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Abstract

In this paper, we propose SIMLM (Similarity001
matching with Language Model pre-training),002
a simple yet effective pre-training method for003
dense passage retrieval. It employs a simple004
bottleneck architecture that learns to compress005
the passage information into a dense vector006
through self-supervised pre-training. We use a007
replaced language modeling objective, which008
is inspired by ELECTRA (Clark et al., 2020),009
to improve the sample efficiency and reduce010
the mismatch of the input distribution between011
pre-training and fine-tuning. SIMLM only re-012
quires access to an unlabeled corpus and is013
more broadly applicable when there are no014
labeled data or queries. We conduct experi-015
ments on several large-scale passage retrieval016
datasets and show substantial improvements017
over strong baselines under various settings.018
Remarkably, SIMLM even outperforms multi-019
vector approaches such as ColBERTv2 (San-020
thanam et al., 2021) which incurs significantly021
more storage cost.022

1 Introduction023

Passage retrieval is an important component in ap-024

plications like ad-hoc information retrieval, open-025

domain question answering (Karpukhin et al.,026

2020), retrieval-augmented generation (Lewis027

et al., 2020) and fact verification (Thorne et al.,028

2018). Sparse retrieval methods such as BM25029

were the dominant approach for several decades,030

and still play a vital role nowadays. With the emer-031

gence of large-scale pre-trained language models032

(PLM) (Devlin et al., 2019), increasing attention is033

being paid to neural dense retrieval methods (Yates034

et al., 2021). Dense retrieval methods map both035

queries and passages into a low-dimensional vector036

space, where the relevance between the queries and037

passages are measured by the dot product or cosine038

similarity between their respective vectors.039

Like other NLP tasks, dense retrieval benefits040

greatly from a strong general-purpose pre-trained041

PLM MS-MARCO GLUE
BERT 33.7 80.5

RoBERTa 33.1 88.1
ELECTRA 31.9 89.4

Table 1: Inconsistent performance trends between dif-
ferent models on retrieval task and NLU tasks. We re-
port MRR@10 on the dev set of MS-MARCO passage
ranking dataset and test set results on GLUE bench-
mark. Details are available in the Appendix A.

language model. However, general-purpose pre- 042

training does not solve all the problems. As shown 043

in Table 1, improved pre-training techniques that 044

are verified by benchmarks like GLUE (Wang 045

et al., 2019) do not result in consistent performance 046

gain for retrieval tasks. Similar observations are 047

also made by Lu et al. (2021). We hypothesize 048

that to perform robust retrieval, the [CLS] vector 049

used for computing matching scores should encode 050

all the essential information in the passage. The 051

next-sentence prediction (NSP) task in BERT intro- 052

duces some supervision signals for the [CLS] token, 053

while RoBERTa (Liu et al., 2019) and ELECTRA 054

do not have such sequence-level tasks. 055

In this paper, we propose SimLM to pre-train a 056

representation bottleneck with replaced language 057

modeling objective. SimLM consists of a deep en- 058

coder and a shallow decoder connected with a rep- 059

resentation bottleneck, which is the [CLS] vector 060

in our implementation. Given a randomly masked 061

text segment, we first employ a generator to sample 062

replaced tokens for masked positions, then use both 063

the deep encoder and shallow decoder to predict 064

the original tokens at all positions. Since the de- 065

coder only has limited modeling capacity, it must 066

rely on the representation bottleneck to perform 067

well on this pre-training task. As a result, the en- 068

coder will learn to compress important semantic 069

information into the bottleneck, which would help 070
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train biencoder-based 1 dense retrievers.071

Compared to existing pre-training approaches072

such as Condenser (Gao and Callan, 2021) or co-073

Condenser (Gao and Callan, 2022), our method074

has several advantages. First, it does not have any075

extra skip connection between the encoder and de-076

coder, thus reducing the bypassing effects and sim-077

plifying the architecture design. Second, similar078

to ELECTRA pre-training, our replaced language079

modeling objective can back-propagate gradients080

at all positions and does not have [MASK] tokens081

in the inputs during pre-training. Such a design082

increases sample efficiency and decreases the in-083

put distribution mismatch between pre-training and084

fine-tuning.085

To verify the effectiveness of our method,086

we conduct experiments on several large-scale087

web search and open-domain QA datasets: MS-088

MARCO passage ranking (Campos et al., 2016),089

TREC Deep Learning Track datasets, and the Nat-090

ural Questions (NQ) dataset (Kwiatkowski et al.,091

2019). Results show substantial gains over other092

competitive methods using BM25 hard negatives093

only. When combined with mined hard negatives094

and cross-encoder based re-ranker distillation, we095

can achieve new state-of-the-art performance.096

2 Related Work097

Dense Retrieval The field of information retrieval098

(IR) (Manning et al., 2005) aims to find the relevant099

information given an ad-hoc query and has played100

a key role in the success of modern search en-101

gines. In recent years, IR has witnessed a paradigm102

shift from traditional BM25-based inverted index103

retrieval to neural dense retrieval (Yates et al.,104

2021; Karpukhin et al., 2020). BM25-based re-105

trieval, though efficient and interpretable, suffers106

from the issue of lexical mismatch between the107

query and passages. Methods like document ex-108

pansion (Nogueira et al., 2019) or query expan-109

sion (Azad and Deepak, 2019) are proposed to110

help mitigate this issue. In contrast, neural dense111

retrievers first map the query and passages to a112

low-dimensional vector space, and then perform se-113

mantic matching. Popular methods include DSSM114

(Huang et al., 2013), C-DSSM (Shen et al., 2014),115

and DPR (Karpukhin et al., 2020) etc. Inference116

can be done efficiently with approximate nearest117

neighbor (ANN) search algorithms such as HNSW118

(Malkov and Yashunin, 2020).119

1Also called dual-encoder / two-tower encoder.

Some recent works (Chen et al., 2021; Reimers 120

and Gurevych, 2021; Sciavolino et al., 2021) show 121

that neural dense retrievers may fail to capture 122

some exact lexical match information. To miti- 123

gate this issue, Chen et al. (2021) proposes to use 124

BM25 as a complementary teacher model, Col- 125

BERT (Khattab and Zaharia, 2020) instead re- 126

places simple dot-product matching with a more 127

complex token-level MaxSim interaction, while 128

COIL (Gao et al., 2021) incorporates lexical match 129

information into the scoring component of neural 130

retrievers. Our proposed pre-training method aims 131

to adapt the underlying text encoders for retrieval 132

tasks, and can be easily integrated with existing 133

approaches. 134

Pre-training for Dense Retrieval With the devel- 135

opment of large-scale language model pre-training 136

(Dong et al., 2019; Clark et al., 2020), Transformer- 137

based models such as BERT (Devlin et al., 2019) 138

have become the de facto backbone architecture 139

for learning text representations. However, most 140

pre-training tasks are designed without any prior 141

knowledge of downstream applications. Chang 142

et al. (2020) presents three heuristically constructed 143

pre-training tasks tailored for text retrieval: inverse 144

cloze task (ICT), body first selection (BFS), and 145

wiki link prediction (WLP). These tasks exploit the 146

document structure of Wikipedia pages to automat- 147

ically generate contrastive pairs. Other related pre- 148

training tasks include representative words predic- 149

tion (Ma et al., 2021), contrastive span prediction 150

(Ma et al., 2022), contrastive learning with indepen- 151

dent cropping (Izacard et al., 2021) or neighboring 152

text pairs (Neelakantan et al., 2022) etc. 153

Another line of research builds upon the intu- 154

ition that the [CLS] vector should encode all the 155

important information in the given text for robust 156

matching, which is also one major motivation for 157

this paper. Such methods include Condenser (Gao 158

and Callan, 2021), coCondenser (Gao and Callan, 159

2022), SEED (Lu et al., 2021), DiffCSE (Chuang 160

et al., 2022), and RetroMAE (Liu and Shao, 2022) 161

etc. Compared with Condenser and coCondenser, 162

our pre-training architecture does not have skip 163

connections between the encoder and decoder, and 164

therefore forces the [CLS] vector to encode as 165

much information as possible. RetroMAE (Liu 166

and Shao, 2022) is a concurrent work that com- 167

bines a bottleneck architecture and the masked 168

auto-encoding objective. 169
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encoder

shallow decoder

You never [MASK] what you’re going to [MASK] in life .

You never know what you’re going to get in life .

random mask

bottleneck
Lenc : Replaced Language Model Loss

generator

[CLS] You never tell what you’re going to learn in life .

You never expect what you’re going to be in life .
random sampling

Ldec : Replaced Language Model Loss

𝑥𝑒𝑛𝑐

𝑥𝑑𝑒𝑐

𝑥

Figure 1: Pre-training architecture of SimLM. Replaced tokens are underlined.

3 SimLM170

3.1 Pre-training171

For pre-training, there is a collection of passages172

C = {xi}|C|i=1, where x denotes a single passage.173

Since our motivation is to have a general pre-174

training method, we do not assume access to any175

query or human-labeled data.176

The overall pre-training architecture is shown177

in Figure 1. Given a text sequence x, its tokens178

are randomly replaced with probability p by two179

sequential operations: random masking with prob-180

ability p denoted as x′ = Mask(x, p), and then181

sampling with an ELECTRA-style generator g de-182

noted as Sample(g,x′). Due to the randomness of183

sampling, a replaced token can be the same as the184

original one. The above operations are performed185

twice with potentially different replace probabili-186

ties penc and pdec to get the encoder input xenc and187

decoder input xdec.188

xenc = Sample(g, Mask(x, penc))

xdec = Sample(g, Mask(x, pdec))
(1)189

We also make sure that any replaced token in xenc190

is also replaced in xdec to increase the difficulty of191

the pre-training task.192

The encoder is a deep multi-layer Transformer193

that can be initialized with pre-trained models like194

BERT (Devlin et al., 2019). It takes xenc as in-195

put and outputs the last layer [CLS] vector hcls196

as a representation bottleneck. The decoder is a197

2-layer shallow Transformer with a language mod-198

eling head and takes xdec and hcls as inputs. Unlike199

the decoder component in autoregressive sequence-200

to-sequence models, the self-attention in our de-201

coder is bi-directional. The pre-training task is202

replaced language modeling for both the encoder203

and decoder, which predicts the tokens before re- 204

placement at all positions. The loss function is the 205

token-level cross-entropy. The encoder loss Lenc is 206

shown as follows: 207

min Lenc = −
1

|x|

|x|∑
i=1

log p(x[i] | xenc) (2) 208

Similarly for the decoder loss Ldec. The final pre- 209

training loss is their simple sum: Lpt = Lenc+Ldec. 210

We do not fine-tune the parameters of the generator 211

as our preliminary experiments do not show any 212

performance gain. 213

It is often reasonable to assume access to the tar- 214

get retrieval corpus before seeing any query. There- 215

fore, we directly pre-train on the target corpus sim- 216

ilar to coCondenser (Gao and Callan, 2022). After 217

the pre-training finishes, we throw away the de- 218

coder and only keep the encoder for supervised 219

fine-tuning. 220

Since the decoder has very limited modeling 221

capacity, it needs to rely on the representation bot- 222

tleneck to perform well on the pre-training task. 223

For the encoder, it should learn to compress all the 224

semantic information and pass it to the decoder 225

through the bottleneck. 226

3.2 Fine-tuning 227

Compared to training text classification or gen- 228

eration models, training state-of-the-art dense 229

retrieval models requires a relatively compli- 230

cated procedure. In Figure 2, we show our 231

supervised fine-tuning pipeline. In contrast to 232

previous approaches, our proposed pipeline is 233

relatively straightforward and does not require 234

joint training (Ren et al., 2021b) or re-building 235

index periodically (Xiong et al., 2021). Each 236

stage takes the outputs from the previous stage 237
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distillationBM25 negatives mined negatives
Retriever 1 Retriever 2

Data

Re-ranker
mined negatives

Retrieverdistill

Pre-trained model

initializeinitialize initialize

Figure 2: Illustration of our supervised fine-tuning pipeline. Note that we only use SimLM to initialize the
biencoder-based retrievers. For cross-encoder based re-ranker, we use off-the-shelf pre-trained models such as
ELECTRAbase.

as inputs and can be trained in a standalone fashion.238

239

Retriever1 Given a labeled query-passage pair240

(q+, d+), we take the last-layer [CLS] vector of241

the pre-trained encoder as their representations242

(hq+ ,hd+). Both the in-batch negatives and BM25243

hard negatives are used to compute the contrastive244

loss Lcont:245

− log
φ(q+, d+)

φ(q+, d+) +
∑
ni∈N

(φ(q+, ni) + φ(d+, ni))

(3)246

Where N denotes all the negatives, and φ(q, d) is a247

function to compute the matching score between248

query q and passage d. In this paper, we use249

temperature-scaled cosine similarity function:250

φ(q, d) = exp( 1τ cos(hq,hd)). τ is a temperature251

hyper-parameter and set to a constant 0.02 in our252

experiments.253

254

Retriever2 It is trained in the same way as255

Retriever1 except that the hard negatives are mined256

based on a well-trained Retriever1 checkpoint.257

258

Re-ranker is a cross-encoder that re-ranks the top-259

k results of Retriever2. It takes the concatenation260

of query q and passage d as input and outputs a real-261

valued score θ(q, d). Given a labeled positive pair262

(q+, d+) and n−1 hard negative passages randomly263

sampled from top-k predictions of Retriever2, we264

adopt a listwise loss to train the re-ranker:265

− log
exp(θ(q+, d+))

exp(θ(q+, d+)) +
∑n−1

i=1 exp(θ(q+, d−i ))
(4)266

The cross-encoder architecture can model the 267

full interaction between the query and the passage, 268

making it suitable to be a teacher model for 269

knowledge distillation. 270

271

Retrieverdistill Although cross-encoder based re- 272

ranker is powerful, it is not scalable enough for 273

first-stage retrieval. To combine the scalability of 274

biencoder and the effectiveness of cross-encoder, 275

we can train a biencoder-based retriever by dis- 276

tilling the knowledge from the re-ranker. The re- 277

ranker from the previous stage is employed to com- 278

pute scores for both positive pairs and mined nega- 279

tives from Retriever2. These scores are then used 280

as training data for knowledge distillation. With 281

n− 1 mined hard negatives, we use KL (Kullback- 282

Leibler) divergence Lkl as the loss function for 283

distilling the soft labels: 284

Lkl =

n∑
i=1

piranker log
piranker

piret
(5) 285

where pranker and pret are normalized probabili- 286

ties from the re-ranker teacher and Retrieverdistill 287

student. For training with the hard labels, we 288

use the contrastive loss Lcont as defined in Equa- 289

tion 3. The final loss is their linear interpolation: 290

L = Lkl + αLcont. 291

Our pre-trained SimLM model is used to ini- 292

tialize all three biencoder-based retrievers but not 293

the cross-encoder re-ranker. Since our pre-training 294

method only affects model initialization, it can be 295

easily integrated into other more effective training 296

pipelines. 297
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Model +distill
single

vector?
MS MARCO dev TREC DL 19 TREC DL 20

MRR@10 R@50 R@1k nDCG@10 nDCG@10
Sparse retrieval
BM25 3 18.5 58.5 85.7 51.2∗ 47.7∗

DeepCT (Dai and Callan, 2019) 3 24.3 69.0 91.0 57.2 -
docT5query (Nogueira and Lin) 3 27.7 75.6 94.7 64.2 -
Dense retrieval
ANCE (Xiong et al., 2021) 3 33.0 - 95.9 64.5† 64.6†

SEED (Lu et al., 2021) 3 33.9 - 96.1 - -
TAS-B (Hofstätter et al., 2021) 3 3 34.0 - 97.5 71.2 69.3
RetroMAE (Liu and Shao, 2022) 3 35.0 - 97.6 - -
COIL (Gao et al., 2021) 35.5 - 96.3 70.4 -
ColBERT (Khattab and Zaharia, 2020) 36.0 82.9 96.8 - -
Condenser (Gao and Callan, 2021) 3 36.6 - 97.4 69.8 -
RocketQA (Qu et al., 2021) 3 3 37.0 85.5 97.9 - -
PAIR (Ren et al., 2021a) 3 3 37.9 86.4 98.2 - -
coCondenser (Gao and Callan, 2022) 3 38.2 86.5∗ 98.4 71.7∗ 68.4∗

RocketQAv2 (Ren et al., 2021b) 3 3 38.8 86.2 98.1 - -
AR2 (Zhang et al., 2021) 3 3 39.5 87.8 98.6 - -
ColBERTv2 (Santhanam et al., 2021) 3 39.7 86.8 98.4 - -
SIMLM 3 3 41.1 87.8 98.7 71.4 69.7

Table 2: Main results on MS-MARCO passage ranking and TREC datasets. Results with * are from our reproduc-
tion with public checkpoints. †: from Pyserini (Lin et al., 2021).

4 Experiments298

4.1 Setup299

Datasets and Evaluation We use MS-MARCO300

passage ranking (Campos et al., 2016), TREC301

Deep Learning (DL) Track 2019 (Craswell et al.,302

2020a) and 2020 (Craswell et al., 2020b), Nat-303

ural Questions (NQ) (Kwiatkowski et al., 2019;304

Karpukhin et al., 2020) datasets for training and305

evaluation. The MS-MARCO dataset is based on306

Bing search results and consists of about 500k la-307

beled queries and 8.8M passages. Since the test308

set labels are not publicly available, we report re-309

sults on the development set with 6980 queries.310

The NQ dataset is targeted for open QA with about311

80k question-answer pairs in the training set and312

21M Wikipedia passages. For evaluation metrics,313

we use MRR@10, Recall@50, and Recall@1k for314

MS-MARCO, nDCG@10 for TREC DL, and Re-315

call@20, Recall@100 for the NQ dataset.316

Implementation Details For pre-training, we ini-317

tialize the encoder with BERTbase (uncased ver-318

sion). The decoder is a two-layer Transformer319

whose parameters are initialized with the last two320

layers of BERTbase. The generator is borrowed321

from the ELECTRAbase generator, and its param-322

eters are frozen during pre-training. We pre-train323

for 80k steps for MS-MARCO corpus and 200k324

steps for NQ corpus, which roughly correspond to 325

20 epochs. Pre-training is based on 8 V100 GPUs. 326

With automatic mixed-precision training, it takes 327

about 1.5 days and 3 days for the MS-MARCO and 328

NQ corpus respectively. 329

For more implementation details, please check 330

out the Appendix section B. 331

4.2 Main Results 332

Model
NQ

R@20 R@100
BM25 59.1 73.7
DPRsingle (Karpukhin et al., 2020) 78.4 85.4
ANCE (Xiong et al., 2021) 81.9 87.5
RocketQA (Qu et al., 2021) 82.7 88.5
Condenser (Gao and Callan, 2021) 83.2 88.4
PAIR (Ren et al., 2021a) 83.5 89.1
RocketQAv2 (Ren et al., 2021b) 83.7 89.0
coCondenser (Gao and Callan, 2022) 84.3 89.0
SIMLM 85.2 89.7

Table 3: Results on the test set of Natural Questions
(NQ) dataset. Listed results of SimLM are based on
Retrieverdistill.

We list the main results in Table 2 and 3. For 333

the MS-MARCO passage ranking dataset, the num- 334

bers are based on the Retrieverdistill in Figure 2. 335

Our method establishes new state-of-the-art with 336
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Index size Index search
ColBERTv2 >150GB Two-stage
SIMLM 27GB One-stage

Table 4: Comparison with ColBERTv2 (Santhanam
et al., 2021) in terms of index storage cost (w/o any
compression) and complexity of index search algo-
rithms.

MRR@10 41.1, even outperforming multi-vector337

methods like ColBERTv2. As shown in Table338

4, ColBERTv2 has a 6x storage cost as it stores339

one vector per token instead of one vector per pas-340

sage. It also requires a customized two-stage in-341

dex search algorithm during inference, while our342

method can utilize readily available vector search343

libraries.344

The TREC DL datasets have more fine-grained345

human annotations, but also much fewer queries346

(less than 100 labeled queries). We find that using347

different random seeds could have a 1%-2% differ-348

ence in terms of nDCG@10. Though our model349

performs slightly worse on the 2019 split compared350

to coCondenser, we do not consider such difference351

as significant.352

For passage retrieval in the open-domain QA set-353

ting, a passage is considered relevant if it contains354

the correct answer for a given question. In Table 3,355

our model achieves R@20 85.2 and R@100 89.7356

on the NQ dataset, which are comparable to or bet-357

ter than other methods. For end-to-end evaluation358

of question answering accuracy, we will leave it as359

future work.360

Model MRR@10
BERTbase 42.3
ELECTRAbase 43.7
SIMLM 42.9

Table 5: Re-ranker performance w/ different pre-
trained models on the dev set of MS-MARCO passage
ranking dataset.

Though SimLM achieves substantial gain for361

biencoder-based retrieval, its success for re-ranking362

is not as remarkable. In Table 5, when used as363

initialization for re-ranker training, SimLM out-364

performs BERTbase by 0.6% but still lags behind365

ELECTRAbase.366

Next, we zoom in on the impact of each stage in367

our training pipeline. In Table 6, we mainly com-368

pare with coCondenser (Gao and Callan, 2022).369

With BM25 hard negatives only, we can achieve370

MRR@10 R@1k
coCondenser
BM25 negatives 35.7 97.8
+ mined negatives 38.2 98.4
+ distillation 40.2∗ 98.3∗

SIMLM
BM25 negatives (Retriever1) 38.0 98.3
+ mined negatives (Retriever2) 39.1 98.6
+ distillation (Retrieverdistill) 41.1 98.7
Cross-encoder re-ranker 43.7 98.6

Table 6: Comparison with state-of-the-art dense re-
triever coCondenser under various settings on the dev
set of MS-MARCO passage ranking dataset. Results
with * are from our reproduction.

MRR@10 38.0, which already matches the per- 371

formance of many strong models like RocketQA 372

(Qu et al., 2021). Model-based hard negative 373

mining and re-ranker distillation can bring further 374

gains. This is consistent with many previous works 375

(Xiong et al., 2021; Ren et al., 2021b). We also 376

tried an additional round of mining hard negatives 377

but did not observe any meaningful improvement. 378

5 Analysis 379

5.1 Variants of Pre-training Objectives 380

Besides our proposed replaced language modeling 381

objective, we also tried several other pre-training 382

objectives as listed below. 383

384

Enc-Dec MLM uses the same encoder-decoder 385

architecture as in Figure 1 but without the genera- 386

tor. The inputs are randomly masked texts and the 387

pre-training objective is masked language model- 388

ing (MLM) over the masked tokens only. The mask 389

rate is the same as our method for a fair compari- 390

son, which is 30% for the encoder and 50% for the 391

decoder. In contrast, RetroMAE (Liu and Shao, 392

2022) uses a specialized decoding mechanism to 393

derive supervision signals from all tokens on the 394

decoder side. 395

Condenser is a pre-training architecture proposed 396

by Gao and Callan (2021). Here we pre-train Con- 397

denser with a 30% mask rate on the target corpus. 398

MLM is the same as the original BERT pre- 399

training objective with a 30% mask rate. 400

Enc-Dec RTD is the same as our method in Figure 401

1 except that we use replaced token detection (RTD) 402

(Clark et al., 2020) as a pre-training task for both 403

the encoder and decoder. This variant shares some 404

similarities with DiffCSE (Chuang et al., 2022). 405
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SIMLM Enc-Dec MLM Condenser MLM Enc-Dec RTD AutoEncoder BERTbase

MRR@10 38.0 37.7 36.9 36.7 36.2 32.8 33.7

Table 7: Different pre-training objectives. Reported numbers are MRR@10 on the dev set of MS-MARCO passage
ranking. We finetune the pre-trained models with official BM25 hard negatives.

The main difference is that the input for DiffCSE406

encoder is the original text, making it a much easier407

task. Our preliminary experiments with DiffCSE408

pre-training do not result in any improvement.409

AutoEncoder attempts to reconstruct the inputs410

based on the bottleneck representation. The en-411

coder input is the original text without any mask,412

and the decoder input only consists of [MASK]413

tokens and [CLS] vector from the encoder.414

BERTbase just uses off-the-shelf checkpoint415

published by Devlin et al. (2019). It serves as a416

baseline to compare against various pre-training417

objectives.418

419

The results are summarized in Table 7. Naive420

auto-encoding only requires memorizing the in-421

puts and does not need to learn any contextualized422

features. As a result, it becomes the only pre-423

training objective that underperforms BERTbase.424

Condenser is only slightly better than simple MLM425

pre-training, which is possibly due to the bypass-426

ing effects of the skip connections in Condenser.427

Enc-Dec MLM substantially outperforms Enc-Dec428

RTD, showing that MLM is a better pre-training429

task than RTD for retrieval tasks. This is consis-430

tent with the results in Table 1. Considering the431

superior performance of RTD pre-trained models432

on benchmarks like GLUE, we believe further re-433

search efforts are needed to investigate the reason434

behind this phenomenon.435

5.2 Effects of Replace Rate436

encoder decoder MRR@10
15% 15% 37.6
15% 30% 37.5
30% 30% 37.9
30% 50% 38.0
40% 60% 38.0
30% 100% 36.6

Table 8: MS-MARCO passage ranking performance
w.r.t different token replace rates. Here the replace rate
is the percentage of masked tokens fed to the generator.

In the experiments, we use fairly large replace437

rates (30% for the encoder and 50% for the de-438

coder). This is in stark contrast to the mainstream 439

choice of 15%. In Table 8, we show the results 440

of pre-training with different replace rates. Our 441

model is quite robust to a wide range of values 442

with 30%-40% encoder replace rate performing 443

slightly better. Similar findings are also made by 444

Wettig et al. (2022). 445

One interesting extreme scenario is a 100% re- 446

place rate on the decoder side. In such a case, the 447

decoder has no access to any meaningful context. 448

It needs to predict the original texts solely based on 449

the representation bottleneck. This task may be too 450

difficult and has negative impacts on the encoder. 451

5.3 Effects of Pre-training Steps 452

0 10 20 40 60 80
Pre-training steps (k)

33

34

35

36

37

38

M
RR

@
10

35.6 35.7

36.2
36.5 36.7

37.3 37.2
37.6

38.0 38.0

MLM
SimLM

Figure 3: Our pre-training objective converges faster
and consistently outperforms vanilla masked language
model pre-training. The y-axis shows the MRR@10 on
the dev set of MS-MARCO dataset.

Since pre-training can be costly in terms of both 453

time and carbon emission, it is preferred to have an 454

objective that converges fast. Our proposed method 455

shares two advantages of ELECTRA (Clark et al., 456

2020). First, the loss is computed over all input to- 457

kens instead of a small percentage of masked ones. 458

Second, the issue of input distribution mismatch is 459

less severe than MLM, where the [MASK] token 460

is seen during pre-training but not for supervised 461

fine-tuning. In Figure 3, our method achieves 462

competitive results with only 10k training steps 463

and converges at 60k, while MLM still slowly im- 464

proves with more steps. 465
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query was winnie the pooh a boy

BERTbase

Rank: 1, Relevant: 7
Passage: The little boy who talks to the animals in the Winnie-the-Pooh stories is called Christopher Robin,
which is the name of A. A. Milne’s real-life son, who was born in 1920. On August 21, 1921,
the real-life Christopher Robin Milne received a stuffed bear from Harrods for his first birthday . . .

SIMLM

Rank: 1, Relevant: 3
Passage: So, it looks like we were lied to our entire childhood! Winnie the Pooh is not a boy. SHE is a girl
and she’s from Canada, not England. Really! In a new picture book called Finding Winnie:
The True Story of the World’s Most Famous Bear, we learn that Winnie is actually named after . . .

query colorado routing number loveland colorado

BERTbase

Rank: 1, Relevant: 7
Passage: Loveland, CO is currently served by one area code which is area code 970. In addition to Loveland,
CO area code information read more about area code 970 details and Colorado area codes. . . .

SIMLM

Rank: 2, Relevant: 3
Passage: 107006787 Routing Transit Number (RTN) for Advantage Bank Main Office located at
Loveland, Colorado, CO, 80538, United States, Street Address 1475 NORTH DENVER AVENUE,
Telephone Number 970-613-1982 . . .

Table 9: Some (cherry-picked) examples from the dev set of MS-MARCO passage ranking dataset. We show the
query, top retrieved passages, and their binary relevance labels. Relevant text snippets are shown in italic.

5.4 On the Choice of Pre-training Corpus466

Corpus
MS-MARCO NQ

MRR@10 R@1k R@20 R@100
none 33.7 95.9 82.9 88.0
MS-MARCO 38.0 98.3 83.3 88.6
Wikipedia 36.3 97.4 84.3 89.3

Table 10: Fine-tuning performance w.r.t different pre-
training corpora. We use BM25 negatives for MS-
MARCO and mined negatives for NQ. “Wikipedia” is
the target retrieval corpus for NQ dataset. “none” use
BERTbase as the foundation model.

For a typical retrieval task, the number of can-467

didate passages is much larger than the number468

of labeled queries, and many passages are never469

seen during training. Take the NQ dataset as an470

example, it has 21M candidate passages but only471

less than 80k question-answer pairs for training.472

In the experiments, we directly pre-train on the473

target corpus. Such pre-training can be regarded474

as implicit memorization of the target corpus in475

a query-agnostic way. One evidence to support476

this argument is that, as shown in Table 7, simple477

MLM pre-training on target corpus can have large478

performance gains.479

An important research question to ask is: will480

there be any benefits of our method when pre-481

training on non-target corpus? In Table 10, the482

largest performance gains are obtained when the483

corpus matches between pre-training and fine-484

tuning. If we pre-train on the MS-MARCO corpus485

and fine-tune on the labeled NQ dataset or the other486

way around, there are still considerable improve-487

ments over the baseline. We hypothesize that this488

is due to the model’s ability to compress informa-489

tion into a representation bottleneck. Such ability 490

is beneficial for training robust biencoder-based 491

retrievers. 492

5.5 Case Analysis 493

To qualitatively understand the gains brought by 494

pre-training, we show several examples in Table 495

9. The BERTbase retriever can return passages with 496

high lexical overlap while missing some subtle but 497

key semantic information. In the first example, the 498

retrieved passage by BERTbase contains keywords 499

like “boy”, “Winnie the Pooh”, but does not answer 500

the question. In the second example, there is no 501

routing number in the BERTbase retrieved passage, 502

which is the key intent of the query. Our proposed 503

pre-training can help to learn better semantics to 504

answer such queries. For more examples, please 505

check out Table 14 in the Appendix. 506

6 Conclusion 507

This paper proposes a novel pre-training method 508

SIMLM for dense passage retrieval. It follows 509

an encoder-decoder architecture with a representa- 510

tion bottleneck in between. The encoder learns to 511

compress all the semantic information into a dense 512

vector and passes it to the decoder to perform well 513

on the replaced language modeling task. When 514

used as initialization in a dense retriever training 515

pipeline, our model achieves competitive results on 516

several large-scale passage retrieval datasets. 517

For future work, we would like to increase the 518

model size and the corpus size to examine the scal- 519

ing effects. It is also interesting to explore other 520

pre-training mechanisms to support unsupervised 521

dense retrieval and multilingual retrieval. 522
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A Details on Table 1803

804

The numbers for the GLUE benchmark are from 805

the official leaderboard 2. Note that the leader- 806

board submission from BERT does not use ensem- 807

ble, so the comparison is not entirely fair. However, 808

this does not change our conclusion that BERT gen- 809

erally performs worse than RoBERTa and ELEC- 810

TRA on NLP tasks. For the MS-MARCO dataset, 811

we fine-tune all the pre-trained models with BM25 812

hard negatives only. For BERT and RoBERTa, we 813

use the same hyperparameters as discussed in Sec- 814

tion 4.1. For ELECTRA, we train for 6 epochs 815

with a peak learning rate 4 × 10−5 since it con- 816

verges much slower. 817

B Implementation Details 818

819

MS-MARCO Wikipedia
# of passages 8.8M 21M
PLM BERTbase BERTbase
batch size 2048 2048
text length 144 144
learning rate 3× 10−4 3× 10−4

warmup steps 4000 4000
train steps 80k 200k
encoder replace rate 30% 30%
decoder replace rate 50% 50%

Table 11: Hyper-parameters for pre-training. The
Wikipedia corpus comes from DPR (Karpukhin et al.,
2020) instead of the original one used for BERT pre-
training.

The hyper-parameters for our proposed pre- 820

training and fine-tuning are listed in Table 11 and 821

12, respectively. For supervised fine-tuning, One 822

shared encoder is used to encode both the query 823

and passages. We start with the official BM25 hard 824

negatives in the first training round and then change 825

to mined hard negatives. During inference, given 826

a query, we use brute force search to rank all the 827

passages for a fair comparison with previous works. 828

The generator is initialized with the released one 829

by ELECTRA authors 3, and its parameters are 830

frozen during pre-training. All the reported results 831

are based on a single run, we find that the numbers 832

are quite stable with different random seeds. 833

For fine-tuning on the NQ dataset, we reuse most 834

hyper-parameters values from MS-MARCO train- 835

ing. A few exceptions are listed below. We fine- 836

2 https://gluebenchmark.com/leaderboard
3https://huggingface.co/google/
electra-base-generator
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Retriever 1-2 Re-ranker Retrieverdistill

learning rate 2× 10−5 3× 10−5 3× 10−5

PLM SIMLM ELECTRAbase SIMLM
# of GPUs 4 8 4
warmup steps 1000 1000 1000
batch size 64 64 64
epoch 3 3 6
τ 0.02 n.a. 0.02
α n.a. n.a. 0.2
negatives depth 200 200 200
rerank depth n.a. 200 n.a.
query length 32 n.a. 32
passage length 144 192† 144
# of negatives 15 63 23

Table 12: Hyper-parameters for supervised fine-tuning on MS-MARCO passage ranking dataset. †: Max length
for the concatenation of the query and passage.

tune for 20k steps with learning rate 5×10−6. The837

maximum length for passage is 192. The mined838

hard negatives come from top-100 predictions that839

do not contain any correct answer.840

C Variants of Generators841

In the ELECTRA pre-training, the generator plays842

a critical role. Using either a too strong or too weak843

generator hurts the learnability and generalization844

of the discriminator.845

generator MRR@10 R@1k
frozen generator 38.0 98.3
joint train 38.0 98.4
joint train w/ random init 37.8 98.4

Table 13: Variants of generators for SimLM pre-
training. Performances are reported on the dev set of
MS-MARCO with BM25 negatives only.

We also tried several variants of generators. In846

Table 13, “frozen generator” keeps the genera-847

tor parameters unchanged during our pre-training,848

“joint train” also fine-tunes the generator parame-849

ters, and “joint train w/ random init” uses randomly850

initialized generator parameters. We do not ob-851

serve any significant performance difference be-852

tween these variants. In our experiments, we sim-853

ply use the “frozen generator” as it has a faster854

training speed.855

D Limitations and Potential Risks856

One limitation of SimLM is that it can not be used857

as an unsupervised dense retriever, since the pre-858

training framework does not have any contrastive 859

objective. Fine-tuning on labeled data is required 860

to get a high-quality model. Also, though SimLM 861

pre-training is quite efficient thanks to the replaced 862

language modeling objective, it still needs extra 863

computational resources to train the model. 864

If the retrieval corpus contains some offensive or 865

biased texts, they could be exposed to users under 866

certain queries through our dense retriever. To deal 867

with such risks, we need to introduce toxic text 868

classifiers or manual inspection to exclude such 869

texts from the corpus. 870
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query is the keto diet good for kidney disease

BERTbase

Rank: 1, Relevant: 7
Passage: The keto diet (also known as ketogenic diet, low carb diet and LCHF diet) is a low carbohydrate,
high fat diet. Maintaining this diet is a great tool for weight loss. More importantly though,
according to an increasing number of studies, it helps reduce risk factors for diabetes, heart diseases, stroke . . .

SIMLM

Rank: 1, Relevant: 3
Passage: 4-Many kidney issues have either a hyperinsulinemic characteristic, an autoimmune characteristic,
and or a combination of autoimmunity or hyperinsulinism. A standard, low-ish carb paleo diet can fix most of
these issues. 5-For serious kidney damage a low-protein, ketogenic diet can be remarkably therapeutic.

query who announced the european recovery program?

BERTbase

Rank: 1, Relevant: 7
Passage: 1 The CEEC submits its report estimating needs and the cost of the European Recovery Program
(ERP) over four years. 2 It provides for the establishment of the Organization for European
Economic Cooperation (OEEC) to coordinate the program from the European side. 3 February 1948.

SIMLM

Rank: 2, Relevant: 3
Passage: Marshall Plan. Introduction. The Marshall Plan, also known as the European Recovery Program,
channeled over $13 billion to finance the economic recovery . . . The plan is named for Secretary of State
George C. Marshall, who announced it in a commencement speech at Harvard University on June 5, 1947.

query what is process control equipment

BERTbase

Rank: 1, Relevant: 7
Passage: What is process control? Process control is an algorithm that is used in the during the manufacturing
process in the industries for the active changing process based on the output of process monitoring.

SIMLM

Rank: 1, Relevant: 7
Passage: Process equipment is equipment used in chemical and materials processing, in facilities
like refineries, chemical plants, and wastewater treatment plants. This equipment is usually designed with a
specific process or family of processes in mind and can be customized for a particular facility in some cases.

Table 14: Additional examples from dev set of MS-MARCO passage ranking dataset.
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