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Abstract

Training effective text rerankers is crucial for001
information retrieval. Two strategies are widely002
used: contrastive learning (optimizing directly003
on ground-truth labels) and knowledge distil-004
lation (transferring knowledge from a larger005
reranker). While both have been studied exten-006
sively, a clear comparison of their effectiveness007
for training cross-encoder rerankers under prac-008
tical conditions is needed.009

This paper empirically compares these strate-010
gies by training rerankers of different sizes011
and architectures using both methods on the012
same data, with a strong contrastive learning013
model acting as the distillation teacher. Our014
results show that knowledge distillation gener-015
ally yields better in-domain and out-of-domain016
ranking performance than contrastive learning017
when distilling from a larger teacher model.018
This finding is consistent across student model019
sizes and architectures. However, distilling020
from a teacher of the same capacity does not021
provide the same advantage, particularly for022
out-of-domain tasks. These findings offer prac-023
tical guidance for choosing a training strategy024
based on available teacher models. We rec-025
ommend using knowledge distillation to train026
smaller rerankers if a larger, more powerful027
teacher is accessible; in its absence, contrastive028
learning remains a robust baseline.029

1 Introduction030

Modern information retrieval (IR) systems often031

rely on a two-stage process: an initial retriever032

quickly finds candidate texts, and a more powerful033

reranker re-orders them by relevance to improve034

the final ranking quality (Schütze et al., 2008; Ma035

et al., 2023; Asai et al., 2024; Singh et al., 2025,036

inter alia). This reranking stage, which involves037

scoring and sorting texts by their relevance to a038

given query, commonly employs powerful cross-039

encoders (Yates et al., 2021; Zhuang et al., 2024b).040

Effective training is key to building a high- 041

performing cross-encoder reranker. Two main 042

strategies have emerged for this purpose. The first, 043

contrastive learning (CL), trains the model directly 044

using ground-truth relevance labels, learning to 045

distinguish positive (relevant) examples from nega- 046

tive (irrelevant) ones (Oord et al., 2018; Gao et al., 047

2021; Ma et al., 2023). The second, knowledge dis- 048

tillation (KD), instead involves training a smaller 049

“student” model to replicate the outputs of a larger, 050

more capable “teacher” model (Buciluǎ et al., 2006; 051

Hinton et al., 2015; Hofstätter et al., 2020; Schlatt 052

et al., 2025). This method is often employed to 053

create efficient models that can approximate the 054

performance of larger ones. 055

Both strategies are widely used to train rerankers. 056

But for practical deployments, is one preferable to 057

the other? Prior work has explored related, but 058

distinct, questions. For instance, Hofstätter et al. 059

(2020) explored distilling from rerankers to retriev- 060

ers; while Baldelli et al. (2024) and Schlatt et al. 061

(2025) focused on training rerankers via distill- 062

ing from large language models (LLMs) like GPT- 063

4 (Achiam et al., 2023). However, there is no direct 064

comparison of these two strategies. 065

In this paper, we address this gap. We present 066

an empirical comparison of contrastive learning 067

and knowledge distillation as training strategies for 068

cross-encoder rerankers. To this end, we conduct 069

a suite of controlled experiments. We train cross- 070

encoder models of various sizes (0.5B, 1.5B, 3B, 071

7B) and different architectures (Transformer and 072

Recurrent) using both strategies. For knowledge 073

distillation, we employ a performant 7B Qwen2.5 074

model (Yang et al., 2024) trained with contrastive 075

learning as the teacher. We focus on modern 076

decoder-only models, as recent works have re- 077

ported their effectiveness over smaller encoder- 078

based models like BERT (Ma et al., 2023; Muen- 079

nighoff et al., 2024a; Zhang et al., 2025, inter 080

alia). We train all models on the same dataset 081
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and evaluate their ranking performance on standard082

in-domain and out-of-domain benchmarks.083

Our findings consistently show that training with084

knowledge distillation yields better ranking perfor-085

mance than direct contrastive learning when the086

student model is smaller than the teacher. For087

instance, distilling from our 7B teacher signifi-088

cantly improved the performance of 0.5B, 1.5B,089

and 3B student models on both in-domain and out-090

of-domain benchmarks compared to training them091

with contrastive learning. This advantage holds092

across both Transformer and Recurrent model ar-093

chitectures. However, this benefit diminishes when094

the student and teacher have the same capacity; dis-095

tilling from a 7B teacher to a 7B student yielded096

no significant improvements and, in some cases,097

harmed out-of-domain generalization (Gou et al.,098

2021; Gholami and Omar, 2023). To further test the099

robustness of our conclusions, we conduct an ad-100

ditional experiment where models are trained on a101

diverse, multi-domain dataset RLHN (Thakur et al.,102

2025) instead of only on hard negatives mined from103

a single source. In this setting, knowledge distilla-104

tion again proves to be the more effective strategy,105

confirming its advantage even when the reranker’s106

training data is decoupled from the first-stage re-107

triever. Together, these findings position knowl-108

edge distillation as a powerful and robust strategy109

for training smaller rerankers, provided a strong,110

larger teacher is available. In its absence, we find111

contrastive learning remains a strong baseline.112

2 Methodology113

Training strategy is critical for cross-encoder114

reranker’s ranking performance. Two primary115

strategies have been extensively studied in the lit-116

erature: (1) direct optimization on ground-truth117

labels via contrastive learning (Gao et al., 2021;118

Yates et al., 2021; Ma et al., 2023), and (2) knowl-119

edge transfer from a larger model via knowledge120

distillation (Hofstätter et al., 2020; Schlatt et al.,121

2025, inter alia).122

Objective: This paper aims to empirically
compare contrastive learning and knowl-
edge distillation for training cross-encoder
rerankers. We aim to elucidate their respec-
tive strengths and provide clear guidance on
which strategy is preferable under different
practical constraints.

123

In the rest of this section, we first formally de- 124

fine the text reranking problem and our notation 125

(§ 2.1). We then provide detailed technical de- 126

scriptions of the training process using contrastive 127

learning (§ 2.2) and knowledge distillation (§ 2.3). 128

2.1 The Text Reranking Problem 129

Modern IR systems often employ a two-stage 130

retrieval-and-rerank pipeline (Schütze et al., 2008; 131

Zhang et al., 2021; Asai et al., 2024, inter alia). 132

An efficient first-stage retriever initially fetches a 133

broad set of candidate texts. Subsequently, a more 134

powerful reranker refines this initial list to optimize 135

ranking metrics. Reranking is the task of ordering 136

texts (e.g., passages or documents) by their rele- 137

vance to a given query. 138

Let q be an input query, and d be a text from a 139

corpus D. We define a reranking model fθ(q, d), 140

parameterized by θ, which computes a scalar rel- 141

evance score. This model is typically a cross- 142

encoder: the query q and text d are concatenated 143

and fed into a transformer-based language model, 144

whose output is passed through a linear layer to pro- 145

duce the final score (Yates et al., 2021; Nogueira 146

et al., 2019; Boytsov et al., 2022; Ma et al., 2023; 147

Xu, 2024; Xu et al., 2025b, inter alia). 148

2.2 Training with Contrastive Learning 149

Contrastive learning is one strategy for learning 150

representations (Oord et al., 2018; Weng, 2021). 151

Its application to reranking builds on the principle 152

of the InfoNCE loss (Oord et al., 2018), which is 153

derived from Noise-Contrastive Estimation (Gut- 154

mann and Hyvärinen, 2010). 155

The general goal is to learn a model that distin- 156

guishes a “positive” data sample from a set of “neg- 157

ative” (or noise) samples, given a certain context. 158

Denote a context vector c, and consider a set of N 159

samples X = {xi}Ni=1, where one sample xpos is 160

a positive sample drawn from the conditional dis- 161

tribution p(x|c), and the N − 1 negative samples 162

are drawn from a proposal distribution p(x). Using 163

Bayes’ rule, the probability that a sample xi is the 164

positive one is: 165

p(C = pos|X, c) =
p(xpos|c)

∏
i ̸=pos p(xi)∑

j

[
p(xj |c)

∏
i ̸=j p(xi)

] 166

=
p(xpos|c)/p(xpos)∑

j p(xj |c)/p(xj)
=

f(xpos, c)∑
j f(xj , c)

167

We can define the scoring function that is propor- 168

tional to the density ratio f(x, c) ∝ p(x,c)
p(c) . The 169
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InfoNCE loss optimizes the negative log probabil-170

ity of classifying the positive sample correctly:171

LInfoNCE = −E
[
log

f(x, c)∑
x′∈X f(x′, c)

]
(1)172

We map the abstract concepts to our reranking task:173

• The context c is the query qi.174

• The positive sample xpos is the relevant docu-175

ment d+i .176

• The negative samples {xk} are a set of irrele-177

vant documents D−
i .178

• The scoring function f is the parameterized179

reranker model fθ.180

For a training instance consisting of a query qi, a
positive document d+i , and a set of negative docu-
ments D−

i , the loss is:

− 1
|S|

∑
(qi,d

+
i )∈S

log
exp fθ(qi,d

+
i )

exp fθ(qi,d
+
i )+

∑
j∈D−

i

exp fθ(qi,d
−
i )

The total loss is averaged over all training instances.181

Following common practice (Gao et al., 2021; Xu,182

2024), the negative documents are often "hard neg-183

atives" — documents that the first-stage retriever184

ranked highly but are not labeled as relevant. In185

practice, training instances are grouped into mini-186

batches, and the parameters θ are optimized jointly.187

2.3 Training with Knowledge Distillation188

Knowledge distillation (KD) is a technique for189

training a smaller, efficient "student" model by190

transferring knowledge from a larger, more ca-191

pable "teacher" model (Hinton et al., 2015; Gou192

et al., 2021). In IR, KD is used to create fast193

rerankers that approximate the performance of194

slower, larger models, which is critical for produc-195

tion systems (Hofstätter et al., 2020; Santhanam196

et al., 2022, inter alia).197

Let ft denote the teacher reranker and fs denote198

the student reranker. For a given query q and a list199

of candidate texts Dq = {d1, d2, . . . , dk}, we first200

compute relevance scores from both models. This201

yields two score vectors (logits):202

zt = [ft(q, d1), ft(q, d2), . . . , ft(q, dk)]203

zs = [fs(q, d1), fs(q, d2), . . . , fs(q, dk)]204

The student model fs is trained to mimic the
teacher’s output distribution over the candidate

texts. This is achieved by minimizing the Kullback-
Leibler (KL) divergence between the two softened
probability distributions:

LKD = DKL

(
softmax

(zt
T

) ∣∣∣∣softmax
(zs
T

))
where T is the temperature hyperparameter. A 205

higher temperature creates a softer probability dis- 206

tribution, which can help in transferring more nu- 207

anced information from the teacher. In practice, T 208

is often set to 1 (Hinton et al., 2015). 209

Whereas contrastive learning optimizes a model 210

on ground-truth labels, knowledge distillation mim- 211

ics the outputs of a more capable teacher. The 212

central goal of this paper is to empirically compare 213

these distinct paradigms for training cross-encoder 214

rerankers under controlled settings, which we detail 215

in the following section. 216

3 Experimental Setup 217

Training setup. We construct our training set 218

based on the well established MS MARCO pas- 219

sage retrieval dataset (Bajaj et al., 2016). The 220

official training set contains 532k training pairs, 221

and the corpus contains 8.8M passages. For 222

first stage retriever, we reproduce the RepLlama 223

experiment (Ma et al., 2023), but replace the 224

Llama-2-7B backbone model (Touvron et al., 225

2023) with stronger Qwen2.5-7B model (Yang 226

et al., 2024). The retriever — named RepQwen — 227

is trained on Tevatron/MSMARCO-passage-aug1 228

trainset, which consists of 486k (qi, d
+
i ) pairs with 229

hard negatives mined from BM25 and CoCon- 230

denser (Gao and Callan, 2022). 231

To construct the training set for the rerankers, we 232

follow the same strategy as Ma et al. (2023) to mine 233

hard negatives from the first stage retriever. Specif- 234

ically, for each (qi, d
+
i ) pair, we randomly sample 235

k negatives from top-200 passages retrieved by the 236

retriever, excluding d+i . As shown in the experi- 237

mental results (§ 4), the models trained using this 238

constructed dataset achieves on par or improved 239

performance over RankLlama2 (Ma et al., 2023), 240

suggesting the correctness of the pipeline. We did 241

not further investigate hard negative mining strate- 242

gies like prior works (Yu et al., 2024; Thakur et al., 243

2025; Lee et al., 2025) as they are orthogonal to 244

the goal of this paper. 245

The (qi, d
+
i ) pairs, together with the mined 246

hard negatives are then used to train rerankers 247

1https://huggingface.co/datasets/Tevatron/
msmarco-passage-aug
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with contrastive learning. We first train the most248

capable reranker — named RankQwen-7B — with249

Qwen2.5-7B backbone using contrastive learning.250

This RankQwen-7B is then used as the teacher251

model to label Di = {d+i , D
−
i } to be subsequently252

used to train student rerankers. This way, we create253

a controlled experiment as the rerankers trained254

with contrastive learning and knowledge distilla-255

tion are trained on the same (q, d,D−) triples, and256

the only difference is the training strategy.257

Evaluation setup. We evaluate the reranking per-258

formance following prior works’ practices (Ma259

et al., 2023; Xu et al., 2025c, inter alia). For in-260

domain evaluation, we use MS MARCO passage261

dev set, which includes 6,980 queries. We also262

include TREC DL19 and DL20 (Craswell et al.,263

2020, 2021) consisting of 43 and 54 queries re-264

spectively. For out-of-domain evaluation, we adopt265

BEIR benchmark (Thakur et al., 2021). We eval-266

uate performances on 13 subsets that are publicly267

available. Refer to Appx. A for details of datasets.268

We report the official evaluation metrics for269

all benchmarks, i.e., MRR@10 for MS MARCO270

passage dev, NDCG@10 for DL19 and DL20,271

NDCG@10 for BEIR benchmarks.272

Models used. Our main experiments are based on273

RepQwen, the retriever with a Qwen2.5-7B back-274

bone following the RepLlama (Ma et al., 2023)275

training strategy. We also report the performance276

of a retriever with a Llama-3.1-8B backbone.277

The objects of our study are reranker models. We278

evaluate Qwen2.5 models of different sizes, includ-279

ing 0.5B, 1.3B, 3B and 7B, to allow us to observe280

the scaling trend. For each model size, we train281

two reranker models: one via direct contrastive282

learning and one via distillation; we denote with283

CL/KD suffix, e.g., RankQwen-0.5B-CL means284

0.5B model trained with contrastive learning. For285

knowledge distillation training, we distil from the286

RankQwen-7B-CL teacher.287

We also experiment with RecurrentGemma (De288

et al., 2024), a recurrent language model based on289

the Griffin architecture instead of quadratic com-290

plexity Transformers (Vaswani et al., 2017). We291

use the 2B variant and refer to the trained model292

as RankRGemma-2B. Recent works have explored293

recurrent language models’ efficacy for IR tasks,294

such as state space models like Mamba (Gu and295

Dao, 2023; Dao and Gu, 2024) for retrieval (Zhang296

et al., 2024) and reranking (Xu, 2024; Xu et al.,297

2025c). We follow this direction to examine re-298

current language models’ efficacy under different 299

training strategies. 300

For all the models used in our experiments, we 301

use the pretrained base models. 302

Baselines. Our baselines are prior results under 303

the same training setting. RepLlama and Ran- 304

kLlama (Ma et al., 2023) are the closest base- 305

lines which use the same trainset for contrastive 306

learning, using Llama-2 backbone (Touvron et al., 307

2023). CSPLADE (Xu et al., 2025a) is a learned 308

sparse retrieval model with Llama-3-8B back- 309

bone (Dubey et al., 2024), and achieves competitive 310

performance compared to dense retrieval models. 311

RankMamba-2 (Xu et al., 2025c) trains Mamba- 312

2-based rerankers for passage reranking, though 313

their results are based on BGE retriever (Xiao et al., 314

2023). We compare against the original numbers 315

reported by the authors. 316

Implementation details. Our implementation is 317

based on packages including PyTorch, Hugging- 318

face Transformers and Tevatron-v2 (Ma et al., 319

2025). For all our models, we train with LoRA (Hu 320

et al., 2021) to balance in-domain and out-of- 321

domain performance and reduce overfitting. For 322

scalable training, we use DeepSpeed stage 2 (Am- 323

inabadi et al., 2022), activation checkpointing, 324

FlashAttention-2 (Dao, 2024), mixed precision and 325

gradient accumulation. Appx. B gives details about 326

hyperparameters. 327

4 Results and Analysis 328

4.1 Main Results 329

In-domain results. Table 1 reports the rerank- 330

ing performance on MS MARCO Dev and 331

DL19+DL20. We observe our trained retrieval 332

models, i.e., RepLlama3 and RepQwen per- 333

forms on par or better than RepLlama2 and 334

CSPLADE, the two models trained with same train- 335

set. Similarly, RankQwen-7B-CL is comparable to 336

RankLlama2-7B, suggesting the correctness of our 337

training pipeline. 338

We now compare performances between 339

rerankers trained with contrastive learning, and 340

rerankers trained with knowledge distillation, with 341

RankQwen-7B-CL as teacher. We notice that 342

with the same model sizes, knowledge distillation 343

achieves better ranking performance compared to 344

contrastive learning. For example, RankQwen- 345

0.5B-KD achieves 43.5 MRR@10 on Dev, and 346

average 75.8 NDCG@10 on DL19+20’s 97 queries, 347
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Model Size Source DEV DL19 DL20
prev. top-k MRR@10 NDCG@10

Retrieval
BM25 (Lin et al., 2021) - - |D| 18.4 50.6 48.0
CoCondenser (Gao and Callan, 2022) 110M - |D| 38.2 71.7 68.4
RepLlama2 (Ma et al., 2023) 7B - |D| 41.2 74.3 72.1
CSPLADE (Xu et al., 2025a) 8B - |D| 41.3 74.1 72.8
RepQwen♣ 7B - |D| 42.2 73.2 72.5
RepLlama3♣ 8B - |D| 42.6 74.4 72.8

Reranking
cross-SimLM (Wang et al., 2022a) 110M bi-SimLM 200 43.7 74.6 72.7
RankT5 (Zhuang et al., 2023) 220M GTR 1000 43.4 - -
RankMamba (Xu et al., 2025c) 1.3B BGE 100 38.6 75.8 74.0
RankLlama-7B (Ma et al., 2023) 7B RepLlama2 200 44.9† 75.6 77.4†
RankQwen-7B-CL♣ 7B RepQwen 200 44.8‡ 77.4 77.1

Contrastive Learning
RankQwen-0.5B-CL 0.5B RepQwen 200 42.1 75.7 72.9
RankQwen-1.5B-CL 1.5B RepQwen 200 43.5 75.8 75.4
RankQwen-3B-CL 3B RepQwen 200 43.9 76.8 75.4
RankRGemma-2B-CL 2B RepQwen 200 43.0 76.0 74.7

Knowledge Distillation
RankQwen-0.5B-KD 0.5B RepQwen 200 43.5 76.1 75.5
RankQwen-1.5B-KD 1.5B RepQwen 200 43.9 76.1 76.8
RankQwen-3B-KD 3B RepQwen 200 44.7 77.4 77.1‡
RankQwen-7B-KD 7B RepQwen 200 44.7 77.5†‡ 77.0
RankRGemma-2B-KD 2B RepQwen 200 43.6 76.1 75.0

Table 1: Results for passage reranking in-domain evaluation. We mark best results in each section bold; † indicates
the overall best result and ‡ indicates the best result among our trained models; for models in Retrieval and Reranking
baseline sections, ♣ denotes the model we trained. Note RankQwen-7B-CL♣ is used as the teacher for distillation.

improving over RankQwen-0.5B-CL’s 42.1 and348

74.1. The similar observation applies for 1.5B and349

3B scale Qwen models as well as RankRGemma —350

the recurrent model with Griffin architecture.351

These observations suggest the efficacy of knowl-352

edge distillation: the performance improvement is353

consistent across different model sizes (0.5B, 1.5B,354

3B) and model architectures (Transformer, Griffin).355

We also note RankQwen-7B-KD achieves simi-356

lar in-domain performance as RankQwen-3B-KD357

and the RankQwen-7B-CL teacher, which suggests358

that the student model is not benefiting from knowl-359

edge distillation training when the teacher model is360

of the same capacity. We will revisit this problem361

in our discussion of out-of-domain results.362

Out-of-domain results. We report the out-of-363

domain evaluation results in Table 2. The baseline364

methods’ results are deferred to Appx. C.365

We note similar observations as in the in-domain366

setting. Directly comparing contrastive learn-367

ing to knowledge distillation, RankQwen-0.5B- 368

KD achieves similar performance as RankQwen- 369

0.5B-CL (53.1 average NDCG@10 v.s. 53.3); 370

while RankQwen-1.5B-KD, RankQwen-3B-KD, 371

RankRGemma-2B have better performance over 372

their contrastive learning counterparts. 373

Among all models with KD training strategy, 374

RankQwen-3B-KD achieves strong out-of-domain 375

performance, averaging 57.5 NDCG@10 over 13 376

BEIR datasets, improving over RankQwen-7B-CL 377

teacher. However, we notice that RankQwen-7B- 378

CL’s underperformance is mainly due to Quora du- 379

plicate question retrieval — a symmetric retrieval 380

task different from the asymmetric MS MARCO 381

trainset. The performance is 55.5 versus 56.2 ex- 382

cluding Quora, suggesting that the student model 383

still cannot improve over the teacher (Gou et al., 384

2021; Gholami and Omar, 2023). 385

An important observation is that RankQwen-7B- 386

KD leads to performance degradation in out-of- 387

domain evaluation (55.8 vs RankQwen-3B-KD’s 388
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Teacher Contrastive Learning Knowledge Distillation
Dataset 7B 0.5B 1.5B 3B 2B 0.5B 1.5B 3B 7B 2B

Arguana 55.9 50.6 55.8 56.2 52.3 51.3 57.6†‡ 56.5 55.2 54.7
Climate-FEVER 27.1 23.8 27.6 30.5†‡ 24.3 23.8 28.5 31.6 28.7 26.6
DBPedia 48.7† 44.5 46.3 48.5‡ 47.0 46.4 47.7 48.5‡ 48.1 47.6
FEVER 88.2 86.0 86.2 89.1† 85.1 86.7 87.3 88.1 87.3 86.6
FiQA 45.9 37.9 42.2 43.2 44.1 34.7 45.4 46.6†‡ 44.2 44.7
HotpotQA 76.1 72.5 74.8 76.2 74.4 74.4 76.2 76.7†‡ 72.5 76.6
NFCorpus 31.5 33.0 29.3 25.9 34.4†‡ 32.2 32.3 33.3 32.3 34.2
NQ 65.9† 59.2 63.2 64.9 62.8 60.9 64.4 65.5‡ 64.2 64.2
Quora 79.3 82.3 84.9†‡ 84.6 79.6 80.2 81.0 81.9 78.5 80.3
SCIDOCS 19.1 16.9 16.2 17.3 18.4 17.8 19.2† 19.2†‡ 19.1 18.6
SciFact 75.0 72.2 72.1 71.1 73.7 75.6 75.8†‡ 75.5 74.6 75.2
TREC-COVID 85.0 81.9 86.3 86.8 85.1 80.7 85.6 86.3 84.7 87.4†‡
Touche-2020 36.7 31.9 34.6 36.5 36.4 25.9 35.9 38.6†‡ 35.5 37.8

Average 56.5 53.3 55.3 56.2 55.2 53.1 56.7 57.6†‡ 55.8 56.5
Average w/o Quora 56.2† 50.9 52.9 53.8 53.2 50.8 54.6 55.5‡ 53.9 54.5

Table 2: Results for passage reranking out-of-domain evaluation. 0.5B, 1.5B, 3B, 7B 2B correspond to RankQwen-
0.5B, RankQwen-1.5B, RankQwen-3B, RankQwen-7B and RankRGemma-2B, respectively. We also report results
without Quora dataset as Quora duplicate question detection is a symmetric retrieval task, not aligning with the
asymmetric web search task of the training set. We mark best results in each section bold; † indicates the overall
best result including the teacher model, ‡ indicates the best result excluding teacher.

57.6), while their performances on in-domain MS389

MARCO datasets are comparable. Prior studies390

have also noted that knowledge distillation suffers391

from overfitting and poor out-of-domain generaliza-392

tion (Gou et al., 2021; Yuan et al., 2020; Yun et al.,393

2020). Our experimental results suggest that when394

distilling from a larger, more capable teacher mod-395

els (RankQwen-7B-CL in our case), the student396

still achieve performance improvement compared397

to contrastive training from scratch.398

Scaling model sizes. Scaling has been proven ef-399

fective in IR tasks (Neelakantan et al., 2022; Muen-400

nighoff et al., 2024b; Xu et al., 2025b; Zhu et al.,401

2023, inter alia). We also compare the model size402

scaling trend between CL versus KD for passage403

reranking in Fig. 1. We make two observations:404

1. We observe that contrastive learning demon-405

strates a clear scaling trend, i.e., performance406

improves with increased model size when407

trained on the same data, as also reported408

by prior works (Ma et al., 2023; Neelakantan409

et al., 2022; Muennighoff, 2022; Zhuang et al.,410

2024a).411

2. We also note that when distilling from a larger,412

more capable teacher model, knowledge distil-413

lation also demonstrates a scaling trend. For ex-414

ample, RankQwen’s performance on 12 BEIR415

datasets (excluding Quora) improves from 50.8416

to 54.6, 55.5 when scaling from 0.5B to 1.5B 417

and 3B model sizes. 418

We hypothesize that with our knowledge distilla- 419

tion training strategy, the passage reranking perfor- 420

mance can be further improved by scaling up the 421

student model’s model sizes, and distilling from 422

stronger teacher models. 423

4.2 Scaling Training Data 424

Experiment setup. In § 4.1, we focus on a con- 425

trolled experiment with various model sizes. Now 426

we examine the efficacy of knowledge distillation 427

when scaling the axis of training data. Notice that 428

doing so leads to the decoupling of the retriever and 429

reranker as we can no longer mine hard negatives 430

from the retriever on MS MARCO passage trainset. 431

We use a recently released trainset, RLHN (Thakur 432

et al., 2025), which consists of 649K (q, d+, D−) 433

training samples pruned from the larger BGE train- 434

set (Xiao et al., 2023). Specifically, RLHN com- 435

prises train samples from the following dataset: 436

MS MARCO passage (Bajaj et al., 2016), Ar- 437

guana (Wachsmuth et al., 2018), FEVER (Thorne 438

et al., 2018), FiQA (Maia et al., 2018), SCI- 439

DOCS (Cohan et al., 2020), HotpotQA (Yang 440

et al., 2018) and NQ (Kwiatkowski et al., 2019). 441

In this case, BEIR benchmark as a whole is 442

no longer considered out-of-domain evaluation. 443

We use a lightweight intfloat/e5-base-v2 re- 444

6



Figure 1: Scaling trend for contrastive learning vs knowledge distillation, for passage reranking. Left figure shows
TREC DL19+20 results while right figure shows BEIR results averaged over 12 datasets (excluding Quora). We
skip results of RankQwen-7B-KD model.

Retriever Teacher Contrastive Learning Knowledge Distillation
Dataset 110M 7B 0.5B 3B 0.5B 3B

MSMARCO 42.7 46.0 45.5 45.6† 45.3 45.6†
Arguana 44.5 79.1 65.2 76.7† 63.7 75.6
Climate-FEVER 26.6 40.5 39.0 40.1 40.2 42.6†
DBPedia 42.2 54.3 49.9 52.7 50.1 53.7†
FEVER 85.0 94.0 93.6 93.9 93.8 94.3†
FiQA 39.9 55.9 46.7 55.1† 47.3 54.2
HotpotQA 69.1 84.8 82.9 84.7† 82.7 84.6
NFCorpus 35.4 42.4 37.0 41.6† 36.8 41.6†
NQ 58.2 74.5 67.5 72.8 68.2 73.5†
Quora 86.6 77.6 78.3 78.6 81.1† 77.1
SCIDOCS 18.7 27.1 22.5 25.7† 22.2 25.7†
SciFact 71.9 81.9 78.6 81.3 78.6 81.6†
TREC-COVID 69.5 88.3 85.5 89.0† 86.1 88.7
Touche-2020 26.4 32.9 33.1 32.8 35.1 35.3†

Average 51.2 62.8 58.9 62.2 59.4 62.4†
Average w/o Quora 48.5 61.7 57.4 60.9 57.7 61.3†

Table 3: Results with on BEIR benchmark (including MS MARCO passage Dev) with RLHN training mixture. We
report NDCG@10 as the performance metric. We mark best result in each row bold; † indicates the overall best
result excluding the 7B-sized teacher model.

triever (Wang et al., 2022b) pretrained on unlabeled445

text pairs, then finetuned with the combined MS446

MARCO passage and NQ training mixture.447

We use the similar training strategy as § 3 (the448

only difference is the ranker training data): we first449

train 7B-scale reranker with Qwen2.5-7B and con-450

trastive learning, then train smaller rerankers with451

knowledge distillation, with the reranking scores452

on RLHN dataset labeled by the teacher, as well as453

the contrastive learning counterparts. We train 0.5B454

and 3B rerankers, as we notice Qwen2.5-1.5B fail455

to converge in the contrastive learning setting. We456

name the trained rerankers as RankQwen-{0.5B,457

3B, 7B}-CL-RLHN and RankQwen-{0.5B, 3B}-458

KD-RLHN, respectively.459

Results and analysis. We report the results in Ta- 460

ble 3. Compared to Table 2, we notice rerankers 461

trained with RLHN mixture show significant per- 462

formance boost, suggesting the effectiveness of 463

in-domain training data. 464

Similar to Table 2, the 7B model achieves the 465

best overall performance, average 62.8 NDCG@10 466

on 14 BEIR benchmark datasets including MS 467

MARCO Dev. We notice that knowledge distil- 468

lation still outperforms contrastive learning when 469

distilling from the strong 7B teacher model, though 470

the margin is small (<1%). This observation sug- 471

gests the robustness of knowledge distillation: it 472

can achieve performance improvement compared 473

to contrastive learning when the reranker training 474

data is not coupled with the retriever. 475
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Figure 2: Dataset scaling trend for CL versus KD. Left figure shows average results for 7 in-domain datasets from
BEIR benchmark, while the right figure shows average results for 7 out-of-domain datasets.

In Fig. 2 we further analyze BEIR in-domain476

(7 datasets used in training) and out-of-domain (7477

unseen datasets) performance with varying training478

data sizes. As the amount of training data increases,479

both CL and KD show improved in-domain perfor-480

mance, with CL eventually outperforming KD. In481

contrast, KD consistently outperforms CL on the482

OOD datasets, although the benefits of increasing483

training data are diminishing. We leave a more in-484

depth investigation of the in-domain versus OOD485

performance gap to future work.486

5 Related Works487

In this paper, we focus exclusively on the architec-488

ture of cross-encoder pointwise reranker (Nogueira489

and Cho, 2019; Nogueira et al., 2020; Zhuang et al.,490

2024b). The reranker model processes a query491

and a document simultaneously, allowing the self-492

attention mechanism to explicitly model the inter-493

actions between their tokens throughout the layers.494

Nogueira and Cho (2019) first demonstrated the495

efficacy of this approach by fine-tuning BERT as496

a text pair classifier. The fine-tuning of the BERT-497

type model as cross-encoder reranker has later been498

extended to encoder-decoder architectures, such as499

T5 (Raffel et al., 2020; Nogueira et al., 2020), and500

decoder-only models like Llama (Touvron et al.,501

2023; Ma et al., 2023).502

The training objective for a cross-encoder is to503

accurately discriminate between relevant and non-504

relevant documents for a given query. In practice,505

the non-relevant documents are usually hard neg-506

atives mined from first-stage retrievers (Nogueira507

et al., 2019; Gao et al., 2021; Boytsov et al., 2022,508

inter alia). Two primary training strategies are509

widely used to train cross-encoder reranker. The510

first is contrastive learning, which trains the model511

directly on ground-truth labels to maximize the512

distinction between positive and negative exam-513

ples (Gao et al., 2021; Zhuang et al., 2023). The 514

second strategy is knowledge distillation, which 515

involves training a student reranker to mimic the 516

behavior and performance of a larger, more capa- 517

ble teacher model (Hofstätter et al., 2020; Baldelli 518

et al., 2024; Schlatt et al., 2025). Knowledge dis- 519

tillation (KD, Buciluǎ et al., 2006; Hinton et al., 520

2015) facilitates the transfer of knowledge from a 521

large, complex “teacher” model to a smaller, more 522

efficient “student” model. The goal is to enable 523

the student to mimic the teacher’s output, thereby 524

inheriting its predictive capabilities at a reduced 525

computational cost. Within the context of training 526

neural IR models, knowledge distillation has been 527

effectively applied to enhance both bi-encoder re- 528

triever (Hofstätter et al., 2020; Formal et al., 2021, 529

inter alia) and cross-encoder reranker (Baldelli 530

et al., 2024; Schlatt et al., 2025). In this work, 531

we aim to compare these two training strategies in 532

a controlled experimental setting to evaluate their 533

strengths and weaknesses. 534

6 Conclusion and Future Work 535

In this paper, we compared the effectiveness of two 536

training strategies, i.e., contrastive learning and 537

knowledge distillation in the context of training 538

text rerankers. With a rigorously controlled exper- 539

imental setup, we find that when distilling from 540

a larger, more capable teacher model, rerankers 541

trained with knowledge distillation achieve bet- 542

ter in-domain and out-of-domain reranking perfor- 543

mances compared to contrastive training strategy, 544

and the observation is consistent across different 545

model scales and language model architectures. 546

Our future work will investigate a more optimized 547

way to combine two training strategies, as well 548

as to improve the robustness and out-of-domain 549

generalization of knowledge distillation training. 550
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Limitations551

Given the limited computational resources, we are552

unable to scale the reranker training to >10B mod-553

els such as Qwen2.5-14B. The observation made554

in this work may be subject to change for stronger555

base models. How to improve robustness and out-556

of-domain generalization of the knowledge distilla-557

tion training has been extensively investigated by558

prior works in other NLP domains (Utama et al.,559

2020; Stacey and Rei, 2024; Wang et al., 2023), we560

leave investigation for reranking to future works.561

This paper focuses on empirical experiments on562

public benchmarks. We believe this paper do not563

incur potential risks.564
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paper or a repository. For the rest of the datasets,982

we list their licenses below:983

• MS MARCO (Bajaj et al., 2016): MIT Li-984

cense for non-commercial research purposes.985

• ArguAna (Wachsmuth et al., 2018): CC BY986

4.0 license.987

• DBPedia (Hasibi et al., 2017): CC BY-SA 3.0988

license.989

• FEVER (Thorne et al., 2018): CC BY-SA 3.0990

license.991

• HotpotQA (Yang et al., 2018): CC BY-SA 4.0992

license.993

• NQ (Kwiatkowski et al., 2019): CC BY-SA994

3.0 license.995

• SCIDOCS (Cohan et al., 2020): GNU General996

Public License v3.0 license.997

• SciFact (Wadden et al., 2020): CC BY-NC 2.0998

license.999

• TREC-COVID (Voorhees et al., 2021):1000

"Dataset License Agreement".1001

• Touche-2020 (Bondarenko et al., 2020): CC1002

BY 4.0 license.1003

B Hyperparameters1004

For all our training runs, we use a similar set of1005

optimized hyperparameters identified from prior1006

works and our preliminary experiments (Ma et al.,1007

2023; Xu et al., 2025a), only ablating learning rate1008

to reduce the effect of overfitting. We use LoRA1009

rank=16 and α=32. We use AdamW optimizer,1010

learning rate ranging from 3e-5 to 1e-4 with linear1011

warmup and cool down. As we train all models on1012

the train dataset for 1 epoch, we find learning rate1013

is the most important hyperparameter to control1014

overfitting. We use 8 GPUs with per device batch1015

4, gradient accumulation steps 4, which leads to a1016

global batch size of 128. For each (qi, d
+
i ) pair, we1017

use k = 15 negatives as we find increasing to 311018

negatives may lead to instable contrastive learning.1019

For RepQwen training, we use in-batch negatives;1020

while for reranker training, we focus solely on each1021

(qi, d
+
i ) pair’s own hard negatives.1022

C Baseline Results1023

We report the baseline results in Table 4.1024
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BM25 GTR-XXL RepLlama2 CSPLADE RepQwen♣ RankT5 RankMamba RankLlama2
Dataset - 4.8B 7B 8B 7B 220M 1.3B 7B

Arguana 39.7 54.0 48.6 48.9 54.7 33.0 34.4 56.0
Climate-FEVER 16.5 26.7 31.0 29.4 29.6 21.5 26.2 28.0
DBPedia 31.8 40.8 43.7 44.5 45.2 44.2 45.8 48.3
FEVER 65.1 74.0 83.4 86.5 79.9 83.2 81.9 83.9
FiQA 23.6 46.7 45.8 40.5 45.4 44.5 43.3 46.5
HotpotQA 63.3 59.9 68.5 69.8 68.9 71.0 76.3 75.3
NFCorpus 32.2 34.2 37.8 37.2 38.4 38.1 39.2 30.3
NQ 30.6 56.8 62.4 60.9 62.3 61.4 52.1 66.3
Quora 78.9 89.2 86.8 87.1 87.1 83.1 83.9 85.0
SCIDOCS 14.9 16.1 18.1 17.6 18.3 18.1 19.6 17.8
SciFact 67.9 66.2 75.6 73.9 75.0 75.0 76.8 73.2
TREC-COVID 59.6 50.1 84.7 83.2 85.3 80.7 79.9 85.2
Touche-2020 44.2 25.6 30.5 38.9 36.8 44.0 37.7 40.1

Average 43.7 49.3 55.1 55.3 55.9 53.7 53.6 56.6

Table 4: Baseline results on BEIR datasets. RepQwen♣ is a model we trained.
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