the constrained setting, both being
the strongest in their direction when relaxing to `p geometry. Simply using the Holder inequality
yields that the product of the Lipschitz constant G and the diameter of the domain C is equal to d
when p varies in [1,∞).

Theorem 4.8. Let n, d be large enough and 1 ≥ ε > 0, 2−O(n) < δ < o(1/n) and p ≥ 1. There
exists a convex set K ⊂ Rd, such that for every (ε, δ)-differentially private algorithm with output
θpriv ∈ K, there is a data-set D = {z1, ..., zn} ⊂ {0, 1}d ∪ { 12}

d such that

E[L(θpriv;D)− L(θ?;D)] = Ω(min(1,

√
d log(1/δ)

nε
)GC), (15)

where θ? is a minimizer of L(θ;D), ` is G-Lipschitz, and C is the diameter of the domain K. Both G
and C are defined w.r.t. `p geometry.

Proof. We use the same construction as in Theorem 3.6 which considers `2 geometry. We only need
to calculate the Lipschitz constant G and the diameter of the domain K.

For the Lipschitz constant G, notice that our loss is the `1 norm: `(θ; z) = ‖θ − z‖1. It is evident
that it is (d1−

1
p )-Lipschitz w.r.t. `p geometry.

For the domain, i.e., the unit `∞ ball K, it obvious that its diameter w.r.t. `p geometry is C = d
1
p .

To conclude, we find that for any `p geometry where p ≥ 1, we have GC = d which is independent
of p. The bound holds for any `p geometry by applying Theorem 4.6.

For the unconstrained case, we notice that the optimal θ∗ under our construction must lie in the unit
`∞-ball K = {x ∈ Rd|0 ≤ xi ≤ 1,∀i ∈ [d]}, by observing that projecting any point to K does not
increase the `1 loss. Therefore, our result can be generalized to the unconstrained case directly. In a

word, our result presents lower bounds Ω(

√
d log(1/δ)

εn ) for all p ≥ 1 and for both constrained case
and unconstrained case. Remarkably, our bound is the best for p near 1 and p > 2 to our knowledge.

5 CONCLUSION

This paper studies lower bounds for DP-ERM in the unconstrained case and non-euclidean geometry.
We propose a simple but powerful black-box reduction approach that can transfer any lower bound in
the constrained case to the unconstrained one, indicating that getting rid of dimension dependence
is generally impossible. We also prove better lower bounds for approximate-DP ERM for any `p
geometry when p ≥ 1 by considering `1 loss over the `∞ ball. Our bound is tight when 1 ≤ p ≤ 2
and novel for p > 2. However, there is a gap between the current best upper bound Bassily et al.
(2021b) and our lower bound when p > 2. Filling this gap can be an exciting and interesting problem.
Designing better algorithms for general (un)constrained DP-ERM based on our insights would also
be an interesting and meaningful direction, which we leave as future work.
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A ADDITIONAL BACKGROUND KNOWLEDGE

A.1 GENERALIZED LINEAR MODEL (GLM)

The generalized linear model (GLM) is a flexible generalization of ordinary linear regression that
allows for response variables with error distribution models other than a normal distribution. To be
specific,
Definition A.1 (Generalized linear model (GLM)). The generalized linear model (GLM) is a special
class of ERM problems where the loss function `(θ, d) takes the following inner-product form:

`(θ; z) = `(〈θ, x〉; y) (16)
for z = (x, y). Here, x ∈ Rd is usually called the feature vector and y ∈ R is called the response.

B CONSTRUCTION OF FINGERPRINTING CODES

To address the digital watermarking problem, Fingerprinting codes were introduced by Boneh &
Shaw (1998b). Imagine a company selling software to users. A fingerprinting code is a pair of
randomized algorithms (Gen,Trace), where Gen generates a length d code for each user i. To
prevent any malicious coalition of users copy and distributing the software, the Trace algorithm can
trace one of the malicious users, given a code produced by the coalition of users. They may only can
the bits with a divergence in the code: any bit in common is potentially vital to the software and risky
to change.

In this section, we introduce the fingerprinting code used by Bun et al. (2018), which is based on the
first optimal fingerprinting code Tardos (2008) with additional error robustness. The mechanism of
the fingerprinting code is described in Algorithm 1 for completeness.

The sub-procedure part is the original fingerprinting code in Tardos (2008), with a pair of randomized
algorithms (Gen,Trace). The code generator Gen outputs a codebook C ∈ {0, 1}n×d. The ith row
of C is the codeword of user i. The parameter d is called the length of the fingerprinting code.

We make the formal definition of fingerprinting codes:
Definition B.1 (fingerprinting codes). Given n, d ∈ N, ξ ∈ (0, 1], a pair of (random) algorithms
(Gen,Trace) is called an (n, d)-fingerprinting code with security ξ ∈ (0, 1] if Gen outputs a code-
book C ∈ {0, 1}n×d and for any (possibly randomized) adversary AFP and any subset S ⊆ [n], if
we set c←R AFP (CS), then

• Pr[c ∈ F (CS)
∧

Trace(C, c) =⊥] ≤ ξ

• Pr [Trace (C, c) ∈ [n]\S] ≤ ξ

where F (CS) =
{
c ∈ {0, 1}d | ∀j ∈ [d],∃i ∈ S, cj = cij

}
, and the probability is taken over the

coins of Gen,Trace and AFP .

Fingerprint codes imply the hardness of privately estimating the mean of a dataset over {0, 1}d.
Otherwise, the coalition of users can simply use the rounded mean of their codes to produce the copy.
Then the DP-ERM problem can be reduced to privately estimating the mean by using the linear loss
whose minimizer is precisely the mean.

The security property of fingerprinting codes asserts that any codeword can be “traced” to a user i.
Moreover, we require that the fingerprinting code can find one of the malicious users even when they
get together and combine their codewords in any way that respects the marking condition. That is, a
tracing algorithm Trace takes as inputs the codebook C and the combined codeword c′ and outputs
one of the malicious users with high probability.

The sub-procedure Gen′ first uses a sin2 x like distribution to generate a parameter pj (the mean)
for each column j independently, then generates C randomly by setting each element to be 1 with
probability pj according to its location. The sub-procedure Trace′ computes a threshold value Z and
a ’score function’ Si(c′) for each user i, then reports i when its score is higher than the threshold.

The main procedure was introduced in Bun et al. (2018), where Gen adds dummy columns to
the original fingerprinting code and applies a random permutation. Trace can first ’undo’ the

12
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Algorithm 1 The Fingerprinting Code (Gen,Trace)

Sub-procedure Gen′:
Let d = 100n2 log(n/ξ) be the length of the code.
Let t = 1/300n be a parameter and let t′ be such that sin2t′ = t.
for j = 1, ..., d: do

Choose random r uniformly from [t′, π/2− t′] and let pj = sin2rj . Note that pj ∈ [t, 1− t].
For each i = 1, ..., n, set Cij = 1 with probability pj independently.

end for
Return: C

Sub-procedure Trace′(C, c′):
Let Z = 20n log(n/ξ) be a parameter.
For each j = 1, ..., d, let qj =

√
(1− pj)/pj .

For each j = 1, ..., d, and each i = 1, ..., n, let Uij = qj if Cij = 1 and Uij = −1/qj else wise.
for each i = 1, ..., n: do

Let Si(c′) =
∑d
j=1 c

′
jUij

Output i if Si(c′) ≥ Z/2.
Output ⊥ if Si(c′) < Z/2 for every i = 1, ..., n.

end for

Main-procedure Gen:
Let C be the (random) output of Gen′, C ∈ {0, 1}n×d
Append 2d 0-marked columns and 2d 1-marked columns to C.
Apply a random permutation π to the columns of the augmented codebook.
Let the new codebook be C ′ ∈ {0, 1}n×5d.
Return: C ′.

Main-procedure Trace(C, c′):
Obtain C ′ from the shared state with Gen.
Obtain C by applying π−1 to the columns of C ′ and removing the dummy columns.
Obtain c by applying π−1 to c′ and removing the symbols corresponding to fake columns.
Return: i randomly from Trace′(C, c).

permutation and remove the dummy columns, then use Trace′ as a black box. This procedure makes
the fingerprinting code more robust in tolerating a small fraction of errors to the marking condition.

In particular, they prove the fingerprinting code Algorithm 1 has the following property.

Theorem B.2 (Theorem 3.4 in Bun et al. (2018)). For every d, and γ ∈ (0, 1], there exists a
(n, d)-fingerprinting code with security γ robust to a 1/75 fraction of errors for, for

n = Ω(
√
d/ log(1/γ))

C OMITTED PROOF FOR SECTION 3

C.1 PROOF OF LEMMA 3.5

The proof of Lemma 3.5 is basically the same as the proof in Bassily et al. (2014) with minor
modifications. Readers familiar with the literature can feel free to skip it.
Lemma 3.5. Let n, d ≥ 2 and ε > 0. There is a number n∗ = Ω(min(n, dε )) such that for any
ε-differentially private algorithm A, there is a dataset D = {z1, ..., zn} ⊂ { 1√

d
,− 1√

d
}d ∪ {0} with

‖
∑n
i=1 zi‖2 = n∗ such that, with probability at least 1/2 (taken over the algorithm random coins),

we have

‖A(D)− q(D)‖2 = Ω(min(1,
d

nε
)), (17)

where q(D) = 1
n

∑n
i=1 zi.

13



Under review as a conference paper at ICLR 2023

Proof. By using a standard packing argument we can construct K = 2
d
2 points z(1), ..., z(K) in

{ 1√
d
,− 1√

d
}d ∪ {0} such that for every distinct pair z(i), z(j) of these points, we have

‖z(i) − z(j)‖2 ≥
1

8
(18)

It is easy to show the existence of such a set of points using the probabilistic method (for example,
the Gilbert-Varshamov construction of a linear random binary code).

Fix ε > 0 and define n? = d
20ε . Let’s first consider the case where n ≤ n?. We construct K datasets

D(1), ...,D(K) where for each i ∈ [K], D(i) contains n copies of z(i). Note that q(D(i)) = z(i), we
have that for all i 6= j,

‖q(D(i))− q(D(j))‖2 ≥
1

8
(19)

Let A be any ε-differentially private algorithm. Suppose that for every D(i), i ∈ [K], with probability
at least 1/2, ‖A(D(i))− q(D(i))‖2 < 1

16 ,i.e.,Pr[A(D(i)) ∈ B(D(i))] ≥ 1
2 where for any dataset D,

B(D) is defined as

B(D) = {x ∈ Rd : ‖x− q(D)‖2 <
1

16
} (20)

Note that for all i 6= j, D(i) and D(j) differs in all their n entries. Since A is ε-differentially private,
for all i ∈ [K], we have Pr[A(D(1)) ∈ B(D(i))] ≥ 1

2e
−εn. Since all B(D(i)) are mutually disjoint,

then
K

2
e−εn ≤

K∑
i=1

Pr[A(D(1)) ∈ B(D(i))] ≤ 1 (21)

which implies that n > n? for sufficiently large p, contradicting the fact that n ≤ n?. Hence, there
must exist a dataset D(i) on which A makes an `2-error on estimating q(D) which is at least 1/16
with probability at least 1/2. Note also that the `2 norm of the sum of the entries of such D(i) is n.

Next, we consider the case where n > n?. As before, we construct K = 2
p
2 datasets D̃(1), · · · , D̃(K)

of size n where for every i ∈ [K], the first n? elements of each dataset D̃(i) are the same as dataset
D(i) from before whereas the remaining n− n? elements are 0.

Note that any two distinct datasets D̃(i), D̃(j) in this collection differ in exactly n? entries. Let A
be any ε-differentially private algorithm for answering q. Suppose that for every i ∈ [K], with
probability at least 1/2, we have that

‖A(D̃(i))− q(D̃(i))‖2 <
n?

16n
(22)

Note that for all i ∈ [K], we have that q(D̃(i)) = n∗

n q(D
(i)). Now, we define an algorithm Ã for

answering q on datasets D of size n? as follows. First, Ã appends 0 as above to get a dataset D̃
of size n. Then, it runs A on D̃ and outputs n∗A(D̃)

n . Hence, by the post-processing propertry of
differential privacy, Ã is ε-differentially private since A is ε-differentially private. Thus for every
i ∈ [K], with probability at least 1/2, we have that ||Ã(D(i)) − q(D(i))||2 < 1

16 . However, this
contradicts our result in the first part of the proof. Therefore, there must exist a dataset D̃(i) in the
above collection such that, with a probability at least 1/2,

‖A(D̃(i))− q(D̃(i))‖2 ≥
n?

16n
≥ d

320εn
(23)

Note that the `2 norm of the sum of entries of such D̃(i) is always n?.

C.2 PROOF OF THEOREM 3.6

The proof does not use the reduction Theorem 3.4 directly as a black box but uses the intuition behind
it in detail.

14



Under review as a conference paper at ICLR 2023

Theorem 3.6. Let n, d ≥ 2 and ε > 0. For every ε-differentially private algorithm with output
θpriv ∈ Rd, there is a dataset D = {z1, ..., zn} ⊂ { 1√

d
,− 1√

d
}d ∪ {0} such that, with probability at

least 1/2 (over the algorithm random coins), we must have that

L(θpriv;D)−min
θ
L(θ;D) = Ω(min(1,

d

nε
)). (24)

Proof. We can prove this theorem directly by combining the lower bound in Bassily et al. (2014)
and our reduction approach (Theorem 3.4), but we try to give a complete proof as an example to
demonstrate how does our black-box reduction approach work out.

Let A be an ε-differentially private algorithm for minimizing L and let θpriv denote its output, define
r := θpriv− θ∗. First, observe that for any θ ∈ Rd and dataset D as constructed in Lemma 3.5 (recall
that D consists of n∗ copies of a vector z ∈ { 1√

d
,− 1√

d
}d and n− n∗ copies of 0).

L(θ∗;D) =
n− n∗

n
max{0, ‖θ∗‖2 − 1}+

n∗

n
min
‖y‖2≤1

(−〈y, z〉+ ‖θ∗ − y‖2) = −n
∗

n
(25)

when θ∗ = z, and also

L(θpriv;D) =
n− n∗

n
max{0, ‖θpriv‖2 − 1}+

n∗

n
min
‖y‖2≤1

(−〈y, z〉+ ‖θpriv − y‖2)

≥ n∗

n
min
‖y‖2≤1

(−〈y, z〉+ ‖θpriv − y‖2)

=
n∗

n
min
‖y‖2≤1

(−〈y, z〉+ ‖r + z − y‖2)

(because θ∗ = z)

≥ n∗min{1, ‖r‖22}
8n

− n∗

n
the last inequality follows by discussing the norm of y − z. If ‖y − z‖2 ≤ ‖r‖2/2, then

‖r + z − y‖2 ≥ ‖r‖2/2 ≥ min{1, ‖r‖22}/2 (26)
combining with the fact that |〈y, z〉| ≤ 1 proves the last inequality.

If ‖y − z‖2 ≥ ‖r‖2/2, then we have min‖y‖2≤1−〈y, z〉 ≥ −1 +
‖r‖22
8 . To prove this, we assume

z = e1 without loss of generality and y − z = (x1, ..., xd) where
∑d
i=1 x

2
i ≥ ‖r‖22/4. Since

‖y‖2 = ‖y − z + z‖2 ≤ 1, we must have

1 +

d∑
i=1

x2i + 2x1 ≤ 1 (27)

Thus−〈y, z〉 = −1−〈y−z, z〉 = −1−x1 ≥ −1+‖r‖22/8 as desired, which finishes the discussion
on the second case.

From the above result we have that

L(θpriv;D)− L(θ∗;D) ≥ n∗min{1, ‖r‖22}
8n

(28)

To proceed, suppose for the sake of a contradiction, that for every dataset D = {z1, ..., zn} ⊂
{ 1√

d
,− 1√

d
}d ∪ {0} with ‖

∑n
i=1 zi‖2 = n∗, with probability more than 1/2, we have that ‖θpriv −

θ∗‖2 = ‖r‖2 6= Ω(1). Let Ã be an ε-differentially private algorithm that first runs A on the
data and then outputs n∗

n θ
priv. Recall that q(D) = n∗

n θ
∗, this implies that for every dataset D =

{z1, ..., zn} ⊂ { 1√
d
,− 1√

d
}d∪{0}with ‖

∑n
i=1 zi‖2 = n∗, with probability more than 1/2, ‖Ã(D)−

q(D)‖2 6= Ω(min(1, dnε )) which contradicts Lemma 3.5. Thus, there must exists a dataset D =

{z1, ..., zn} ⊂ { 1√
d
,− 1√

d
}d ∪ {0} with ‖

∑n
i=1 zi‖2 = n∗, such that with pr obability more than

1/2, we have ‖r‖2 = ‖θpriv − θ∗‖2 = Ω(1), and as a result

L(θpriv;D)− L(θ∗;D) = Ω(min(1,
d

nε
)) (29)
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D OMITTED PROOF FOR SECTION 4

D.1 PROOF OF LEMMA 4.3

Lemma 4.3. For every n ≥ 1, and γ ∈ (0, 1], there exists a γ-complete, γ-sound, 1/150-robust
`1-loss fingerprinting code for n users with length d where

d = O(n2 log(1/γ).

Proof. We want to find α such that any set satisfying the completeness condition in the above
definition is a subset of the Fβ set of Bun et al. (2018) after rounded to binary numbers, which is

Fβ(D) =

{
c′ ∈ {0, 1}d| Pr

j∈[d]
[∃i ∈ [n], c′j = Dij ] ≥ 1− β

}
Suppose, round the outputM(D) ∈ [0, 1]d to a binary vector c ∈ {0, 1}d where c /∈ Fβ(D), then it
makes an ”illegal” bit on at least βd columns, where each of these columns shares the same number
(all-one or all-minus-one columns). It means that on each of these columns,M(D) has the opposite
sign to the shared number, which means on this column, say i, the induced loss is lower bounded:

1

n

n∑
j=1

(|(M(D)i −Dij | − |sign(D̄i)−Dij |) =
1

n

n∑
j=1

|(M(D)i −Dij | ≥ 1,

which means L(M(D);D) − minθ L(θ;D) ≥ βd/2. By Theorem B.2 we get β = 1/75 and
conclude our proof.

D.2 PROOF OF LEMMA 4.4

Lemma 4.4. For 0 < ε < 1, a condition Q has sample complexity n∗ for algorithms with (1, o(1/n))-
differential privacy (n∗ is the smallest sample size that there exists an (1, o(1/n))-differentially
private algorithm A which satisfies Q), if and only if it also has sample complexity Θ(n∗/ε) for
algorithms with (ε, o(1/n))-differential privacy.

Proof. The proof uses a black-box reduction, therefore doesn’t depend on Q. The direction that
O(n∗/ε) samples are sufficient is equal to proving the assertion that given a (1, o(1/n))-differentially
private algorithm A, we can get a new algorithm A′ with (ε, o(1/n))-differential privacy at the cost
of shrinking the size of the dataset by a factor of ε.

Given input ε and a dataset X , we construct A′ to first generate a new dataset T by selecting each
element of X with probability ε independently, then feed T toA. Fix an event S and two neighboring
datasets X1, X2 that differs by a single element i. Consider running A on X1. If i is not included
in the sample T , then the output is distributed the same as a run on X2. On the other hand, if i is
included in the sample T , then the behavior ofA on T is only a factor of e off from the behavior ofA
on T \ {i}. Again, because of independence, the distribution of T \ {i} is the same as the distribution
of T conditioned on the omission of i.

For a set X , let pX denote the distribution of A(X), we have that for any event S,

pX1(S) = (1− ε)pX1(S|i /∈ T ) + εpX1(S|i ∈ T )

≤ (1− ε)pX2
(S) + ε(e · pX2

(S) + δ)

≤ exp(2ε)pX2
(S) + εδ

A lower bound of pX1
(S) ≥ exp(−ε)pX2

(S)− εδ/e can be obtained similarly. To conclude, since
εδ = o(1/n) as the sample size n decreases by a factor of ε, A′ has (2ε, o(1/n))-differential privacy.
The size ofX is roughly 1/ε times larger than T , combined with the fact thatA has sample complexity
n∗ and T is fed to A, A′ has sample complexity at least Θ(n∗/ε).

For the other direction, simply using the composability of differential privacy yields the desired result.
In particular, by the k-fold adaptive composition theorem in Dwork et al. (2006), we can combine
1/ε independent copies of (ε, δ)-differentially private algorithms to get an (1, δ/ε) one and notice
that if δ = o(1/n), then δ/ε = o(1/n) as well because the sample size n is scaled by a factor of ε at
the same time, offsetting the increase in δ.
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D.3 PROOF OF THEOREM 4.6

Theorem 4.6. Let n, d be large enough and 1 ≥ ε > 0, 2−O(n) < δ < o(1/n). For every (ε, δ)-
differentially private algorithm with output θpriv ∈ Rd, there is a data-set D = {z1, ..., zn} ⊂
{0, 1}d ∪ { 12}

d such that

E[L(θpriv;D)− L(θ?;D)] = Ω(min(1,

√
d log(1/δ)

nε
)GC) (30)

where ` is G-Lipschitz w.r.t. `2 geometry, θ? is a minimizer of L(θ;D), and C =
√
d is the diameter

of K w.r.t. `2 geometry, where K is the unit `∞ ball containing all possible true minimizers and
differs from its usual definition in the constrained setting.

Proof. Let k = Θ(log(1/δ)) be a parameter to be determined later satisfying k/n < 1/6000, and
nk = bn/kc. Consider the case when d ≥ dnk

first, where dnk
= O(ε2n2k log(1/δ)).

Without loss of generality, we assume ε = 1 due to Lemma 4.4, and dnk
= O(n2k log(1/δ))

corresponds to the number in Lemma 4.3 where we set γ = δ.

We use contradiction to prove that for any (ε, δ)-DP mechanismM, there exists someD ∈ {0, 1}n×d
such that

E[L(M(D);D)− L(θ?;D)] ≥ Ω(d). (31)

Assume for contradiction thatM : {0, 1}n×d → [0, 1]d is a (randomized) (ε, δ)-DP mechanism such
that

E[L(M(D);D)− L(θ?;D)] <
d

3000

for all D ∈ {0, 1}n×d. We then construct a mechanismMk = {0, 1}nk×d with respect toM as
follows: with input Dk ∈ {0, 1}nk×d,Mk will copy Dk for k times and append enough 0’s to get
a dataset D ∈ {0, 1}n×d. The output isMk(Dk) = M(D). Mk is (k, e

k−1
e−1 δ)-DP by the group

privacy.

We consider algorithm AFP to be the adversarial algorithm in the fingerprinting codes, which rounds
the outputMk(Dk) to the binary vector, i.e., rounding those coordinates with values no less than
1/2 to 1 and the remaining 0, and let c = AFP (M(D)) be the vector after rounding. AsMk is
(k, e

k−1
e−1 δ)-DP, AFP is also (k, e

k−1
e−1 δ)-DP.

Considering the `1 loss, we can account for the loss caused by each coordinate separately. Recall that
Mk(Dk) =M(D). Thus we have that

E[L(Mk(Dk);Dk)− L(θ?;Dk)]

= E[L(M(D);Dk)− L(θ?;Dk)]

= E[L(M(D);Dk)]− E[L(M(D);D)] + L(θ?;D)− L(θ?;Dk) + E[L(M(D);D)− L(θ?;D)]

≤ 6kd/n+ d/3000

≤ d/900,

where we use Lemma 4.5 for the third line.

By Markov Inequality, we know that

Pr[L(Mk(Dk);Dk)− L(θ?;Dk)] >
d

150
] ≤ 1/5.

Lemma 4.3 implies

Pr[L(Mk(Dk);Dk)− L(θ?;Dk) ≤ d/150
∧

Trace(Dk, c) =⊥] ≤ δ.

By union bound, we can upper bound the probability Pr[Trace(Dk, c) =⊥] ≤ 1/5 + δ ≤ 1/2. As a
result, there exists i∗ ∈ [nk] such that

Pr[i∗ ∈ Trace(Dk, c)] ≥ 1/(2nk). (32)
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Consider the database with i∗ removed, denoted by Dk−i∗ . Let c′ = AFP (M(Dk−i∗)) denote the
vector after rounding. By the second property of fingerprinting codes, we have that

Pr[i∗ ∈ Trace(Dk−i∗ , c′)] ≤ δ.
By the differential privacy and post-processing property ofM,

Pr[i∗ ∈ Trace(Dk, c)] ≤ ek Pr[i∗ ∈ Trace(Dk−i∗ , c′)] +
ek − 1

e− 1
δ.

which implies that

1

2nk
≤ ek+1δ. (33)

Recall that 2−O(n) < δ < o(1/n), and Equation (33) suggests k/n ≤ 2ek/δ for all valid k. But it
is easy to see there exists k = Θ(log(1/δ)) and k < n/6000 to make this inequality false, which is
contraction. As a result, there exists some D ∈ {0, 1}n×d such that

E[L(M(D);D)− L(θ?;D)] ≥ d

3000
= Ω(d).

For the (ε, δ)-DP case when ε < 1, setting Q to be the condition

E[L(M(D);D)− L(θ?;D)] = O(d)

for all D ∈ {0, 1}d in Lemma 4.4, we have that any (ε, δ)-DP mechanismM which satisfies Q for
all D ∈ {0, 1}n×p must have n ≥ Ω(

√
d log(1/δ)/ε). In another word, for d ≥ O(ε2n2/ log(1/δ)),

for any (ε, δ)-DP mechanismM, there exists some D ∈ {0, 1}d such that

E[L(M(D);D)− L(θ?;D)] ≥ Ω(d).

Now we consider the case when d < dnk
, i.e., when n > n? , Ω(

√
d log(1/δ)/ε). Given any

dataset D ∈ {0, 1}n?×d, we construct a new dataset D′ based on D by appending dummy points to
D: Specifically, if n− n? is even, we append n− n? rows among which half are 0 and half are {1}d.
If n− n? is odd, we append n−n?−1

2 points 0, n−n
?−1
2 points {1}d and one point {1/2}d.

Denote the new dataset after appending by D′, we will draw contradiction if there is an (ε, δ)-DP
algorithmM′ such that E[L(M(D′);D′)− L(θ?;D′)] = o(n?d/n) for all D′, by reducingM′ to
an (ε, δ)-DP algorithmM which satisfies E[L(M(D);D)− L(θ?;D)] = o(d) for all D.

We constructM by first constructing D′, and then useM′ as a black box to getM(D) =M′(D′).
It’s clear that such algorithm for D preserves (ε, δ)-differential privacy. It suffices to show that if

E[L(M′(D′);D′)− L(θ?;D′)] = o(n?d/n), (34)

then L(M(D);D)−L(θ?;D) = o(d), which contradicts the previous conclusion for the case n ≤ n?.
Specifically, if n− n? is even, we have that

n?E[L(M(D);D)− L(θ?;D)] = nE[L(M′(D′);D′)− L(θ?;D′)].
and if n− n? is odd, we have that

n?E[L(M(D);D)− L(θ?;D)] ≤ nE[L(M′(D′);D′)− L(θ?;D′)] + d/2,

both leading to the desired reduction. We try to explain the above two cases in more detail. If n− n∗
is even, then the minimizer of L(;D) and L(θ∗;D) are the same. And the distributions of theM(D)
andM′(D′) are identical and indistinguishable. Multiplying n∗ or n depends on the number of
rows (recall that we normalize the objective function in ERM). The second inequality is because we
append one point {1/2}d, which can only increase the loss (‖1/2d − θ∗‖1) by d/2 in the worst case.

Combining results for both cases, we have the following:

E[L(θpriv;D)− L(θ?;D)] = Ω(min(d,
dn∗

n
)) = Ω(min(d,

d
√
d log(1/δ)

nε
)). (35)

Setting Lipschitz constant G =
√
d and diameter C =

√
d completes the proof.
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