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Abstract

The high cost of obtaining high-quality anno-001
tated data for in-context learning (ICL) has002
motivated the development of methods that003
use self-generated annotations in place of004
ground-truth labels. While these approaches005
have shown promising results in few-shot set-006
tings, they generally do not scale to many-007
shot scenarios. In this work, we study ICL008
with self-generated examples using a frame-009
work analogous to traditional semi-supervised010
learning, consisting of annotation generation,011
demonstration selection, and in-context infer-012
ence. Within this framework, we propose013
a simple baseline that outperforms ground-014
truth ICL in zero-shot, few-shot, and many-015
shot settings. Notably, we observe a scal-016
ing law with this baseline, where optimal per-017
formance is achieved with more than 1,000018
demonstrations. To fully exploit the many-019
shot capabilities of semi-supervised ICL, we020
introduce IterPSD, an iterative annotation ap-021
proach that integrates iterative refinement and022
curriculum pseudo-labeling techniques from023
semi-supervised learning, yielding up to 6.8%024
additional gains on classification tasks. Code025
is available at: https://anonymous.4open.026
science/r/semi-supervised-icl-FA07027

1 Introduction028

In-context learning (ICL) has emerged as a pow-029

erful paradigm in natural language processing, en-030

abling language models (LMs) to learn, adapt, and031

generalize from examples presented within their032

input context. This approach eliminates the need033

for extensive retraining and parameter modifica-034

tions, facilitating more flexible and efficient learn-035

ing (Brown et al., 2020; Min et al., 2022; Agarwal036

et al., 2024; Fang et al., 2025). The high cost of ob-037

taining high-quality annotated data for ICL has mo-038

tivated the development of methods (Zhang et al.,039

2023; Li and Qiu, 2023; Mamooler et al., 2024;040

Li et al., 2024a; Chen et al., 2023) that use self-041
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Figure 1: Semi-supervised ICL Framework. Ground
truth data are used as demonstration for generating
pseudo-demonstrations from unannotated data. The
generated pseudo-demonstrations conjunctively with a
small ground truth demonstration, are selectively used
as demonstrations for the final prompting.

generated annotations in place of ground-truth la- 042

bels. However, previous research has not examined 043

ICL performance with self-generated annotations 044

in many-shot settings. Recently, (Agarwal et al., 045

2024) established a scaling law, showing that ICL 046

performance improves with the number of demon- 047

strations—up to thousands of examples. Inspired 048

by this finding, we pose the following question: 049

Research Question:

Can we scale ICL performance using self-
generated demonstrations up to thousands
of examples as well?

050

We systematically investigate this question un- 051

der a three-step framework (Figure 1): ① anno- 052

tation generation, ② demonstration selection, and 053

③ semi-supervised inference, which we term Semi- 054

Supervised ICL. We first introduce a simple base- 055

line, Naive-SemiICL, which annotates unlabeled 056

data in a single iteration, scoring each annotation 057
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using the LLM’s verbalized confidence. Naive-058

SemiICL consistently outperforms ICL baselines059

in zero-shot, few-shot, and many-shot settings, as060

well as prior methods. We highlight that Naive-061

SemiICL achieves optimal performance with 1000062

demonstrations on certain tasks (Figure 2).063

With potentially thousands of self-annotated ex-064

amples in the prompt, each demonstration can be065

viewed as a dataset, which motivates the following066

question:067

Research Question:

In what ways can techniques from tradi-
tional semi-supervised learning be lever-
aged to improve ICL performance?

068

We address this question by proposing IterPSD, an069

iterative approach that progressively refines pseudo-070

demonstration quality by incorporating self-071

generated annotations at each iteration. IterPSD072

further improves semi-supervised ICL performance073

on five classification tasks, achieving gains of up074

to 6.8% (Table 3).075

2 Method076

In this section, we establish the framework of Semi-077

Supervised ICL, which consists of three phases:078

① pseudo-demonstration generation, ② demon-079

stration selection, and ③ semi-supervised infer-080

ence. We then propose a simple baseline for Semi-081

Supervised ICL, Naive-SemiICL, which generates082

pseudo-demonstrations in a single iteration and083

filters out examples with low confidence scores.084

Building on Naive-SemiICL, we introduce an itera-085

tive method, IterPSD, that progressively improves086

the prompt by incorporating self-generated annota-087

tions during the demonstration generation process.088

2.1 Semi-Supervised ICL089

Confidence-Aware In-Context Learning extends090

traditional ICL by outputting an additional confi-091

dence score for each input:092

(y, r, c) = LM(ρT , E , x) (1)093

Like traditional ICL, the LLM is prompted with094

a task instruction ρT associated with task T , a095

set of demonstrations E , and an input x. Unlike096

traditional ICL, however, the model additionally097

returns a confidence score c along with the098

predicted output y and rationale r1, providing 099

a measure of certainty for its predictions. We 100

discuss the specific choice of confidence measure 101

in Section 3. 102

103

Semi-Supervised ICL. Beyond ground-truth an- 104

notations, Semi-Supervised ICL leverages unan- 105

notated data to enrich demonstrations. The set- 106

ting assumes the availability of a ground-truth 107

dataset Dg = {(xi, yi)}Nl , usually small in quan- 108

tity, alongside a large pool of unannotated data 109

Xu = xi
Nu . Semi-Supervised ICL augments the 110

limited pool of ground-truth examples by gener- 111

ating pseudo-demonstrations DPSD from the un- 112

annotated data. Formally, 113

DPSD = {(x, r̃, ỹ, c̃)|x ∈ Xu}, (2) 114

where (ỹ, r̃, c̃) = LM(ρT , Eg, x) are generated by 115

the LLM in an ICL fashion using a set of ground- 116

truth demonstrated ns Eg ⊆ Dg. Low-confidence 117

examples are filtered out according to a confidence 118

threshold λ: 119

Dλ
PSD = {(x, r̃, ỹ, c̃)|c̃ ≥ λ, (x, r̃, ỹ, c̃) ∈ DPSL}.

(3) 120

During Semi-Supervised ICL inference, we sample 121

pseudo-demonstrations EPSD from the filtered set 122

Dλ
PSD, which we detail the specific methods in Ap- 123

pendix B.6. The LLM is then prompted with these 124

pseudo-demonstrations alongside the ground-truth 125

demonstrations from which they were generated: 126

(ŷ, r̂, ĉ) = LM(ρT , El ∪ Dλ
PSD, x). (4) 127

Most of the internal mechanisms of Semi- 128

Supervised ICL are encapsulated by Equation 2, 129

where pseudo-demonstrations are generated, while 130

Equation 3 and Equation 4 represent simple op- 131

erations. Next, we introduce two approaches for 132

generating pseudo-demonstrations. 133

2.2 A Simple Semi-Supervised ICL Baseline 134

We propose a simple method that generates pseudo- 135

demonstrations in a single iteration (Algorithm 1). 136

We dub this method, along with the rest of the Semi- 137

Supervised ICL framework, Naive-SemiICL. The 138

method simply iterates over the unlabeled data for 139

one iteration and generates a prediction, a ratio- 140

nale, and a confidence score for each input. As 141

1In practice, generating rationales is optional. For example,
one can query the LLM to directly generate the answer to a
mathematical problem without intermediate reasoning steps.
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Figure 2: Scaling trend of Naive-SemiICL on classification and translation tasks with GPT-4o and GPT-4o-mini.
The dashed gray line represents the few-shot baseline. Both model exhibits a scaling trend on most tasks. All
experiments are performed with a ground truth budget of kl = 16.

Algorithm 1 Naive-SemiICL.
1: Input: prompt ρT , ground-truth demonstra-

tions El ⊆ Dl, confidence score C;
2: Initialize DPSD = ∅;
3: for x ∈ Xu do
4: ỹ, r̃, c̃ = LM(ρT , El, x);
5: DPSD = DPSD ∪ {(x, r̃, ỹ, c̃)};
6: end for
7: Return DPSD;

the simplest form of Semi-Supervised ICL, it pro-142

vides effective in-context learning signals by fil-143

tering out low-quality pseudo-demonstrations. We144

experiment with three commonly used confidence145

measures on 16 datasets spanning 9 tasks, and show146

that this simple baseline consistently outperforms147

a strong 16-shot ICL baseline (Section 4.1).148

2.3 Iterative Pseudo-Demonstration149

Generation150

Encouraged by the success of Naive-SemiICL,151

we explore whether pseudo-demonstrations can152

enhance the accuracy of subsequent pseudo-153

demonstration generation. We propose IterPSD154

(Algorithm 2), an iterative method for generating 155

pseudo-demonstrations that: 156

1. recursively adds newly generated pseudo- 157

demonstrations to its own prompt until reach- 158

ing the maximum number of allowed demon- 159

strations (Line 6), and 160

2. re-samples the most confident pseudo- 161

demonstrations according to a confidence 162

threshold λ from all previously annotated in- 163

stances once the demonstration size reaches 164

its limit (Line 12). 165

In each iteration, IterPSD samples and anno- 166

tates K unlabeled examples before applying a fil- 167

tering step. The generated pseudo-demonstrations 168

are recursively accumulated and fed back into the 169

LLM to generate additional pseudo-demonstrations 170

(Line 10). To mitigate performance degrada- 171

tion caused by long context lengths, we im- 172

pose an upper limit κ on the number of self- 173

fed pseudo-demonstrations. Once this limit 174

is reached, we resample the κ most confident 175

pseudo-demonstrations from the generated pseudo- 176

demonstrations, ensuring that only high-quality ex- 177

amples are retained (Line 7). 178
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Figure 3: Comparison of GPT-4o-mini (top) and GPT-4o (bottom) performance across multiple datasets using three
different methods: Few-Shot, Naive-SemiICL (Naive), and Naive-SemiICL without filtering (Unfiltered).

Order of Annotation. To enhance the accuracy179

of pseudo-demonstration annotations, we introduce180

the ϵ-Random Sampler (Algorithm 3), a sampling181

strategy that selects both similar and diverse exam-182

ples from the unannotated pool. At each iteration,183

a proportion (1− ϵ) of examples is chosen based184

on their cosine similarity to the nearest previously185

annotated instances (Line 6)2, ensuring that each186

selected example is similar to an existing annota-187

tion. The rest of the examples are chosen diversely188

in a clustering fashion similar to the one in (Zhang189

et al., 2023). This approach that considers both190

the similarity and diversity aligns with curriculum191

learning (Soviany et al., 2021) in semi-supervised192

learning, which facilitate self-training by balancing193

a mixture of confident and uncertain predictions.194

Mitigating Confirmation Bias. To maintain an-195

notation quality, we find that at least half of the196

data (ϵ ≥ 0.5) should be sampled diversely (Line197

7)3. When ϵ = 0, selections are exclusively198

based on similarity to previously annotated exam-199

ples. The Pseudo-demonstrations become homo-200

geneous, leading to bias in ICL predictions. This201

phenomenon closely parallels confirmation bias in202

semi-supervised learning (Arazo et al., 2019; Zou203

and Caragea, 2023), highlighting a strong connec-204

2We compute cosine similarity using vector embeddings
generated by OpenAI’s text-embedding-3-large.

3We found the best performing ϵ to be 0.8 in most of our
experiments.

tion between Semi-Supervised ICL and traditional 205

semi-supervised learning frameworks. 206

3 Experimetnal Setup 207

Tasks and Datasets. Our evaluation consists of 208

16 datasets spanning 9 tasks and 3 task types: 209

• Classification. We include BANKING77 210

(Casanueva et al., 2020), CLINC (Larson 211

et al., 2019), FewEvent (Deng et al., 2020), 212

and FP (Malo et al., 2013). 213

• Translation. We evaluate Naive-SemiICL’s 214

ability to translate English into low-resource 215

languages using 6 datasets from FLORES200 216

(Costa-Jussà et al., 2022): Bemba, Fijian, 217

Faroese, Tuvan, Venetian, and Sardinian. 218

• Reasoning. We include 5 benchmarks span- 219

ning scientific, mathematical, and logical rea- 220

soning: GPQA (Rein et al., 2024), LiveBench 221

Math (White et al., 2025), and three tasks from 222

BigBenchHard (Suzgun et al., 2022): Logi- 223

cal7, Geometric Shapes, and Date. 224

We describe these datasets in detail in Ap- 225

pendix B.3 and explain how we split the training 226

and testing data in Appendix B.1. 227

Evaluation Metrics. For all classification and 228

reasoning tasks, we report accuracy as the per- 229

formance metric. We evaluate the equivalence of 230

LaTeX-style mathematical outputs on LiveBench 231
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Algorithm 2 IterPSD
1: Input: prompt ρT , ground-truth demonstra-

tions El ⊆ Dl, chunk size K, ratio of ran-
dom examples ϵ, maximum number of pseudo-
demonstrations κ, confidence score C;

2: Initialize DPSD = ∅; {Set of all the annotated

pseudo-demonstrations.}
3: Initialize Dλ

PSD = ∅
4: Initialize DPSD = Xu; {Set of un-annotated data

yet to be annotated.}
5: while DPSD ̸= ∅ do
6: if |Dλ

PSD| > κ then
7: Dλ

PSD = top-κ confident examples in
DPSD;

8: end if
{Cap the demonstration at a maximum size, prevent

performance degradation from long-context.}
9: S = Sampler(EIter,DPSD,K, ϵ);

{Retrieves a sample of size K using ϵ-Random Sam-

pler}
10: DS = Naive-SemiICL(S, ρT , El ∪ Dλ

PSD);
{One iteration of Naive-SemiICL.}

11: Dλ
S = {(x, r̃, ỹ, c̃)|(x, r̃, ỹ, c̃) ∈ DS , c̃ ≥

λ}; {Filter by confidence.}
12: Dλ

PSD = Dλ
PSD ∪ Dλ

S ;
13: DPSD = DPSD ∪ DS ;
14: DPSD = DPSD −DS ;
15: end while
16: Return DPSD;

Math using the parser described in (Gao et al.,232

2024). For translation tasks, we report the ChrF++233

score (Popović, 2015) using its default configura-234

tion, as implemented in TorchMetrics (Detlefsen235

et al., 2022), following (Agarwal et al., 2024). We236

report the mean and standard error over three trials237

for baseline results (OpenAI, 2024) (Section 4.1).238

The remaining results are based on a single trial.239

Baselines. For baseline comparisons, we experi-240

ment with different pseudo-demonstration sizes for241

Naive-SemiICL: ku ∈ {32, 64, 100, 500, 1000,242

2000} for classification tasks, and ku ∈ {32, 64,243

100, 150, 200} for translation tasks.244

• k-Shot ICL. The LLM is prompted with k245

ground truth annotated examples, where k246

ranges from 0 to 500. Base on the number247

of ground truth annotation used, we divide248

our experiments into zero-shot (Table 1)), few-249

shot (Fig. 3), and many-shot (Fig. 6) settings.250

• Unfiltered SemiICL. To highlight the im-251

Algorithm 3 ϵ-Random Sampler

1: Input: annotated demonstration Dl, un-
annotated demonstration Dl, chunk size K,
random ratio ϵ, prompt ρT , embedder ϕ.

2: Initialize S = ∅;
3: Krandom = ϵK,Ksim = (1− ϵ)K;
4: Compute dij = simcos(ϕ(xi), ϕ(xj)) for all

xi ∈ Dl, xj ∈ Dl;
5: Compute dj = mini dij for all xj ∈ Dl;

{Compute distance to the nearest annotated example.}
6: Ssim = {xj |dj ∈ SmallestKsim{dj}};

{select the Ksim examples with the smallest distance to

its nearest annotated demonstrations}
7: Compute Srandom, a random sample of size

Krandom from Dl − Ssim);
8: S = Ssim ∪ Srandom;
9: Return S;

portance of confidence-based data selection, 252

we include an unfiltered variant of Naive- 253

SemiICL, which samples pseudo-annotations 254

without applying the filtering step. 255

• MoT. (Li and Qiu, 2023) We include MoT as 256

a domain-specific baseline for reasoning tasks. 257

Unlike MoT, Naive-SemiICL uses a simple 258

one-step filtering mechanism for demonstra- 259

tion selection, whereas MoT requires query- 260

ing the LLM for each example. Configuration 261

details are provided in Appendix B.4. 262

• Reinforced ICL. (Agarwal et al., 2024) 263

demonstrate that prompting the LLM with 264

self-generated reasoning chains filtered by 265

ground-truth answers can significantly im- 266

prove ICL performance. This method serves 267

as an upper bound on semi-supervised ICL 268

performance on the reasoning tasks when the 269

filtering mechanism is assumed to be perfect. 270

During our preliminary experiments, we found 271

Auto-CoT to be uncompetitive on our reasoning 272

datasets, as it relies on simple heuristics for data 273

selection that are no longer effective. Since MoT 274

includes all of Auto-CoT’s steps except its entropy- 275

and semantic-based filters, we opted not to include 276

Auto-CoT in our experiments. 277

Confidence Scores. We primarily evaluate three 278

confidence metrics: Verbalized Confidence which 279

prompts the LLM to generate the confidence score 280

(Table 7), Entropy, and Self-Consistency. Self- 281
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Task Zero-shot Naive Improv.

Classification

Banking 61.50 78.00 26.8%
FewEvent 56.00 65.00 16.07%
CLINC 83.50 88.50 5.99%
CLINCD 59.50 61.00 2.52%
FP 91.00 94.50 3.85%

Translation

Bemba 0.2437 0.2591 12.37%
Fijian 33.63 35.16 4.55%
Faroese 42.45 42.90 1.06%
Venetian 42.03 42.82 1.88%
Tuvan 16.17 18.40 13.79%
Sardinian 37.06 38.46 3.78%

Reasoning

GPQA 36.36 38.38 5.55%
Math 35.48 36.58 3.10%
Logical7 65.00 72.00 10.77%
Shapes 56.00 60.00 7.14%
Date 40.00 65.00 62.5%

Table 1: Performance comparison of Zero-shot ICL and
Naive-SemiICL. All experiments are done on GPT-4o-
mini. For Naive-SemiICL, we report the best perform-
ing number of pseudo-demonstrations.

Consistency measures the confidence as the fre-282

quency of the most frequent answer, and entropy is283

defined as284

cEnt = − 1

L

L∑
i=s

logP (wi | w<i). (5)285

Hyperparameters. Unless stated otherwise, we286

filter all generated pseudo-demonstrations using287

the confidence threshold at the 90th percentile.288

We discuss the hyperparameters of IterPSD in Ap-289

pendix B.8.290

Models. We experiment with GPT-4o-mini and291

GPT-4o, checkpointed on 2024-07-18 and 2024-292

11-20, respectively, for all of our experiments. We293

discuss the computational cost associated with our294

experiments in Appendix B.2.295

4 Empirical Analyses296

4.1 Naive-SemiICL Consistently Beats297

Baselines298

We first compare the performance of Naive-299

SemiICL with Verbalized Confidence to the few-300

shot baseline. For Naive-SemiICL, we report per-301

formance using the optimal number of pseudo-302

demonstrations ku for each task. The best-303

performing ku values are shown in Tables 5 and 6.304

Method GPQA Math Logical7 Shapes Date

Naive-SemiICL 42.42 40.78 90.00 78.00 79.00
MoT 44.44 25.86 88.00 64.00 58.00
Reinforced ICL 54.54 42.63 93.00 78.00 89.00

Table 2: Comparison of Naive-SemiICL (Naive) and
MoT on reasoning datasets using GPT-4o-mini.

Naive-SemiICL outperforms few-shot ICL on all 305

tasks except CLINC(D), where it matches the base- 306

line. Unfiltered SemiICL fails to match baseline 307

performance in 20 out of 32 settings, highlighting 308

the importance of the filtering step. A detailed 309

breakdown of the best performance across different 310

confidence scores is provided in Appendix C. 311

We highlight the effectiveness of Naive- 312

SemiICL in extremely low-resource settings 313

through a zero-shot experimental design. We gener- 314

ate pseudo-demonstrations with no initial ground- 315

truth demonstrations and compare Naive-SemiICL 316

to zero-shot prompting. The performance gap be- 317

tween Naive-SemiICL and the zero-shot baseline 318

depends solely on the quality of the filtering mech- 319

anism. As shown in Table 1, Naive-SemiICL out- 320

performs the zero-shot baseline on all tasks in the 321

benchmark, attaining an average improvement of 322

11.36% under GPT-4o-mini. This exceeds the aver- 323

age improvement of 9.94% in the 16-shot setting 324

(Figure 3), suggesting that Naive-SemiICL is more 325

effective resource-constrained conditions. 326

Additionally, we found Naive-SemiICL to be 327

effective in high-resource settings. Figure 6 com- 328

pares the performance of Naive-SemiICL and 329

ground-truth ICL when kl ∈ {64, 100, 500} 330

ground-truth examples are available. Across three 331

tasks, Naive-SemiICL consistently outperforms the 332

corresponding k-shot baselines. We observe dimin- 333

ishing returns in performance gains as the number 334

of annotated demonstrations increases. On aver- 335

age, kg = 64 improves performance by 10.49% 336

over the baseline, whereas kg = 500 yields only a 337

4.73% improvement across the three tasks. Com- 338

bining these results, Naive-SemiICL is most effec- 339

tive when ground-truth data is scarce, although it 340

can still be effective in high-resource settings. 341

On reasoning datasets, Naive-SemiICL outper- 342

forms MoT on all tasks except GPQA, as shown 343

in Table 2. Surprisingly, the performance gap be- 344

tween the two methods is substantial on LiveBench 345

Math, Shapes, and Date. We attribute this to two 346

key differences between Naive-SemiICL and MoT: 347
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Method BANKING CLINC CLINC(D) FewEvent FP

Naive-V 75.67 69.00 90.00 66.50 98.00
Naive-S 75.00 73.50 91.50 69.00 98.00
Iter-V 78.00 69.00 90.50 73.50 98.00
Iter-S 78.00 78.50 94.50 70.00 98.50
Improvement 3.10% 6.80% 3.28% 6.52% 0.50%

Table 3: Comparison of Naive-SemiICL (Naive) and
IterPSD (Iter) methods on various datasets using
GPT-4o-mini, evaluated using verbalized (-V) and
self-consistency (-S) confidence scores. The best-
performing results for each dataset are highlighted in
bold, while the second-best results are underlined.

(1) MoT uses Entropy to filter low-quality demon-348

strations, which we show to be less reliable than349

Verbalized Confidence (see Table 4); and (2) in pre-350

liminary experiments, we found similarity-based351

retrieval to be less effective than diverse sampling.352

Naive-SemiICL samples diversely from a large353

pool of pseudo-demonstrations, which MoT is un-354

able to do due to its requirement to query the LLM355

for each demonstration retrieval.356

4.2 Scaling Law for Semi-Supervised ICL357

We observe a scaling law for Semi-Supervised ICL,358

similar to the one reported in many-shot ICL (Agar-359

wal et al., 2024), on classification and translation360

tasks. We illustrate this trend in Figure 2. Across361

all configurations, Naive-SemiICL performance im-362

proves with larger demonstration sizes, although363

the point of peak performance varies. Both GPT-364

4o and GPT-4o-mini scale effectively across most365

tasks, typically peaking between 500 and 1,000366

examples for classification tasks and between 100367

and 200 examples for translation tasks. GPT-4o ex-368

hibits a more stable scaling trend than GPT-4o-mini369

on translation tasks, with performance peaking later370

and declining more gradually. With more available371

ground-truth data, we also observe scaling trends372

on BANKING77 and FewEvent (Figure 6).373

We hypothesize that Naive-SemiICL’s decline in374

performance beyond a certain demonstration size375

stems from the accumulation of errors in pseudo-376

demonstrations. To isolate the negative impact of377

long contexts on the LLMs, we examine the scal-378

ing behavior when all demonstrations are ground-379

truth data. Figure 5 shows that both GPT-4o-mini380

and GPT-4o continue to improve as the number of381

demonstrations increases, even beyond the optimal382

demonstration size for Naive-SemiICL in the 16-383

shot setting. This suggests that the performance384

degradation is not caused by long context length,385

but rather by the accumulated errors in pseudo- 386

demonstrations. This finding motivates the design 387

of IterPSD, which addresses error accumulation 388

in pseudo-annotations through curriculum learning 389

and iterative refinement. 390

4.3 IterPSD Improves Upon Naive-SemiICL 391

IterPSD outperforms Naive-SemiICL across five 392

classification tasks, as shown in Table 3. We evalu- 393

ate both methods using Verbalized Confidence and 394

Self-Consistency. Notably, IterPSD achieves sig- 395

nificant gains on BANKING, CLINC, CLINC(D), 396

and FewEvent (over 3.0% performance gain), but 397

not on FP. Similar to Naive-SemiICL, we observe 398

a scaling law with respect to the number of pseudo- 399

demonstrations used in IterPSD. Clear scaling 400

trends are observed in four out of five tasks, as 401

shown in Figure 4. On these tasks, IterPSD at- 402

tains peak performance with 500 to 1,000 pseudo- 403

demonstrations. The lack of scaling on FP may 404

be attributed to the relative ease of the dataset, as 405

Naive-SemiICL already achieved 98% accuracy on 406

this task. 407

We also benchmark IterPSD on translation tasks, 408

but the improvement over Naive-SemiICL is not 409

consistent. We attribute this to the fact that each it- 410

eration of IterPSD needs to accumulate at least 100 411

demonstrations to avoid bias from sampling noise. 412

However, Semi-Supervised ICL typically degrades 413

after approximately 200 demonstrations, resulting 414

in IterPSD terminating after 2 to 3 iterations. 415

5 Related Work 416

Self-Generated Demonstrations. Large Lan- 417

guage Models (LLMs) exhibit remarkable zero- 418

shot capabilities, allowing them to perform tasks 419

without task-specific fine-tuning or prior examples. 420

Their zero-shot predictions have proven to be effec- 421

tive sources of demonstration for in-context learn- 422

ing (Kojima et al., 2022; Zou et al., 2025a). 423

Auto-CoT (Zhang et al., 2023) prompts the LLM 424

with self-generated rationales on diversely sampled 425

inputs. Rationales consisting of more than five 426

reasoning steps are excluded from the demonstra- 427

tion to maintain the simplicity and accuracy of the 428

demonstration. Such task-specific heuristic does 429

not generalize to most recently published datasets 430

such as LiveBench Math, as most of the gener- 431

ated rationales contain more than five steps. (Li 432

and Qiu, 2023) builds on top of Auto-CoT with 433

extra an extra step of semantic filtering. At each 434
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Figure 4: Scaling trend of IterPSD on five benchmark tasks. Blue horizontal dashed line represents the best
performing Naive-SemiICL on the same dataset.

example during inference, the LLM is prompted to435

choose the demonstration for itself after retrieving436

the semantically relevant demonstrations through437

an embedding model. Like Auto-CoT, Reinforced438

ICL (Agarwal et al., 2024) generates rationales for439

reasoning problems and filters out those leading440

to incorrect answers. While this method requires441

ground truths, our filtering method do so with self-442

generated confidence score.443

PICLe (Mamooler et al., 2024) generates new444

demonstrations by annotating unlabeled examples445

and filtering out those with incorrect named entity446

types through self-verification prompting. Simi-447

larly, SAIL (Li et al., 2024a) employs an anno-448

tation strategy for the bilingual lexical induction449

task, discarding predictions that fail to translate450

back to the original input. Both methods rely on451

task-specific filtering and require additional LLM452

queries for self-verification or back-translation. In453

contrast, our Verbalized Confidence approach is454

task-agnostic and requires only a single prompt455

for pseudo-labeling, significantly reducing infer-456

ence overhead. Z-ICL (Li et al., 2024b) lever-457

ages the zero-shot generative capability of large458

language models to synthesize demonstrations for459

subsequent in-context learning inference. In con-460

trast, our approach assumes access to abundant461

unlabeled data and a small set of ground-truth la-462

bels, using the LLM only for annotation rather than463

for input generation.464

Many-Shot ICL. (Agarwal et al., 2024) ob-465

served a significant performance increase in a vari-466

ety of generative and discriminative tasks, as well467

as a scaling law between the number of exam-468

ples in the demonstration and ICL performance.469

Our method hinges on this ability as our proposed470

method, Naive-SemiICL, fits at least 64 examples471

in the prompt. We report a similar scaling law for472

Semi-Supervised ICL in this work.473

Traditional Semi-Supervised Learning. Semi- 474

supervised learning seeks to reduce reliance on 475

labeled data by leveraging abundant unlabeled data 476

to enhance model performance (Lee et al., 2013; 477

Sohn et al., 2020; Zou et al., 2025b). Self-training 478

(McLachlan, 1975; Xie et al., 2020) iteratively re- 479

fines the model by using its own predictions on 480

unlabeled data for training. Pseudo-labeling (Lee 481

et al., 2013; Sohn et al., 2020; Zou et al., 2023a,b) 482

employs confidence-based filtering, retaining only 483

high-confidence pseudo-labels to reduce error prop- 484

agation and confirmation bias. JointMatch (Zou 485

and Caragea, 2023) further alleviates error accumu- 486

lation by using two independently initialized net- 487

works that teach each other through cross-labeling. 488

Our work is the first to integrate confidence filter- 489

ing and leverage both labeled and pseudo-labeled 490

data in an in-context learning framework. 491

6 Conclusion 492

We introduced a semi-supervised ICL framework 493

that enhances self-generated annotations through 494

confidence-based data selection and iterative an- 495

notation. Our analysis of Naive-SemiICL with in- 496

creasing amounts of ground-truth data reveals di- 497

minishing returns—while additional ground-truth 498

annotations improve performance, the relative 499

contribution of pseudo-demonstrations decreases. 500

This suggests that semi-supervised ICL is partic- 501

ularly effective in low-resource settings, yet re- 502

mains beneficial even when more ground-truth 503

data is available. We further identify a scal- 504

ing law in semi-supervised ICL, showing that 505

models achieve optimal performance with over 506

1,000 pseudo-demonstrations. Our simple semi- 507

supervised method, Naive-SemiICL, outperforms 508

a strong 16-shot ICL baseline, achieving an aver- 509

age performance gain of 9.94% across 16 datasets. 510

We also propose IterPSD, an iterative refinement 511

approach for pseudo-demonstrations, which yields 512

up to 6.8% additional gains on classification tasks. 513
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7 Limitation514

While this work investigates the potential of semi-515

supervised ICL, several limitations remain. First,516

the reliance on SOTA LLMs for ICL introduces sub-517

stantial computational overhead, posing challenges518

for researchers and practitioners with limited re-519

sources. Second, although we have shown that the520

incorporation of pseudo-demonstration generation521

strategies enhances and improves ICL performance522

on two models, the effectiveness of our proposed523

method might be sensitive to the choice of model.524

Future work can explore more advanced confidence525

calibration techniques for pseudo-demonstration526

selection, such as adaptive thresholding. Addition-527

ally, noise-aware in-context learning remains an528

under-explored domain that could potentially im-529

prove the robustness of Semi-Supervised ICL.530
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A Prompts752

The prompts are illustrated in Table 7. {CAPITAL753

LETTERS} enclosed in curly brackets are variables754

that are substituted during inference.755

B Experimental Details756

B.1 Train-Test Split757

For classification tasks with more than 5,000758

examples, we randomly sample 5,000 examples759

for demonstration and 200 for evaluation. For760

tasks with less than 5,000 examples, we randomly761

sample 200 for evaluation and use the rest762

for demonstration. Each FLORES dataset is763

comprised of a development set with 997 examples764

and a development test set with 1012 examples.765

We use all of 997 for demonstration and randomly766

sample 200 from the development test examples767

for evaluation. We use the diamond split (198768

examples) of GPQA following (Agarwal et al.,769

2024), out of which 99 are used for evaluation and770

the other 99 are used for demonstration. Since771

LiveBench Math contains math problems from772

three sources, we evenly sample 150 questions773

from different sources for evaluation and use774

the rest for demonstration. Each BigBenchHard775

dataset contains 250 examples. We randomly776

sample 100 for evaluation and use the rest for777

prompting.778

779

B.2 Computational Budget780

We ran all of our experiments on an Apple M3 chip,781

where embedding-based search constitutes less782

than 1% of the computation time during IterPSD.783

The embeddings can be precomputed during data784

processing for each dataset, as it only needs to be785

computed once. It took about 400ms to retrieve786

each embeddings from the OpenAI API. The cost787

of generating the embeddings is $0.13/million to-788

kens. We ran all of our experiments on a $1,000789

budget.790

B.3 Dataset Details791

Classification Datasets.792

• BANKING77. The BANKING77(Casanueva793

et al., 2020) dataset is a fine-grained intent794

classification benchmark in the banking do-795

main, consisting of 13,083 customer queries796

labeled into 77 intent categories.797

• CLINC. The CLINC150 (Larson et al., 2019) 798

dataset is a benchmark for intent classifica- 799

tion, containing 22,500 user queries across 800

150 intent categories grouped into 10 domains, 801

along with an out-of-scope category. We refer 802

to the intent classification task of CLINC150 803

as CLINC. 804

• CLINC(D). We refer to the domain classifica- 805

tion annotation of CLINC150 as CLINC(D). 806

• FewEvent. The FewEvent(Deng et al., 2020) 807

dataset contains 4,436 event mentions across 808

100 event types, with each event type having 809

only a few annotated examples (typically 5 to 810

10 per type). 811

• FP. Financial Phrasebank(Malo et al., 2013) 812

The Financial PhraseBank dataset consists of 813

4840 sentences from English language finan- 814

cial news categorised by sentiment. 815

Low-Resource Language Translation. 816

FLORES-200 (Costa-Jussà et al., 2022) con- 817

tains 200 languages translated from a common 818

corpus. It is an extension of the original FLORES- 819

101 (Goyal et al., 2022) dataset, which covered 820

101 languages. The dataset covers low-resource 821

and high-resource languages, including many 822

languages with little prior data on. It includes many 823

African, South Asian, and Indigenous languages, 824

making it one of the most diverse multilingual 825

benchmarks. 826

827

Reasoning Datasets. 828

• GPQA. GPQA(Rein et al., 2024) is a multiple- 829

choice question answering benchmark, with 830

graduate-level questions that involves reason- 831

ing in biology, physics, and chemistry. 832

• LiveBench Math. LiveBenchMath contains 833

368 contamination-free mathematical prob- 834

lems, sampled from high school math com- 835

petitions, proof-based fill-in-the-blank ques- 836

tions from Olympiad-level problems, and an 837

enhanced version of the AMPS dataset. 838

• BigBenchHard. We include three tasks from 839

BigBenchHard(Suzgun et al., 2022). Logi- 840

cal7 evaluates a model’s ability to deduce the 841

order of a sequence of objects based on pro- 842

vided clues about their spatial relationships 843

and placements. The Geometric Shapes task 844
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GPT-4o-mini GPT-4o

Task Type Task Verbalized Self-Consistency Entropy Back-Translation Verbalized Self-Consistency Entropy Back-Translation

Classification BANKING 75.33± 0.20 75.16± 0.20 - - 72.17± 0.20 72.30± 0.20 - -
CLINC 89.16± 0.80 91.17± 0.40 - - 95.50± 0.70 95.80± 0.90 - -
CLINCD 66.33± 0.50 69.17± 0.20 - - 79.33± 0.20 77.80± 0.20 - -
FewEvent 69.33± 0.50 73.33± 0.20 - - 76.17± 0.50 77.17± 0.20 - -
FP 97.50± 0.50 97.83± 0.20 - - 96.50± 0 97.83± 0.20 - -
AVG 79.53 81.33 - - 83.93 84.18 - -

Translation Bemba 27.93± 0.10 - 26.66± 0.20 27.42± 0.30 29.16± 0.20 - 27.65± 0.20 28.34± 0.20
Fijian 36.70± 0.20 - 35.96± 0.10 36.14± 0.10 42.67± 0.40 - 41.42± 0.30 41.98± 0.40
Faroese 43.97± 0.20 - 42.32± 0.20 43.95± 0.20 49.69± 0.40 - 48.01± 0.40 48.93± 0.30
Venetian 44.41± 0.20 - 43.84± 0.10 43.26± 0.20 45.05± 0.30 - 44.53± 0.50 44.67± 0.40
Tuvan 19.61± 0.30 - 19.53± 0.10 19.02± 0.20 23.75± 0.30 - 23.01± 0.30 22.57± 0.40
Sardinian 41.27± 0.20 - 40.53± 0.10 40.63± 0.20 47.94± 0.20 - 46.82± 0.10 47.85± 0.30
AVG 35.65 - 34.81 35.07 39.71 - 38.57 39.06

Reasoning GPQA 40.40± 0.50 42.42± 0.50 41.41± 0.50 - 52.52± 0.50 47.47± 0.50 52.52± 0.50 -
LB Math 40.78± 0.30 35.52± 0.50 35.48± 0.30 - 36.33± 0.80 39.78± 0.30 30.10± 0.30 -
logical7 90.00± 0.50 84.00± 0 86.00± 0.50 - 98.00± 0.50 100.00± 0.50 100.00± 0.50 -
Geometric 70.00± 0 66.00± 0 78.00± 0.50 - 61.00± 0 67.00± 0 70.00± 0.50 -
Date 42.00± 0.80 32.00± 0 35.00± 0 - 68.00± 0.80 65.00± 0 67.00± 0.50 -
AVG 56.64 51.99 55.18 - 63.17 63.85 63.92 -

Table 4: Comparison of GPT-4o-mini and GPT-4o performance using different confidence scores. Each task is
evaluated using different inference strategies: Verbalized, Self-Consistency, Entropy, and Back-Translation (where
applicable). Reported values on represent average accuracy and ChrF++ with standard deviations.

within the BigBenchHard evaluates a model’s845

ability to interpret and identify geometric fig-846

ures based on SVG path data. The Date task847

within the BigBenchHard benchmark evalu-848

ates a model’s ability to comprehend and ma-849

nipulate date-related information.850

GPQA LiveBench Math Logical7 Geometric Shapes Date

GPT-4o-mini 4 0 8 8 0
GPT-4o 4 0 8 8 16

Table 5: Best number of shots for the baseline on rea-
soning tasks. We use the same number of shots for
Naive-SemiICL.

B.4 Baseline Details851

We observe that few-shot baselines (Section 3) does852

not necessarily scale with more demonstrations.853

Thus, we report the best performing k-shot baseline854

where k ≤ 16, which we report in Table 5.855

We experiment with different pseudo-856

demonstration sizes ku for Naive-SemiICL:857

ku ∈ {32, 64, 100, 150, 200} on classification858

tasks, and ku ∈ {32, 64, 100, 150, 200} on859

translation and reasoning tasks.860

For MoT (Li and Qiu, 2023), we follow a rec-861

ommended configuration of 5 clusters. For re-862

trieval, we employ the same text embeddings,863

text-embedding-3-large as Naive-SemiICL,864

and the same confidence threshold set at the 90th865

percentile. Since MoT needs to query the LLM k866

times to select the most relevant examples, it is not867

suitable for classification and translation tasks that868

might utilize many examples, we only compare 869

MoT to Naive-SemiICL on reasoning tasks. 870

B.5 Applying Confidence Scores 871

On all tasks, we sample from the LLMs 10 872

times to compute the Self-Consistency score. 873

Self-Consistency is unsuitable for translation tasks 874

due to the computational challenges of assessing 875

equivalence between translations. Instead, we 876

introduce Back-Translation, which evaluates 877

translation quality by translating the output back 878

to the original language. The confidence score 879

is then derived using the cosine similarity (on 880

embeddings) between the back-translation and 881

the original input. A detailed description of 882

Back-Translation is provided in Appendix B.7. 883

884

B.6 Pseudo-Demonstration Sampling 885

On classification tasks, BigBenchHard tasks and 886

GPQA, we sample diversely by evenly sam- 887

ple predicted labels. For translation tasks 888

and LiveBench Math, we utilize OpenAI’s 889

text-embedding-3-large to generate embed- 890

dings for each example input. Then we cluster 891

the embeddings into clusters and evenly sample the 892

most representative (the one closest to the cluster 893

centroid) instances from each cluster. 894

B.7 Back-Translation 895

Suppose an LLM has translated a source language 896

input s into a target language output t. We then use 897

the same LLM to translate t back to the original 898
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Figure 5: Many-shot scaling performance of GPT-4o-mini (top) and GPT-4o (bottom) across six selected datasets.
The x-axis represents the number of shots (log scale), and the y-axis represents performance. The solid blue
lines indicate many-shot in-context learning (ICL), while the dashed vertical lines mark the peak performance of
Naive-SemiICL. Both models scale beyond the peak the performance of pseudo-demonstration approach.
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Figure 6: We compare Naive-SemiICL accuracy across different ground truth demonstration sizes, with baseline
performances indicated by dashed lines. On FewEvent, the maximum number of pseudo-demonstrations is capped
at 1000 due to the limited availability of pseudo-demonstrations after filtering.

language899

ŝ = LM(t, ρb),900

where ρb is a prompt that induces the back-901

translation. Then, the Back-Translation Confidence902

is the cosine similarity between the original input903

s and the back-translation ŝ904

c = simcos(ϕ(ŝ), ϕ(s)),905

where ϕ is an embedding function.906

B.8 Hyperparameters907

Confidence Threshold. We find that setting the908

confidence threshold λ at the 90th percentile of909

all generate pseudo-demonstrations DPSD allowed910

Naive-SemiICL to achieve competitive perfor- 911

mance. We assume this threshold in this work 912

unless stated otherwise. 913

IterPSD takes 3 hyperparameters: chunk size 914

K, which controls how many data to annotate in 915

each iteration, ϵ, which controls the proportion 916

of random sample in each chunk, κ, the maxi- 917

mum amount of examples allowed in the demon- 918

stration while generating pseudo-demonstrations. 919

We experiment with K ∈ {100, 500, 1000}, ϵ ∈ 920

{0.5, 0.8, 1.0}, κ ∈ {300, 500, 1000}. We find 921

that ϵ = 0.8, K = 500, and κ = 1000 yielded 922

the best results on all tasks, except on FP, where 923

K = 100 and κ = 300 yielded the best result. 924
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Model Bemba Fijian Faroese Venetian Tuvan Sardinian Banking FewEvent CLINC CLINCD FP

4o-mini 100 150 150 100 64 64 1000 2000 2000 2000 500
4o 100 150 100 200 100 100 1000 500 500 1000 100

Table 6: Demonstration counts per dataset for 4o-mini and 4o models

C Effects of Different Confidence925

Methods926

In this section, we examine the performance Naive-927

SemiICL paired with different confidence meth-928

ods, which we compile as Table 4. We observe929

that classification and translation tasks each have930

a dominant confidence measure. For classifica-931

tion tasks, Self-Consistency emerges as the most932

effective confidence method. It surpasses the Ver-933

balized Confidence method on 4 out of 5 datasets934

across both models. Verbalized Confidence is the935

leading measure for translation tasks, consistently936

achieving the highest performance across all lan-937

guages. For reasoning tasks, no single method938

clearly dominates. Under GPT-4o-mini, Verbalized939

Confidence yields the best average performance,940

while under GPT-4o, Entropy slightly outperforms941

Self-Consistency, securing the top position by a942

narrow margin.943

Overall, Self-Consistency improves classifica-944

tion and reasoning tasks, but its effect varies across945

translation tasks and is not applicable to all tasks.946

Entropy is sometimes useful in reasoning tasks,947

but fall short on translation tasks. Verbalized in-948

ference remains a strong and economical baseline949

across all tasks but is generally outperformed by950

Self-Consistency on classification tasks.951
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Table 7: The prompt template we use for classification, translation, and reasoning tasks, respectively.

Types Prompts

Classification

You are a helpful assistant who is capable of performing a classification task (mapping an Input
to a Label) with the following possible labels:
{A LIST OF POSSIBLE LABELS}
___
Here are zero or more Input and Label pairs sampled from the classification task.

{DEMONSTRATIONS}

___
Now, Label the following Input among the following
Input: {INPUT}

Translation

You are an expert translator. I am going to give you zero or more example pairs of text snippets
where the first is in the source language and the second is a translation of the first snippet into
the target language. The sentences will be written in the following format:
<source language>: <first sentence>
<target language>: <translated first sentence>
___

{DEMONSTRATIONS}

___
Now, Translate the following $source text into $target. Also give the Confidence of your given
Answer in the following format:
**Confidence**: <a confidence score between 0 and 1>:

English: {INPUT SENTENCE}
{TARGET LANGUAGE}:

Reasoning

First, I am going to give you a series of Questions that are like the one you will be solving.
___

{DEMONSTRATIONS}

___
Now, Answer the following Question. Think step by step.
Question: {QUESTION}
Also give the Confidence of your given Answer in the following format:
**Confidence**: <a confidence score between 0 and 1>
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