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Abstract

In this paper, we propose the CodeRetriever
model, which combines the unimodal and bi-
modal contrastive learning to train function-
level code semantic representations, specif-
ically for the code search task. For uni-
modal contrastive learning, we design a
semantic-guided method to build positive code
pairs based on the documentation and func-
tion name. For bimodal contrastive learn-
ing, we leverage the documentation and in-
line comments of code to build text-code
pairs. Both contrastive objectives can fully
leverage the large-scale code corpus for pre-
training. Experimental results on several pub-
lic benchmarks, (i.e., CodeSearch, CoSQA,
etc.) demonstrate the effectiveness of CodeRe-
triever in the zero-shot setting. By fine-tuning
with domain/language specified downstream
data, CodeRetriever achieves the new state-of-
the-art performance with significant improve-
ment over existing code pre-trained models.
We will make the code, model checkpoint, and
constructed datasets publicly available.

1 Introduction

Code search aims to retrieve functionally relevant
code given a natural language query to boost de-
velopers’ productivity (Parvez et al., 2021; Husain
et al., 2019). Recently, it has been shown that
code pre-training techniques, such as CodeBERT
(Feng et al., 2020), GraphCodeBERT (Guo et al.,
2021), could significantly improve the code search
performance via self-supervised pre-training using
large-scale code corpus (Husain et al., 2019).
However, existing code pre-training approaches
directly adopt (masked) language modeling as the
training objective which targets on learning to pre-
dict (masked) tokens in a given code context (Feng
et al., 2020; Guo et al., 2021; Ahmad et al., 2021;
Wang et al., 2021b). However, this token-based
approach generally results in poor code semantic
representations due to two reasons. The first one is
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Figure 1: Code examples. (a) Two different implemen-
tations of Fibonacci number algorithm; (b) Documen-
tation, in-line comment, and code in BubbleSort imple-
mentation.

the anisotropy representation issue. As discussed
in (Li et al., 2020), the token-level self-training
approach causes the embeddings of high-frequency
tokens clustered and dominate the representation-
space, which greatly limits the expressiveness of
long-tailed low-frequency tokens in pre-trained
models. Thus, the anisotropic representation-space
induces poor function-level code semantic repre-
sentation (Li et al., 2020). In programming lan-
guage, the problem of token imbalance is even
more severe than that of natural language. For ex-
ample, common keywords and operators such as
“=",“{”, and “}” appear almost everywhere in Java
code. The second one is the cross-language repre-
sentation issue. In CodeSearchNet corpus (Husain
et al., 2019), it contains codes from six commonly
used programming languages such as Python, Java,
and etc. Since the code with mixed programming
languages can hardly appear within the same con-



text, it is challenging for the pre-trained model to
learn a unified semantic representation of the code
with the same functionality but using different pro-
gramming languages.

To address these limitations, we propose the
CodeRetriever model, focusing on learning the
function-level code representations, specifically for
code search scenarios. the CodeRetriever model
consists of a text encoder and a code encoder,
which encodes text/code into separate dense vec-
tors. The semantic relevance between code and text
(or code and code) is measured by the similarity
between dense vectors (Karpukhin et al., 2020b;
Huang et al., 2013; Shen et al., 2014).

In the training of CodeRetriever, the code/text
encoders are optimized by minimizing two types
of contrastive losses : unimodal contrastive loss
and bimodal contrastive loss. The former encour-
ages the model to learn the semantic relevance be-
tween code and code; the latter helps to model
the relevance between code and text. Specifically,
in the unimodal contrastive learning, it could pro-
vide cross-language code-code pairs with similar
functionality as the training samples for optimiz-
ing CodeRetriever, which helps mitigate the cross-
language representation issue. Through two con-
trastive learning objectives, CodeRetriever can ex-
plicitly model the function-level code semantic rep-
resentation, which could alleviate the anisotropy
representation issue (Gao et al., 2021b; Yan et al.,
2021).

In this work, we adopt the commonly used Code-
SearchNet corpus (Husain et al., 2019) for training
the CodeRetreiver. CodeSearchNet mainly con-
tains paired dataset (a function paired with a docu-
ment) and unpaired dataset (only a function). The
paired dataset could be directly used for bimodal
contrastive learning. For unimodal contrastive
learning in CodeRetriver, we build a code-code
paired dataset by an unsupervised semantic-guided
approach. Figure 1(a) shows a code-code exam-
ple: two implementations of the Fibonacci number
algorithm. To further take advantage of unpaired
data (only code), we extract the code and in-line
comment paired dataset to enhance the bimodal
contrastive learning in CodeRetriever. Figure 1(b)
shows an example to indicate that the in-line com-
ment (comment shortly) is also semantically related
to the code. In detail, the underlying logic of “if ad-
jacent elements appear in descending order, swap
them” corresponds to sort the input array into an

ascending order.

The main contributions of this paper can be
summarized as: 1) We propose the CodeRetriever
model which leverages unimodal and bimodal con-
trastive learning for function-level code representa-
tion learning. 2) We construct large-scale code-to-
comment and code-to-code datasets from Code-
SearchNet by an unsupervised approach. The
datasets will be publicly available to the research
community. 3) Experimental results demonstrate
that CodeRetriever achieves a new state-of-the-art
performance on eleven code search datasets.

2 Preliminary: Code Search

CodeSearchNet corpus (Husain et al., 2019) is the
largest publicly available code dataset. The cor-
pus is collected from open-source non-fork GitHub
repositories, which contains 2.1M paired data (a
function paired with a document) and 6.4M un-
paired data (only functions). As described in (Hu-
sain et al., 2019), the document of the code is ex-
tracted from the function-header comments.

In the literature, code-search approaches (Hu-
sain et al., 2019; Jain et al., 2020; Feng et al., 2020;
Guo et al., 2021) make use of the paired code-
document dataset in CodeSearchNet corpus to train
a siamese encoder model for language to code re-
trieval. However rich unlabeled code corpus is
either simply abandoned or severed as code pre-
training corpus (Feng et al., 2020; Guo et al., 2021).
We argue that token-level code pre-training objec-
tives do not explicitly learn the function-level code
representation. Thus existing code pre-training
models (Jain et al., 2020; Feng et al., 2020; Guo
et al., 2021) are not optimized for code search sce-
narios.

In this work, we propose the CodeRetriever to
learn the function-level code semantic presenta-
tion. As illustrated in Figure 2, CodeRetriever is
initialized with code pre-trained model (i.e., Graph-
CodeBERT). It takes code-doc and code-comment
paired data for bimodal contrastive learning, and
code-code paired data for unimodal contrastive
learning.

3 Approach

In this section, we present the model architecture
and training objective of CodeRetriever.
CodeRetriever adopts a siamese code/text en-
coder architecture to represent code/text as dense
vectors. Let Feode(+; 0) and Eiex(+; ¢) denote code
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Figure 2: The illustration of the CodeRetreiver training pipeline.

and text encoders, respectively. The semantic sim-
ilarities between code-code pair (¢, c™), and text-
code pair (¢, c™) are calculated as:

S(C7 C+) = <Ec0de(c; 6)7 Ecode(c+§ 0)> y (1)
S(ta C+) = <Etext(t; ¢)7 Ecode(c+§ 9)> . (2)

where (-) indicates cosine similarity operation.

3.1 Unimodal Contrastive Learning

Given a paired code-code training sample (¢, c*),

the unimodal contrastive loss is given by:
exp (1s(c,c™))

Y vec &P (Ts(c; )

Euni =—In ) (3)
where 7 is the temperature, set C consists of the
paired code ¢ and N — 1 unpaired code samples
obtained by in-batch negative sampling (Karpukhin
et al., 2020b).

3.2 Bimodal Contrastive Learning

Given a paired text-code training instance (¢, c"),
the bimodal contrastive loss is defined as the same
manner:

exp (7s(t, c™))
Dwecexp(rs(t,d))

where the definitions of 7 and C are the same as
in eqn. 3. Figure 3 gives an example to show the
unimodal/bimodal contrastive learning in CodeRe-
treiver.

Lpi = —1In “4)

3.3 Overall Objective

As illustrated in Figure 2, CodeRetreiver takes
two types of text-to-code for bimodal contrsa-
tive training, which are code-document and code-
comment. Therefore, we use L], and £, to de-
note code-document and code-comment contrsative
loss, respectively. The overall training objective for
CodeRetreiver is:

L(0,9) = aLuni + BLY; + 7L &)

where «, [ and v are three scalar values, we let
o = 8 =~ = 11in our experiment.

4 Data Collection

In the section, we give the instruction on building
the code-comment and code-code paired datasets
from CodeSearchNet corpus.

4.1 Code-Comment

In-line comment as shown in Figure 1(b) can reflect
the code’s semantic, despite certain noisy signals.
We first leverage the code parser (tree-sitter) to split
the code-block into two parts: pure code and the
corresponding in-line comments. Then we perform
post-processing to filter noisy paired samples to
obtain the code-comment corpus.

* We merge comments with continuous lines into
one comment. This is inspired by the phe-
nomenon where developers usually write a com-
plete comment into multiple-lines to make it
easier to read, like in Figure 1(b).

¢ Comments with little information are removed,
including: 1) shorter than four tokens; 2) com-
ments beginning with “TODO”; 3) comments
for automated code checking, like “Linter - - - 1.
4) non-text comments, i.e., commented code.

¢ Functions with little semantic information are
removed such as functions with names “__get-
ter__ 7, str_” etc, are removed.

After cleaning, we collect about 1.9 million code-
comment pairs.

4.2 Code-Code

code-code paired datasets can provide explicit train-
ing signals for models to learn the semantic repre-

"Linter is a static analysis tool for checking code.
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Figure 3: Unimodal and bimodal contrastive learning in CodeRetriever.

sentation of code across different programming
languages. However, it is challenging to build
large-scale and high-quality semantically relevant
code-to-code pairs from an unlabeled corpus. Note
that human annotation is usually costly and not
scalable. By leveraging the unsupervised-learning
techniques introduced in the following section, we
collect a large-scale code-to-code corpus.

Step 1. we train two unsupervised SimCSE (Gao
et al., 2021b) models on function names and docu-
ments, named ‘“NameMatcher” and “DocMatcher”,
respectively.

Step 2. for a given function in the corpus, we
retrieve its similar functions through function name
using the “NameMatcher”. We keep function pairs
if their similarity scores are greater than thresh-
old (0.75). After iterating over all the functions
in the corpus, we obtain a paired code-code set
denoted as Cname. One similar manner is applied
to “DocMatcher”, which retrieves code-code pairs
from document-code corpus by matching their cor-
responding documents. The code-code pairs col-
lected by “DocMatcher” is denoted as Cpg.

Step 3. we train a code-code binary classifier
model M, on Cp,., where negative code-pairs are
randomly-sampled in batch.

Step 4. The code-code pairs with their predic-
tion scores by M, smaller than certain threshold
are removed from Cname and Cp,.. Let CY,,, and

Doc e the cleaned subsets of Cname and Cpoc.
The final code-code corpus is the joint of set C{, e
and Cj, ..

We provide a more detailed description on build-
ing code-code dataset in Appendix B. The col-
lected code-code corpus contains 8.6 million pairs.

4.3 Implementation Details

The CodeRetriever is initialized with pre-trained
GraphCodeBERT checkpoint released by Guo
et al. (2021), which is a 12 layers Transformer en-
coder, with hidden sizes of 768 and attention heads
of 12. We use FAISS (Johnson et al., 2017) to accel-
erate the matching of similar function names and
documentations. The overall training corpus for
CodeRetreiver contains 2.1 million code-doc pairs,
8.6 million code-code pairs, and 1.9 million code-
comment pairs. When a code has multiple positive
text or code samples, we randomly sample one for
it everytime during training. The CodeRetriever
is trained with 8 NVIDIA Tesla V100s-32GB for
1.8 days. The batch-size, learning rate and training
step of is 256, 4e-5 and 100K, respectively. The
max sequence length of the text and code is set as
128 and 320, respectively.

S Experiment

5.1 Benchmark Datasets

We evaluate CodeRetriever on several code search
benchmarks, including CodeSearch (Husain et al.,
2019; Guo et al., 2021), Adv (Lu et al., 2021),
CoSQA (Huang et al., 2021), CoNaLa (Yin
et al., 2018), SO-DS (Heyman and Cutsem, 2020),
StaQC (Yao et al., 2018). The CodeSearch bench-
mark contains six datasets with different program-
ming language each to evaluate models’ compre-
hensive performance on various programming lan-
guages. The Adv dataset normalizes the method
names and variable names in the dev/test set, which
makes it more challenging. Dataset CoNaLa, SO-
DS, and StaQC are collected from stackoverflow



questions, and queries in CoSQA are collected
from web search engines. Therefore, the queries in
CoSQA, CoNaLa, SO-DS, and StaQC are closer
to the real code-search scenario. The statistics of
benchmark datasets are listed in Appendix A. We
use Mean Reciprocal Rank (MRR) (Hull, 1999) as
the evaluation metric on all datasets.

5.2 Experiment: Zero-Shot

To compare with existing code pre-trained models,
we evaluate CodeRetriever on code search bench-
marks in the zero-shot learning setting. In experi-
ments, we take GraphCodeBERT (Guo et al., 2021)
and ContraCode (Jain et al., 2020) for compari-
son. GraphCodeBERT is trained with token-level
masked language model on CodeSearchNet cor-
pus (Husain et al., 2019). Since GraphCodeBERT
doesn’t explicitly give the function-level representa-
tion, we take the hidden states of the “[CLS]” token
of the last layer to represent the whole code/text,
denoted as GraphCodeBERT ;. Correspondingly,
the average of hidden states over all tokens of the
last layer is denoted as GraphCodeBERT,,,. We
use inner product similarity to retrieve and measure
the relevance between query and code. Contra-
Code (Jain et al., 2020) is specifically pre-trained
only for JavaScript, which adopts a data augmen-
tation approach to generate code-code pairs for
contrastive learning.

5.2.1 Results

The top-half of Table 1 and Table 2 shows the per-
formance of CodeRetriever on eleven code-search
datasets without any language/domain specific fine-
tuning. CodeRetriever significantly outperforms
existing code pre-trained models on all datasets,
which demonstrates that function-level code rep-
resentation with contrastive learning is critical for
code search tasks. We also report the performance
of CodeRetriever trained with each contrastive loss
individually in Table 1 and Table 2. As we can see,
CodeRetriever with single unimodal contrastive
loss: CodeRetreiveryy;, could not achieve good
enough performance on zero-shot code search. But
it still outperforms existing baseline approaches sig-
nificantly. The CodeRetreiver model trained with
combined unimodal and bimodal contrastive losses
achieves the best performance on all datasets.

5.3 Experiment: Fine-Tuning

In the fine-tuning experiments, CodeRetriever and
other code pre-trained models are fine-tuned on the

eleven language/domain specific code search tasks,
each task provides a set of labeled query-code pairs
for model adaptation.

5.3.1 Fine-tunning Approaches

Previous works on dense text retrieval (Karpukhin
et al., 2020a; Xiong et al., 2021; Qu et al., 2021)
show that the strategy of selecting negative sam-
ples could greatly affect the model performance in
contrastive learning tasks. Therefore, we explore
the following three approaches for CodeRetriever
fine-tuning.

In-Batch Negative For a <query, code> pair in
a batch, it uses other codes as negatives in the
batch (Karpukhin et al., 2020a). Existing code
pre-trained models take in-batch negative as the de-
fault fine-tuning method. (Feng et al., 2020; Guo
etal., 2021; Wang et al., 2021a)

Hard Negative It can pick “hard” representative
negative samples other than random negatives. We
follow Gao et al. (2021a) for Hard Negative fine-
tuning.

AR2 Adversarial Retriever-Ranker is a recently
proposed training framework for contrastive learn-
ing (Zhang et al., 2021). It adopts an adversarial-
training approach to select “hard” negative samples
iteratively.

In fine-tuning experiments, we conduct grid
search over learning-rate in {2e-5, le-5}, batch-
size in {32, 64, 128}. Training epoch, warm-up
step, and weight decay are set to 12, 1000, and
0.01, respectively on all tasks.

We compare CodeRetriever with existing code
pretrained models: CodeBERT (Feng et al., 2020),
pre-trained with MLM and replaced token detec-
tion tasks; GraphCodeBERT (Guo et al., 2021)
integrates data flow of code as input tokens, pre-
trained with MLM, data flow edge prediction and
node alignment tasks. We also use its original
pre-training objective further pre-train it, with
the same steps as CodeRetriever, indicated by
GraphCodeBERT"; SynCoBERT (Wang et al.,
2021a), pre-trained on code-AST pairs with con-
trastive learning.

5.3.2 Results

Table 1 and Table 2 show the performance of
CodeRetriever and baseline methods on all bench-
mark datasets. First, we report the performance
of CodeRetriever (In-Batch Negative), which uses



Lang Ruby Javascript Go Python Java PHP Overall
Zero-Shot

GraphCodeBERT,ye 0.6 0.5 04 0.2 0.2 0.2 0.35
GraphCodeBERT s 1.5 0.4 0.2 0.4 0.7 2.1 0.88
ContraCode - 1.1 - - - - -
CodeRetriever (L.n;) 333 26.0 53.8 23.5 27.9 20.7 30.9
CodeRetriever (£};) 64.8 61.6 85.4 64.9 66.8 59.8 67.2
CodeRetriever (£2;) 59.3 50.8 64.8 493 50.0 39.1 52.2
CodeRetriever 68.7 63.7 87.6 67.7 69.0 62.8 69.1
Fine-Tuning

ContraCode (Jain et al., 2020) - 30.6 - - - - -
SyncoBERT (Wang et al., 2021a)  72.2 67.7 91.3 72.4 72.3 67.8 74.0
CodeBERT (Feng et al., 2020) 67.9 62.0 88.2 67.2 67.6 62.8 69.3
GraphCodeBERT (Guo et al., 2021) 70.3 64.4 89.7 69.2 69.1 64.9 71.3
GraphCodeBERT " 70.7 64.8 89.6 69.2 69.2 64.7 71.4

CodeRetriever (In-Batch Negative) 75.3 (+5.0) 69.5 (+5.1) 91.6 (+1.9) 73.3 (+4.1) 74.0 (+4.9) 68.2 (+3.3) 75.3 (+4.0)
CodeRetriever (Hard Negative) 75.1 (+4.8) 69.8 (+5.4) 92.3 (+2.6) 74.0 (+4.8) 749 (+5.8) 69.1 (+4.2) 75.9 (+4.6)
CodeRetriever (AR2) 77.1 (+6.8) 71.9 (+7.5) 92.4 (+2.7) 75.8 (+6.6) 76.5 (+7.4) 70.8 (+5.9) 77.4 (+6.1)

Table 1: The comparison on the CodeSearch dataset. We get the ContraCode’s result by fine-tuning the released
checkpoint (Jain et al., 2020). Other results of compared models are reported by previous papers (Feng et al., 2020;

Guo et al., 2021; Wang et al., 2021a).

Dataset Adv CoSQA CoNaLa SO-DS StaQC Overall
Zero-Shot

GraphCodeBERT .y, 1.1 0.2 0.6 0.2 0.3 0.48
GraphCodeBERT s 0.5 0.8 2.5 0.6 0.5 0.98
CodeRetriever (Luni) 15.9 16.1 8.1 4.0 4.6 9.7
CodeRetriever (£};) 33.8 453 22.1 16.9 15.3 26.7
CodeRetriever (£2;) 32.7 39.6 24.2 16.4 15.1 25.6
CodeRetriever 34.7 47.5 25.8 17.2 15.5 28.1
Fine-Tuning

SyncoBERT (Wang et al., 2021a) 38.1 - - - - -
CodeBERT (Feng et al., 2020) 27.2 64.7 20.9 23.1 23.4 31.9
GraphCodeBERT (Guo et al., 2021) 35.2 67.5 23.5 25.3 23.8 35.1
GraphCodeBERT " 35.9 67.4 23.7 25.2 24.1 35.3
CodeRetriever (In-Batch Negative)  43.0 (+7.8) 69.6 (+2.1)  29.6 (+6.1) 27.1 (+1.8) 25.5(+1.7) 39.0 (+3.9)
CodeRetriever (Hard Negative) 45.1 (+9.9) 74.1 (+6.6) 299 (+6.4) 31.8(+6.5) 24.6(+0.8) 41.1 (+6.0)
CodeRetriever (AR2) 469 (+11.7) 754 (+7.9) 29.1 (+5.6) 339 (+7.6) 24.2(+0.4) 41.9 (+6.8)

Table 2: The comparison on datasets which are closer to the real scenario. The results of CodeBERT, GraphCode-
BERT and SyncoBERT on the Adv dataset are reported by previous papers, other results are from our implemen-

tation since they are not reported previously.

the same finetuning approach as other baselines to
ensure a fair comparison. We can see that CodeRe-
triever obtains the best overall performance com-
pared with all other baseline approaches. Specif-
ically, CodeRetriever improves over GraphCode-
BERT by 4.0 absolute points overall, which demon-
strates the effectiveness of contrastive pre-training
for code search while GraphCodeBERT ™ does not
get significant improvement. Meanwhile, CodeRe-
triever outperforms the previous state-of-the-art
SyncoBERT (Wang et al., 2021a) model on all tasks
with reported results.

Comparing different fine-tuning approaches, we
can see that the AR2 is generally better than In-
Batch Negatives and Hard Negatives. i.e., CodeRe-

triever(AR2) improves over In-Batch Negative by
3.0 absolute points in average, and improves over
Hard Negative by 1.1 absolute points in average.
The experiment results suggest that selecting a
good fine-tuning approach is also very important
for downstream code search tasks. From Table 2,
an interesting observation is that In-Batch Negative
outperforms Hard Negatives and AR2 on StaQC
benchmark. A possible explanation is StaQC con-
tains more false query-code pairs in the training set
compared with other benchmarks, as it is collected
from stackoverflow through a rule-based method
without any human annotations, and In-Batch Neg-
ative is more noise-tolerance than AR2 and Hard-
Negative.
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Figure 4: The 2-D visualizations of Python and Java’s
representation, where « and « represent samples of Java
and Python, respectively.

5.4 Analysis

Low-Resource Code Search We evaluate the
performance of CodeRetriever on low resource sce-
nario, i.e., only a few hundreds of paired query-
code data for fine-tuning. Table 4 shows the results
of CodeRetriever and GraphCodeBERT in the low-
resource setting on CoSQA dataset, where number
of training examples is varied from 500 to FULL
(19K). We can see that CodeRetriever could reach
reasonable performance in the low-resource setting.

Cross-Language Code Search In this setting,
we finetune the code pre-trained models with query-
Python corpus (CoNaLa (Yin et al., 2018)) and
evaluate it with query-Java test set Li et al. (2019).
The queries in the Python corpus and Java corpus
are both collected from stackoverflow. In Table 3,
it shows that unimodal contrastive loss in CodeRe-
triever significantly helps the cross-language code
search task. By combining bimodal contrastive
loss, CodeRetriever could obtain better perfor-
mance.

Visualization To further analyze the effect of
unimodal contrastive learning, we visualize the 2-
D latent space of representations with or without
unimodal contrastive learning by t-SNE (van der
Maaten and Hinton, 2008). In the Figure 4(a),
we can see the representations of Java and Python
code appear in two separate clusters for the model
without unimodal contrastive learning (GraphCode-
BERT). However, in Figure 4(b), their representa-
tion space are overlapped. It shows that the uni-
modal contrastive learning helps to learn a unified
representation space of code with different pro-
gramming languages.

Code-to-Code Search Results We fine-tune and
evaluate CodeRetriever on code-to-code search
task. In this task, given a code, the model is asked
to return a semantically related code. We con-

Method MRR
GraphCodeBERT 41.6
CodeRetriever (£.n;) 48.4
CodeRetriever (Lun; + Lb;) 53.3

Table 3: The comparison on cross language code
search.

Train Size 500 1000 2000 4000 FULL

GraphCodeBERT 432 499 540 572 675
CodeRetriever 547 55.6 58.1 60.1 69.6

Table 4: The performance comparison on CosQA with
different training size.

duct experiment on POJ-104 dataset (Mou et al.,
2016; Lu et al., 2021) and the results are shown
in in table 5. We see that CodeRetriever achieves
better performance compared to other baselines,
which demonstrates its scalability and potentiality
for other code understanding tasks.

Uniformity and Alignment To study the effect
of CodeRetriever on the sequence-level represen-
tation space, we use the alignment and uniformity
metrics (Wang and Isola, 2020) to see sequence-
level representation distribution changes during
training, shown in Figure 5. We see that the uni-
formity loss of CodeRtriever descend gradually,
indicating the anisotropy is alleviated. We find that
the alignment loss also has a declining trend, which
shows the training of CodeRetriever can help align
the representation of code and natural language.

5.5 Ablation Study

To understand the effect of each component in
CodeRetriever, we conduct ablation study on the
CodeSearch Java dataset and SO-DS. We add the
components of CodeRetriever to the initial model
one-by-one. We find that using code-code pairs
without denoising for unimodal contrastive learn-
ing brings performance degradation. And with

Model MAP@R
RoBERTa (Liu et al., 2019) 76.67
CodeBERT (Feng et al., 2020) 82.67
GraphCodeBERT (Guo et al., 2021) 85.16
SynCoBERT (Wang et al., 2021a) 88.24
Boost (Ding et al., 2021) 82.77
Corder (Bui et al., 2021) 84.10
CodeRetriever 88.85

Table 5: The performance compraison on the code-to-
code retrieval task (Mou et al., 2016; Lu et al., 2021).
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Methods CodeSearch  SO-DS
GraphCodeBERT (Our Initial) 69.1 25.3
+ Code-to-Code (no denoising) 68.9 25.2
+ Code-to-Code (denoising) 71.1 259
+ Doc-to-Code 72.2 26.6

+ Comment-to-Code 74.0 27.1

Table 6: Ablation study.

denoising, it achieves performance improvement.
This demonstrates the effectiveness of the denois-
ing step and illustrates the unimodal contrastive
learning depends on the quality of positive pairs
construction. Here, we verify a simple and effective
positive pairs construction method, we leave the de-
velopment of more powerful construction method
as future work. From the results of using doc-
code and comment-code for bimodal contrastive
learning, we see that the model achieves further
performance improvement.

6 Related Work
6.1 Token-Level Code Pre-training

Token-level pre-trained models have been widely-
used for the programming languages (Kanade
et al., 2020; Karampatsis and Sutton, 2020; Bu-
ratti et al., 2020; Feng et al., 2020; Guo et al.,
2021). Karampatsis and Sutton (2020) pre-train
ELMo on JavaScript corpus for program-repair
task. Kanade et al. (2020) use a large-scale Python
corpus to pre-train the BERT model. C-BERT (Bu-
ratti et al., 2020) is pre-trained on a lot of repos-
itories in C language and achieves significant im-
provement in abstract syntax tree (AST) tagging
task. CodeBERT (Feng et al., 2020) is pre-trained
by the masked language model and replaced to-
ken detection tasks on the text-code pairs of six
programming languages. GraphCodeBERT (Guo
et al., 2021) introduces the information of dataflow
based on CodeBERT. Besides these BERT-like
models, CodeGPT (Svyatkovskiy et al., 2020),
PLBART (Ahmad et al., 2021), CoTexT (Phan
et al., 2021), and CodeT5 (Wang et al., 2021b)

are pre-trained for code generation tasks based on
the GPT, BART, and TS5, respectively. However,
token-level objectives cause the anisotropy prob-
lem and have a gap with code search which is based
on sequence-level representations. Different from
these works, CodeRetriever utilizes the contrastive-
learning framework to enhance the sequence-level
representation.

6.2 Contrastive Learning for Code

Recently, several works try to use contrastive learn-
ing on the programming language. The key of
contrastive learning is building effective positive
or negative samples. ContraCode (Jain et al., 2020)
and Corder (Bui et al., 2021) use the semantics-
preserving transformation, such as identifier re-
naming and dead code insertion to build positive
pairs. Ding et al. (2021) develop bug-injection
to build hard negative pairs. The codes con-
structed from these methods are generally unnat-
ural and very different from the real code. Syn-
CoBERT (Wang et al., 2021a) uses the code and its
AST/documentation as positive pair. In CodeRe-
triever, we construct the positive pairs from code-
code, code-documentation, and code-comment.
For the code-code, we design a more natural and
diverse positive pairs construction method based
on codes from real world.

7 Conclusion

In this paper, we introduce CodeRetriever which
combines the unimodal and bimodal contrastive
learning as pre-training tasks for code search.
For unimodal contrastive learning, we propose
a semantic-guided method to build positive code
pairs. For bimodal contrastive learning, we utilize
the document and in-line comment to build positive
text-code pairs. Extensive experimental results on
several publicly available benchmarks show that
the proposed CodeRetriever brings significant im-
provement and achieves the new state-of-the-art
performance on all benchmarks for both zero-shot
and downstream data fine-tuning settings. Further
analysis results demonstrate the CodeRetriever are
also powerful on low resource and cross-language
code search tasks.
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A Statistics of Benchmark Datasets

Dataset Training Dev Test
CodeSearch-Ruby (Husain et al., 2019) 25K 14K 1.2K
CodeSearch-JS (Husain et al., 2019) 58K 39K 3.3K

CodeSearch-Go (Husain et al., 2019) 16.7K 7.3K 8.1K
CodeSearch-Python (Husain et al., 2019) 25K 13.9K14.9K
CodeSearch-Java (Husain et al., 2019) 164K 5.2K 10.9K
CodeSearch-PHP (Husain et al., 2019)  24.1K 13.0K14.0K

Adv (Lu et al., 2021) 28.0K 9.6K 19.2K
CoSQA (Huang et al., 2021) 19K 0.5K 0.5K
CoNalLa (Yin et al., 2018) 2.8K - 08K
SO-DS (Heyman and Cutsem, 2020) 142K 09K 1.1K
StaQC (Yao et al., 2018) 20.4K 2.6K 2.7K

Table 7: The statistics of benchmark datasets.

B Code-Code Pairs Building

Algorithm 1: Construct code-code pairs

Data: Paired data (d1,c1), (d2,c2) -+, (dm,cm);
Unpaired data ¢7,c5 - - -, ch.
Result: CodePair

1 DocMatcher <— SimCSE(d; - - - , dm);

2 NameMatcher < SIimCSE(name; - - - ,name,,);
3 CodePairg < [1;

4 CodePair, + [];

s fori< I1--- mdo

6 forj<«i--- mdo

7 if sim(d;, dj,DocMatcher)>7; then
8 CodePairg.append((c;, ¢;))

9 end

10 end
11 end

fori< I--- ndo
forj<«i--- ndo
if sim(name;, name;, NameMatcher)>7;

[
B W N

then
15 ‘ CodePajiry,.append((c;, c;))
16 end
17 end
18 end

19 Flilter <+ CrossModel(CodePairg)
20 CodePair < [];
21 for ¢;, ¢; € CodePairg do

22 if Filter(c;, cj) > T2 then

23 | CodePair.append((c:, ¢;))
24 end

25 end

26 for c;,c; € CodePairy, do

27 if Filter(ci,c;) > T2 then

28 ‘ CodePair.append((ci, c;))
29 end

30 end
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