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Abstract

Recent deep clustering models have produced impressive clustering performance.
However, a common issue with existing methods is the disparity between global and
local feature structures. While local structures typically show strong consistency
and compactness within class samples, global features often present intertwined
boundaries and poorly separated clusters. Motivated by this observation, we pro-
pose DCBoost, a parameter-free plug-in designed to enhance the global feature
structures of current deep clustering models. By harnessing reliable local structural
cues, our method aims to elevate clustering performance effectively. Specifically,
we first identify high-confidence samples through adaptive k-nearest neighbors-
based consistency filtering, aiming to select a sufficient number of samples with
high label reliability to serve as trustworthy anchors for self-supervision. Sub-
sequently, these samples are utilized to compute a discriminative loss, which
promotes both intra-class compactness and inter-class separability, to guide net-
work optimization. Extensive experiments across various benchmark datasets
showcase that our DCBoost significantly improves the clustering performance
of diverse existing deep clustering models. Notably, our method improves the
performance of current state-of-the-art baselines (e.g., ProPos) by more than 3%
on average and amplifies the silhouette coefficient by over 7×. Code is available at
https://github.com/l-h-y168/DCBoost.

1 Introduction

Deep clustering aims to use deep neural networks to uncover the intrinsic structure of data by
partitioning samples into groups based on their similarity, without relying on any class labels. Early
methods employed autoencoders [12, 37] to extract data representations, which significantly enhanced
clustering performance and helped establish deep clustering as a prominent research field. More
recently, the integration of self-supervised learning techniques [11, 4, 9] has further advanced deep
clustering, leading to impressive clustering performance [36, 20, 13].

Despite the impressive performance, we observe that existing methods do not construct a reliable
global structure, but all build a reliable local pattern. For example, as shown in Fig. 1(a), the
intra-class similarity is relatively low, and the inter-class similarity remains noticeable, suggesting
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Figure 1: (a) Quantitative comparisons of the global structure in terms of intra-class similarity,
inter-class similarity, and silhouette coefficient, and the local structure in terms of k-NN accuracy on
CIFAR-10 and CIFAR-20. The original model ProPos and CC show weak global structure but strong
local structure. Our method maintains their high local accuracy while significantly improving the
global structure and overall clustering performance. (b) T-SNE visualization of clustering without
(upper) and with (bottom) applying our method on CIFAR-20. Initially, the existing model exhibits
severe overlap between different classes, leading to poor separability. After boosting, class boundaries
become significantly clearer and more distinguishable.

that samples within clusters lack compactness, while the separation between clusters is also inade-
quate. This observation is further supported by their low silhouette coefficient (SC), reflecting poor
class separability, unclear decision boundaries, and entangled feature spaces—indicating a general
weakness in capturing global structural information. Furthermore, when examining local structural
quality with the k-NN accuracy (i.e., the proportion of a sample’s k-nearest neighbors (k-NNs) that
share the same label), this metric remains consistently high across different deep clustering models,
often matching or exceeding clustering accuracy, which means that the feature space still preserves
reliable local pattern where semantically similar samples are closely grouped. Additionally, the t-SNE
visualization in Fig. 1(b) shows that while some rough cluster formations are observable, the overall
distribution remains entangled, with many clusters overlapping or lacking clear margins. However,
within each loosely formed region samples with similar features tend to group together locally, even
if the overall class boundaries are ambiguous. This observation further reinforces our assertion that
while existing models face challenges in capturing global semantics, they tend to preserve dependable
local patterns.

Building on the above observations, we propose a parameter-free plug-in that leverages trustworthy
local structural cues to guide the learning of global feature structure and accordingly improve
the clustering performance. Specifically, we first propose a dynamic strategy to identify high-
confidence samples that reflect reliable local structures. These samples are then used to construct a
discriminative loss, which enhances intra-class compactness, promotes inter-class separability, and
preserves instance-level consistency. As shown in Fig. 1(a), after applying our method, the global
structure and clustering performance improve significantly. For ProPos on CIFAR-10, the silhouette
coefficient increases from 0.10 to 0.74, while the clustering accuracy (ACC) improves from 94.4% to
96.0%. Extensive experiments on five benchmark datasets demonstrate that our method substantially
improves the clustering performance of six existing deep clustering models, i.e., our method improves
the average performance of current state-of-the-art baseline ProPos by more than 3%.

In summary, our contributions are as follows.

• We are the first to observe that many deep clustering methods exhibit poor global structure while
retaining trustworthy local structures, revealing an important phenomenon previously overlooked.
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Based on this sight, we leverage these reliable local cues to guide the learning of global feature
structure and accordingly improve overall clustering performance.

• We propose DCBoost, a parameter-free plug-in integrating an adaptive k-NN filtering to select
high-confidence samples and a discriminative loss that encourages intra-class compactness and
inter-class separation, all without requiring manually tuned hyperparameters.

• Extensive experiments on five benchmark datasets and six deep clustering models demonstrate the
effectiveness, universality, and zero-cost nature of DCBoost.

2 Related Work

Deep clustering aims to learn data representations through deep neural networks while leveraging
these learned features to guide clustering. Early methods [12, 37, 10, 29] utilized autoencoders for
feature learning, followed by joint training of features and clustering, forming the earliest paradigm of
deep clustering. With the rise of self-supervised learning, contrastive [11, 4, 18, 2] and non-contrastive
[9, 5] paradigms have been introduced into deep clustering, giving rise to two main branches:
representation-based clustering [35, 32, 13, 39, 23] and clustering-head-based clustering [36,
20, 7, 27, 25]. Representation-based methods typically apply classical clustering algorithms (e.g.,
k-means) on features to generate pseudo labels, which are then fed back as supervision to improve
representation learning. In contrast, clustering-head-based methods attach a dedicated classification
head to the network, allowing pseudo labels to be directly predicted and optimized in an end-to-
end fashion. Most existing deep clustering models employ strategies such as contrastive learning
[20, 13], mutual information maximization [38], neighborhood consistency [7, 40] to enhance
performance. Additionally, heuristic filtering techniques are introduced to remove noisy pseudo
labels [36, 27, 30, 16], relying on classification confidence or consistency between predictions. Both
paradigms leverage self-supervised learning to produce clustering-friendly representations and have
significantly advanced the performance. Recently, large-scale vision and multimodal models like
CLIP have provided new insights for deep clustering such as [1, 22], incorporating external knowledge
and improving clustering performance.

Motivation. Despite notable progress, we empirically observe that the global structure of existing
models may be unreliable with noisy semantics and weak class separability, while local neighborhoods
tend to be more stable and reliable. Motivated by this, we propose a dynamic sample selection method
extracting high-confidence samples via local consistency to guide global structure optimization. Our
method is parameter-free and applies to both representation- and clustering-head-based models.

3 Proposed Method

Algorithm 1 The proposed algorithm DCBoost
Require: Input data X , pre-trained existing deep clustering model M

1: Initialize fo(·) and ft(·) with M, and initialize g(·) randomly
2: while Clustering do
3: Apply k-means on the output of ft(x) to assign pseudo-labels y
4: for b = 1 to N/B do
5: Randomly augment x
6: Select high-confidence samples using adaptive k-NN by Eq. (2)
7: Compute the discriminative loss using Eqs. (3), (4), (6), and (8)
8: Update g(fo(·)) and ft(·) with the SGD optimizer and exponential

moving average, respectively
9: end for

10: end while
11: Apply k-means on the output of ft(x) for final clustering

Overview. Given an unlabeled dataset X =
{xi}ni=1 containing n unlabeled samples belong-
ing to c semantic clusters, deep clustering aims
to group these samples into c different clusters.
The proposed DCBoost is a generic plug-and-
play algorithm for boosting existing deep clus-
tering models. As illustrated in Fig. 2, we initial-
ize DCBoost by adopting any pre-trained deep
clustering model as the target network ft (·) and
duplicating it to construct the online network
fo (·), followed by a randomly initialized non-
linear predictor g(·). We apply two types of weak augmentations T 1(·) and T 2(·) to each sample
to generate two different views T 1(xi) and T 2(xi), which are encoded into L2- normalized feature
vectors zo and zt by fo (·) and ft (·). For each training batch B of size nB , DCBoost selects a set of
high-confidence samples using an adaptive k-NN method (Sec. 3.1, local structure mining), which are
further utilized to construct a discrimination loss to fine-tune the model (Sec. 3.2, local-guided global
refinement). To obtain pseudo-labels for all samples Y = {yi}ni=1, we apply k-means clustering on
the output of the target network at the end of each training epoch for all samples (i.e., the inference
branch of Fig. 2). Algorithm 1 lists the overall process of our DCBoost.
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Figure 2: Illustration of our DCBoost framework. During training, the gradient backpropagation of
the target network is detached, and the parameters of ft(·) are updated using exponential moving
average (EMA) from those of fo(·). The overall discriminative loss contains three terms: positive
loss Lpos, negative loss Lneg, and instance consistency loss Lins. The inference branch outputs the
pseudo labels of all samples at the end of each epoch.

3.1 High-Confidence Sample Selection Leveraging Local Structure via Adaptive k-NN
Filtering

As previously discussed, empirical evidence indicates that existing deep clustering models excel
at capturing local structure, which can be used to refine the global feature space to improve the
overall clustering performance. However, it is crucial to acknowledge that not all local structures
are inherently dependable. Local regions, particularly near cluster boundaries, can harbor noisy or
ambiguous data points. Thus, it becomes imperative to discern and utilize only the most reliable
samples–those exhibiting clear structural coherence–to provide stable guidance for training.

To this end, we propose a parameter-free approach to extract high-confidence samples by leveraging
neighborhood label agreement. Specifically, for each sample’s feature zi (i.e., the features obtained
through the online and target networks, and Appendix. A provides more details), we retrieve its k
nearest neighbors and validate their pseudo-labels. A sample is deemed high-confidence only if all k
neighbors share the same pseudo-label with zi: yi = yj , ∀j ∈ Nk (zi), where Nk(zi) is the neighbor
set for zi. Conversely, if any neighbor exhibits a different pseudo-label, the sample likely resides near
a class boundary, and should be excluded from high-confidence sample set. However, determining
the value of k is a challenging task, as the quality of local structures may vary significantly across
datasets, models, and training stages, influenced by the number of underlying classes. A small k
will include more samples in the high-confidence set but may reduce the average correctness of the
pseudo labels due to looser agreement criteria. Conversely, a large k ensures higher label consistency
and thus reliability, but may result in fewer selected samples, potentially weakening the overall
self-supervision signal. Figs. 3(a) and (b) illustrate this phenomenon on three typical datasets.

To solve the above issue, we propose an adaptive determination method to better control the number
and quality of high-confidence samples across different training batches. Specifically, we first define
a set of candidate values for k, denoted as K = {ks | ks = s, s = 1, 2, . . . ,m}. In all experiments,
we set m = 50 to ensure a comprehensive search space while maintaining computational efficiency.
Then, for each ks, we compute the corresponding scoreks as:

scoreks
= ks ×

ns

nB
, (1)

where ns =
∑nB

i=1 I (yi = yj , ∀zj ∈ Nks
(zi)) is the number of selected high-confidence samples,

given ks. I is an indicator function that returns 1 if the condition is met and 0 otherwise. We finally
select the candidate yielding the highest score as the value of k.

Remark. Geometrically, the score in Eq. 1 can also be interpreted as the area of the shaded rectangle
as illustrated in Fig. 3(b). Specifically, the x-axis represents the number of neighbors k, and the
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Figure 3: Impact of the value of k on (a) the true accuracy of high-confidence samples, and (b) the
proportion of high-confidence samples, i.e., the ratio of selected high-confidence samples to the total
number of samples in a batch under given k. A smaller k may reduce the reliability of the selection,
whereas a larger k generally improves sample quality but selects fewer samples. (c) Comparison of
imbalance ratios between high-confidence samples and all samples across classes. The number of
high-confidence samples selected per class can be imbalanced, without proper constraints, classes
with larger sample counts may dominate training and negatively affect performance.

y-axis represents the corresponding proportion ns

nB
. The score thus corresponds to the rectangular

area surrounded by them. This intuitive perspective helps to understand the trade-off being optimized.

After determining the value of k, the high-confidence samples set Xh will be computed by:
Xh = {xi ∈ B|yi = yj , ∀zj ∈ Nks

(zi)} . (2)
Our method strikes a well trade-off between the quality and quantity of self-supervision signals,
which allows the model to efficiently exploit abundant self-supervision early, while later focusing
on highly confident samples, ultimately improving clustering performance. This trade-off is further
demonstrated by the variation of selected k values during training shown in Appendix C, Fig. 9.

3.2 Global Structure Refinement via Pseudo Label-augmented Discriminative Loss

We propose to refine the global feature representation by fine-tuning the model with the following
discriminative loss:

L = Lpos + Lneg + Lins, (3)
where Lpos, Lneg , and Lins are positive loss term, negative loss term, and instance consistency loss
term, respectively. In each batch, Lpos and Lneg are applied to high-confidence samples to enhance
the clustering quality, while Lins is applied to all samples to maintain instance-level consistency.

Positive loss Lpos. To enhance intra-class compactness, Lpos brings together high-confidence samples
with identical pseudo-labels through the formula:

Lpos =
1

2cB

cB∑
c=1

∑
i,j∈Xc

wcd
2
ij . (4)

Here, cB represents the number of distinct classes among high-confidence samples set within a batch
B, and Xc ⊂ Xh represents the set of samples with pseudo-label c in the high-confidence set Xh. The
term d2ij = ∥zoi − ztj∥22 = 2− 2zoi z

t
j signifies the squared Euclidean distance between the outputs of

the online and target networks for samples i and j sharing the same pseudo-label. Furthermore, as
depicted in Fig. 3(c), we notice a concentration of high-confidence samples in specific classes, i.e.,
the dominant class will have much more number of samples than the nondominant ones, leading to
the pseudo class imbalance problem, which can potentially bias the fine-tuning process. Hence, we
introduce a normalization coefficient wc to reduce the impact of class imbalance during optimization:

wc =
1

∥
∑

x∈Xc
zo||2||

∑
x∈Xc

zt∥2
. (5)

Specifically, wc can be seen as the inverse of the square of the L2 norms of the aggregated features
from class c. When a class has more high-confidence samples (thus a larger summed feature norm),
its influence on the loss is automatically reduced. In this way, the loss naturally compensates for the
imbalance in the number of high-confidence samples across classes. As a summary, the positive loss
in Eq. 4 enforces intra-class compactness on high-confidence samples and introduces the weight
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coefficient to balance class-wise contributions, refining the feature space and improving overall
clustering performance.

Negative loss Lneg . To increase inter-class separability, we repel cB cluster prototypes derived from
high-confidence samples in each batch. The proposed inter-class separation loss is formulated as:

Lneg = −
cB∑

c1=1

cB∑
c2=1

∥voc1 − vtc2∥
2
2 (c1 ̸= c2) =

cB∑
c1=1

cB∑
c2=1

(−2 + 2voc1v
t
c2 (c1 ̸= c2)), (6)

where vo and vt represent the L2-normalized prototypes computed from the online networks zo and
target networks zt, respectively:

voc1 =

∑
x∈Xc1

zo

∥
∑

x∈Xc1
zo∥2

, vtc2 =

∑
x∈Xc2

zt

∥
∑

x∈Xc2
zt∥2

. (7)

By minimizing the loss in Eq. 6, our method encourages the inter-class separation through Euclidean
distance-based repulsion between prototypes.

Instance consistency loss Lins. To preserve consistency of an instance in the online network and
target network, Lins aligns augmented views of the same instance:

Lins =
∥∥g (fo

(
T 1 (x)

)
+ σε

)
− f t

(
T 2 (x)

)∥∥2
2
,where ε ∼ N (0, I) , (8)

where ε represents Gaussian noise sampled from a normal distribution N(0, I) define I here the
identity matrix, and σ controls its intensity, which is set to 0.001 in all experiments. We treat the
feature-space vicinity of one augmented view as positive samples for the other view, assuming they
share the same semantics. By minimizing the loss in Eq. 8, out method stabilizes global structure and
prevents representation collapse.

4 Experiment

4.1 Experiment Settings Table 1: Summary of datasets.

Dataset Split #Samples #Classes

CIFAR-10 Train+Test 60,000 10
CIFAR-20 Train+Test 60,000 20

STL-10 Train+Test 13,000 10
ImageNet-10 Train 13,000 10

ImageNet-Dogs Train 19,500 15

Datasets, backbones and baselines. We
evaluated our method on five widely used
benchmark datasets, including CIFAR-10,
CIFAR-20 [17], STL-10 [6], ImageNet-10,
and ImageNet-Dogs [3], as summarized in
Table 1. To ensure a fair evaluation of our
boosting effect, we used the same image
size and backbone architectures as in the
original settings of the respective baseline methods. We integrated DCBoost into six existing models,
including three representation-based methods, i.e., BYOL [9], CoNR [39], and ProPos [13], and
three clustering-head-based methods: CC [20], SCAN [36], and CDC [16]. In addition to improving
existing models, we compared our method with other deep clustering models, including NNM [7],
GCC [40], IDFD [34], TCL [21], TCC [32], SPICE [27], SeCu [31], and DPAC [38] to provide a
comprehensive evaluation. More implementation details are shown in Appendix. A.

4.2 Main Results

Significant and consistent improvement on different deep clustering models. As shown in
Table 2, our method consistently improves existing models’ performance. Notably, models with
lower baseline performance, such as BYOL and CC, benefit significantly from our method, with their
performance improving by 3.1% and 4.6%, respectively, greatly enhancing their competitiveness.
Even for the strong-performing ProPos, our method yields an average improvement of approximately
3.2%, allowing it to achieve state-of-the-art (SOTA) performance on CIFAR-10, CIFAR-20, and STL-
10 while closely approaching SOTA on other datasets. Moreover, our method further pushes SOTA
performance across different existing models on ImageNet-10 and ImageNet-Dogs, highlighting its
robust generalizability and effectiveness. Additionally, we also provide results on the large-scale
dataset Tiny-ImageNet (200 classes, 100,000 samples) in Appendix C, where our method still achieves
an improvement of over 2% compared to ProPos.
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Table 2: Clustering performance (%) comparisons on five datasets. The best result for each method is
highlighted in bold, while the overall best result is marked with an underline. Average performance,
standard deviation, and significance analysis are provided in Appendix C, Table 18 and Table 19.

Method CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs

NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI Average

NNM [7] 74.8 84.3 70.9 48.4 47.7 31.6 69.4 80.8 65.0 - - - - - - -
GCC [40] 76.4 85.6 72.8 47.2 47.2 30.5 68.4 78.8 63.1 84.2 90.1 82.2 49.0 52.6 36.2 64.3
IDFD [34] 71.1 81.5 66.3 42.6 42.5 26.4 64.3 75.6 57.5 89.8 95.4 90.1 54.6 59.1 41.3 63.9
TCL [21] 81.9 88.7 78.0 52.9 53.1 35.7 79.9 86.8 75.7 87.5 89.5 83.7 62.3 64.4 51.6 71.4
TCC [32] 79.0 90.6 73.3 47.9 49.1 31.2 73.2 81.4 68.9 84.8 89.7 82.5 55.4 59.5 41.7 67.2
SPICE [27] 85.8 91.7 83.6 58.3 58.4 42.2 86.0 92.9 85.3 90.2 95.9 91.2 62.7 67.5 52.6 76.3
SeCu [31] 86.1 93.0 85.7 55.1 55.2 39.7 73.3 83.6 69.3 - - - - - - -
DPAC [38] 87.0 93.4 86.6 51.2 55.5 39.3 86.3 93.4 86.1 92.5 97.0 93.5 66.7 72.6 59.8 77.4

CC [20] 76.9 85.2 72.8 47.7 41.7 28.8 73.0 80.0 68.1 86.0 89.9 82.3 65.4 69.6 56.0 68.2
CC+Ours 82.7 88.2 78.5 53.1 48.9 35.2 74.0 80.8 69.4 86.5 90.7 83.3 67.9 70.6 58.5 71.3(+3.1)
SCAN [36] 82.5 90.3 80.8 54.0 53.1 38.5 83.6 91.4 82.5 93.8 97.6 94.8 71.1 73.7 63.4 76.7
SCAN+Ours 84.4 90.8 82.0 57.0 54.5 40.6 84.2 91.7 83.2 94.2 97.8 95.2 73.0 74.5 65.0 77.9(+1.2)
CDC [16] 89.0 94.7 89.1 60.6 61.6 46.3 85.8 93.0 85.5 93.1 97.3 94.1 76.8 79.2 70.2 81.1
CDC+Ours 89.9 95.1 90.0 63.0 62.7 48.4 86.6 93.4 86.4 93.3 97.3 94.2 77.5 79.7 71.4 81.9(+0.8)

BYOL [9] 78.0 87.5 75.2 53.3 52.3 36.0 75.4 86.1 71.5 88.4 94.7 88.9 69.7 72.9 60.9 72.7
BYOL+Ours 85.2 91.5 83.0 58.1 54.7 41.5 80.8 90.2 79.9 89.9 95.7 90.8 73.4 77.1 67.2 77.3(+4.6)
CoNR [39] 86.7 93.2 86.1 61.7 59.7 45.0 85.2 92.6 84.6 91.1 96.4 92.2 74.2 80.2 67.6 79.8
CoNR+Ours 88.0 94.1 87.9 62.2 60.2 45.9 85.6 92.8 85.0 91.4 96.5 92.4 74.6 80.7 68.3 80.4(+0.6)
ProPos [13] 88.1 94.4 88.3 60.7 61.6 44.4 83.1 91.6 82.5 90.0 95.8 91.0 72.7 76.9 66.4 79.2
ProPos+Ours 91.1 96.0 91.6 64.5 63.9 49.2 86.7 93.6 86.6 92.7 97.1 93.7 76.3 79.7 70.7 82.2(+3.0)

To further illustrate the effectiveness of our method, we visualized learned representations using
t-SNE as shown in Fig. 4. Compared to original ProPos, DCBoost produces a more globally well-
structured embedding space, characterized by tighter intra-class clustering and increased inter-class
separation. This improvement is particularly evident in complex datasets such as CIFAR-20 in
Fig. 1(b) and ImageNet-Dogs in Fig. 4(d). To quantitatively complement these visual observations,
as shown in Fig. 5. For silhouette coefficient, which serves as an indicator of global structural quality,
our method significantly boosts the silhouette coefficient across various existing deep clustering
models, particularly on ProPos and BYOL, indicating a more coherent global feature structure with
improved inter-class separation. Meanwhile, the k-NN accuracy, which measures local consistency,
remains high and even shows a slight improvement, demonstrating that good local structures are not
only preserved but also further refined. These observations highlight the effectiveness of leveraging
reliable local structural cues to guide and improve the global structure.

ProPos ProPos+Ours

(a) CIFAR-10

ProPos ProPos+Ours

(b) STL-10
ProPos ProPos+Ours

(c) ImageNet-10

ProPos ProPos+Ours

(d) ImageNet-Dogs

Figure 4: T-SNE visualization of ProPos (left) and ProPos+Ours (right) on four datasets. The
visualization of CIFAR-20 has been presented on Fig. 1(b).
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(a) Silhouette Coefficient (b) k-NN Accuracy

Figure 5: Influence on silhouette coefficient (global structure) and k-NN accuracy (local structure).

Table 3: Ablation study (%) on CIFAR-10, CIFAR-20 and STL-10.

Filter Lins Lpos Lneg
CIFAR-10 CIFAR-20 STL-10

NMI ACC ARI NMI ACC ARI NMI ACC ARI Average

- - - - ProPos 88.1 94.4 88.3 60.7 61.6 44.4 83.1 91.6 82.5 77.2
× ✓ ✓ × 88.0 94.2 87.9 59.5 57.7 39.6 83.9 90.6 79.8 75.7
✓ ✓ ✓ × 90.5 95.6 90.8 62.4 61.8 46.5 84.8 92.2 83.9 78.7
✓ ✓ × ✓ 88.3 94.4 88.3 57.1 59.1 42.1 83.6 92.0 83.4 76.5
✓ × ✓ ✓ 83.1 91.1 81.5 63.1 62.5 46.9 11.6 20.5 6.7 51.9
× ✓ ✓ ✓ 89.0 94.9 89.1 63.1 62.5 47.0 84.3 92.0 83.1 78.3
✓ ✓ ✓ ✓ ProPos+Ours 91.1 96.0 91.6 64.5 63.9 49.2 86.7 93.6 86.6 80.4

4.3 Ablation Study

Each loss term contribute to the clustering performance improvement. From Table 3, we observe
that incorporating all proposed losses while keeping our sample selection mechanism fixed yields the
best clustering performance. Removing any individual loss component results in a performance drop,
highlighting their complementary effectiveness. Specifically, removing the instance consistency loss
Lins eliminates instance-level consistency constraints. The model struggles to preserve meaningful
structure, leading to a collapse in clustering performance, as evidenced by obvious ACC degradation
on both CIFAR-10 (96.0% → 91.1%) and STL-10 (93.6% → 20.5%). Without the positive loss Lpos,
intra-class consistency is not enforced. Relying solely on inter-class separation provides minimal
training guidance, leading to nearly no performance improvement. The removal of negative loss
Lneg still has a noticeable impact, and its effect would be even more pronounced without our sample
selection mechanism, which will be further explored in the corresponding ablation study.

Validation of adaptive k-NN filtering. Furthermore, applying all losses without sample selection
significantly degrades average performance (80.4% → 78.3%), highlighting the critical importance
of selecting high-confidence samples. In the absence of sample selection, the removal of Lneg leads
to partial clustering collapse, causing performance to drop below baseline. In contrast, incorporating
our sample selection strategy significantly improved average performance (75.7% → 78.7%), further
validating its effectiveness. As shown in Fig. 6(a), high-confidence samples consistently maintain
higher accuracy than the overall dataset throughout training, highlighting their reliability in guiding
the clustering process and enhancing performance. Additionally, Figs. 6(b)(c) demonstrate that our
method adaptively selects the appropriate k value for different datasets: achieve an ACC of 96.0%
compared to 95.9% with manually set k = 30, and on CIFAR-20, 63.9% compared to 63.6% with
k = 10. Beyond achieving performance gains, the key advantage is robustness—manual selection is
sensitive to the chosen k, and inappropriate settings can cause notable performance degradation. In
contrast, our adaptive strategy yields stable improvements without hyperparameter tuning.
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Figure 6: (a) Comparison of accuracy between high-confidence samples selected by our methods and
all samples. Impact of the value of k on clustering ACC across (b) CIFAR-10 and (c) CIFAR-20.
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Class-balanced weight w in Lpos. To relief the imbalance class distribution of the selected high-
confidence samples, in Eq. 4, we introduce a weighting strategy that assigns each class an equal
contribution. We conducted an ablation study with three variants: w0, which disables the weighting
mechanism; w1, which applies the weights without enabling gradient flow; and wours, our complete

Table 4: Impact of class-balanced weighting on
clustering performance (%).

Method CIFAR-10 CIFAR-20

NMI ACC ARI NMI ACC ARI

ProPos 88.1 94.4 88.3 60.7 61.6 44.4
w0 90.2 95.3 90.2 61.9 61.9 45.7
w1 91.0 96.0 91.5 64.0 63.8 48.9

wours 91.1 96.0 91.6 64.5 63.9 49.2

implementation that incorporates weights into
the gradient updates. The results in Table 4 show
that w0 yields the worst performance, as treat-
ing all high-confidence samples equally ignores
class imbalance, causing classes with a larger
number of high-confidence samples to dominate
the training process. However, w1 significantly
improves performance by ensuring each class
contributes equally to the objective, effectively
mitigating the imbalance. Finally, wours achieves slightly better results than w1, suggesting that the
magnitude of intra-class representations through gradient-based learning of the weight modulation
further refines cluster compactness and improves structural consistency. These results confirm the
effectiveness of our class-balanced weighting strategy. More ablation studies are shown in the
Appendix B.

4.4 More Discussions

Comparison between representation-based and clustering-head-based architectures. Among
the various models we use, CC [20] incorporates both a clustering head and a representation head.
To assess the impact of our method on different network components, we applied it separately to
representation and clustering head, with results shown in Table 5. Across three datasets, in terms
of ACC, the representation shows an increase of (3.0%, 6.1%, 1.0%), while the clustering head
improves by (5.0%, 8.0%, 2.4%). The larger gains on representation indicate our method is especially
effective in refining representation-based models, i.e., the representation space retains richer semantic
information, enabling our method to enhance the learned features more effectively.

Table 5: Performance (%) gain comparison between clustering head (Clu) and representation (Rep).

Method CIFAR-10 CIFAR-20 ImageNet-Dogs

NMI ACC ARI NMI ACC ARI NMI ACC ARI

CC(Clu) 76.9 85.2 72.8 47.1 42.4 28.4 65.4 69.6 56.0
CC(Clu)+Ours 82.7(↑5.8) 88.2(↑3.0) 78.5(↑5.7) 52.5(↑5.4) 48.5(↑6.1) 34.4(↑6.0) 67.9(↑2.5) 70.6(↑1.0) 58.5(↑2.5)

CC(Rep) 78.5 86.3 74.9 50.4 48.9 33.2 63.3 66.3 52.7
CC(Rep)+Ours 85.9(↑7.4) 91.3(↑5.0) 83.4(↑8.5) 58.8(↑8.4) 56.9(↑8.0) 42.5(↑9.3) 66.2(↑3.9) 68.7(↑2.4) 55.5(↑2.8)

Table 6: Universality comparison (%) with CoNR.

Method CIFAR-10 CIFAR-20

NMI ACC ARI NMI ACC ARI

Propos 88.1 94.4 88.3 60.7 61.6 44.4
Propos+CoNR 90.3 95.6 90.6 64.0 63.1 48.4
Propos+Ours 91.1 96.0 91.6 64.5 63.9 49.2
CC 78.5 86.3 74.9 50.4 48.9 33.2
CC+CoNR 84.8 90.8 82.4 58.4 55.7 41.4
CC+Ours 85.9 91.3 83.4 58.8 56.9 42.5

Table 7: Cluster performance (%) comparisons
on CLIP-based models.

Method CIFAR-10 CIFAR-20

NMI ACC ARI NMI ACC ARI

SIC 85.0 92.8 84.9 58.2 57.4 43.7
SIC+Ours 85.3 92.8 85.0 59.3 58.4 44.9
TAC 83.4 92.0 83.5 60.8 61.5 46.2
TAC+Ours 85.5 93.1 85.6 62.4 62.9 48.4

Comparison with CoNR in terms of universality. CoNR [39] enhances intra-class compactness by
leveraging contextual cues and filtering boundary samples, which shares some similarities with our
method. Therefore, we integrated CoNR into ProPos [13] and CC [20] to evaluate its universality
and compare its effectiveness with our method. The results in Table 6 indicate that although CoNR
improves performance, the gains are consistently smaller than those of our method. This is largely due
to the fact that CoNR limited use of class-level information, as it mainly enforces local consistency
with a small set of positive pairs. In contrast, our method can more efficiently exploit reliable
local structural information to guide the refinement of global feature organization, leading to more
substantial improvements in clustering performance.
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Table 8: Influence of different sample selection methods on clustering performance(%).

Method CIFAR-10 CIFAR-20 ImageNet-Dogs

NMI ACC ARI NMI ACC ARI NMI ACC ARI

ProPos 88.1 94.4 88.3 60.7 61.6 44.4 72.7 76.9 66.4
ProPos+Ours (MOIT sel.) 90.7 95.8 91.1 64.1 63.2 47.8 73.5 77.1 66.6
ProPos+Ours (SSR sel.) 90.9 95.9 91.3 63.9 63.6 48.3 75.3 79.0 70.1
ProPos+Ours 91.1 96.0 91.6 64.5 63.9 49.2 76.3 79.7 70.7

Extension to CLIP-based deep clustering models. We further applied our method to CLIP-based
models SIC [1] and TAC [22], where clustering results are obtained using an image encoder followed
by a clustering head. We incorporated our method into their frameworks by leveraging the existing
branch and fine-tuning the clustering head. We re-implemented experiments on the merged dataset
(Train+Test), while keeping other settings consistent with [1, 22]. As shown in Table 7, our method
brings consistent gains, confirming its effectiveness even in CLIP-based deep clustering models.

Comparison with different high-confidence sample selection methods. To better understand the
effect of different sample selection mechanisms, we compare our adaptive k-NN approach with
two representative noisy-label filtering methods: MOIT [28] and SSR [8]. MOIT detects noisy
labels by measuring disagreement between a sample’s annotated label and the class distribution
of its k-nearest neighbors in the global feature space, while SSR relies on label–neighborhood
consistency. Both approaches require global k-NN search over the entire dataset with a fixed
k, and involve additional hyperparameters such as consistency thresholds and confidence scores.

Table 9: CIFAR-10 ACC (%) using
MOIT and SSR as complete methods.

Method ACC

ProPos 94.4
ProPos+MOIT 94.4
ProPos+SSR 92.5
ProPos+Ours 96.0

In contrast, our method is parameter-free and applies
an adaptive k-NN search locally within each mini-batch,
thereby avoiding the overhead of global retrieval. We
re-implemented MOIT and SSR sample selection strate-
gies and applied them on ProPos, replacing only the se-
lection module while keeping all other training settings
unchanged. As shown in the Table 8, integrating MOIT
or SSR filtering into ProPos yields consistent improve-
ments over the baseline, confirming the importance of
neighborhood-based selection. However, our adaptive
mini-batch selection further achieves the best performance
across all datasets and metrics, without introducing extra hyperparameters or global k-NN com-
putations. Additionally, when their selection is applied using their own loss to train the model,
performance does not improve as shown in 9. More experiments are shown in the Appendix C.

5 Conclusion

In this paper, we have presented DCBoost, a universal, parameter-free plug-and-play method to
improve existing deep clustering models. Motivated by the observation that existing methods often
fail to learn reliable global structures despite consistent local patterns, DCBoost adaptively selects
high-confidence samples via local k-NN consistency to guide intra-class compactness and inter-class
separation, leading to a better global structure and accordingly higher clustering performance. Exten-
sive results show consistent improvements across different deep clustering models and benchmarks. A
potential limitation is that our method assumes the number of clusters is known and lacks mechanisms
to handle highly imbalanced or non-uniform data distributions, which may reduce its adaptability in
complex real-world scenarios. In the future, we plan to scale DCBoost to large-scale datasets, explore
more adaptive selection strategies and multimodal extensions to overcome its current limitations and
further boost clustering performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the motivation, proposed method,
and main findings. They accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses limitations through experiments and conclusions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper is experimental and does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All implementation details, training settings, and evaluation protocols are
provided in the main paper and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Experiments use public datasets, and the link to code is provided in the
supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides detailed descriptions of experimental settings in both the
main text and supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper includes multiple experiments with mean, standard, and statistical
significance tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides details on the compute resources used for the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work does not involve data or models with a high risk for misuse, so no
specific safeguards are necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets (e.g., code, data, models) used in the paper are properly
credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source code is included in the Supplementary Material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper uses LLMs only for writing, editing, and formatting purposes and
does not affect the core methodology or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A More Implementation Details

Dataset, image size and backbone. Following [20, 13, 39, 16], we used the merged training and
testing sets for CIFAR-10 and CIFAR-20, only the training set for ImageNet-10 and ImageNet-Dogs.
Since our method improved upon existing models, for STL-10, we no longer required unlabeled
samples for pre-training and instead used the merged training and testing set. For all methods except
BYOL [9] and CoNR [39], image sizes were set as follows: 32×32 for CIFAR-10 and CIFAR-20,
96×96 for STL-10, and 224×224 for ImageNet-10 and ImageNet-Dogs, following [13, 16]. ResNet-34
served as the backbone for all these methods. For BYOL and CoNR, slight modifications were made
to ensure a fair comparison. Specifically, ResNet-18 was used for CIFAR-10 and CIFAR-20, while
ImageNet-10 adopts a 96×96 image size, with all other settings unchanged, following [39]. For all
methods on CIFAR-10 and CIFAR-20, we followed [13, 39, 16] by replacing the first convolutional
filter (7×7, stride 2) with a 3×3 filter (stride 1) and removing the first max-pooling layer to better
accommodate the smaller image resolution.

Model adaptation. To integrate various clustering models into our framework, we adopted a
universal adaptation strategy. Specifically, we retained the entire network originally used for cluster-
ing—whether it comprises a backbone followed by a clustering head or a backbone followed by a
projector—as the target network ft(·) and duplicated it to form the online network fo(·). Additionally,
we introduced a randomly initialized predictor subsequent to the online network, establishing an
asymmetric architecture similar to BYOL [9]. For sample selection, We only use the target network’s
features for k-NN retrieval (Sij = cos

(
zti , z

t
j

)
, where S is similarity matrix). This is because the

predictor followed by the online network is randomly initialized, and may introduce noise or unstable
representations early in training. To ensure reliable consistency estimation, we rely solely on the
more stable target encoder output in such cases. We first conducted warm-up training using Lins for
10 epochs. This step helped the predictor develop initial feature-capturing capability, mitigating the
instability that a randomly initialized predictor might introduce and ensuring smooth convergence1.

Experiment settings. We strictly followed the data augmentation protocols from [13, 39], which
applied ResizedCrop, ColorJitter, Grayscale, and HorizontalFlip to all datasets, and additionally
applied GaussianBlur specifically to 224×224 images from ImageNet-10 and ImageNet-Dogs. We
adopted the stochastic gradient descent (SGD) optimizer, the base learning rate was 0.05, scaled
linearly with the batch size of 256. The learning rates for the predictor were 10× as the learning
rate of feature models. For the exponential moving average hyperparameter to update the online
network, we set it to 0.996. All these settings strictly followed [13]. We inserted all the existing
models into our model at the 800th epoch to inherit the hyper-parameters at that time and continued
to train another 200 epochs.

Evaluation metrics. We employed three commonly used clustering metrics to evaluate performance:
Normalized Mutual Information (NMI) [33], Accuracy (ACC) [19], and Adjusted Rand Index (ARI)
[14]. Higher scores indicate better clustering performance.

Baseline methods. For a fair comparison, we strictly followed the experimental settings of [16] to
re-implement CC [20], SCAN [36], and CDC [16]. The predictor subsequent to the online network
consists of an MLP with the structure (hD-BN [15]-ReLU [26]-dD), where h=512 was set to match
the hidden layer dimension of the projector. The output dimension d remained the same as the
input dimension of predictor to ensure consistency. And we also rigorously adhered to [13, 39]
when re-implementing BYOL [9], CoNR [39], and ProPos [13]. For other deep clustering models,
including NNM [7], GCC [40], IDFD [34], TCL [21], TCC [32], SPICE [27], SeCu [31], and DPAC
[38], we directly cited the results they reported.

1For models already based on BYOL-like architecture, the required architecture is inherently present.
Therefore, our method could be directly applied without architectural changes or additional initialization
strategies. We also combine outputs from both the online and target networks for sample selection, because the
hybrid approach balances the stability of the target network, and the real-time adaptability of the online network.
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B More Ablation Study

Robustness to cluster number. Previous experiments assumed prior knowledge of the true number
of categories, which is often unavailable in real-world applications. To evaluate the robustness of
our method to different clustering numbers, we conducted experiments on CIFAR-20 with varying
numbers of clusters (c = 10, 20, 30, 40, 50), simulating both underclustering and overclustering
scenarios. We applied k-means and evaluate clustering performance under the different predefined c.
As shown in the Table 10, both NMI and ARI show clear improvements compared to the baseline
clustering setting. This suggests that our method enhances the model’s ability to discover meaningful
partitions even when the number of clusters deviates from the ground-truth.

Table 10: Clustering performance (%) on CIFAR-20 with varying cluster numbers.

CIFAR-20

Class Number c = 10 c = 20 c = 30 c = 40 c = 50

Metric NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

ProPos 53.6 32.4 60.7 44.4 59.5 38.2 59.5 36.6 58.8 33.3
ProPos+Ours 56.1 34.4 64.5 49.2 62.1 44.6 62.7 42.3 62.2 38.1

Robustness to pseudo-label generation strategies. During training, pseudo labels are typically
obtained by performing k-means clustering of all samples at each epoch. For models equipped with
a clustering head, another option is to directly generate pseudo labels from the softmax outputs,
since the output dimension corresponds to the number of clusters. In this study, we explored the
impact of different pseudo-labeling strategies on clustering performance. As shown in Table 11
, our proposed method consistently improves clustering performance across various pseudo-label
generation strategies, demonstrating its general applicability.

Table 11: Influence on model performance (%) with different pseudo-label generation strategies.

Method CIFAR-20 CIFAR-10

NMI ACC ARI NMI ACC ARI

CDC 60.6 61.6 46.3 89.0 94.7 89.1
CDC+Ours (k-means) 63.1 62.6 48.6 89.9 95.1 90.0
CDC+Ours (softmax) 62.6 63.2 48.3 89.9 95.1 90.0

NMI and ARI on different k selecting strategies. As shown in Fig. 7, consistent with the previous
trend of ACC in Fig. 6, the k value selected manually varies between different datasets and may
degrade cluster performance if set inappropriately, while the proposed adaptive k selection strategy
effectively addresses this issue.
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Figure 7: Impact of neighbor number k on NMI and ARI across different datasets.

The dynamic retrieval parameter m setting. In our method, different k values are evaluated to
select an appropriate k, and here we conduct an ablation study on the efficiency of this procedure.
Although multiple candidate k values within [1,m] are considered, the m-nearest neighbors are
computed only once per batch (e.g., m = 50), and all scores under different k are derived from this
single retrieval. The operation performs label consistency checks and determines the favorable k
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using efficient matrix operations. As a result, with a batch size B, the computational complexity is
O(B ·m), and the overall training cost is not significantly affected by the choice of m.

Further experiments on CIFAR-10 show that varying m (e.g., m = 25, 50, 75), using a fixed k = 25,
or even removing the k-NN filtering altogether (i.e., k = 0, using all samples) leads to negligible
differences in runtime. Meanwhile, the dynamic strategy consistently improves sample selection
while introducing no observable overhead (see Table 12).

Table 12: Training time for different searching space.

Method NMI ACC ARI Time (h:m:s)

k = 0 89.1 94.9 89.3 4:22:32
k = 25 91.1 91.6 96.0 4:25:58
m = 25 91.2 91.7 96.1 4:25:51
m = 50 91.1 91.6 96.0 4:29:00
m = 75 91.1 91.6 96.0 4:25:58

C More Experiments

Results on large-scale datasets. We further evaluated our method on the large-scale Tiny-ImageNet
dataset, which contains 200 classes and 100,000 training images. We followed settings in [16] with a
ResNet-34 backbone and a image size of 64×64. Due to memory constraints, the batch size cannot
be set very large, resulting in only a few same-class samples per batch, limiting the effectiveness of
our batch-wise adaptive k-NN selection. To mitigate this, we adopt a queue mechanism to expand
the neighborhood search space, following [13], and manually set a fixed k = 5 to preserve high-
confidence sample selection. Experimental results in Table 13 demonstrate that our method is not
only effective on standard datasets but also adaptable to larger-scale datasets.

Table 13: Clustering performance (%) on Tiny-ImageNet.

Method Tiny-ImageNet

NMI ACC ARI

ProPos 46.5 29.8 18.2
ProPos+Ours 48.9 31.9 19.8
CDC 47.5 33.9 19.9
CDC+Ours 48.0 34.7 20.9

Scalability to datasets with many categories. To evaluate the scalability of our method to scenarios
with a large number of categories, we further conducted experiments on CIFAR-100 (100 classes),
Tiny-ImageNet (200 classes), and ImageNet-1K (1000 classes). As shown in the Table 14, our method
consistently improves over the ProPos baseline across all datasets. These results confirm that our
method is scalable and effective even as the number of clusters increases from tens to hundreds or
thousands.

Table 14: Clustering performance(%) on datasets with many categories.

Method CIFAR-100 Tiny-ImageNet ImageNet-1K

NMI ACC ARI NMI ACC ARI NMI ACC ARI

ProPos 65.7 55.2 40.1 46.5 29.8 18.2 51.3 22.0 13.4
ProPos+Ours 67.4 57.1 43.4 48.9 31.9 19.8 54.5 23.2 15.1

Results on long-tailed datasets. To further validate the robustness of our method, we conducted
additional experiments on long-tailed CIFAR-10 and CIFAR-20 with an imbalance ratio of 10, where
the number of training samples per class follows an exponential decay controlled by a ratio between
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the number of samples in the most frequent class and the least frequent class. For instance, with
ratio=10, the head class contains 5000 samples while the tail class has only 500. As shown in
Table 15, our approach consistently improves clustering performance over strong baselines. These
gains highlight that the proposed k-NN-based selection strategy remains effective and robust, even
under class-imbalanced conditions. Notably, although our method does not explicitly incorporate
mechanisms tailored for non-uniform data distributions, it still yields consistent improvements across
different datasets and baselines.

Table 15: Clustering performance(%) on long-tailed datasets.

Method CIFAR10-LT CIFAR20-LT

NMI ACC ARI NMI ACC ARI

ProPos 57.1 48.3 40.7 47.6 42.1 29.9
ProPos+Ours 61.3 49.9 43.3 49.1 43.4 31.5
CoNR 67.2 64.6 56.7 51.2 43.9 30.3
CoNR+Ours 68.4 65.3 59.1 51.4 44.1 33.3
LFSS [24] 57.9 56.2 43.0 46.7 41.4 28.3
LFSS+Ours 61.3 60.1 46.9 47.5 42.4 29.4

Clustering performance curve comparison. To assess the observed performance gains are derived
from our proposed method rather than prolonged training, we conducted a study comparing the
original model with and without our method under extended training epochs. As shown in Fig. 8,
simply extending the training time of ProPos does not lead to significant improvement and may
even degrade performance. In contrast, incorporating our method results in a notable and stable
enhancement in clustering ACC.
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Figure 8: Evaluating the effect of prolonged training and our method.

Training efficiency. We reported the running time per epoch on a single RTX3090 GPU in Table 16.
Compared to CDC [16] (100 epochs after pretraining), ProPos (200 epochs), and SCAN [36] (300
epochs after pretraining), our method exhibits a comparable per-epoch runtime to ProPos and
SCAN, and is significantly faster than CDC. This suggests that our framework introduces negligible
computational overhead and maintains high efficiency during training.

Enhancement on CoNR. CoNR [39] can be applied to existing models to boost their performance.
However, when our method is further applied on top of CoNR-enhanced models, we observe
additional performance gains in Table 17. This demonstrates that our method complements CoNR’s
ability to improve clustering performance.

Average performance and standard deviation for deep clustering models. To ensure the reliability
of our experimental results, we conducted five runs across various models. Table 18 reports the
average performance along with standard deviations. For each existing deep clustering model,
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Table 16: Running time comparison.

Running Time Per Epoch (Minute) CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs

CDC 5.2 1.4 0.8 3.6 3.5
SCAN 0.9 0.9 0.3 0.8 1.1
ProPos 1.2 1.1 0.4 1.4 2.0

CDC/SCAN+Ours (200 epochs) 1.1 1.1 0.3 1.4 1.7
ProPos+Ours (200 epochs) 1.2 1.1 0.4 1.4 1.8

Table 17: Further enhancement (%) after enhancement of CoNR on ProPos and CC.

Method CIFAR-10 CIFAR-20

NMI ACC ARI NMI ACC ARI

ProPos 88.1 94.4 88.3 60.7 61.6 44.4
ProPos+CoNR 90.3 95.6 90.6 64.0 63.1 48.4
ProPos+CoNR+Ours 91.1 96.0 91.5 64.2 63.5 48.8
CC 78.5 86.3 74.9 50.4 48.9 33.2
CC+CoNR 84.8 90.8 82.4 58.4 55.7 41.4
CC+CoNR+Ours 86.9 92.1 84.7 58.8 56.0 42.2

integrating our method consistently leads to notable performance gains compared to the original
results, all of which are statistically significant under a 5% t-test, corresponding p-values are
shown in Table 19.

Table 18: Clustering performance NMI, ACC, ARI (mean±std %) of different deep clustering models
on five image benchmarks.

Method CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs

NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

CC 74.9±3.1 82.3±4.4 69.3±4.5 48.2±0.6 43.4±2.3 30.3±1.4 76.9±3.7 85.0±4.8 73.5±5.5 86.8±1.0 90.4±0.7 83.4±1.6 63.2±1.9 67.0±2.8 52.6±2.9
CC+Ours 81.2±2.4 86.5±3.2 76.5±3.2 54.3±1.3 50.5±1.5 36.9±1.6 78.2±4.3 85.9±5.0 75.1±6.1 87.1±0.9 90.9±0.3 84.4±1.1 67.3±0.6 69.7±2.1 57.7±0.8
SCAN 84.1±2.1 91.4±1.7 82.9±3.1 53.7±1.6 51.9±2.0 37.3±2.7 84.0±0.4 91.8±0.3 83.3±0.7 90.6±2.8 93.4±3.7 88.9.3±5.1 70.5±3.6 72.6±6.0 62.5±5.8
SCAN+Ours 85.9±2.1 91.9±1.7 84.1±3.2 56.4±1.9 53.5±1.8 39.4±2.7 84.8±0.6 92.1±0.4 84.1±0.8 91.1±2.7 93.5±5.7 89.2±5.2 73.3±3.3 74.5±6.5 65.3±5.6
CDC 88.0±1.0 93.7±0.9 87.3±1.6 60.4±0.7 60.5±1.7 45.7±1.2 86.1±0.4 93.1±0.1 85.8±0.4 92.8±0.4 97.2±0.2 93.8±0.5 75.3±2.0 77.6±2.6 68.2±2.8
CDC+Ours 89.0±0.9 94.3±0.9 88.5±1.6 62.6±0.9 61.7±1.9 47.7±1.6 86.6±0.2 93.4±0.1 86.3±0.2 93.1±0.4 97.2±0.1 94.0±0.3 76.2±1.8 78.3±2.5 69.6±2.7
BYOL 76.7±2.6 86.6±1.8 73.6±3.3 53.5±0.5 51.8±0.9 35.6±0.9 74.5±1.9 85.0±2.4 70.2±2.8 87.6±1.6 94.3±0.8 88.1±1.7 69.6±0.3 72.8±0.3 61.0±0.1
BYOL+Ours 84.7±0.8 91.1±1.1 82.2±1.8 57.8±0.7 54.9±1.8 41.1±1.0 81.3±2.8 89.4±3.5 79.1±5.4 89.9±0.2 95.7±0.1 90.8±0.2 74.2±0.6 77.4±0.5 68.0±0.7
CoNR 86.3±0.8 92.6±1.0 85.2±1.6 61.2±0.9 59.5±0.4 44.9±0.1 83.8±1.6 91.7±1.1 82.7±2.2 90.8±0.2 96.3±0.2 91.7±0.4 73.7±0.6 78.2±2.3 66.5±1.3
CoNR+Ours 87.5±1.0 93.6±1.0 86.9±1.8 61.8±0.8 60.3±0.4 46.0±0.5 84.9±0.8 92.3±0.6 84.1±1.0 91.3±0.1 96.4±0.0 92.3±0.1 74.9±0.3 79.5±1.4 68.6±0.3
ProPos 88.4±0.6 94.6±0.3 88.7±0.6 60.3±0.5 60.0±1.5 44.3±0.5 82.4±1.8 91.1±1.2 81.6±2.2 88.5±1.8 95.0±0.9 89.4±1.9 72.9±0.1 76.8±0.1 66.3±0.3
ProPos+Ours 90.2±0.6 95.5±0.3 90.5±0.7 63.1±1.0 62.1±1.4 47.6±1.1 86.3±0.5 93.3±0.3 85.9±0.7 91.7±1.1 96.6±0.5 92.7±1.1 76.1±0.7 79.8±0.1 70.5±0.5

Table 19: T-test results comparing baseline deep clustering models and their enhanced versions with
our method across five image benchmarks. A p-value less than 0.05 indicates a statistically significant
improvement over the baseline.

Method CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs

NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

CC+Ours 0.003 0.013 0.005 0.002 0.004 0.001 0.046 0.025 0.040 0.007 0.027 0.017 0.018 0.043 0.031
SCAN+Ours 0.001 0.002 0.003 0.003 0.004 0.000 0.001 0.016 0.000 0.003 0.019 0.018 0.015 0.048 0.023
CDC+Ours 0.001 0.019 0.014 0.000 0.000 0.000 0.002 0.001 0.001 0.037 0.001 0.047 0.000 0.001 0.000
BYOL+Ours 0.002 0.001 0.001 0.002 0.005 0.000 0.000 0.003 0.004 0.028 0.018 0.020 0.000 0.000 0.000
CoNR+Ours 0.001 0.002 0.003 0.007 0.021 0.020 0.036 0.044 0.047 0.017 0.032 0.020 0.040 0.032 0.040
ProPos+Ours 0.003 0.004 0.004 0.004 0.037 0.002 0.020 0.029 0.022 0.008 0.014 0.010 0.008 0.001 0.004

Visualizations of adaptive k during training. We plot the variation of the adaptively selected k
values across training epochs. As shown in Fig. 9, k starts relatively small, enabling the inclusion of
more samples and thus stronger self-supervision signals at early stages. As training progresses, k
gradually increases, reflecting stricter neighborhood consistency criteria and leading the model to
focus on more reliable high-confidence samples. This adaptive adjustment verifies the effectiveness
of our method in balancing supervision quantity and quality throughout training.
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Figure 9: Visualizations of adaptive k.
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Figure 10: Accuracy change for each class.

Visualizations of accuracy change for each class. To further analyze the effect of our method at the
class level, we visualize the accuracy change of each category before and after applying DCBoost on
CIFAR-10. The corresponding statistics are shown in Fig. 10. Our method consistently improves
the accuracy across all 10 classes. These results demonstrate that our selection strategy does not
overfit or bias toward specific categories, but instead achieves consistent gains across diverse semantic
groups. Moreover, the improvements suggest that our method refines the global feature space in
a class-balanced manner, ensuring that minority or challenging categories also benefit from the
enhanced representations.

Visualizations of high-confidence samples. We visualize the feature space with t-SNE in Fig. 11,
showing three subfigures: true labels, pseudo-labels, and high-confidence samples (red) versus
others (blue). We observe that in regions where pseudo-labels disagree with ground truth (circled in
the second subfigure), very few high-confidence samples are selected, meaning our method avoids
unreliable areas. In well-formed clusters, high-confidence samples are densely distributed, showing
that our method can reliably capture consistent regions. These observations indicate that our selection
strategy filters out noisy regions and focuses on structurally reliable clusters, which in turn helps
refine the global feature structure and improve clustering quality.

t-SNE (True-label) t-SNE (Pseudo-label) t-SNE (High-confidence and others)

Figure 11: Visualizations of high-confidence samples on CIFAR-10.
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