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Abstract

A principled understanding of generalization in deep learning requires unifying
disparate observations under a single conceptual framework. Previous work has
studied grokking, a training dynamic in which a sustained period of near-perfect
training performance and near-chance test performance is eventually followed by
generalization, as well as the superficially similar double descent. These topics have
so far been studied in isolation. We hypothesize that grokking and double descent
can be understood as instances of the same learning dynamics within a framework
of pattern learning speeds, and that this framework also applies when varying
model capacity instead of optimization steps. We confirm some implications of
this hypothesis empirically, including demonstrating model-wise grokking.

1 Introduction
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Figure 1: Modular Division. Three views of the same training run. Left: Typical grokking. Middle:
When accuracy is put on a log scale, a small double descent becomes visible. Right: The double
descent is more pronounced in test loss.

On some datasets, neural networks exhibit surprising training dynamics termed grokking by Power
et al. (2022). In grokking, the model initially overfits, achieving perfect performance on the training
set while remaining at near-chance performance on the test set. Later in training, test performance
improves and the model eventually achieves perfect test accuracy. Because the model learns to
generalize far after perfect classification of the training data, grokking is a well-distilled demonstration
of an inductive bias that favours well-generalizing solutions (Zhang et al., 2021). Grokking is
reminiscent of the double descent phenomenon (Belkin et al., 2018; Nakkiran et al., 2021), in which
test performance initially improves, then worsens as the model overfits, and then eventually improves
again as model capacity increases.

We argue that double descent and grokking are best viewed as two instances of the same phenomenon,
in which inductive biases prefer better-generalizing but slower to learn patterns, leading to a transition
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Figure 2: Toy Model. Left to right, (1) development of pattern predictiveness during double
descent, with well-performing Type 1 patterns and somewhat-predictive Type 3 patterns; (2) resulting
train and test accuracy curves for double descent; (3) pattern predictiveness during grokking, with
poorly-performing Type 1 patterns and perfectly-predictive Type 3 patterns; (4) resulting train and
test curves for grokking.

from poorly-generalizing to well-generalizing patterns. This transition happens both epoch-wise as a
function of training time (Figure 1) and model-wise as a function of model size (Figure 3).

Contributions. We provide a conceptual framework (Claim 1, Claim 2) and toy model (Section 3)
which unifies the learning dynamics of grokking and double descent. Our Claim 1 is supported by the
toy model, and we provide evidence for Claim 2 by showing that grokking can occur as a function of
model size (Section 4.1 and Figure 1).

2 Background

Inductive Biases. In neural network training, there are many different parameter configurations
which fit the training data (Zhang et al., 2021). The inductive bias of a training procedure determines
how our training procedure selects between such solutions (Battaglia et al., 2018), and may be
composed of both explicit biases (like regularization terms) and implicit biases (like certain solutions
being easier to reach in parameter-space).

Double Descent. The double descent phenomenon describes surprising generalization behavior of
neural networks, in which test performance initially improves, then worsens as the model overfits, and
then eventually improves again as we increase the capacity of our training procedure (Belkin et al.,
2018). This capacity measure was originally demonstrated with model size (model-wise); Nakkiran
et al. (2021) generalize the capacity notion in effective model complexity, and show double descent
can occur when varying the number of optimization steps (epoch-wise) and other forms of capacity
modulation. Recently, Pezeshki et al. (2021) and Stephenson & Lee (2021) show that epoch-wise
double descent can be modeled as different patterns being learned at different speeds.

3 Pattern Learning

We first claim that epoch-wise double descent and grokking share the same underlying dynamics, and
then claim that these dynamics also transfer to the model-wise setting.

Claim 1 (Pattern learning dynamics). Grokking, like epoch-wise double descent, occurs when slow
patterns generalize well and are ultimately favored by the training regime, but are preceded by faster
patterns which generalize poorly.

Toy Model. To formalize Claim 1, we propose a toy model of neural network training as the
learning of patterns, or particular input-output functions. In this model, a trained neural network
consists of a set of patterns, each of which independently classifies a datapoint correctly with a fixed
probability. The network classifies a training datapoint correctly when any of its patterns does so.
Test accuracy depends on how well patterns generalize (we give a detailed account of the toy model
in Appendix B).

In our model of grokking and double descent, there are three types of patterns learned at different
speeds. Type 1 patterns are fast and generalize well (heuristics). Type 2 patterns are fast, though
slower than Type 1, and generalize poorly (overfitting). Type 3 patterns are slow and generalize well.
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Figure 3: Model-Wise Grokking. Left: Test loss as function of training steps and model size. Right:
Training loss. All models are transformers trained on modular division on 50% of the training data.
Both model-wise and epoch-wise double descent are visible. Dotted line represents 90% training
accuracy.

Type 3 patterns are ultimately preferred by the training regime: that is, they are used when multiple
patterns can predict the same input (see Appendix B).

As shown in Figure 2, this simple model can produce grokking as well as double descent, and the two
can be interpolated between by solely modulating the maximum predictiveness of heuristics (Type 1)
and the maximum predictiveness of well-generalizing slow patterns (Type 3).2

Claim 2 (Pattern learning as function of EMC). In both grokking and double descent, pattern learning
occurs as a function of effective model complexity (EMC) (Nakkiran et al., 2021), a measure of the
complexity of a model that integrates model size and training time.3

If Claim 2 is correct, then grokking (like double descent) depends on EMC rather than training time,
and thus should happen model-wise as well as epoch-wise. We confirm that this is indeed the case
(Section 4.1).

4 Experiments

4.1 Model-Wise Grokking

Following the original grokking setting of Power et al. (2022), we train decoder-only transformers
(Vaswani et al., 2017) with causal attention masking on the binary operation of division mod 97
(details in C). We explore the effects of regulating effective model complexity by varying parameter-
count.

Figure 3 shows train and test loss with respect to optimization steps and embedding dimension. For a
range of values, delayed generalization occurs both when moving vertically (epoch-wise grokking),
as well as when moving horizontally (model-wise grokking). Figure 4 shows the corresponding
accuracy heatmaps, with clear double descent behavior both epoch-wise and model-wise. Figure 5
shows models with range of embedding dimensions trained for 400k epochs.

4.2 A Type 1 Pattern in Grokking Setting

In Figure 1, we show that in the modular division setting of Power et al. (2022), we do see non-
monotonic behavior in test accuracy due to the development. Early in training, the model learns
0/b = 0 mod n; this pattern generalizes well and is learned quickly, corresponding to a Type 1
pattern in our toy model. As predicted in our toy model, this leads to an initial spike above chance
in test accuracy. Interestingly, the development of poorly-generalizing Type 2 features then leads
to worse-than-chance performance on the rest of the data, likely due to anti-correlation between
train and test set values for every dividend and divisor in modular division, causing a descent in test

2Code replicating our results is available at github.com/xanderdavies/unifying-grok-dd, including
an interactive notebook to explore the toy model and interpolate between grokking and double descent.

3In this paper, we use EMC as our metric for capacity of a training regime, but encourage future work
exploring alternative metrics. Models that are trained for longer have higher EMC.
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performance. This small bump is noticeable in Power et al. (2022), but not noted by the authors. For
experimental validation of this theory, see Figure 6.

5 Related Work

Grokking. Grokking was first demonstrated by Power et al. (2022), who state that grokking is
distinct from double descent because generalization occurs far past the interpolation threshold. Liu
et al. (2022) demonstrate that grokking generalization speed can be accelerated by using a larger
representation step-size. This is inline with findings by Heckel & Yilmaz (2020) about epoch-wise
double descent, where decreasing learning rates in later layers (which learn faster) aligns pattern
learning speeds. We consider this further evidence that both grokking and epoch-wise double descent
occur as a result of similar learning dynamics resulting from different speeds of pattern development.
Nanda & Lieberum (2022) investigate grokking through mechanistic interpretability, with findings in
line with our results (specifically observing the development of a Type 3 pattern, and analyzing the
final algorithm).

Pattern Learning at Different Speeds. Heckel & Yilmaz (2020) find different parts of networks
learning at different speeds can cause two bias-variance trade-off curves with different minima,
leading to double descent in test error; they show that adjusting step-sizes of different layers can
align the learning curves and eliminate double descent behavior. Heckel & Yilmaz (2020) argue
that epoch-wise double descent occurs due to this difference in learning speed, as opposed to due to
regulating model complexity. Pezeshki et al. (2021) use a linear teacher-student model to demonstrate
that epoch-wise double descent can be explained by different patterns being learned at different
speeds. Stephenson & Lee (2021) find similar, and experimentally demonstrate double descent can
be avoided by removing or accelerating slow-to-learn features.

Weight Decay Both Nakkiran et al. (2021) and Pezeshki et al. (2021) find that weight decay acts as
a capacity constraint, resulting in both weight decay-wise double descent (via EMC regulation) and
preventing the learning of slower features. In the grokking setting, however, weight decay plays a
significant role in speeding up time to generalization (Power et al., 2022). We speculate that though
weight decay does lower model capacity, it also imposes an inductive bias which favors the grokked
solution and thus speeds up generalization.

6 Conclusion

In this work, we cover two phenomena in deep learning that were previously studied in isolation—
grokking and double descent—and argue that they are best understood as instances of the same
underlying learning dynamics.

The project of building a principled understanding of how and when networks generalize may be
especially important from the point of view of AGI safety, the problem of ensuring that advanced AI
systems are safe despite pursuing misaligned goals (Carlsmith, 2022; Bostrom, 2014) and incentives
to seek power or deceive human operators for instrumental reasons (Turner et al., 2021; Omohundro,
2008). A central problem is that we may need to be certain of the safety of a model before we scale
it to a capability level beyond which we cannot control it. Concerningly, it is well-known that the
out-of-distribution (OOD) generalization behavior of deep learning systems can be hard to control or
predict. A robust theory of generalization and learning in neural networks may be necessary to solve
this problem.
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A The science of deep learning may be important for safety

A key factor that influences whether we will be able to solve alignment is the degree to which our
AI systems are transparent and well-understood. A system is transparent if we are able to ascertain
what process lead it to produce a specific output or action; we might try to train a system to produce
visible thoughts, truthfully report its knowledge, or probe it with interpretability tools (Christiano
et al., 2021; Soares, 2021; Lanham, 2022; Lin et al., 2021; Olah et al., 2018).

Studying deep learning does not directly give us transparency, but it improves our understanding of
its inner workings. This may help us build better interpretability tools, or make sure that our training
process incentivizes truthful reporting rather than deception (Christiano et al., 2021). An improved
understanding of how deep learning systems work and what they are capable of has direct benefits as
well. For example, we may want to build a system that can perform a specific feat of engineering,
while making sure that it does not have the capability to model humans; or we might try to build
a system that optimizes for the short-term approval of its operator, and we would like to know in
advance if it will generalize in a way that leads to it deceiving its operator (in order to gain a higher
measured approval score) once it gains the ability to do so.

A science of deep learning may also be harmful if theoretical or empirical breakthroughs result in
faster advancement of potentially dangerous capabilities. This is a major drawback of this line of
research. A tentative argument in favor of scientific / conceptual work is that it seems possible to
build human-level AI systems without a radically improved understanding of deep learning; however,
building safe human-level AI is a harder problem that will likely require a more robust theory. Thus
advancing the science of deep learning seems somewhat more critical for solving problems of safety
than of capabilities. We note that this argument is speculative, and may turn out to be wrong.

B Toy Model Equations

We model the learning of patterns, or particular input-output functions learned during the training
process. At timestep t, we say pattern i achieves predictiveness pi(t) on the training set, modeled by
a sigmoid function parameterized by a maximum predictiveness γi, inflection point bi, and learning
speed αi:

pi(t) =
γi

1 + e−αi(x−bi)

Individual features then generalize according to a generalization parameter gi, with test performance
geni(t) = gi · pi(t). As described in Section 3, we model learning as the interaction of three pattern
types:

• Type 1: Well-generalizing patterns which are learned quickly during training (heuristics).
• Type 2: Poorly-generalizing patterns which are learned slower than heuristics but quicker

than category 3 patterns.
• Type 3: Well-generalizing patterns which are learned slowly, but are ultimately preferred

by the training regime. These patterns are favored, and so are used when multiple patterns
can predict the same input.

We define train accuracy acc(t) at timestep t per:

acc(t) = p1(t) ∪ p2(t) ∪ p3(t)

= p1(t) + p2(t) + p3(t)− p1(t)p2(t)−
p1(t)p3(t)− p2(t)p3(t) + p1(t)p2(t)p3(t)

We define pattern usage ui(t) as the proportion of examples seen by pi at timestep t, which is
upperbounded by pi(t):

u1(t) = p1(t)− p1(t)p3(t) +
p1(t)p2(t)p3(t)− p1(t)p2(t)

2

u2(t) = p2(t)− p2(t)p3(t) +
p1(t)p2(t)p3(t)− p1(t)p2(t)

2
u3(t) = p3(t)
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Note the special treatment of Type 3 patterns, which are always used when multiple patterns can
predict an input (as opposed to being randomly decided between). Note also that u1(t) + u2(t) +
u3(t) ≤ 1, ∀t ≥ 0, pi ≤ 1.

We then say our model generalizes according to each pattern’s generality gi applied to each usage
ui(t):

gen(t) = g1u1(t) + g2u2(t) + g3u3(t) (1)

C Experiment Details

In all of our experiments, we train decoder-only transformer with causal attention masking. Each
residue is encoded as a symbol, and loss and accuracy are only evaluated on the answer part of the
equation. Unless otherwise stated, we use a 2-layer network of width 128, with a single attention
head. We typically train for 400 thousand optimization steps via AdamW (β1 = 0.9, β2 = 0.98),
with learning rate of 1e-3 and weight decay of 1e-5.

D Additional Figures
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Figure 4: Left: Test accuracy as function of training steps and model size. A faint double descent in
test accuracy is visible, and delayed generalization is clear both epoch-wise (vertically) and model-
wise (horizontally). Right: Training accuracy as a function of training steps and model size.
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Figure 5: Model-wise grokking, with each point a transformer of the corresponding embedding
dimension trained for 400K optimization steps. Lines are smoothed data via a Gaussian filter. Left:
Accuracy, with delayed generalization. Right: Loss, with a rise in test loss followed by a fast descent.
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