
Interactive Visual Feature Search

Devon Ulrich∗

Jane Street
dulrich@alumni.princeton.edu

Ruth Fong
Princeton University

ruthfong@cs.princeton.edu

Abstract

Many visualization techniques have been created to explain the behavior of
computer vision models, but they largely consist of static diagrams that convey
limited information. Interactive visualizations allow users to more easily interpret
a model’s behavior, but most are not easily reusable for new models. We intro-
duce Visual Feature Search, a novel interactive visualization that is adaptable to
any CNN and can easily be incorporated into a researcher’s workflow. Our tool
allows a user to highlight an image region and search for images from a given
dataset with the most similar model features. We demonstrate how our tool
elucidates different aspects of model behavior by performing experiments on a
range of applications, such as in medical imaging and wildlife classification. Our
tool is open source and can be used by others to interpret their own models.1

1 Introduction

Computer vision models such as convolutional neural networks (CNNs) and visual transformers
are notoriously hard to interpret due to their size and complexity. Various techniques have been
proposed to help visualize and “explain” these models with static figures; for instance, attribution
heatmaps [3, 13, 31, 32, 39] like Grad-CAM [30] visualize which input image regions are important
for a model’s output decision, and feature visualization techniques help explain internal aspects
of models (e.g. what visual stimuli most activates a given neuron) [4, 21, 24, 31, 37].
However, researchers have recently focused on creating interactive visualizations of CNNs, which
can present more data in an easy-to-use way. Several works [5, 8, 15, 20, 23, 25, 29] provide
graphical interfaces that allow the user to interact with CNNs and produce rich visualizations.
While these tools are effective at explaining CNN behavior, they are generally only designed for a
handful of pre-selected models. A key criteria for the adoption of interpretability techniques is
how easy they are to incorporate into a researcher’s workflow; significant effort is required to
utilize these interactive tools in new experiments, so they are unfortunately not widely used in
practice.
Some works, such as Teachable Machines [35], What If [36], TensorBoard [1], and Interactive
Similarity Overlays (ISO) [14] are more lightweight and easy to integrate with new models, but
only the latter two can visualize internal feature data. TensorBoard only supports basic feature
visualizations (i.e. plotting distributions of activations) while ISO enables users to qualitatively
compare spatial CNN features, but only for a handful of images at a time.
In this paper, we introduce Visual Feature Search (VFS), a novel interactive visualization that
empowers machine learning researchers to easily explore the visual features of almost any computer
vision model. Our tool is designed to be lightweight and flexible so that users can quickly set
up VFS to analyze the intermediate features of arbitrary CNNs and visual transformers; the
only requirement is that the model has intermediate spatial features (i.e. a 3D tensor of shape
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Figure 1: Overview. The user highlights a region in the query image via our interactive tool
(left); then, our tool searches through an image dataset and returns images with the most similar
CNN features to that of the selected query region (right). The cosine similarity scores between
returned image regions and the selected query region are shown. See Section 2 for more details.

H × W × C). Our visualization allows a user to highlight a free-form region in an image, and
it searches for other images in a dataset that contain similar feature representations to the
highlighted region and displays the most similar results (fig. 1). In essesence, this provides a
visual explanation to answer the question, “what does the model consider to be most similar to
this image region?” To fully showcase the interactivity of VFS, we provide several demo videos
and interactive Jupyter notebooks in addition to this paper (see supp. mat.).
Our work is similar to CNN-based approaches that tackle content-based instance retrieval (CBIR),
which aims to find visually similar images to a query image [9, 12, 38]. However, our works differs
from CBIR methods in two ways: First, our goal is to understand a CNN (i.e. interpretability) by
investigating what visual patterns are similar in feature space, whereas instance retrieval focuses
on retrieving visually similar images (and often uses CNN features to do so). Second, we explicitly
focus on leveraging interactivity to allow users to quickly and iteratively gain insights on their
selected models (e.g. by experimenting with multiple ideas in quick succession).
In the remainder of this paper, we summarize our implementation of VFS and include several
experiments to highlight how it can be used to better understand computer vision models. Our
source code and interactive Jupyter notebooks are available on GitHub;2 our goal is to enable
other researchers and practitioners to use VFS as a new method for interpreting their models.

2 Approach

To use VFS, the user first selects a model and a layer within it to study, as well as a dataset of
images to search across. We provide the user with an interactive widget for selecting a query
image and highlighting a free-form region in it to use as the search query. To perform a feature
search across the dataset, our tool computes the feature maps of images immediately after the
user’s selected layer and compares the highlighted regions within these maps.
Formally, let fl(q) ∈ RH×W ×C be the l-th layer’s feature map for the query image q. If we
down-sample the user’s selected region of q into a mask ml ∈ [0, 1]H×W , we can apply the mask
to obtain a 3D tensor z ∈ RH×W ×C s.t. z(i,j,k) := fl(q)(i,j,k) · ml(i,j). To convert this into
a query vector q⃗ for similarity search, we crop z to remove any zero padding and flatten the
resulting data into a vector. We use a similar process to convert the feature maps of all images
in the search dataset into vectors. We apply the mask ml as a sliding window over each image
in the search dataset to create region vectors d⃗i with the same dimensions as q⃗. This allows
us to compare the query vector to each d⃗i via cosine similarities; we sort all search regions by
their similarity scores and display the most similar image regions to the user (fig. 1), thereby
visualizing images with the most similar intermediate features to the user’s selected region.
In order to use this algorithm for large-scale, real time searches, we precompute the features
fl(di) for all dataset images di, and we store the resulting data in a compressed cache file via
the Zarr Python library [22]. The cache file allows VFS experiments to be easily shared and
reproduced between multiple users, such as by downloading the file and running VFS on Google
Colab environments. Furthermore, if the user wishes to search across a large dataset with features
that cannot be stored in-memory (e.g. > 50, 000 images with ResNet50 conv5 features), then
VFS can load features from the cache file to efficiently compute search results. Additionally, VFS

2https://github.com/lookingglasslab/VisualFeatureSearch
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Figure 2: Domain Generalization. Each row contains one query image on the left, followed by
multiple VFS results and similarity scores. a: Three queries of mosque images from ImageNet,
ImageNet-A [17], and ImageNet-Sketch [33] on an ImageNet-trained model. b: queries and
results from the iWildCam dataset [6] on a pretrained classifier. Results include the top-3 overall
results and the top-3 results for unique domains. The ImageNet model struggles to featurize
o.o.d. mosque images, while the iWildCam model produces very generalizable animal features.

is implemented with several GPU optimizations in PyTorch [26] in order to compute results in
real time (see supp. mat. for more details).

3 Experiments and Demonstrations

Domain Generalization. One application of VFS is to understand how robust a model is when
presented with novel images. To demonstrate this, we visualize ResNet50 [16] conv5 features
of in- and out-of-domain (o.o.d.) images in two sets of experiments; our goal is to investigate
whether a model’s internal feature representations of in-domain images is similar to those of
o.o.d. images.
The first experiments search for the most similar images in the ImageNet validation set [27] when
similar query regions are selected from images in the ImageNet test set (in-domain), ImageNet-A
dataset [17], and ImageNet-Sketch dataset [33] (both o.o.d.). One example is shown in Figure 2a,
where images of mosques are selected as query images from all three datasets. The nearest
neighbor results for all three queries show that the model can accurately extract semantic data
from the in-domain query image, but it fails to encode the other two queries as mosques due to
their out-of-distribution scale and texture; additionally, the cosine similarities are much higher for
the in-domain query as opposed to the two o.o.d. queries. Additional queries corroborate these
trends (see supp. mat.).
The second set of experiments use the iWildCam dataset [6], which consists of images of wildlife
from various trap camera locations. Some locations are included in the training subset while
some are withheld and are thus out-of-domain. We investigate the conv5 features from a
ResNet50 model that was trained to detect the presence of animals and classify their species [19];
representative VFS queries and results are shown in Figure 2b. These results support the finding
in [19] that the model is able to generalize fairly well, as the feature representations for animals
have high similarity scores (e.g. 0.9) across different domains; in contrast, when a background
patch of an image is queried, only images from the same domain have similarity scores above 0.7.

Chest X-ray Classifiers. Another use of VFS is to understand why a model made a particular
decision by finding image regions that correlate with certain classification labels. To demonstrate
this, we turn to the domain of chest X-ray classification: we study the last feature layer of a
pretrained DenseNet-121 [11, 18] that classifies pathologies in the ChestXray-14 dataset [34].
We specifically investigate an X-ray image of a patient with cardiomegaly (i.e. condition of having
an enlarged heart). The model is able to correctly classify this patient as having cardiomegaly,
and we use the same X-ray image as a query in VFS to provide interpretable visualizations of
the model features. Our results are shown in Figure 3: we find that highlighting the heart of
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Figure 3: Interpreting Chest X-ray Classification. Queries and results of a patient X-ray with
cardiomegaly from the ChestXray-14 dataset [34]. The top-5 results are shown for two queries
(left) as well as box plots displaying the distribution of cosine similarities between the query
regions and all dataset images (right). While the qualitative results between the two queries only
differ slightly, the box plots show that the similarity scores of images containing cardiomegaly
tend to be higher than those without specifically when the query region contains the heart.

the patient returns nearest neighbor regions of other hearts from patients with cardiomegaly; in
contrast, searching for an unrelated region of the same patient’s X-ray (e.g. lung) yields nearest
neighbors with mixed diagnoses. Empirically, when the heart is highlighted, images of patients
with cardiomegaly tend to have higher similarity scores than images of patients without the
condition; in contrast, when the lung is selected as the search query, the distribution of similarity
scores is virtually identical for X-rays with and without cardiomegaly. This suggests that the
classifier’s prediction of cardiomegaly is correlated specifically with the heart region of the X-ray.

Editing Classifiers. Recently, a method to correct for systematic CNN mistakes was introduced
[28]. For instance, [28] found that a VGG16 ImageNet classifier consistently misclassifies vehicles
that are on a snowy surface and typically predicts these images as snowmobiles or snowplows.
Their CNN-editing method mitigated this mistake by updating the model’s weights such that the
model treats snowy terrain as if it were asphalt. We use VFS to explore the original and edited
VGG models in the “vehicles on snow” example and visualize how the edit affected the model’s
features by analyzing nearest neighbor search results from the ImageNet validation set.
Our visualizations suggest that the snow-to-asphalt edit worked and has a noticeable effect on
intermediate features. We highlight an example of the edit in Figure 4a. Our search results show
that the original model does not have a clear understanding that the ground should be treated
like asphalt road; the nearest neighbors include other surfaces such as snow, and ice. In contrast,
the search results from the edited model include asphalt surfaces and several cars (as opposed
to snowmobiles and snowplows in original search results), which indicates that the model edit
successfully changed the feature representation of snowy roads to achieve the desired result.

ImageNet vs. PASS. We next study how the choice of training dataset affects a model’s
feature representation. To mitigate privacy concerns of training on images with humans, [2]
introduced the PASS, a dataset of unlabeled images that do not contain human faces or body
parts. PASS is meant serve as an ImageNet replacement for self-supervised learning and has
been shown to perform as well as ImageNet-trained models on human-centric tasks (e.g. pose
estimation). We compare the feature representations from two ResNet50 models, one trained
on ImageNet and the other on PASS, that were trained via MoCo-v2 [10] self-supervision. Our
results when using VFS on both models are included in Figure 4b. The most notable observation
is that the PASS-trained model is able to accurately match face queries to other faces in the
dataset, despite never being trained with images of humans. However, the similarity scores for
the ImageNet model results are generally greater than those for the PASS model.
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Figure 4: Editing a Classifier and Training on PASS. a: Editing a classifier to improve accuracy for
vehicles on snow. The top rows show that the original model encoded the ground surface similarly
to ice and snow, while the bottom row shows that the edited model more generally relates the
ground to asphalt. b: Facial feature data for an ImageNet- vs. PASS-trained model.4Despite not
being trained on images containing humans, the PASS model encodes features that can match
the query face to other faces in the dataset.

4 Conclusion

In summary, we propose a new interactive tool for understanding the intermediate activations of
CNNs. Many existing interactive visualizations can not be easily applied to new models and/or
datasets; thus, they are often not utilized by others as regular research tools. We demonstrate
through our experiments that our tool is much more flexible in comparison: it can be used
to quickly visualize new models and datasets, and we hope that this flexibility allows other
researchers to use it to better understand their own models. Lastly, we emphasize that our tool
is qualitative and should be paired with quantitative analysis to fully corroborate findings.
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A Supplementary Materials

Code and Demos Our source code and sample Jupyter Notebooks that showcase VFS are avail-
able at https://github.com/lookingglasslab/VisualFeatureSearch. The notebooks are
designed to run in Google Colab, and the repository includes additional instructions for running
VFS locally with Jupyter.

Additional Figures In this section, we provide additional figures for the domain generalization,
editing classifiers, and ImageNet vs. PASS experiments.
Figure 5 includes additional queries and results for the ImageNet (in-domain), ImageNet-A, and
ImageNet-Sketch (o.o.d.) experiments. Fig. 5a, all queries are pictures of unicycles; when the
unicycle wheels are highlighted in each query, both the ImageNet and ImageNet-Sketch queries
are successfully matched to other unicycle wheels, while the ImageNet-A query is matched with
various unrelated nearest neighbors. Similarly, in Fig. 5b, all three queries are images of bell
peppers; however, only the in-domain query yields nearest neighbors that are also bell peppers.
For both the unicycle and the bell pepper queries, the resulting similarity scores are highest for
the in-domain queries (i.e. > 0.9) when compared to the scores for the o.o.d. queries (i.e. < 0.8).
Similarly, Figure 6 includes additional domain generalization visuals for the iWildCam dataset.
Two sets of queries and search results are shown: one is of a cow during the day, while the other
is of a deer at night. The results for the deer query are similar to those in Figure 2, as the features
appear to be highly generalizable have have nearest neighbors of other deer across a variety of
domains. However, the encoded features for the cow are less generalizable and simultaneously less
accurate, as the nearest neighbors in other domains have lower similarity scores (0.94, 0.93) than
those from the same domain (0.96), and the nearest neighbor images from other domains actually
contain horses, not cows. This particular query image is misclassified by the model as containing
a horse, so the search results help visualize the features associated with this misclassification.
Figure 7 contains an additional example of the Editing Classifiers visualization, as well as an
additional visual for the ImageNet vs. PASS experiment. Fig. 7a includes a query of a scooter on
snow-covered ground; when the ground is highlighted, the original model’s VFS results contain
no other images of scooters or cars. However, when the edited model is used, four of the top-5
results contain cars, and the the instance of a bobsled on ice from the original results is no
longer in the top-5 results. Thus, this example provides further evidence that the model edit was
successful.

ba

Figure 5: Additional ImageNet Generalization. Three queries of images from ImageNet, ImageNet-
A [17], and ImageNet-Sketch [33] on an ImageNet model. a: All queries are of unicycle wheels.
The ImageNet-Sketch unicycle is matched with other unicycle wheels in the dataset, but the
similarity scores are lower than those from the in-domain query. b: All queries are of bell peppers,
but only the in-domain search contains bell peppers in the results. Such visuals may provide
insights into why a particular model misclassified a challenging example.
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Figure 6: Additional iWildCam Generalization. Two sets of queries and results for a cow (top)
and a deer (bottom). While the deer features appear to be highly generalizable with all top-3
results originating from different camera locations, the cow has a comparatively worse feature
representation since its nearest neighbors from other domains have slightly lower similarity scores
(0.94, 0.93) than inner-domain results (0.96); additionally, its nearest neighbors from other
domains are images of horses, not cattle.

ba

Figure 7: Additional Results for Edited Classifier and PASS Training. a: An additional visualization
of the “vehicles on snow” classifier edit. The original model’s VFS results consist entirely of
unrelated objects such as ice, floors, and a tabletop, whereas the edited model’s results contain
several cars on asphalt. b: An additional search query and results for ImageNet- vs. PASS-trained
models. While the localization of nearest neighbors is relatively poor for PASS (i.e. the highlighted
regions in some search results do not contain faces), the PASS model is able to successfully able
to match the query to other images that contain faces.

Figure 7b shows an additional example of a query containing a face with two sets of results for
the ImageNet and PASS models, respectively. Although several of the highlighted regions in the
PASS results contain no faces, two such results contain faces elsewhere in the image. Thus, the
PASS-trained model is again able to successfully encode human faces and retrieve other images
containing faces via VFS.

Implementation Details In Section 2, we described how to perform the region-based similarity
search for VFS. However, in order to perform the search efficiently, we use a modified version of
this algorithm that substitutes the sliding window approach with a convolution operation. This
allows us to compute the searches on a GPU via PyTorch, which allows for extensive parallelization
and enables each search to be much faster than if it were run on a CPU.
To implement the convolution-based searches, we first take the 3D tensor z ∈ RH×W ×C from
Section 2 and apply the mask ml on it once more. We then crop the tensor, which we define as
removing all rows/columns on the exterior of the feature map which only contain zero-valued
elements. Let the resulting tensor be z′, where:

z′
(i′,j′,k′) = Crop(z(i,j,k) · ml(i,j)) (1)

z′ has dimensions H ′ × W ′ × C, where H ′ ≤ H and W ′ ≤ W . We use z′ as a 2D convolutional
filter and apply it to a feature map fl(s) from the search database.

c := fl(s) ∗ z′ (2)
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Each element c(a,b) is equivalent to the inner product q⃗ · r⃗i, for a unique region vector r⃗i within
the search image’s feature map. We can perform a similar convolution to obtain the magnitudes
of each r⃗i, so we can thus compute the cosine similarities for all searchable regions within the
image s without iteratively computing results with a sliding window.
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