
CodeRetriever: Unimodal and Bimodal Contrastive Learning
for Code Search

Anonymous ACL submission

Abstract

In this paper, we propose the CodeRetriever001
model, which combines the unimodal and bi-002
modal contrastive learning to train function-003
level code semantic representations, specif-004
ically for the code search task. For uni-005
modal contrastive learning, we design a006
semantic-guided method to build positive code007
pairs based on the documentation and func-008
tion name. For bimodal contrastive learn-009
ing, we leverage the documentation and in-010
line comments of code to build text-code011
pairs. Both contrastive objectives can fully012
leverage the large-scale code corpus for pre-013
training. Experimental results on several pub-014
lic benchmarks, (i.e., CodeSearch, CoSQA,015
etc.) demonstrate the effectiveness of CodeRe-016
triever in the zero-shot setting. By fine-tuning017
with domain/language specified downstream018
data, CodeRetriever achieves the new state-of-019
the-art performance with significant improve-020
ment over existing code pre-trained models.021
We will make the code, model checkpoint, and022
constructed datasets publicly available.023

1 Introduction024

Code search aims to retrieve functionally relevant025

code given a natural language query to boost de-026

velopers’ productivity (Parvez et al., 2021; Husain027

et al., 2019). Recently, it has been shown that028

code pre-training techniques, such as CodeBERT029

(Feng et al., 2020), GraphCodeBERT (Guo et al.,030

2021), could significantly improve the code search031

performance via self-supervised pre-training using032

large-scale code corpus (Husain et al., 2019).033

However, existing code pre-training approaches034

directly adopt (masked) language modeling as the035

training objective which targets on learning to pre-036

dict (masked) tokens in a given code context (Feng037

et al., 2020; Guo et al., 2021; Ahmad et al., 2021;038

Wang et al., 2021b). However, this token-based039

approach generally results in poor code semantic040

representations due to two reasons. The first one is041

Doc:
Return the Fibonacci number.
Code:
def Fibonacci(n):

if n == 0:
return 0

elif n in [1,2]:
return 1

return \
Fibonacci(n-1)+Fibonacci(n-2)

Doc:
Get the Fibonacci number.
Code:
def Fibonacci_Number(index):

cache = [0]*(index+1)
cache[0] = 0
cache[1] = 1
cache[2] = 1
for i in range(3,index+1):

cache[i] = \
cache[i-1] + cache[i-2]

return cache[index]

(a) Fibonacci

Doc:
Sort the input array into ascending order.
Code:
def bubbleSort(arr):

n = len(arr)
for i in range(n):

for j in range(0, n-i-1):
if adjacent elements appear in
descending order, swap them.

if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]

(b) BubbleSort

Figure 1: Code examples. (a) Two different implemen-
tations of Fibonacci number algorithm; (b) Documen-
tation, in-line comment, and code in BubbleSort imple-
mentation.

the anisotropy representation issue. As discussed 042

in (Li et al., 2020), the token-level self-training 043

approach causes the embeddings of high-frequency 044

tokens clustered and dominate the representation- 045

space, which greatly limits the expressiveness of 046

long-tailed low-frequency tokens in pre-trained 047

models. Thus, the anisotropic representation-space 048

induces poor function-level code semantic repre- 049

sentation (Li et al., 2020). In programming lan- 050

guage, the problem of token imbalance is even 051

more severe than that of natural language. For ex- 052

ample, common keywords and operators such as 053

“=”, “{”, and “}” appear almost everywhere in Java 054

code. The second one is the cross-language repre- 055

sentation issue. In CodeSearchNet corpus (Husain 056

et al., 2019), it contains codes from six commonly 057

used programming languages such as Python, Java, 058

and etc. Since the code with mixed programming 059

languages can hardly appear within the same con- 060

1

text, it is challenging for the pre-trained model to061

learn a unified semantic representation of the code062

with the same functionality but using different pro-063

gramming languages.064

To address these limitations, we propose the065

CodeRetriever model, focusing on learning the066

function-level code representations, specifically for067

code search scenarios. the CodeRetriever model068

consists of a text encoder and a code encoder,069

which encodes text/code into separate dense vec-070

tors. The semantic relevance between code and text071

(or code and code) is measured by the similarity072

between dense vectors (Karpukhin et al., 2020b;073

Huang et al., 2013; Shen et al., 2014).074

In the training of CodeRetriever, the code/text075

encoders are optimized by minimizing two types076

of contrastive losses : unimodal contrastive loss077

and bimodal contrastive loss. The former encour-078

ages the model to learn the semantic relevance be-079

tween code and code; the latter helps to model080

the relevance between code and text. Specifically,081

in the unimodal contrastive learning, it could pro-082

vide cross-language code-code pairs with similar083

functionality as the training samples for optimiz-084

ing CodeRetriever, which helps mitigate the cross-085

language representation issue. Through two con-086

trastive learning objectives, CodeRetriever can ex-087

plicitly model the function-level code semantic rep-088

resentation, which could alleviate the anisotropy089

representation issue (Gao et al., 2021b; Yan et al.,090

2021).091

In this work, we adopt the commonly used Code-092

SearchNet corpus (Husain et al., 2019) for training093

the CodeRetreiver. CodeSearchNet mainly con-094

tains paired dataset (a function paired with a docu-095

ment) and unpaired dataset (only a function). The096

paired dataset could be directly used for bimodal097

contrastive learning. For unimodal contrastive098

learning in CodeRetriver, we build a code-code099

paired dataset by an unsupervised semantic-guided100

approach. Figure 1(a) shows a code-code exam-101

ple: two implementations of the Fibonacci number102

algorithm. To further take advantage of unpaired103

data (only code), we extract the code and in-line104

comment paired dataset to enhance the bimodal105

contrastive learning in CodeRetriever. Figure 1(b)106

shows an example to indicate that the in-line com-107

ment (comment shortly) is also semantically related108

to the code. In detail, the underlying logic of “if ad-109

jacent elements appear in descending order, swap110

them” corresponds to sort the input array into an111

ascending order. 112

The main contributions of this paper can be 113

summarized as: 1) We propose the CodeRetriever 114

model which leverages unimodal and bimodal con- 115

trastive learning for function-level code representa- 116

tion learning. 2) We construct large-scale code-to- 117

comment and code-to-code datasets from Code- 118

SearchNet by an unsupervised approach. The 119

datasets will be publicly available to the research 120

community. 3) Experimental results demonstrate 121

that CodeRetriever achieves a new state-of-the-art 122

performance on eleven code search datasets. 123

2 Preliminary: Code Search 124

CodeSearchNet corpus (Husain et al., 2019) is the 125

largest publicly available code dataset. The cor- 126

pus is collected from open-source non-fork GitHub 127

repositories, which contains 2.1M paired data (a 128

function paired with a document) and 6.4M un- 129

paired data (only functions). As described in (Hu- 130

sain et al., 2019), the document of the code is ex- 131

tracted from the function-header comments. 132

In the literature, code-search approaches (Hu- 133

sain et al., 2019; Jain et al., 2020; Feng et al., 2020; 134

Guo et al., 2021) make use of the paired code- 135

document dataset in CodeSearchNet corpus to train 136

a siamese encoder model for language to code re- 137

trieval. However rich unlabeled code corpus is 138

either simply abandoned or severed as code pre- 139

training corpus (Feng et al., 2020; Guo et al., 2021). 140

We argue that token-level code pre-training objec- 141

tives do not explicitly learn the function-level code 142

representation. Thus existing code pre-training 143

models (Jain et al., 2020; Feng et al., 2020; Guo 144

et al., 2021) are not optimized for code search sce- 145

narios. 146

In this work, we propose the CodeRetriever to 147

learn the function-level code semantic presenta- 148

tion. As illustrated in Figure 2, CodeRetriever is 149

initialized with code pre-trained model (i.e., Graph- 150

CodeBERT). It takes code-doc and code-comment 151

paired data for bimodal contrastive learning, and 152

code-code paired data for unimodal contrastive 153

learning. 154

3 Approach 155

In this section, we present the model architecture 156

and training objective of CodeRetriever. 157

CodeRetriever adopts a siamese code/text en- 158

coder architecture to represent code/text as dense 159

vectors. Let Ecode(·; θ) and Etext(·;φ) denote code 160

2

Pretrained Code-Models

CodeBERT

GraphCodeBERT

Unlabeled
Code

…

Code-Doc
Code-
Code

Code-
Comment

CodeRetriever

Construct

initialization

Python
Query-Code

Java
Query-Code

…
Fine-Tune / Zero-Shot

PHP
Query-Code

Figure 2: The illustration of the CodeRetreiver training pipeline.

and text encoders, respectively. The semantic sim-161

ilarities between code-code pair (c, c+), and text-162

code pair (t, c+) are calculated as:163

s(c, c+) =
〈
Ecode(c; θ), Ecode(c

+; θ)
〉
, (1)164

s(t, c+) =
〈
Etext(t;φ), Ecode(c

+; θ)
〉
. (2)165

where 〈·〉 indicates cosine similarity operation.166

3.1 Unimodal Contrastive Learning167

Given a paired code-code training sample (c, c+),168

the unimodal contrastive loss is given by:169

Luni = − ln
exp (τs(c, c+))∑
c′∈C exp (τs(c, c′))

, (3)170

where τ is the temperature, set C consists of the171

paired code c+ and N − 1 unpaired code samples172

obtained by in-batch negative sampling (Karpukhin173

et al., 2020b).174

3.2 Bimodal Contrastive Learning175

Given a paired text-code training instance (t, c+),176

the bimodal contrastive loss is defined as the same177

manner:178

Lbi = − ln
exp (τs(t, c+))∑
c′∈C exp (τs(t, c′))

, (4)179

where the definitions of τ and C are the same as180

in eqn. 3. Figure 3 gives an example to show the181

unimodal/bimodal contrastive learning in CodeRe-182

treiver.183

3.3 Overall Objective184

As illustrated in Figure 2, CodeRetreiver takes185

two types of text-to-code for bimodal contrsa-186

tive training, which are code-document and code-187

comment. Therefore, we use L1bi and L2bi to de-188

note code-document and code-comment contrsative189

loss, respectively. The overall training objective for190

CodeRetreiver is:191

L(θ, φ) = αLuni + βL1bi + γL2bi (5) 192

where α, β and γ are three scalar values, we let 193

α = β = γ = 1 in our experiment. 194

4 Data Collection 195

In the section, we give the instruction on building 196

the code-comment and code-code paired datasets 197

from CodeSearchNet corpus. 198

4.1 Code-Comment 199

In-line comment as shown in Figure 1(b) can reflect 200

the code’s semantic, despite certain noisy signals. 201

We first leverage the code parser (tree-sitter) to split 202

the code-block into two parts: pure code and the 203

corresponding in-line comments. Then we perform 204

post-processing to filter noisy paired samples to 205

obtain the code-comment corpus. 206

• We merge comments with continuous lines into 207

one comment. This is inspired by the phe- 208

nomenon where developers usually write a com- 209

plete comment into multiple-lines to make it 210

easier to read, like in Figure 1(b). 211

• Comments with little information are removed, 212

including: 1) shorter than four tokens; 2) com- 213

ments beginning with “TODO”; 3) comments 214

for automated code checking, like “Linter · · · ”1. 215

4) non-text comments, i.e., commented code. 216

• Functions with little semantic information are 217

removed such as functions with names “__get- 218

ter__”, “__str__” etc, are removed. 219

After cleaning, we collect about 1.9 million code- 220

comment pairs. 221

4.2 Code-Code 222

code-code paired datasets can provide explicit train- 223

ing signals for models to learn the semantic repre- 224

1Linter is a static analysis tool for checking code.

3

Or

Unimodal Contrastive Learning Bimodal Contrastive Learning

Code-Text BatchCode-Code Batch

positive

negative

Figure 3: Unimodal and bimodal contrastive learning in CodeRetriever.

sentation of code across different programming225

languages. However, it is challenging to build226

large-scale and high-quality semantically relevant227

code-to-code pairs from an unlabeled corpus. Note228

that human annotation is usually costly and not229

scalable. By leveraging the unsupervised-learning230

techniques introduced in the following section, we231

collect a large-scale code-to-code corpus.232

Step 1. we train two unsupervised SimCSE (Gao233

et al., 2021b) models on function names and docu-234

ments, named “NameMatcher” and “DocMatcher”,235

respectively.236

Step 2. for a given function in the corpus, we237

retrieve its similar functions through function name238

using the “NameMatcher”. We keep function pairs239

if their similarity scores are greater than thresh-240

old (0.75). After iterating over all the functions241

in the corpus, we obtain a paired code-code set242

denoted as CName. One similar manner is applied243

to “DocMatcher”, which retrieves code-code pairs244

from document-code corpus by matching their cor-245

responding documents. The code-code pairs col-246

lected by “DocMatcher” is denoted as CDoc.247

Step 3. we train a code-code binary classifier248

model Mc on CDoc, where negative code-pairs are249

randomly-sampled in batch.250

Step 4. The code-code pairs with their predic-251

tion scores by Mc smaller than certain threshold252

are removed from CName and CDoc. Let C∗Name and253

C∗Doc be the cleaned subsets of CName and CDoc.254

The final code-code corpus is the joint of set C∗Name255

and C∗Doc.256

We provide a more detailed description on build-257

ing code-code dataset in Appendix B. The col-258

lected code-code corpus contains 8.6 million pairs.259

4.3 Implementation Details 260

The CodeRetriever is initialized with pre-trained 261

GraphCodeBERT checkpoint released by Guo 262

et al. (2021), which is a 12 layers Transformer en- 263

coder, with hidden sizes of 768 and attention heads 264

of 12. We use FAISS (Johnson et al., 2017) to accel- 265

erate the matching of similar function names and 266

documentations. The overall training corpus for 267

CodeRetreiver contains 2.1 million code-doc pairs, 268

8.6 million code-code pairs, and 1.9 million code- 269

comment pairs. When a code has multiple positive 270

text or code samples, we randomly sample one for 271

it everytime during training. The CodeRetriever 272

is trained with 8 NVIDIA Tesla V100s-32GB for 273

1.8 days. The batch-size, learning rate and training 274

step of is 256, 4e-5 and 100K, respectively. The 275

max sequence length of the text and code is set as 276

128 and 320, respectively. 277

5 Experiment 278

5.1 Benchmark Datasets 279

We evaluate CodeRetriever on several code search 280

benchmarks, including CodeSearch (Husain et al., 281

2019; Guo et al., 2021), Adv (Lu et al., 2021), 282

CoSQA (Huang et al., 2021), CoNaLa (Yin 283

et al., 2018), SO-DS (Heyman and Cutsem, 2020), 284

StaQC (Yao et al., 2018). The CodeSearch bench- 285

mark contains six datasets with different program- 286

ming language each to evaluate models’ compre- 287

hensive performance on various programming lan- 288

guages. The Adv dataset normalizes the method 289

names and variable names in the dev/test set, which 290

makes it more challenging. Dataset CoNaLa, SO- 291

DS, and StaQC are collected from stackoverflow 292

4

questions, and queries in CoSQA are collected293

from web search engines. Therefore, the queries in294

CoSQA, CoNaLa, SO-DS, and StaQC are closer295

to the real code-search scenario. The statistics of296

benchmark datasets are listed in Appendix A. We297

use Mean Reciprocal Rank (MRR) (Hull, 1999) as298

the evaluation metric on all datasets.299

5.2 Experiment: Zero-Shot300

To compare with existing code pre-trained models,301

we evaluate CodeRetriever on code search bench-302

marks in the zero-shot learning setting. In experi-303

ments, we take GraphCodeBERT (Guo et al., 2021)304

and ContraCode (Jain et al., 2020) for compari-305

son. GraphCodeBERT is trained with token-level306

masked language model on CodeSearchNet cor-307

pus (Husain et al., 2019). Since GraphCodeBERT308

doesn’t explicitly give the function-level representa-309

tion, we take the hidden states of the “[CLS]” token310

of the last layer to represent the whole code/text,311

denoted as GraphCodeBERTcls. Correspondingly,312

the average of hidden states over all tokens of the313

last layer is denoted as GraphCodeBERTavg. We314

use inner product similarity to retrieve and measure315

the relevance between query and code. Contra-316

Code (Jain et al., 2020) is specifically pre-trained317

only for JavaScript, which adopts a data augmen-318

tation approach to generate code-code pairs for319

contrastive learning.320

5.2.1 Results321

The top-half of Table 1 and Table 2 shows the per-322

formance of CodeRetriever on eleven code-search323

datasets without any language/domain specific fine-324

tuning. CodeRetriever significantly outperforms325

existing code pre-trained models on all datasets,326

which demonstrates that function-level code rep-327

resentation with contrastive learning is critical for328

code search tasks. We also report the performance329

of CodeRetriever trained with each contrastive loss330

individually in Table 1 and Table 2. As we can see,331

CodeRetriever with single unimodal contrastive332

loss: CodeRetreiveruni, could not achieve good333

enough performance on zero-shot code search. But334

it still outperforms existing baseline approaches sig-335

nificantly. The CodeRetreiver model trained with336

combined unimodal and bimodal contrastive losses337

achieves the best performance on all datasets.338

5.3 Experiment: Fine-Tuning339

In the fine-tuning experiments, CodeRetriever and340

other code pre-trained models are fine-tuned on the341

eleven language/domain specific code search tasks, 342

each task provides a set of labeled query-code pairs 343

for model adaptation. 344

5.3.1 Fine-tunning Approaches 345

Previous works on dense text retrieval (Karpukhin 346

et al., 2020a; Xiong et al., 2021; Qu et al., 2021) 347

show that the strategy of selecting negative sam- 348

ples could greatly affect the model performance in 349

contrastive learning tasks. Therefore, we explore 350

the following three approaches for CodeRetriever 351

fine-tuning. 352

In-Batch Negative For a <query, code> pair in 353

a batch, it uses other codes as negatives in the 354

batch (Karpukhin et al., 2020a). Existing code 355

pre-trained models take in-batch negative as the de- 356

fault fine-tuning method. (Feng et al., 2020; Guo 357

et al., 2021; Wang et al., 2021a) 358

Hard Negative It can pick “hard” representative 359

negative samples other than random negatives. We 360

follow Gao et al. (2021a) for Hard Negative fine- 361

tuning. 362

AR2 Adversarial Retriever-Ranker is a recently 363

proposed training framework for contrastive learn- 364

ing (Zhang et al., 2021). It adopts an adversarial- 365

training approach to select “hard” negative samples 366

iteratively. 367

In fine-tuning experiments, we conduct grid 368

search over learning-rate in {2e-5, 1e-5}, batch- 369

size in {32, 64, 128}. Training epoch, warm-up 370

step, and weight decay are set to 12, 1000, and 371

0.01, respectively on all tasks. 372

We compare CodeRetriever with existing code 373

pretrained models: CodeBERT (Feng et al., 2020), 374

pre-trained with MLM and replaced token detec- 375

tion tasks; GraphCodeBERT (Guo et al., 2021) 376

integrates data flow of code as input tokens, pre- 377

trained with MLM, data flow edge prediction and 378

node alignment tasks. We also use its original 379

pre-training objective further pre-train it, with 380

the same steps as CodeRetriever, indicated by 381

GraphCodeBERT+; SynCoBERT (Wang et al., 382

2021a), pre-trained on code-AST pairs with con- 383

trastive learning. 384

5.3.2 Results 385

Table 1 and Table 2 show the performance of 386

CodeRetriever and baseline methods on all bench- 387

mark datasets. First, we report the performance 388

of CodeRetriever (In-Batch Negative), which uses 389

5

Lang Ruby Javascript Go Python Java PHP Overall

Zero-Shot
GraphCodeBERTavg 0.6 0.5 0.4 0.2 0.2 0.2 0.35
GraphCodeBERTcls 1.5 0.4 0.2 0.4 0.7 2.1 0.88
ContraCode - 1.1 - - - - -
CodeRetriever (Luni) 33.3 26.0 53.8 23.5 27.9 20.7 30.9
CodeRetriever (L1

bi) 64.8 61.6 85.4 64.9 66.8 59.8 67.2
CodeRetriever (L2

bi) 59.3 50.8 64.8 49.3 50.0 39.1 52.2
CodeRetriever 68.7 63.7 87.6 67.7 69.0 62.8 69.1

Fine-Tuning
ContraCode (Jain et al., 2020) - 30.6 - - - - -
SyncoBERT (Wang et al., 2021a) 72.2 67.7 91.3 72.4 72.3 67.8 74.0
CodeBERT (Feng et al., 2020) 67.9 62.0 88.2 67.2 67.6 62.8 69.3
GraphCodeBERT (Guo et al., 2021) 70.3 64.4 89.7 69.2 69.1 64.9 71.3
GraphCodeBERT+ 70.7 64.8 89.6 69.2 69.2 64.7 71.4
CodeRetriever (In-Batch Negative) 75.3 (+5.0) 69.5 (+5.1) 91.6 (+1.9) 73.3 (+4.1) 74.0 (+4.9) 68.2 (+3.3) 75.3 (+4.0)
CodeRetriever (Hard Negative) 75.1 (+4.8) 69.8 (+5.4) 92.3 (+2.6) 74.0 (+4.8) 74.9 (+5.8) 69.1 (+4.2) 75.9 (+4.6)
CodeRetriever (AR2) 77.1 (+6.8) 71.9 (+7.5) 92.4 (+2.7) 75.8 (+6.6) 76.5 (+7.4) 70.8 (+5.9) 77.4 (+6.1)

Table 1: The comparison on the CodeSearch dataset. We get the ContraCode’s result by fine-tuning the released
checkpoint (Jain et al., 2020). Other results of compared models are reported by previous papers (Feng et al., 2020;
Guo et al., 2021; Wang et al., 2021a).

Dataset Adv CoSQA CoNaLa SO-DS StaQC Overall

Zero-Shot
GraphCodeBERTavg 1.1 0.2 0.6 0.2 0.3 0.48
GraphCodeBERTcls 0.5 0.8 2.5 0.6 0.5 0.98
CodeRetriever (Luni) 15.9 16.1 8.1 4.0 4.6 9.7
CodeRetriever (L1

bi) 33.8 45.3 22.1 16.9 15.3 26.7
CodeRetriever (L2

bi) 32.7 39.6 24.2 16.4 15.1 25.6
CodeRetriever 34.7 47.5 25.8 17.2 15.5 28.1

Fine-Tuning
SyncoBERT (Wang et al., 2021a) 38.1 - - - - -
CodeBERT (Feng et al., 2020) 27.2 64.7 20.9 23.1 23.4 31.9
GraphCodeBERT (Guo et al., 2021) 35.2 67.5 23.5 25.3 23.8 35.1
GraphCodeBERT+ 35.9 67.4 23.7 25.2 24.1 35.3
CodeRetriever (In-Batch Negative) 43.0 (+7.8) 69.6 (+2.1) 29.6 (+6.1) 27.1 (+1.8) 25.5 (+1.7) 39.0 (+3.9)
CodeRetriever (Hard Negative) 45.1 (+9.9) 74.1 (+6.6) 29.9 (+6.4) 31.8 (+6.5) 24.6 (+0.8) 41.1 (+6.0)
CodeRetriever (AR2) 46.9 (+11.7) 75.4 (+7.9) 29.1 (+5.6) 33.9 (+7.6) 24.2 (+0.4) 41.9 (+6.8)

Table 2: The comparison on datasets which are closer to the real scenario. The results of CodeBERT, GraphCode-
BERT and SyncoBERT on the Adv dataset are reported by previous papers, other results are from our implemen-
tation since they are not reported previously.

the same finetuning approach as other baselines to390

ensure a fair comparison. We can see that CodeRe-391

triever obtains the best overall performance com-392

pared with all other baseline approaches. Specif-393

ically, CodeRetriever improves over GraphCode-394

BERT by 4.0 absolute points overall, which demon-395

strates the effectiveness of contrastive pre-training396

for code search while GraphCodeBERT+ does not397

get significant improvement. Meanwhile, CodeRe-398

triever outperforms the previous state-of-the-art399

SyncoBERT (Wang et al., 2021a) model on all tasks400

with reported results.401

Comparing different fine-tuning approaches, we402

can see that the AR2 is generally better than In-403

Batch Negatives and Hard Negatives. i.e., CodeRe-404

triever(AR2) improves over In-Batch Negative by 405

3.0 absolute points in average, and improves over 406

Hard Negative by 1.1 absolute points in average. 407

The experiment results suggest that selecting a 408

good fine-tuning approach is also very important 409

for downstream code search tasks. From Table 2, 410

an interesting observation is that In-Batch Negative 411

outperforms Hard Negatives and AR2 on StaQC 412

benchmark. A possible explanation is StaQC con- 413

tains more false query-code pairs in the training set 414

compared with other benchmarks, as it is collected 415

from stackoverflow through a rule-based method 416

without any human annotations, and In-Batch Neg- 417

ative is more noise-tolerance than AR2 and Hard- 418

Negative. 419

6

(a) without Luni (b) with Luni

Figure 4: The 2-D visualizations of Python and Java’s
representation, where and represent samples of Java
and Python, respectively.

5.4 Analysis420

Low-Resource Code Search We evaluate the421

performance of CodeRetriever on low resource sce-422

nario, i.e., only a few hundreds of paired query-423

code data for fine-tuning. Table 4 shows the results424

of CodeRetriever and GraphCodeBERT in the low-425

resource setting on CoSQA dataset, where number426

of training examples is varied from 500 to FULL427

(19K). We can see that CodeRetriever could reach428

reasonable performance in the low-resource setting.429

Cross-Language Code Search In this setting,430

we finetune the code pre-trained models with query-431

Python corpus (CoNaLa (Yin et al., 2018)) and432

evaluate it with query-Java test set Li et al. (2019).433

The queries in the Python corpus and Java corpus434

are both collected from stackoverflow. In Table 3,435

it shows that unimodal contrastive loss in CodeRe-436

triever significantly helps the cross-language code437

search task. By combining bimodal contrastive438

loss, CodeRetriever could obtain better perfor-439

mance.440

Visualization To further analyze the effect of441

unimodal contrastive learning, we visualize the 2-442

D latent space of representations with or without443

unimodal contrastive learning by t-SNE (van der444

Maaten and Hinton, 2008). In the Figure 4(a),445

we can see the representations of Java and Python446

code appear in two separate clusters for the model447

without unimodal contrastive learning (GraphCode-448

BERT). However, in Figure 4(b), their representa-449

tion space are overlapped. It shows that the uni-450

modal contrastive learning helps to learn a unified451

representation space of code with different pro-452

gramming languages.453

Code-to-Code Search Results We fine-tune and454

evaluate CodeRetriever on code-to-code search455

task. In this task, given a code, the model is asked456

to return a semantically related code. We con-457

Method MRR

GraphCodeBERT 41.6
CodeRetriever (Luni) 48.4
CodeRetriever (Luni + Lbi) 53.3

Table 3: The comparison on cross language code
search.

Train Size 500 1000 2000 4000 FULL

GraphCodeBERT 43.2 49.9 54.0 57.2 67.5
CodeRetriever 54.7 55.6 58.1 60.1 69.6

Table 4: The performance comparison on CosQA with
different training size.

duct experiment on POJ-104 dataset (Mou et al., 458

2016; Lu et al., 2021) and the results are shown 459

in in table 5. We see that CodeRetriever achieves 460

better performance compared to other baselines, 461

which demonstrates its scalability and potentiality 462

for other code understanding tasks. 463

Uniformity and Alignment To study the effect 464

of CodeRetriever on the sequence-level represen- 465

tation space, we use the alignment and uniformity 466

metrics (Wang and Isola, 2020) to see sequence- 467

level representation distribution changes during 468

training, shown in Figure 5. We see that the uni- 469

formity loss of CodeRtriever descend gradually, 470

indicating the anisotropy is alleviated. We find that 471

the alignment loss also has a declining trend, which 472

shows the training of CodeRetriever can help align 473

the representation of code and natural language. 474

5.5 Ablation Study 475

To understand the effect of each component in 476

CodeRetriever, we conduct ablation study on the 477

CodeSearch Java dataset and SO-DS. We add the 478

components of CodeRetriever to the initial model 479

one-by-one. We find that using code-code pairs 480

without denoising for unimodal contrastive learn- 481

ing brings performance degradation. And with 482

Model MAP@R

RoBERTa (Liu et al., 2019) 76.67
CodeBERT (Feng et al., 2020) 82.67
GraphCodeBERT (Guo et al., 2021) 85.16
SynCoBERT (Wang et al., 2021a) 88.24
Boost (Ding et al., 2021) 82.77
Corder (Bui et al., 2021) 84.10
CodeRetriever 88.85

Table 5: The performance compraison on the code-to-
code retrieval task (Mou et al., 2016; Lu et al., 2021).

7

0 20 40 60 80 100

0.9

1

1.1

1.2

luniform / Training Steps (k)

GraphCodeBERT
CodeRetriever

0 20 40 60 80 100

−2

−1.5

−1

−0.5

lalign / Training Steps (k)

GraphCodeBERT
CodeRetriever

Figure 5: The alignment and uniformity during pre-
training.

Methods CodeSearch SO-DS

GraphCodeBERT (Our Initial) 69.1 25.3
+ Code-to-Code (no denoising) 68.9 25.2
+ Code-to-Code (denoising) 71.1 25.9

+ Doc-to-Code 72.2 26.6
+ Comment-to-Code 74.0 27.1

Table 6: Ablation study.

denoising, it achieves performance improvement.483

This demonstrates the effectiveness of the denois-484

ing step and illustrates the unimodal contrastive485

learning depends on the quality of positive pairs486

construction. Here, we verify a simple and effective487

positive pairs construction method, we leave the de-488

velopment of more powerful construction method489

as future work. From the results of using doc-490

code and comment-code for bimodal contrastive491

learning, we see that the model achieves further492

performance improvement.493

6 Related Work494

6.1 Token-Level Code Pre-training495

Token-level pre-trained models have been widely-496

used for the programming languages (Kanade497

et al., 2020; Karampatsis and Sutton, 2020; Bu-498

ratti et al., 2020; Feng et al., 2020; Guo et al.,499

2021). Karampatsis and Sutton (2020) pre-train500

ELMo on JavaScript corpus for program-repair501

task. Kanade et al. (2020) use a large-scale Python502

corpus to pre-train the BERT model. C-BERT (Bu-503

ratti et al., 2020) is pre-trained on a lot of repos-504

itories in C language and achieves significant im-505

provement in abstract syntax tree (AST) tagging506

task. CodeBERT (Feng et al., 2020) is pre-trained507

by the masked language model and replaced to-508

ken detection tasks on the text-code pairs of six509

programming languages. GraphCodeBERT (Guo510

et al., 2021) introduces the information of dataflow511

based on CodeBERT. Besides these BERT-like512

models, CodeGPT (Svyatkovskiy et al., 2020),513

PLBART (Ahmad et al., 2021), CoTexT (Phan514

et al., 2021), and CodeT5 (Wang et al., 2021b)515

are pre-trained for code generation tasks based on 516

the GPT, BART, and T5, respectively. However, 517

token-level objectives cause the anisotropy prob- 518

lem and have a gap with code search which is based 519

on sequence-level representations. Different from 520

these works, CodeRetriever utilizes the contrastive- 521

learning framework to enhance the sequence-level 522

representation. 523

6.2 Contrastive Learning for Code 524

Recently, several works try to use contrastive learn- 525

ing on the programming language. The key of 526

contrastive learning is building effective positive 527

or negative samples. ContraCode (Jain et al., 2020) 528

and Corder (Bui et al., 2021) use the semantics- 529

preserving transformation, such as identifier re- 530

naming and dead code insertion to build positive 531

pairs. Ding et al. (2021) develop bug-injection 532

to build hard negative pairs. The codes con- 533

structed from these methods are generally unnat- 534

ural and very different from the real code. Syn- 535

CoBERT (Wang et al., 2021a) uses the code and its 536

AST/documentation as positive pair. In CodeRe- 537

triever, we construct the positive pairs from code- 538

code, code-documentation, and code-comment. 539

For the code-code, we design a more natural and 540

diverse positive pairs construction method based 541

on codes from real world. 542

7 Conclusion 543

In this paper, we introduce CodeRetriever which 544

combines the unimodal and bimodal contrastive 545

learning as pre-training tasks for code search. 546

For unimodal contrastive learning, we propose 547

a semantic-guided method to build positive code 548

pairs. For bimodal contrastive learning, we utilize 549

the document and in-line comment to build positive 550

text-code pairs. Extensive experimental results on 551

several publicly available benchmarks show that 552

the proposed CodeRetriever brings significant im- 553

provement and achieves the new state-of-the-art 554

performance on all benchmarks for both zero-shot 555

and downstream data fine-tuning settings. Further 556

analysis results demonstrate the CodeRetriever are 557

also powerful on low resource and cross-language 558

code search tasks. 559

References 560

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and 561
Kai-Wei Chang. 2021. Unified pre-training for pro- 562
gram understanding and generation. In Proceedings 563

8

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211

of the 2021 Conference of the North American Chap-564
ter of the Association for Computational Linguistics:565
Human Language Technologies, pages 2655–2668,566
Online. Association for Computational Linguistics.567

Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021.568
Self-supervised contrastive learning for code re-569
trieval and summarization via semantic-preserving570
transformations. In SIGIR ’21: The 44th Interna-571
tional ACM SIGIR Conference on Research and De-572
velopment in Information Retrieval, Virtual Event,573
Canada, July 11-15, 2021, pages 511–521. ACM.574

Luca Buratti, Saurabh Pujar, Mihaela A. Bornea,575
J. Scott McCarley, Yunhui Zheng, Gaetano576
Rossiello, Alessandro Morari, Jim Laredo, Veronika577
Thost, Yufan Zhuang, and Giacomo Domeniconi.578
2020. Exploring software naturalness through579
neural language models. CoRR, abs/2006.12641.580

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessan-581
dro Morari, Baishakhi Ray, and Saikat Chakraborty.582
2021. Contrastive learning for source code583
with structural and functional properties. CoRR,584
abs/2110.03868.585

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-586
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,587
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-588
BERT: A pre-trained model for programming and589
natural languages. In Findings of the Association590
for Computational Linguistics: EMNLP 2020, pages591
1536–1547, Online. Association for Computational592
Linguistics.593

Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan.594
2021a. Scaling deep contrastive learning batch size595
under memory limited setup. In Proceedings of the596
6th Workshop on Representation Learning for NLP.597

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b.598
Simcse: Simple contrastive learning of sentence em-599
beddings. CoRR, abs/2104.08821.600

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,601
Duyu Tang, Shujie LIU, Long Zhou, Nan Duan,602
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano,603
Shao Kun Deng, Colin Clement, Dawn Drain, Neel604
Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou.605
2021. GraphCodeBERT: Pre-training code represen-606
tations with data flow. In International Conference607
on Learning Representations.608

Geert Heyman and Tom Van Cutsem. 2020. Neu-609
ral code search revisited: Enhancing code snippet610
retrieval through natural language intent. CoRR,611
abs/2008.12193.612

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,613
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.614
2021. CoSQA: 20,000+ web queries for code search615
and question answering. In Proceedings of the 59th616
Annual Meeting of the Association for Computa-617
tional Linguistics and the 11th International Joint618

Conference on Natural Language Processing (Vol- 619
ume 1: Long Papers), pages 5690–5700, Online. As- 620
sociation for Computational Linguistics. 621

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, 622
Alex Acero, and Larry Heck. 2013. Learning 623
deep structured semantic models for web search us- 624
ing clickthrough data. ACM International Confer- 625
ence on Information and Knowledge Management 626
(CIKM). 627

David A. Hull. 1999. Xerox TREC-8 question an- 628
swering track report. In Proceedings of The Eighth 629
Text REtrieval Conference, TREC 1999, Gaithers- 630
burg, Maryland, USA, November 17-19, 1999, vol- 631
ume 500-246 of NIST Special Publication. National 632
Institute of Standards and Technology (NIST). 633

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 634
Allamanis, and Marc Brockschmidt. 2019. Code- 635
searchnet challenge: Evaluating the state of seman- 636
tic code search. CoRR, abs/1909.09436. 637

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, 638
Joseph E. Gonzalez, and Ion Stoica. 2020. Con- 639
trastive code representation learning. CoRR, 640
abs/2007.04973. 641

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. 642
Billion-scale similarity search with gpus. CoRR, 643
abs/1702.08734. 644

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, 645
and Kensen Shi. 2020. Pre-trained contextual em- 646
bedding of source code. CoRR, abs/2001.00059. 647

Rafael-Michael Karampatsis and Charles Sutton. 2020. 648
Scelmo: Source code embeddings from language 649
models. CoRR, abs/2004.13214. 650

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 651
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi 652
Chen, and Wen-tau Yih. 2020a. Dense passage re- 653
trieval for open-domain question answering. In Pro- 654
ceedings of the 2020 Conference on Empirical Meth- 655
ods in Natural Language Processing, EMNLP 2020, 656
Online, November 16-20, 2020, pages 6769–6781. 657
Association for Computational Linguistics. 658

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Ledell 659
Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 660
2020b. Dense passage retrieval for open-domain 661
question answering. CoRR, abs/2004.04906. 662

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, 663
Yiming Yang, and Lei Li. 2020. On the sentence 664
embeddings from pre-trained language models. In 665
Proceedings of the 2020 Conference on Empirical 666
Methods in Natural Language Processing (EMNLP), 667
pages 9119–9130, Online. Association for Computa- 668
tional Linguistics. 669

Hongyu Li, Seohyun Kim, and Satish Chandra. 2019. 670
Neural code search evaluation dataset. CoRR, 671
abs/1908.09804. 672

9

https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1145/3404835.3462840
http://arxiv.org/abs/2006.12641
http://arxiv.org/abs/2006.12641
http://arxiv.org/abs/2006.12641
http://arxiv.org/abs/2110.03868
http://arxiv.org/abs/2110.03868
http://arxiv.org/abs/2110.03868
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
http://arxiv.org/abs/2008.12193
http://arxiv.org/abs/2008.12193
http://arxiv.org/abs/2008.12193
http://arxiv.org/abs/2008.12193
http://arxiv.org/abs/2008.12193
https://doi.org/10.18653/v1/2021.acl-long.442
https://doi.org/10.18653/v1/2021.acl-long.442
https://doi.org/10.18653/v1/2021.acl-long.442
https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/
https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/
https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/
https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/
https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/
http://trec.nist.gov/pubs/trec8/papers/xerox-QA.pdf
http://trec.nist.gov/pubs/trec8/papers/xerox-QA.pdf
http://trec.nist.gov/pubs/trec8/papers/xerox-QA.pdf
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/2007.04973
http://arxiv.org/abs/2007.04973
http://arxiv.org/abs/2007.04973
http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/2001.00059
http://arxiv.org/abs/2001.00059
http://arxiv.org/abs/2001.00059
http://arxiv.org/abs/2004.13214
http://arxiv.org/abs/2004.13214
http://arxiv.org/abs/2004.13214
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
http://arxiv.org/abs/1908.09804

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-673
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,674
Luke Zettlemoyer, and Veselin Stoyanov. 2019.675
Roberta: A robustly optimized BERT pretraining ap-676
proach. CoRR, abs/1907.11692.677

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey678
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,679
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-680
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-681
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-682
daresan, Shao Kun Deng, Shengyu Fu, and Shujie683
Liu. 2021. Codexglue: A machine learning bench-684
mark dataset for code understanding and generation.685
CoRR, abs/2102.04664.686

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin.687
2016. Convolutional neural networks over tree struc-688
tures for programming language processing. In Pro-689
ceedings of the Thirtieth AAAI Conference on Arti-690
ficial Intelligence, February 12-17, 2016, Phoenix,691
Arizona, USA, pages 1287–1293. AAAI Press.692

Md. Rizwan Parvez, Wasi Uddin Ahmad, Saikat693
Chakraborty, Baishakhi Ray, and Kai-Wei Chang.694
2021. Retrieval augmented code generation and695
summarization. CoRR, abs/2108.11601.696

Long N. Phan, Hieu Tran, Daniel Le, Hieu Nguyen,697
James T. Anibal, Alec Peltekian, and Yanfang Ye.698
2021. Cotext: Multi-task learning with code-text699
transformer. CoRR, abs/2105.08645.700

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang701
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and702
Haifeng Wang. 2021. Rocketqa: An optimized train-703
ing approach to dense passage retrieval for open-704
domain question answering. In Proceedings of the705
2021 Conference of the North American Chapter706
of the Association for Computational Linguistics:707
Human Language Technologies, NAACL-HLT 2021,708
Online, June 6-11, 2021, pages 5835–5847. Associ-709
ation for Computational Linguistics.710

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,711
and Gregoire Mesnil. 2014. A latent semantic model712
with convolutional-pooling structure for information713
retrieval. In CIKM.714

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,715
and Neel Sundaresan. 2020. Intellicode compose:716
code generation using transformer. In ESEC/FSE717

’20: 28th ACM Joint European Software Engineer-718
ing Conference and Symposium on the Founda-719
tions of Software Engineering, Virtual Event, USA,720
November 8-13, 2020, pages 1433–1443. ACM.721

Laurens van der Maaten and Geoffrey Hinton. 2008.722
Visualizing data using t-sne. Journal of Machine723
Learning Research, 9(86):2579–2605.724

Tongzhou Wang and Phillip Isola. 2020. Understand-725
ing contrastive representation learning through align-726
ment and uniformity on the hypersphere. In Pro-727
ceedings of the 37th International Conference on728

Machine Learning, ICML 2020, 13-18 July 2020, 729
Virtual Event, volume 119 of Proceedings of Ma- 730
chine Learning Research, pages 9929–9939. PMLR. 731

Xin Wang, Yasheng Wang, Pingyi Zhou, Fei Mi, 732
Meng Xiao, Yadao Wang, Li Li, Xiao Liu, Hao 733
Wu, Jin Liu, and Xin Jiang. 2021a. CLSEBERT: 734
contrastive learning for syntax enhanced code pre- 735
trained model. CoRR, abs/2108.04556. 736

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven 737
C. H. Hoi. 2021b. Codet5: Identifier-aware unified 738
pre-trained encoder-decoder models for code under- 739
standing and generation. CoRR, abs/2109.00859. 740

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, 741
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and 742
Arnold Overwijk. 2021. Approximate nearest neigh- 743
bor negative contrastive learning for dense text re- 744
trieval. In 9th International Conference on Learning 745
Representations, ICLR 2021, Virtual Event, Austria, 746
May 3-7, 2021. OpenReview.net. 747

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng 748
Zhang, Wei Wu, and Weiran Xu. 2021. Consert: 749
A contrastive framework for self-supervised sen- 750
tence representation transfer. In Proceedings of the 751
59th Annual Meeting of the Association for Com- 752
putational Linguistics and the 11th International 753
Joint Conference on Natural Language Processing, 754
ACL/IJCNLP 2021, (Volume 1: Long Papers), Vir- 755
tual Event, August 1-6, 2021, pages 5065–5075. As- 756
sociation for Computational Linguistics. 757

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan 758
Sun. 2018. Staqc: A systematically mined question- 759
code dataset from stack overflow. In Proceedings 760
of the 2018 World Wide Web Conference on World 761
Wide Web, WWW 2018, Lyon, France, April 23-27, 762
2018, pages 1693–1703. ACM. 763

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan 764
Vasilescu, and Graham Neubig. 2018. Learning to 765
mine aligned code and natural language pairs from 766
stack overflow. In Proceedings of the 15th Interna- 767
tional Conference on Mining Software Repositories, 768
MSR 2018, Gothenburg, Sweden, May 28-29, 2018, 769
pages 476–486. ACM. 770

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng Lv, 771
Nan Duan, and Weizhu Chen. 2021. Adversarial 772
retriever-ranker for dense text retrieval. 773

10

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2102.04664
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://arxiv.org/abs/2108.11601
http://arxiv.org/abs/2108.11601
http://arxiv.org/abs/2108.11601
http://arxiv.org/abs/2105.08645
http://arxiv.org/abs/2105.08645
http://arxiv.org/abs/2105.08645
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://www.microsoft.com/en-us/research/publication/a-latent-semantic-model-with-convolutional-pooling-structure-for-information-retrieval/
https://www.microsoft.com/en-us/research/publication/a-latent-semantic-model-with-convolutional-pooling-structure-for-information-retrieval/
https://www.microsoft.com/en-us/research/publication/a-latent-semantic-model-with-convolutional-pooling-structure-for-information-retrieval/
https://www.microsoft.com/en-us/research/publication/a-latent-semantic-model-with-convolutional-pooling-structure-for-information-retrieval/
https://www.microsoft.com/en-us/research/publication/a-latent-semantic-model-with-convolutional-pooling-structure-for-information-retrieval/
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
http://jmlr.org/papers/v9/vandermaaten08a.html
http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html
http://arxiv.org/abs/2108.04556
http://arxiv.org/abs/2108.04556
http://arxiv.org/abs/2108.04556
http://arxiv.org/abs/2108.04556
http://arxiv.org/abs/2108.04556
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
http://arxiv.org/abs/2110.03611
http://arxiv.org/abs/2110.03611
http://arxiv.org/abs/2110.03611

A Statistics of Benchmark Datasets774

Dataset Training Dev Test

CodeSearch-Ruby (Husain et al., 2019) 25K 1.4K 1.2K
CodeSearch-JS (Husain et al., 2019) 58K 3.9K 3.3K
CodeSearch-Go (Husain et al., 2019) 16.7K 7.3K 8.1K
CodeSearch-Python (Husain et al., 2019) 25K 13.9K14.9K
CodeSearch-Java (Husain et al., 2019) 16.4K 5.2K 10.9K
CodeSearch-PHP (Husain et al., 2019) 24.1K 13.0K14.0K
Adv (Lu et al., 2021) 28.0K 9.6K 19.2K
CoSQA (Huang et al., 2021) 19K 0.5K 0.5K
CoNaLa (Yin et al., 2018) 2.8K - 0.8K
SO-DS (Heyman and Cutsem, 2020) 14.2K 0.9K 1.1K
StaQC (Yao et al., 2018) 20.4K 2.6K 2.7K

Table 7: The statistics of benchmark datasets.

B Code-Code Pairs Building775

Algorithm 1: Construct code-code pairs

Data: Paired data (d1, c1), (d2, c2) · · · , (dm, cm);
Unpaired data c∗1, c∗2 · · · , c∗n.

Result: CodePair
1 DocMatcher← SimCSE(d1 · · · , dm);
2 NameMatcher← SimCSE(name1 · · · , namen);
3 CodePaird← [];
4 CodePairn← [];
5 for i← 1· · · m do
6 for j← i· · · m do
7 if sim(di, dj ,DocMatcher)>τ1 then
8 CodePaird.append((ci, cj))
9 end

10 end
11 end
12 for i← 1· · · n do
13 for j← i· · · n do
14 if sim(namei, namej ,NameMatcher)>τ1

then
15 CodePairn.append((ci, cj))
16 end
17 end
18 end
19 Filter← CrossModel(CodePaird)
20 CodePair← [];
21 for ci, cj ∈ CodePaird do
22 if Filter(ci, cj) > τ2 then
23 CodePair.append((ci, cj))
24 end
25 end
26 for ci, cj ∈ CodePairn do
27 if Filter(ci, cj) > τ2 then
28 CodePair.append((ci, cj))
29 end
30 end

11

