
Mixture of Basis for Interpretable Continual
Learning with Distribution Shifts

Mengda Xu ∗

JPMorgan AI Research
mengda.xu@jpmorgan.com

Sumitra Ganesh∗

JPMorgan AI Research
sumitra.ganesh@jpmorgan.com

Pranay Pasula
JPMorgan AI Research

Pranay.Pasula@jpmorgan.com

Abstract

Continual learning in environments with shifting data distributions is a challenging
problem with several real-world applications. In this paper we consider settings
in which the data distribution (task) shifts abruptly and the timing of these shifts
are not known to the observer. Furthermore, we consider a semi-supervised task-
agnostic setting in which the learning algorithm has access to both task-segmented
and unsegmented data for offline training. We propose a novel approach called
Mixture of Basis models (MoB) for addressing this problem setting. The core idea
is to learn a small set of basis models and to construct a dynamic, task-dependent
mixture of the models to predict for the current task. We also propose a new
methodology to detect observations that are out-of-distribution with respect to
the existing basis models and to instantiate new models as needed. We test our
approach in multiple domains and show that it attains better prediction error than
existing methods in most cases while using fewer models. Moreover, we analyze
the latent task representations learned by MoB and show that similar tasks tend to
cluster in the latent space and that the latent representation shifts at task boundaries
when tasks are dissimilar.

1 Introduction

Continual learning in environments with shifting data distributions is a challenging problem with
several real-world applications e.g. weather and financial market data are known to have regime shifts.
In this paper, we consider settings where the data distribution (or task) shifts abruptly but the timing
of these shifts are not known to the observer. In such domains, segmenting historical data into tasks
is often a difficult problem in itself and much of the data is likely to be unsegmented. Motivated by
this practical challenge, we consider a semi-supervised task-agnostic setting in which the learning
algorithm has access to both task-segmented and unsegmented data for offline training. Typically
segmented data will be available only for a small set of tasks. In the online setting the algorithm does
not observe task boundaries and encounters new tasks that were not present in the offline dataset.

∗Contributed equally

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Contributions: Our key contribution in this paper is a new approach to the aforementioned problem
that is based on a mixture of basis models (inspired by basis functions/vectors). The core idea is
to learn a small set of basis models and to construct a dynamic, task-depdendent mixture of these
models to predict for the current task. We also propose a new methodology to detect observations
that are out-of-distribution with respect to the existing basis models and to instantiate new models.
Our methodology uses a combination of model error and uncertainty to account for both covariate
and concept shifts. Thus our approach allows for dynamic reuse of previously learned basis models
across multiple tasks while simultaneously expanding the basis set as needed to adapt to new tasks.

In our experiments on a synthetic regression domain and MuJoCo environments (HalfCheetah), we
show that our approach, Mixture of Basis (MoB), achieves better mean-squared error (MSE) than
comparable methods in most cases. Moreover, MoB also allows for greater interpretability. We
analyze the latent task representations learned by MoB and find that similar tasks tend to cluster
together in the latent space and that the latent representation shifts at task boundaries when tasks are
dissimilar.

2 Mixture of Basis (MoB)

(a) Offline and Online: The segmented dataset con-
tains samples for S tasks Dl := {D1

l , · · · ,DS
l }

(here S = 2). The unsegmented dataset contains
trajectories τ = (x0:T , y0:T).

(b) MoB pipeline

Figure 1: Overview of MoB training

Problem Statement: Our goal is to learn a model that accurately predicts target variables Yt from
inputs Xt in a non-stationary environment in which the data distribution PTt(Xt, Yt) can shift with
time, depending on the current task Tt. The task process Tt is Markovian (i.e., the current task Tt is
conditionally independent of previous observations Xt′<t and Yt′<t given the previous task Tt−1).

We consider a semi-supervised task-agnostic setting in which the learning algorithm has access to
both task-segmented Dl and unsegmented data Du for offline training (see Fig. 1a). The problems
are: (a) How do we effectively train the model using the offline dataset?, and (b) How do we update
the model in the online setting to adapt to task shifts and new tasks that were not in the offline dataset?
2

Basis Model Definition: A basis model is a model that predicts Y for a given X . We will use
b(Y |X) to denote the probability of Y given X under the basis model. Given a set of K basis
models {b(i)}i=1:K and a latent task representation Zt ∈ Rd for the current task Tt, we express the
conditional distribution of Yt given Xt and Zt as the mixture (see Fig. 1b)

P (Yt|Xt, Zt) =

K∑
i=1

wi(Zt) b
(i)(Yt|Xt) (1)

where w(Zt) is contained in the standard (K − 1)−simplex (i.e.,
∑K
i=1 w

i(Zt) = 1 and wi(Zt) ≥ 0
for i = 1, 2, . . . ,K). Note that the mixing network w() takes only the task representation as input,
whereas the basis models are task-agnostic. The benefits of using basis models are: (a)Basis models
can capture the commonality across tasks such that we can reuseing the existing basis models to

2Note that this is similar to current task-agnostic continual learning approaches [1, 7, 8, 9, 14] that assume
that task segmented data is available for offline training

2

predict new tasks (b)Latent representation Zt drives how to combine the basis models and give us
interpretability. We will first describe MoB’s learning and inference procedure for a fixed number of
basis models and then tackle the problem of when and how to add new basis models.

2.1 Learning and Inference with a Fixed Basis Set

Let’s assume we are given a stream of observations τ := (x0:T , y0:T)
3. We use a sequential VAE

construction ([2, 11]) and learn the parameters θ and φ of the model P and the inference model q,
respectively, by maximizing the ELBO L(τ ;P, q) w.r.t. θ and φ. In order to compute the gradients
w.r.t. the inference model parameters we use the re-parameterization trick in [10] and estimate the
ELBO as

L̂(τ ; θ, φ) =
T∑
t=0

logPθ(yt|xt, zt) +
T∑
t=1

logPθ(zt|zt−1)−
T∑
t=1

log qφ(zt|zt−1, xt, yt)) (2)

where zt = µφ(zt−1, xt, yt) + σφ(zt−1, xt, yt)� ε and ε ∼ N (0, I). Details of the derivation are in-
cluded in the Appendix A.1.1. Note that the model P here uses the mixture of basis formulation in Eq.
1 and has three components: (i) the mixture network wθ(Z), (ii) the basis models {b(i)θ (Y |X)}i=1:K ,
and (iii) the prior task model pθ(Zt|Zt−1).
Pre-trained basis models: In theory the basis models could be learned using the above procedure.
However, we found in practice that this often led to the basis models being too similar to one another.
To overcome this issue, we instead use the segmented task dataset Dl to pre-train a basis model for
each task and then allow for adaptation.

Uncertainty estimation using ensembles: We would like to estimate the uncertainty in each basis
model in order to assess when to instantiate new models. We use deep ensembles [12] for uncertainty
estimation by training an ensemble of M networks {b(i)j }j=1:M for each basis model b(i). Each

model b(i)j in the ensemble outputs the mean and variance of an isotropic Gaussian.

Fast basis instantiation using MAML: During offline and online training, we might have only
few data points available for instantiation of a basis model. To enable fast instantiation, we use
a meta-learned (MAML) [4] prior. Since we need ensemble basis models, we train an ensemble
MAML prior {θ∗j }Mj=1 using the segmented task dataset and bij is adapted to task Ti from θ∗j using
the segmented data for that task.

2.2 Adding New Basis Models

For our approach to be able to adapt to new tasks in the offline or online setting, it needs to detect when
the observations are out-of-distribution (OoD) with respect to the current set of models. Prediction
errors [8] and model uncertainty [3] have been used to detect OoD samples. In case of covariate shift,
well-calibrated models would have high uncertainty. But in case of a concept shift the model could
be confident in its predictions while making errors because P (Y |X) had changed. To reliably handle
both types of shifts, we propose a novel Out-of-Distribution Detection Score (ODDS) that combines
model uncertainty and error.

To decide whether a data point (x, y) is OoD or not, we define a binary random variable D that
can take values {I,O} where I and O denote in and out of distribution, respectively. The decision
on whether (x, y) is OoD can then be based on the score SODDS := P (y|D=O,x)P (D=O|x)

P (y|D=I,x)P (D=I|x) with a
default threshold of 1. Details on how the score is computed are included in Appendix A.1.2.

MoB creates an OoD buffer Q for each trajectory. If SODDS is below the threshold, 1, for a sample
(xt, yt), it is added into the buffer. Similar to [16], once the buffer size exceeds some threshold L,
MoB will create a new basis model by adapting the MAML prior to the samples in Q.

3Notation: We will use capital letters (e.g. Zt) to denote random variables and small letters (e.g. zt) to
denote realizations/observations of the random variable

3

3 Experiments

Our goal is to study the following three aspects of our proposed approach: (a) Performance: how
does our approach (MoB) compare to others in terms of average prediction error (MSE) over an online
stream of tasks? (b) Scaling: how many basis models does MoB instantiate? (c) Interpretability:
does the learned latent representation of the task(s) capture objectively measurable task similarity?

We evaluate our method on a synthetic regression domain and on building environment models
for HalfCheetah (MuJoCo [16]). 4 In both domains we define multiple tasks (as described in the
Appendix A.2). A subset of the tasks are included in the segmented and unsegmented offline dataset,
and these task partitions are described in Appendix A.2, Table 1. After training on the offline dataset,
all approaches are evaluated on an online data stream generated by a Markovian task process with
a fixed, uniform probability per time step of switching to a different task. In particular, the online
stream contains tasks that were not present in the offline data set in order to test the ability of the
approaches to adapt to new tasks. For each domain and task partition, we report results on 10 different
seeds.

We compare our method with three baselines - all of which use a meta-learned (MAML) [4] prior
trained using offline data: (a) MOLe: MOLe [14] is an online algorithm that instantiates multiple task
models from a meta-learned prior. For fair comparison to MoB, we add an offline training phase to
MOLe by running it on the offline data and carrying over any generated models, (b) MAML k-shot:
This approach uses a single prediction model that is adapted from MAML prior θ∗ at each time step,
using latest k data points, and (c) MAML continuous: This approach uses a single prediction model
that is is continuously updated using the most recent observations; model is initialized at the start of
the online phase using a meta-learned prior θ∗.

Performance and Scaling: MoB achieves the lowest mean squared-error (MSE) on the online stream
of tasks, in most task partitions and across domains. On both the regression task and HalfCheetah
ice-slope, MoB achieves significantly better performance than all baselines while instantiating
significantly fewer models than MOLe. For example, in the HalfCheetah ice-slope domain, MoB
instantiates 13, 15 and 2 basis models (on average) in the three task partitions, in comparison to the
26, 53 and 9 task models instantiated by MOLe. In the regression domain, MoB instantiates 3 models
vs. MOLe’s average of 12 (details in Appendix A.5, Table 2). This demonstrates MoB’s ability to
reuse previously learned basis models in order to achieve comparable or superior performance.

Figure 2: MSEs and 95% confidence intervals over 10 seeds for each algorithm on each task partition.

Interpretability: We analyzed the principal components of the Zt inferred by MoB to study whether
similar tasks cluster together in latent space. In the regression domain, we can quantify the task
similarity by the Bhattacharya distance between the distribution of Y under different tasks. As we
can see in Fig. 3a, latent task representations are well separated if tasks are sufficiently different and
overlap more as the similarity increases. We also confirmed that the trajectories of the Z-components
with the highest variance typically show shifts that are aligned with the task boundaries if the tasks
are dissimilar (see Fig. 3c; additional plots can be found in Appendix A.5).
4 Related Work

Recent works in continual learning [5, 1, 6], have leveraged advances in meta-learning (e.g. MAML
[4]) to enable fast adaptation to the current task. However, these approaches don’t allow for modular-

4Note that though the MuJoCo environment (HalfCheetah) is typically used in an reinforcement learning
setting, here we are only interested in a regression task constructed using this domain (i.e., the task of predicting
the next state, given the current state and action.)

4

(a) Regression. First two prin-
cipal components of the 32-
dimensional latent space Z. Bhat-
tacharyya distance between tasks
is above each subplot.

(b) Regression. Activations of a
randomly selected z component
(z15) over a randomly selected tra-
jectory. Mean values of task seg-
ments are shown in red. The ac-
tivations of all other 31 z compo-
nents is shown in Figure 7.

(c) HalfCheetah Foot. z com-
ponent with maximum variance
(mean values in red). When the
task switches from btff to bfff, the
activation doesn’t change much,
likely because ff is present in both.
However, it shifts significantly
when the task changes to back.

Figure 3: Analysis of learned latent representations.

ization and interpretability. A handful of works have proposed ways to combine model components
but in ways that are different from our approach. [7] combines model components in parameter space
whereas [9] proposes an approach where the MAML prior itself is modeled as a mixture distribution.
MOLe [14], similarly to our approach, creates multiple prediction models by leveraging MAML and
is hence used as a baseline for comparison.

5 Conclusions

We proposed a new approach (MoB) based on a mixture of basis models that is able to learn robustly
in the presence of distribution shifts. Our experiments showed that MoB outperformed comparable
methods, such as MOLe, in the majority of cases while instantiating significantly fewer models.
Moreover, MoB learned interpretable latent task representations that captured information about task
similarity and distribution shifts.

References
[1] Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko, Fabrice Normandin, Min Lin, Lucas

Caccia, Issam Laradji, Irina Rish, Alexandre Lacoste, David Vazquez, and Laurent Charlin.
Online fast adaptation and knowledge accumulation: a new approach to continual learning.
March 2020.

[2] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential data. In C Cortes, N D Lawrence, D D
Lee, M Sugiyama, and R Garnett, editors, Advances in Neural Information Processing Systems
28, pages 2980–2988. Curran Associates, Inc., 2015.

[3] Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. May 2018.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. CoRR, abs/1703.03400, 2017.

[5] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online Meta-Learning.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 1920–1930. PMLR, 2019.

[6] Gunshi Gupta, Karmesh Yadav, and Liam Paull. La-MAML: Look-ahead meta learning for
continual learning. July 2020.

[7] Xu He, Jakub Sygnowski, Alexandre Galashov, Andrei A Rusu, Yee Whye Teh, and Razvan
Pascanu. Task agnostic continual learning via meta learning. June 2019.

5

[8] Yujiang He and Bernhard Sick. CLeaR: An adaptive continual learning framework for regression
tasks. January 2021.

[9] Ghassen Jerfel, Erin Grant, Thomas L Griffiths, and Katherine Heller. Reconciling meta-learning
and continual learning with online mixtures of tasks. December 2018.

[10] Diederik P Kingma and Max Welling. Auto-Encoding variational bayes. December 2013.

[11] Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. November 2015.

[12] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles, 2017.

[13] Davide Maltoni and Vincenzo Lomonaco. Continuous learning in Single-Incremental-Task
scenarios. June 2018.

[14] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via Meta-Learning:
Continual adaptation for Model-Based RL. December 2018.

[15] Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. MCP:
learning composable hierarchical control with multiplicative compositional policies. CoRR,
abs/1905.09808, 2019.

[16] Ahmed Hussain Qureshi, Jacob J. Johnson, Yuzhe Qin, Byron Boots, and Michael C. Yip.
Composing ensembles of policies with deep reinforcement learning. CoRR, abs/1905.10681,
2019.

[17] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. June
2016.

A Appendix

A.1 Algorithms

A.1.1 Derivation of ELBO

We assume a generative model with the following structure: the latent task process Zt is Markov
P (Zt|X<t, Y<t, Zt′<t) = P (Zt|Zt−1) (3)

and the target variable Yt is conditionally independent of past observations X<t and Y<t given the
current input observation Xt and latent task Zt i.e.

P (Yt|X≤t, Y<t, Z≤t) = P (Yt|Xt, Zt) (4)

Derivation of Variational Lower Bound: Let’s assume we are given a stream of observations
τ := (x0:T , y0:T). 5 We would like to approximate the (in general) intractable posterior distribution
P (Z≤t|X≤t, Y≤t) using a distribution q(Z≤t|X≤t, Y≤t) from a class of tractable distributions Q.
We can find the best approximating q by minimizing the KL divergence between the approximating
distribution and the true posterior distribution

min
q∈Q

DKL(q||P)

where

DKL(q||P) = EZ≤t∼q

[
log

q(Z≤t|X≤t, Y≤t)
P (Z≤t|X≤t, Y≤t)

]
= EZ≤t∼q

[
log

q(Z≤t|X≤t, Y≤t)
P (Z≤t, X≤t, Y≤t)

· P (X≤t, Y≤t)
]

= EZ≤t∼q

[
log

q(Z≤t|X≤t, Y≤t)
P (Z≤t, X≤t, Y≤t)

]
+ logP (X≤t, Y≤t) (5)

5Notation: We will use capital letters (e.g. Zt to denote random variables and small letters zt to denote
realizations/observations of the random variable

6

Rearranging terms,

logP (X≤t, Y≤t) = DKL(q||P) + EZ≤t∼q

[
log

P (Z≤t, X≤t, Y≤t)

q(Z≤t|X≤t, Y≤t)

]
(6)

≥ EZ≤t∼q

[
log

P (Z≤t, X≤t, Y≤t)

q(Z≤t|X≤t, Y≤t)

]
(7)

since DKL(q||P) ≥ 0. That is, the log-likelihood of the observed trajectory τ is lower bounded by
the evidence lower bound (ELBO) or variational lower bound L(τ ;P, q) defined as follows

logP (τ) ≥ EZ≤T∼q

[
log

P (Z≤T , x0:T , y0:T)

q(Z≤T |x0:T , y0:T)

]
︸ ︷︷ ︸

L(τ ;P,q)

(8)

We further assume a factored form of q (as in [11])

q(Z0)

T∏
t=1

q(Zt|Zt−1, Xt, Yt)

Plugging into Eq (8), we get

L(τ ;P, q) = EZ≤T∼q

[
log

P (Z≤T , x≤T , y≤T)

q(Z0)
∏T
t′<t=1 q(Zt′<t|Zt′<t−1, xt′<t, yt′<t))

]
(9)

Using the generative model assumptions, the numerator can be factorized as

P (Z≤T , X≤T , Y≤T) =
∏
t

P (Zt, Xt, Yt|Z<t, X<t, Y<t) (10)

=
∏
t′<t

P (Yt′<t|Zt′<t, Xt′<t)P (Xt′<t)P (Zt′<t|Zt′<t−1) (11)

Plugging in, the ELBO L(τ ;P, q) is given by

EZ≤T∼q

[
log

P (Z0)P (y0|x0, Z0)P (x0)
∏T
t=1 P (yt′<t|Zt, xt)P (xt)P (Zt|Zt−1)

q(Z0)
∏t
t=1 q(Zt|Zt−1, xt, yt)

]

zt−1 zt zt+1

xt−1 xt xt+1

yt−1 yt yt+1

Figure 4: Generative model.

7

The P (xt) terms can be treated as a constant in the ELBO which then simplifies to

L(τ ;P, q) = EZt∼q

[
T∑
t=0

logP (yt|xt, Zt)

]

−
T∑
t=1

EZt−1∼q [DKL(q(Zt|Zt−1, xt, yt)||P (Zt|Zt−1)]

−DKL(q(Z0)||P (Z0))

(12)

The form of the ELBO is similar to that in the original VAE in that the first term measures the average
reconstruction error using the model P and the latent variables sampled from q, while the second and
third terms act as a regularization constraining KL-divergence between the approximating posterior
distribution q and the prior.

A.1.2 Computation of the ODDS Score

To formalize our decision-making around whether a data point (x, y) is OOD or not, we define a
binary random variableD that can take values {I,O} where I andO denote in and out of distribution,
respectively. Note that

P (D|x, y) = P (y|D,x)P (D|x)
P (y|x)

(13)

The decision on whether (x, y) is OOD can then be based on the score SODDS :=
P (y|D=O,x)P (D=O|x)
P (y|D=I,x)P (D=I|x) with a threshold of 1. Note that, just as with model uncertainty, P (D|x)

only depends on the input observation x. On the other hand, the likelihood P (y|D,x) is evaluated
after the ground truth y is observed (similar to the model error).

We determine the in-distribution likelihood as P (y|D = I, x) = maxi b
i(y|x), by considering

the basis model with the highest likelihood for the sample. To approximate the out-of-distribution
likelihood P (y|D = O, x), similarly to [14], we create a new basis bnew by adapting from the
MAML prior θ∗ using recently observed data, and use the likelihood bnew(y|x) under this model.
Assuming the data is OOD, fitting a new model is the best approximation.

To approximate the prior P (D|x), we create a normalized uncertainty score for each basis and convert
it into a probability-like measure. As in [12], we treat the ensemble for the basis bi as uniformly
weighted mixture of Gaussians. We further normalize the total variance of the mixture by the variance
of the components

scorei(X) =
M−1

∑M
j=1(σ

2
bij
(x) + µ2

bij
(x))− (bi(y|x))2

M−1
∑M
j=1 σb

2
ij
(x)

(14)

In order to determine the prior P (D|x), we need to convert the model uncertainty score into a
probability-like measure. We use exp((1− score(x))/τ) to approximate P (D = I|x), where τ is a
temperature parameter that modulates the sensitivity to the score (less sensitive as τ increases). To be
conservative, we use the minimum score from all basis models for the SODDS calculation.

MoB creates a OOD buffer Q for each trajectory. If ODDS is below threshold 1, we add the (xt, yt)
into the buffer. Similar to [16], once the buffer size exceeds threshold L, Mob will create a new basis
model by adapting the MAML prior to the buffer.

A.2 Domain Definition

Regression: We use randomly initialized neural networks to create different regression tasks. The
input observation X is sampled uniformly at random in [−1, 1] and Y ∼ N (µi(x);σi(x)) where µi
and σi are randomly initialized networks. The advantage of creating regression tasks in this manner
is that (a) the regression tasks are not overly simplistic, and (b) we can construct informative and
well-understood dissimilarity measures (e.g. Kullback-Leibler divergence, Bhattacharyya distance)
between the conditional distributions P (Y |X) under different tasks to quantify task similarity.

HalfCheetah foot: We create different tasks in the HalfCheetah environment by clipping the action
space of one or two actuators into one-third of the original. To generate the data under for different

8

Algorithm 1: Mixture of Basis (MoB) - Instantiating new basis

1 Input: data xt, yt; meta-learned prior {θ∗m}Mm=1; OOD buffer Q
2 Compute the P (D = I|xt, yt) and P (D = O|xt, yt) using Eq. (13)
3 if P (D=I|xt,yt)

P (D=O|xt,yt)
< 1 then

4 Add (xt, yt) into Q
5 end
6 if |Q| > L then
7 Initialize new basis model bnew with ensemble size of M .
8 Adapt bnewj from θ∗j to Q, j = 1, ..,M

9 Add bnew into mixture model.
10 Clear the Q
11 end

Algorithm 2: Mixture of Basis (MoB) - Offline

1 Input: Dataset Dl with K segmented task data and U without any label; {θ∗m}Mm=1 from
meta-learning; OOD buffer threshold T ; Temperature τ

2 Initialize: K ×M basis functions {bθij}; Inference network qφ; Prior network pθ
3 Return: N ×M basis functions {bθij}; Inference network qφ; Prior network pθ
4 Start:
5 Sample from Dl to train meta learning prior {Mθi}.
6 for i = 1:K do
7 for j=1:M do
8 Adapt bij to Dli from θ∗j
9 end

10 end
11 while Not converged do
12 Sample a minibatch of B trajectories η = {x0:T , y0:T }, each of length T + 1, from DU

13 for each η in minibatch do
14 Compute zt = µφ(zt−1, xt, yt) + σφ(zt−1, xt, yt)� εt, t = 1, .., T

15 Compute L̂(η; θ, φ) by plugging into Eq (2)
16 OODS(xt, yt), t = 1, .., T
17 end
18 Compute minibatch loss L̂θ,φ = −

∑B
i=1 L̂(τ (i); θ, φ) (ELBO is to be maximized)

19 Do gradient update: θ ← θ −∇θL̂θ,φ; φ← φ−∇φL̂θ,φ
20 end

Algorithm 3: Mixture of Basis (MoB) - Online

1 Input: {θ∗m}Mm=1 from meta-learning; OOD buffer threshold T; Temperature τ ; N ×M basis
functions {bθij}; Inference network qφ; Prior network pθ; Input trajectory η

2 Start:
3 Sample z0 ∼ Unif(RN)
4 for each time step t do
5 Compute zt = µθ(zt−1, xt) + σθ(zt−1, xt)
6 Compute ŷt using Eq (1)
7 Compute zt = µφ(zt, xt, yt) + σφ(zt, xt, yt)

8 Compute L̂(η1:t; θ, φ) by plugging into Eq (2)
9 Do gradient update: θ ← θ −∇θL̂θ,φ; φ← φ−∇φL̂θ,φs

10 OODS(xt, yt)
11 end

9

Figure 5: Regression Domain: Bhattacharyya distance between tasks.

(a) Regression. Marginal and joint probability den-
sity function estimates of variable y for each task
in the synthetic Regression domain. For clarity
only one level set per task is shown.

(b) HalfCheetah ice-slope, shown climbing a
slope

Figure 6: Experiment domains.

tasks, we rollout a policy trained in the standard HalfCheetah environment (using SAC) under the
different clipping settings. Specifically, we clip the front foot(ff), front thigh(ft), back foot(bf), and
back thigh(bt) to create 8 tasks - bt, ff, ftff, bfft, btff, btft, bfff and btbf. We randomly pick two
tasks to be included in the segmented offline data Dl and four tasks (including the ones in Dl) to be
included in the unsegmented offline data set Du. All tasks are included in the online data stream.

HalfCheetah ice-slope: We create different tasks using the HalfCheetah environment by changing
the slopes and friction of the terrain. We create 4 different tasks for the offline training: 1) flat terrain
with low friction / ice, 2) medium slope - medium slope with normal friction, 3) mixed (easy, medium,
and hard) slopes with normal friction, and 4) medium slope with ice terrain. The data generation
process is similar to the HalfCheetah foot. We randomly pick two tasks for the segmented offline
dataset Dl and an additional two tasks for unsegmented offline dataset Du (see Table 1 for details).
During the online phase, we always test our method in a low friction terrain with different slopes
(mixed ice) which was never seen during offline training. 6

6The construction of tasks here is limited by the technical difficulty of not being able to switch the friction
easily for a Mujoco environment within a single rollout.

10

Table 1: Task partition for experiments: the tasks listed under segmented are present both in the
segmented and unsegmented offline datasets.

Domain Partition Segmented Unsegmented

1 0, 5 1, 2, 6

Regression 2 4, 7 5, 6, 9

3 2, 7 0, 3, 9

1 bt, ff btff, bfft

HalfCheetah Foot 2 bfff, btft btbf, ftff

3 btbf, ftff bfff, btft

1 medium slope, flat ice
medium ice slope, mixed

slope

HalfCheetah Ice-Slope 2 mixed slopes, flat ice
medium ice slope,

medium slope

3
medium ice slope,

medium slope mixed slopes, flat ice

A.3 Implementation details

For MAML prior, we train an ensemble of size 4. Similar to [12], we use all available task data but
with random mini-batch during the training. For each basis model, it will adapt to one specific task
from MAML prior. Each basis model will also have an ensemble of size 4. Each NN in the ensemble
will adapt from one of the MAML prior ensemble. We use one layer LSTM followed by a two layers
projection head to predict the next Y . Each layer has 128 nodes. We use batch size of 32 to train
both MAML and basis models. For Mob training, θ and φ are both parameterized by three layers
fully-connected network with 128 hidden units. They output the Zt in the 32-dimensional latent
space Z. To create new task, we use OOD buffer size T=20 and temperature τ = 10. To optimize our
model, we use Adam with learning rate 1e-4. We trained on a 4-GPU machine.

A.4 Related Work

Much of the work in continual learning (CL) is focused on classification tasks, with few works like
[8] that are primarily focused on regression tasks. In our paper, we consider a task-agnostic continual
learning problem for regression tasks. Regularization and rehearsal based approaches to CL [13]
typically use a single network and employ strategies to prevent catastrophic forgetting. Architectural
approaches like PNNs [17] instantiate a new neural network (a column) for each task being solved
and prevent forgetting by freezing weights. However, these approaches scale poorly with the number
of tasks and are not applicable in a task-agnostic setting.

Recent works have leveraged advances in meta-learning (e.g. MAML [4]) to shift the focus towards
fast adaptation to new tasks using a meta-learned prior model, instead of attempting to strictly
remember previous tasks with no adaptation. These class of techniques are highly suited to task-
agnostic, streaming settings [5], [1], [6] - but they do not allow for modularization of the prediction
model and interpretability as the task-specific model is typically created on-the-fly through adaptation
and then discarded or continuously updated.

In MoB, we try to strike a balance between adaptability and interpretability by leveraging MAML
for fast instantiation of basis models. Our approach of separating the task-specific and task-agnostic
model components is similar to the "what and how" framework proposed in [7], and indeed can be
thought of as a specific implementation. A handful of works have proposed ways to modularize
and combine model components, similar to the spirit of MoB but in very different ways. The
implementations proposed in [7] combine model components in parameter space whereas [9] propose

11

an approach where the MAML prior itself is modeled as a mixture distribution. In a different problem
setting of reinforcement learning, several works have also proposed composing policies or primitive
skills in a multiplicative manner [15] or through a weighted sum [16].

A.5 Experimental Results

In this section, we list the average number of basis models generated by Mob and number of tasks
generated by MOLe in our experiment. Mob generates less basis(tasks) than MOLe in almost all task
partitions and domains.

Then we demonstrate the latent space Z shifts with switching tasks. We show that the PCA embedding
space of different tasks are well separated if tasks are sufficiently different and start to overlap as the
similarity increases.

Table 2: Average number of basis (task) models instantiated over 10 different seeds per partition.

Domain Partition MoB MOLe
basis models # task models

1 3.4 12.0

Regression 2 3.6 11.8

3 3.3 11.6

1 3.0 2.3

HalfCheetah Foot 2 3.0 3.9

3 3.0 3.4

1 13.4 26.5

HalfCheetah Ice-Slope 2 14.8 52.8

3 2.0 9.2

12

Figure 7: Following the Offline training phase on the Regression domain, these are activations of
all 32 Z components as the active task varies according to the task plots at the bottom. The plots in
each column are aligned so the activations at any time t vertically line up across subplots with other
activations and the active task at time t.

Figure 8: PCA embedding of latent space Z of regression dataset. Bhattacharyya distance between
tasks is above each subplot.

13

(a) Following the Offline training phase on the
HalfCheetah foot, these are activations of all 32 Z
components as the active task varies according to
the task plots at the bottom.

(b) 8x8 task pairwise plot over PCA embedding of
latent space Z in HalfCheetah foot. First, task bt
and ff distribution are quite different in the PCA
embedding. Though they overlap on some region,
it might because they still have some commonality
between tasks. Tasks containing clipping bt is
closer to task bt. Similarly, any task containing
clipping ff or ft is closer to ff.

.
Figure 9: Latent space Z of HalfCheetah foot

(a) Following the Offline training phase on the
HalfCheetah ice-slope, these are activations of all
32 Z components as the active task varies accord-
ing to the task plots at the bottom.

(b) 8x8 task pairwise plot over PCA embedding
of latent space Z in HalfCheetah ice-slope. One
interesting observation is that medium ice-slope
and hard ice-slope distribution are different subsets
of easy ice-slope distribution. We conjugate that
tasks are similar and different level of ice-slopes
can be expressed by different subset of easy ice-
slope latent space.

Figure 10: Latent space Z of HalfCheetah ice-slope

14

	Introduction
	Mixture of Basis (MoB)
	Learning and Inference with a Fixed Basis Set
	Adding New Basis Models

	Experiments
	Related Work
	Conclusions
	Appendix
	Algorithms
	Derivation of ELBO
	Computation of the ODDS Score

	Domain Definition
	Implementation details
	Related Work
	Experimental Results

