
Under review as a conference paper at ICLR 2024

UNIVERSAL METRIC LEARNING WITH PARAMETER-
EFFICIENT TRANSFER LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A common practice in metric learning is to train and test an embedding model for
each dataset. This dataset-specific approach fails to simulate real-world scenarios
that involve multiple heterogeneous distributions of data. In this regard, we intro-
duce a novel metric learning paradigm, called Universal Metric Learning (UML),
which learns a unified distance metric capable of capturing relations across mul-
tiple data distributions. UML presents new challenges, such as imbalanced data
distribution and bias towards dominant distributions. To address these challenges,
we propose Parameter-efficient Universal Metric leArning (PUMA), which con-
sists of a pre-trained frozen model and two additional modules, stochastic adapter
and prompt pool. These modules enable to capture dataset-specific knowledge
while avoiding bias towards dominant distributions. Additionally, we compile
a new universal metric learning benchmark with a total of 8 different datasets.
PUMA outperforms the state-of-the-art dataset-specific models while using about
69 times fewer trainable parameters.

1 INTRODUCTION

Learning semantic distance metrics has been playing a key role in machine learning applications in-
cluding content-based image retrieval (Kim et al., 2019; Movshovitz-Attias et al., 2017; Sohn, 2016;
Song et al., 2016), face verification (Liu et al., 2017; Schroff et al., 2015), person re-ID (Chen et al.,
2017; Xiao et al., 2017), few-shot learning (Qiao et al., 2019; Snell et al., 2017; Sung et al., 2018),
and representation learning (Kim et al., 2019; Wang & Gupta, 2015; Zagoruyko & Komodakis,
2015). Deep metric learning has served as a representative approach to learn semantic distance
metrics: it aims to learn highly nonlinear distance metrics through deep neural networks that ap-
proximate the actual underlying semantic similarity between samples.

While metric learning methods have achieved remarkable progress, they focus only on learning
metrics for a specific domain. However, real-world applications often violate this assumption and
involve multiple heterogeneous data distributions. For instance, users of a retrieval system may
query data of substantially different semantics that form multiple diverse distributions. To tackle this
issue using conventional methods, it is imperative to train multiple models as shown Fig. 1(a) and
subsequently combine them through ensemble techniques or toggle between the models based on the
query. Such procedures are not only arduous but also demand a significant amount of computational
resources.

In this paper, we introduce a new metric learning paradigm, called Universal Metric Learn-
ing (UML). UML aims to learn a unified distance metric capable of capturing semantic similarity
across multiple data distributions. Instead of learning a model per dataset, UML trains a single
model on the union of multiple heterogeneous datasets to create a universal embedding space.

UML opens a new fascinating direction towards metric learning in the wild, but at the same time
comes with technical challenges not found in the conventional metric learning. First, integrating
multiple datasets results in highly imbalanced data distributions. Data imbalance is a natural phe-
nomenon and is a well-known challenge in many recognition tasks, as it induces bias and hinders
performance. In addition to common imbalance issues such as class imbalance tackled by recent
work (Liu et al., 2019; Zhong et al., 2021), UML introduces a more complex and unique challenge
caused by dataset imbalance when datasets to be integrated are of substantially different sizes. Our
study reveals that a naı̈ve fine-tuning on multiple datasets as a whole, depicted in Fig. 1(b), re-

1

Under review as a conference paper at ICLR 2024

(b) Naïve Universal Metric Learning

Universal
Data

Universal
Model

Universal
Embedding

(c) Parameter-efficient Universal Metric leArning

Pre-trained
Model

Universal
Embedding

Stochastic
Adapter

Universal
Data

Prompt
Pool

(a) Conventional Metric Learning

CUB
Model

CUB
Embedding

CUB
Data

Cars
Model

Cars
Embedding

Cars
Data

In-shop
Model

In-shop
Embedding

In-shop
Data

…

… ……

CUB Cars In-shopCUB Cars In-shop… … CUB Cars In-shop…

Figure 1: Comparison between conventional and universal metric learning methods. (a) Con-
ventional metric learning employs separate models for individual datasets, incurring significant com-
putational and memory costs as data diversity grows. (b) A naı̈ve solution is to fine-tune the model
on a merged dataset, but this often leads to a severe bias towards major data distributions. (c) In
contrast, our method excels on all datasets with just one model. This is highly resource-efficient as
it enables one-time learning and evaluation on diverse data distributions using a single model.

sults in models strongly biased towards large datasets. Second, key features for discriminating
between classes may vary across datasets. For example, color is useful for differentiating between
bird species but harmful for distinguishing vehicle types. Thus, models should learn to recognize
both dataset-specific discriminative features and common discriminative features to achieve UML.

To address these challenges, we propose a novel approach called Parameter-efficient Universal
Metric leArning (PUMA), which is a completely different direction from existing metric learning.
PUMA aims to capture universal semantic similarity through a single embedding model while miti-
gating the imbalance issues. To achieve this, we draw inspiration from recent advances in parameter-
efficient transfer learning in natural language processing (Houlsby et al., 2019; Pfeiffer et al., 2020;
He et al., 2021; Li & Liang, 2021). Our key idea is to freeze the parameters of a model pre-trained
on a large-scale dataset, thereby preserving its generalization capability, and learn dataset-specific
knowledge from the unified dataset with a minimal number of additional parameters.

FGVC-Aircraft
(Aircraft)

Cars196
(Vehicle)

NABirds
(Bird)

In-shop
(Clothing)

Stanford Dogs
(Dog)

SOP
(Product)

Oxford
Flowers
(Flower)

CUB-200
(Bird)

Triplet

Margin

MS

PA

SoftTriple

CosFace

ArcFace

Hyp

Universal Conventional Metric Learning

Ours

Figure 2: Our single model trained on
the 8 datasets outperformed most ex-
isting models devoted to each dataset
while using about 69 times fewer train-
able parameters.

Specifically, PUMA is built on a pre-trained Vision
Transformer (ViT) and incorporates two additional mod-
ules, namely stochastic adapters and a prompt pool (see
Fig. 1(c)). A stochastic adapter is a lightweight mod-
ule that operates in parallel with the corresponding trans-
former block, and its operation is stochastically switched
off during training. It enables the pre-trained model to
adapt, while avoiding being biased towards a specific
data distribution by randomly providing either adapted
features or features from the pre-trained model. It is
parameter-efficient yet effective, and improves perfor-
mance across all datasets without bias. Meanwhile, the
prompt pool is used to build a conditional prompt that ac-
counts for distinct characteristics of each dataset on the
fly. To be specific, the prompt pool is a set of prompts or-
ganized in a key-value memory, and given the input fea-
ture, the conditional prompt is generated by aggregating
relevant prompts in the pool using an attention mecha-
nism. The conditional prompt is added to the input se-
quence of the ViT, allowing for more targeted adaptation.

We compile a new universal metric learning benchmark with a total of 8 datasets of different do-
mains and classes. Our method largely outperformed models trained on multiple datasets using
conventional metric learning techniques, and even surpassed most of the models trained on each
dataset (i.e., dataset-specific models) with about 69 times fewer trainable parameters as shown in
Fig. 2. In addition, we demonstrate that our method also can be utilized as a strong few-shot learner.

2

Under review as a conference paper at ICLR 2024

2 RELATED WORK

Deep Metric Learning. It aims to learn a metric function that approximates the underlying semantic
similarity of data by pulling semantically similar samples (positive) closer to the anchor and pushing
dissimilar samples (negative) away. To achieve this goal, the development of loss functions has been
the main focus of this field, typically classified into pair-based and proxy-based losses. Pair-based
losses consider relations between pairs (Wu et al., 2017; Bromley et al., 1994; Chopra et al., 2005;
Hadsell et al., 2006), triplets (Wang et al., 2014; Schroff et al., 2015) or higher-order tuples of
samples (Song et al., 2016; Sohn, 2016; Wang et al., 2019a;b; Song et al., 2017). They can capture
the fine-grained relations among samples, but they are suffering from the issue of increased training
complexity as the number of training data increases. Proxy-based losses address the complexity
issue by introducing learnable parameters called proxies to represent the training data of the same
class. They greatly reduce the complexity of examining the relations between all data by considering
those between data and proxies. In this direction, the approaches have used proxies to approximate
the pair-based loss (Movshovitz-Attias et al., 2017; Kim et al., 2020; Qian et al., 2019) or have
modified the cross-entropy loss (Deng et al., 2019; Wang et al., 2018; Zhai & Wu, 2018; Teh et al.,
2020). Although there have been remarkable advances in metric learning so far, all existing metric
learning methods deal only with a specific distribution within one dataset. Orthogonal to them, we
first shed light on the new problem of learning a universal metric contained in multiple distributions
and explore ways to address it. While prior work mostly focuses on the design of loss functions, we
also explore the impact of architectural choices in metric learning.

Parameter-efficient Transfer Learning. Large-scale pre-trained models have shown significant
improvements across various downstream tasks. As the model size and the number of tasks grow,
parameter-efficient transfer learning approaches (Hu et al., 2021; Rebuffi et al., 2017; Houlsby et al.,
2019; Pfeiffer et al., 2020; He et al., 2021) have been developed to adapt to diverse downstream by
updating only a small fraction/number of learnable parameters while fully utilizing the knowledge
of the pre-trained model without catastrophic forgetting. Especially in the field NLP, low-rank adap-
tation (Hu et al., 2021) is proposed to approximate the parameter update or light-weight adapter
modules (Houlsby et al., 2019; Pfeiffer et al., 2020) can be inserted between pre-trained layers dur-
ing fine-tuning. Prefix/prompt tuning (Lester et al., 2021; Li & Liang, 2021; Wang et al., 2022; Smith
et al., 2022) has been introduced where additional learnable tokens (soft prompts) are added during
fine-tuning while keeping the backbone frozen. In contrast to prior deep metric learning work, we
utilize parameter-efficient transfer learning for our proposed universal metric learning setup to learn
universal representations across different data distributions in a single model while preventing bias
and catastrophic forgetting, which outperforms even full fine-tuning baselines.

3 UNIVERSAL METRIC LEARNING

In this section, we first review conventional metric learning, and then introduce the UML setting and
discuss its technical challenges.

3.1 REVISITING CONVENTIONAL METRIC LEARNING

Metric learning is the task of learning a distance function that captures the semantic dissimilarity
between samples in a given dataset S. Such a distance function d holds:

d(x, x+; θ) < d(x, x−; θ) ∀(x, x+, x−), (1)

where x+ and x− denote the positive sample that belongs to the same class as x, and negative
samples that are not, respectively, and θ represents the model parameters. Deep metric learning
achieves this by learning a deep neural network as a high-dimensional embedding function, and
employing Euclidean or cosine distance to calculate the distance between embedding vectors.

Note that metric learning seeks a generalization to classes unseen in training. The conventional setup
thus employs a set of classes Ct and their labeled samples St = {(xt, yt) | yt ∈ Ct} for training,
and evaluates a trained embedding model for a set of unseen classes Su = {(xu, yu) | yu ∈ Cu},
where Ct ∩ Cu = ∅ and St ∪ Su = S. This convention only considers generalization within a
single dataset.

3

Under review as a conference paper at ICLR 2024

3.2 PROBLEM FORMULATION OF UML

UML is an extension of the conventional one and tackles the challenging and practical problem of
dealing with multiple datasets drawn from different data distributions, using a single embedding
model. The goal of UML is to learn a universal distance metric that can effectively capture diverse
relations among samples across multiple datasets, while maintaining the intra-class compactness and
inter-class separability within each dataset. In UML, a model is trained as if it were given a single
dataset, without knowing that multiple datasets are combined, making it highly suitable for both a
large-scale dataset drawn from a multimodal distribution and a union of multiple small datasets in
real-world applications.

Suppose that we have Ns datasets, denoted as S1, S2, · · · , SNs , and define the unified dataset S =
∪Ns
i=1S

i. To learn a universal embedding function, UML leverages the unified training dataset St =
∪Ns
i=1S

i
t , which aggregates training data from all the datasets. The learned universal distance function

is evaluated in two different ways to assess its generalization capability. First, we evaluate it on the
unified unseen test data Su = ∪Ns

i=1S
i
u to measure its universal accuracy, which demonstrates its

capacity to comprehend semantic similarity across all datasets without favoring any specific dataset.
Second, we evaluate the distance function on the unseen test data of each dataset Si

u separately, to
assess its ability to grasp the specific semantic similarity for each dataset.

3.3 CHALLENGES IN UML

UML encounters a new challenge – highly imbalanced distribution of the unified dataset. Data
imbalance is a common and well-known issue in a large variety of vision tasks. However, UML
presents a more complex and unique challenge, where the entire data distribution becomes long-
tailed due to class imbalance, and also has dataset imbalance caused by integrating datasets of sub-
stantially different sizes, as illustrated in Fig. 5. This issue is particularly critical in metric learning:
the dataset imbalance results in a substantial portion of samples within the batch originating from
larger datasets, and consequently, the model tends to focus predominantly on learning relations
within these larger datasets, thereby introducing a dataset bias.

Another challenge in UML is that class-discriminative features are not shared across all datasets.
This challenge arises due to the disparity between different data distributions since each distribution
has its own characteristics that define relations between its samples, which could conflict with those
of the other distributions. For instance, while color may be crucial for differentiating between bird
species, it may impede distinguishing between different vehicle types. Thus, training with a unified
dataset may lead to two potential problems. First, if the model focuses on class-discriminative
features that are specific to a certain data distribution, it may have a negative impact on datasets
where those features are not relevant. Second, if the model attends to the commonalities shared
among all datasets, its discriminability for capturing fine-grained differences between samples may
diminish.

Moreover, UML still has a challenge in generalization to unseen classes, inherited from conventional
metric learning. However, this challenge becomes even more difficult as UML deals with diverse
imbalanced distributions.

Adopting the traditional strategy of training multiple models and subsequently ensembling them is a
straightforward way to handle diverse datasets without confronting the above challenges. However,
this approach demands a vast number of parameters and substantial computational resources. In-
stead, we will introduce a parameter-efficient approach that elegantly tackles all the aforementioned
challenges.

4 PROPOSED METHOD

We propose a novel approach to UML, named Parameter-efficient Universal Metric leArning
(PUMA). In contrast to conventional metric learning methods that fine-tune the entire model param-
eters, PUMA does not tune a large-scale pre-trained model but keeps its generalization capability
across diverse data distributions. Instead, we leverage small additional modules that learn dataset-
specific knowledge from the unified dataset. As shown in Fig. 3, PUMA uses a pre-trained ViT as a
backbone, and employs stochastic adapters and a prompt pool as the additional modules, which are
detailed in the remainder of this section.

4

Under review as a conference paper at ICLR 2024

Transformer Encoder with Stochastic Adapter

Pre-trained Transformer Encoder
with Stochastic Adapter

Linear Projection

Embedding Layer

Prompt Pool

: key : prompt

Query

: feature attention
Frozen Trainable

Norm

Multi-Head
Attention

Norm

MLP

𝐿 x

Embedded Patches

൅
𝑊ୢ୭୵୬ReLUReLU Bernሺpሻ𝑊୳୮ ൈ

൅
𝑊ୢ୭୵୬ReLUReLU Bernሺpሻ𝑊୳୮ ൈ

Stoch.
Adapter

Stoch.
Adapter

Figure 3: An overview of PUMA. PUMA consists of two learnable modules: stochastic adapters
(Sec. 4.2) and a prompt pool (Sec. 4.3). Using the output of the transformer’s embedding layer as
a query, and it creates a conditional prompt by integrating relevant prompts through an attention
mechanism. The conditional prompt is combined with image embeddings and class token, and then
fed into the transformer. The modified input is embedded through transformer blocks, each coupled
with a stochastic adapter, a learnable bottleneck module that turns on stochastically during training.

4.1 PRELIMINARIES: VIT

ViT (Dosovitskiy et al., 2021) is composed of a patch embedding layer and an encoder with L se-
quential transformer layers. The patch embedding layer splits the input image x into image patch
embeddings E ∈ RNe×D, where Ne denotes the number of patch embeddings and D is the embed-
ding dimension. The input sequence of the transformer encoder is formed by appending the image
patch embeddings to a learnable class token embedding ecls ∈ RD, as follows:

z0 = [ecls, E]. (2)
Each transformer layer consists of multi-headed self-attention (MSA) and multilayer perceptron
(MLP) blocks, with layer normalization (LN) applied before every block and residual connections
after every block:

z′ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1, . . . , L,

zℓ = MLP(LN(z′ℓ)) + z′ℓ, ℓ = 1, . . . , L,
(3)

4.2 STOCHASTIC ADAPTER

To effectively adapt the model to the unified dataset without being biased to the large dataset, we
propose a stochastic adapter. While adding learnable parameters shared by all data enables adapta-
tion, this could cause the additional parameters to be biased towards the major distribution due to
the imbalanced distribution issue. We resolve this issue by stochastic adaptation, which allows an
embedding space to consider both the generalizable features of a pre-trained model and adapted fea-
tures, rather than relying solely on the adapted features. This alleviates bias in the embedding space
toward the major data distribution, while providing the capacity to learn knowledge specific to each
dataset. Our adapter has a bottleneck structure for parameter-efficiency and is connected in parallel
with every transformer block. The adapter consists of a down-projection layer Wdown ∈ RD×r, a
ReLU activation layer, and an up-projection layer Wup ∈ Rr×D, where r < D is the bottleneck
dimension. As shown in Fig. 3, within a transformer layer, two adapters are placed in parallel, one
with the MSA block and the other with the MLP block. Given input for the ℓ-th transformer layer
and output of the ℓ-th MSA layer, outputs of the adapters are produced as follows:

z̃′ℓ = ReLU(LN(zℓ−1) ·W ′
down) ·W ′

up

z̃ℓ = ReLU(LN(z′ℓ) ·Wdown) ·Wup,
(4)

where W ′
down and W ′

up have the same shapes as Wdown and Wup, respectively. The output features
of the adapters are multiplied by random binary masks and combined with the outputs of the trans-
former blocks (i.e., MSA and MLP) through residual connections:

z′ℓ = MSA(LN(zℓ−1)) + zℓ−1 + γ′
ℓ · z̃′ℓ,

zℓ = MLP(LN(z′ℓ)) + z′ℓ + γℓ · z̃ℓ,
(5)

where γ′
ℓ and γℓ are independent variables drawn from Bernoulli(p), and p is the keep probability of

the stochastic adapters.

5

Under review as a conference paper at ICLR 2024

4.3 CONDITIONAL PROMPT LEARNING

CUB Cars

SOP Inshop

NAbird Aircraft

Dogs Flowers

Figure 4: The average similar-
ity between input queries and
prompts for each dataset. The x-
axis represents prompt index.

We propose conditional prompt learning1 to learn more discrim-
inative features for each dataset. We assume that images within
each dataset exhibit shared characteristics distinguished from
those of other datasets. Our goal is to learn and leverage prompts
relevant to the input data among the set of prompts through the
attention mechanism. To achieve this, a query feature that en-
codes the input image x is first extracted. Query features should
be able to grasp the data distribution of the input image and also
require little computation to obtain it. Considering these require-
ments, we design a simple query feature for x by using a pooling
operation on its image patch embeddings E in Sec. 4.1:

q = AvgPool(E) + MaxPool(E), q ∈ RD. (6)
Then, we introduce a prompt pool, a storage that contains
prompts together with extra parameters for input-conditioning.
Pm ∈ RNp×D denote a prompt in the pool, where Np is token
length of a prompt, and then a prompt pool with M prompts is
given by:

P = {(P1,K1, A1), · · · , (PM ,KM , AM)}, (7)
where Km ∈ RD denotes the key of a prompt, and Am ∈ RD is its feature attention vector, a
learnable parameter emphasize specific feature dimensions of the query vector. The query feature
is element-wise multiplied with the feature attention vector to create an attended query, which is
then paired with the prompt key for matching. The weight vector is computed based on the cosine
similarity between the attended query and the prompt key, which is given by

αm = s(q ⊗Am,Km), (8)
where s(·, ·) denotes the cosine similarity between two vectors and ⊗ denotes element-wise product
operation over the feature dimension. The conditional prompt of input image x is calculated as a
weighted sum of prompts:

P̂ =

M∑
m=1

αmPm, (9)

Finally, it is inserted into the input sequence of the transformer encoder:

z0 = [ecls, P̂ , E]. (10)

This process allows each prompt to condition images based on their specific data distributions, as
depicted in Fig. 4. Notably, while the CUB dataset demonstrates a strong tendency to align with the
relevant NABird dataset, it distinctly prefers different prompts compared to the In-shop dataset.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. In the UML setting, we employ a combination of eight datasets. These comprise four
widely recognized benchmarks: CUB (Welinder et al., 2010), Cars-196 (Krause et al., 2013), Stand-
ford Online Product (SOP) (Song et al., 2016), and In-shop Clothes Retrieval (In-Shop) (Liu et al.,
2016). Alongside these, we incorporate other four fine-grained datasets: NABirds (Van Horn et al.,
2015), Dogs (Khosla et al., 2011), Flowers (Nilsback & Zisserman, 2008), and Aircraft (Maji et al.,
2013). The overall dataset statistics are in Table 1. The combined dataset encompasses 141,404
training images and 148,595 testing images. Notably, this dataset exhibits imbalanced data distri-
butions, with a significant portion of images from large-scale datasets such as SOP and In-Shop, as
shown in Fig. 5. We also provide results on the conventional benchmarks in Appendix D.1.

Baselines. We benchmark our method against three distinct learning strategies. The models trained
exclusively on individual datasets are termed dataset-specific models, while models trained on
multiple datasets are termed universal models.

1The prompt in ViT denotes the learnable input token parameters as in Jia et al. (2022); Wang et al. (2022);
Smith et al. (2022)

6

Under review as a conference paper at ICLR 2024

Table 1: Dataset statistics: the number of training
images and their classes used in training and testing.

C
U

B

C
ar

s

SO
P

In
-s

ho
p

N
A

B
ir

ds

D
og

s

Fl
ow

er

A
ir

cr
af

t

To
ta

l

Train Samples 5.8K 8.0K 59.5K 25.8K 22.9K 10.6K 3.5K 5K 141.4K
Train Classes 100 98 11.3K 3.9K 278 60 51 50 15.9K

Test Samples 5.9K 8.1K 60.5K 28.7K 25.6K 9.9K 4.7K 5K 148.5K
Test Classes 100 98 11.3K 3.9K 277 60 51 50 15.9K

0 5000 10000 15000 20000 25000 30000
Sorted Category Index

0

100

200

Nu
m

be
r o

f S
am

pl
es Dataset: Dataset Size

CUB: 11.8K
Cars: 16.2K
Inshop: 52.7K
SOP: 120.1K

NABird: 48.6K
Dogs: 20.6K
Flowers: 8.2K
Aircraft: 10.0K

Figure 5: The number of samples in each cat-
egory. Each color represents its dataset.

(a) Dataset-specific models by full fine-tuning: These models employ conventional metric learn-
ing protocols, where every parameter in the backbone and the embedding layer is fully updated.
For this approach, we utilize a range of renowned metric learning loss functions, Triplet (Schroff
et al., 2015), Margin (Wu et al., 2017), MS (Wang et al., 2019b), Proxy-Anchor (PA) (Kim et al.,
2020), SoftTriple (Qian et al., 2019), CosFace (Wang et al., 2018), ArcFace (Deng et al., 2019),
CurricularFace (Huang et al., 2020), and Hyp (Ermolov et al., 2022). Notably, each model is
trained specifically for individual datasets.

(b) Universal models by full fine-tuning: The models are fully fine-tuned using the aforemen-
tioned loss functions, leveraging a union of multiple datasets.

(c) Universal models by parameter-efficient fine-tuning: The models update a subset of back-
bone parameters or add new trainable parameters to the backbone during the fine-tuning. We
explore two techniques focusing on the embedding layer: training solely the linear embedding
layer (Linear Emb.) and the embedding layer enriched with a 3-layered multilayer percep-
tron (MLP-3 Emb.). Further, we consider three prominent parameter-efficient tuning strategies:
VPT (Jia et al., 2022), LoRA (Hu et al., 2021) and AdaptFormer (Chen et al., 2022). LoRA and
AdaptFormer are scaled with the same parameters as our method.

Implementation Details. For fair comparisons, all models are evaluated using the same backbone,
ViT-S/16 (Dosovitskiy et al., 2021) pre-trained on ImageNet-21K (Deng et al., 2009) following
previous work (Ermolov et al., 2022). We change the size of its last linear layer to 128, and L2-
normalize the output embedding vector. We set the parameters for the stochastic adapter to r = 128
and p = 0.5, for the conditional prompt to Np = 8 and M = 20. Unless otherwise specified, we
adopt the CurricularFace loss (Huang et al., 2020) as a metric learning loss for parameter-efficient
fine-tuning methods, including our method. We also ablate different loss functions on our method
in Appendix B.1. More implementation details can be found in Appendix A.

Evaluation Protocol. We measure the performance using Recall@1 in the main paper, with ad-
ditional results with R@k, MAP@R, and RP in Appendix D.2. We report the dataset-specific
accuracy using individual query and gallery for each dataset, and also calculate two kinds of uni-
versal accuracy, the unified accuracy using unified query and gallery sets and the harmonic mean
of these individual accuracies. To evaluate the unified performance of dataset-specific models, we
use an ensemble approach, averaging the embedding vectors of all dataset-specific models.

5.2 RESULTS

Table 2 shows Recall@1 performance with a total of eight datasets. We note that the total number of
parameters of dataset-specific models increases as the number of datasets increases. (1) Our results
show that PUMA surpasses all compared data-specific models (Table 2(a)) in terms of universal ac-
curacy. Moreover, our method outperforms data-specific models in all cases except for In-Shop and
Dog, while not using hyperparameters selected for each respective dataset. Surprisingly, our method
accomplishes this level of performance while using up to 69 times fewer trainable parameters than
previous techniques. This indicates that PUMA can be trained with limited resources and can easily
be scaled up to a larger model and more datasets. Furthermore, even without emphasizing parameter
efficiency, the outcomes highlight that our method can be a promising alternative to existing dataset-
specific metric learning approaches. (2) While universal models by full fine-tuning (Table 2(b))
suffer significant performance degradation on small datasets, PUMA consistently achieves high per-
formance across all datasets. Consequently, our results show that PUMA surpasses all compared
methods both in terms of dataset-specific accuracy and universal accuracy. It enhances the best per-
formance of universal models in the unified accuracy and harmonic mean accuracy by 3.4% and
4.6%, respectively. (3) Among various parameter-efficient fine-tuning methods (Table 2(c)), only
our approach manages to outperform the majority of full fine-tuned models. Models like Linear

7

Under review as a conference paper at ICLR 2024

Table 2: Recall@1 of metric learning baselines and ours on the 8 datasets. Their network architec-
ture is ViT-S/16 (Dosovitskiy et al., 2021) with 128 embedding dimensions. We mark in bold the
best among all scores in the entire table per evaluation metric.

Methods

Params (M) Dataset-Specific Accuracy Universal Accuracy

Train / Total CUB Cars SOP InShop NABird Dog Flowers Aircraft Unified Harmonic

(a) Dataset-specific models by full fine-tuning

Triplet 173.7 / 173.7 81.1 75.2 80.2 87.4 75.2 81.0 99.1 64.7 57.6 79.4
Margin 173.7 / 173.7 79.4 78.0 79.8 86.0 74.6 80.3 99.0 66.8 58.1 79.6
MS 173.7 / 173.7 80.0 83.7 81.4 90.8 68.1 75.8 97.4 64.7 61.6 78.9
PA 173.7 / 173.7 80.2 83.7 84.4 91.5 69.6 84.2 99.0 67.9 57.4 81.4
SoftTriple 173.7 / 173.7 80.5 80.0 82.9 88.7 75.9 82.1 99.4 65.4 63.4 80.8
CosFace 173.7 / 173.7 78.8 83.2 83.2 89.6 71.4 79.2 99.2 61.4 61.5 79.3
ArcFace 173.7 / 173.7 76.8 79.4 83.4 90.3 61.0 76.1 99.2 60.0 58.8 76.2
CurricularFace 173.7 / 173.7 79.7 81.3 83.2 88.2 75.3 81.2 99.1 63.9 62.9 80.4
Hyp 173.7 / 173.7 78.8 78.2 83.6 91.5 71.0 72.6 98.7 65.7 15.7 78.8

(b) Universal models by full fine-tuning

Triplet 21.7 / 21.7 74.5 35.4 80.2 85.7 68.2 77.1 98.7 40.9 72.0 57.7
Margin 21.7 / 21.7 72.5 36.7 80.0 84.1 67.4 74.8 98.5 40.4 71.6 57.4
MS 21.7 / 21.7 66.3 22.9 78.9 87.2 58.6 69.8 97.3 31.5 67.8 47.3
PA 21.7 / 21.7 77.2 73.1 83.7 91.9 71.5 78.1 96.4 62.7 77.9 71.0
SoftTriple 21.7 / 21.7 78.9 77.0 81.3 88.6 73.8 79.3 99.1 64.4 77.6 72.7
CosFace 21.7 / 21.7 74.2 73.5 82.5 90.0 69.7 74.1 98.7 59.7 76.6 69.6
ArcFace 21.7 / 21.7 70.8 25.9 63.9 58.9 64.0 70.3 97.2 31.7 59.2 47.2
CurricularFace 21.7 / 21.7 78.3 77.9 82.0 89.1 73.0 79.3 99.1 65.6 77.9 79.5
Hyp 21.7 / 21.7 79.2 60.6 83.5 90.9 73.6 81.9 99.1 56.3 77.7 69.4

(c) Universal models by parameter-efficient fine-tuning

Linear Emb. 0.1 / 21.8 82.1 49.7 70.5 65.5 77.9 86.2 99.1 47.6 69.3 68.2
MLP-3 Emb. 5.3 / 27.0 57.5 29.7 63.1 63.2 50.6 64.5 93.6 32.8 56.5 50.3
VPT 0.1 / 21.8 82.8 51.0 74.7 72.9 78.3 85.5 99.2 50.8 72.3 70.8
LoRA 2.4 / 24.1 77.0 70.9 81.3 86.2 70.8 79.1 98.9 59.7 76.1 76.5
AdaptFormer 2.4 / 24.1 77.0 77.0 83.7 90.7 72.3 78.5 99.0 63.9 78.5 79.0
Ours 2.5 / 24.2 83.9 84.3 84.0 89.8 79.2 84.1 99.3 72.6 81.3 84.1

Embedding and VPT, which employ fewer learnable parameters, notably underperform on datasets
such as Cars, SOP, In-Shop, and Aircraft, where substantial domain-specific knowledge is required.
Both AdaptFormer and LoRA, which use a similar number of parameters as our method, similarly
show biases towards large datasets akin to full fine-tuning.

Discussion on Losses in UML. We observe that loss functions in UML exhibit different behaviors
compared to conventional metric learning. This is due to the significant changes in the intra-class
similarity and inter-class separability across datasets, making the effect of loss design and its hyper-
parameters critical. The choice of margin in a loss greatly affects performance, with large margins
(e.g., ArcFace) leading to significant drops in performance. In contrast, sophisticated losses such
as SoftTriple which uses multiple proxies, and CurricularFace which dynamically considers hard
negatives demonstrate superior performance. In addition, pair-based losses tend to underperform in
the UML setting, due to the diminished presence of samples from smaller datasets within a batch,
limiting the exploration of pairwise relations among those samples. See Appendix C.1 for further
discussion.

Few-shot Metric Learning. We additionally demonstrate the data-efficient adaptation capability
of PUMA, by exploring few-shot learning in Fig. 6. Different from the prior few-shot learning
approaches (e.g., (Chen et al., 2019; Jung et al., 2022)), we train models with few-shot labels on the
training classes and evaluate them on unseen classes in a zero-shot manner. The results demonstrate
that PUMA shows better performance than linear probing, which is considered a strong few-shot
learning baseline (Tian et al., 2020). Moreover, even with an increasing number of shots, PUMA
outperforms the fine-tuning model in terms of harmonic mean accuracy.

5.3 ABLATION STUDY

Ablation Study on Each Component. Table 3 shows an extensive ablation study to analyze the
effectiveness of each module in PUMA. We observe that employing a conditional prompt outper-
forms using a single prompt across multiple datasets. This highlights the adaptability inherent to our

8

Under review as a conference paper at ICLR 2024

012 4 8 16

60

70
R@

1

Unified

012 4 8 16

60

70
Harmonic

012 4 8 16
78

80

82
CUB

012 4 8 16

40
45

Cars

012 4 8 16

60

70

SOP

012 4 8 16
labeled sample per class

40

60

R@
1

Inshop

012 4 8 16
labeled sample per class

72
75
77

NABird

012 4 8 16
labeled sample per class

82

84

Dogs

012 4 8 16
labeled sample per class

99

99
Flowers

012 4 8 16
labeled sample per class

44

46
Aircraft

Pre-trained ViT Fine-tuned with PA Loss Lienar Probing with PA Loss PUMA with PA Loss

Figure 6: Accuracy in Recall@1 of few-shot metric learning on the 8 datasets. Except for the pre-
trained model ViT model, all others are trained with Proxy-Anchor loss.

Table 3: Ablation study on each component of PUMA. “Sing.” denotes single prompt (M = 1),
“Cond.” denotes our conditional prompt (M = 20), “Stat.” denotes adapter with p = 1, and “Stoc.”
denotes our conditional adapter with p = 0.5.

Prompt Adapter Train Dataset-Specific Accuracy Universal Accuracy

Sing. Cond. Stat. Stoc. Param. CUB Cars SOP InShop NABird Dog Flowers Aircraft Unified Harmonic

✓ ✗ ✗ ✗ 0.05M 82.8 51.0 74.7 72.9 78.3 85.5 99.2 50.8 72.3 70.8
✗ ✓ ✗ ✗ 0.13M 82.8 54.7 76.8 76.6 78.7 85.8 99.3 53.6 74.0 73.0

✗ ✗ ✓ ✗ 2.41M 74.5 81.3 83.7 90.4 74.5 81.3 99.0 66.3 79.4 80.8
✗ ✗ ✗ ✓ 2.41M 83.6 83.9 83.8 89.9 79.2 84.6 99.4 71.9 81.1 83.9

✓ ✗ ✓ ✗ 2.41M 79.6 80.0 83.8 90.3 73.7 81.0 99.0 65.4 79.3 80.5
✗ ✓ ✗ ✓ 2.49M 83.9 84.3 84.0 89.8 79.2 84.1 99.3 72.6 81.3 84.1

Table 4: Recall@1 of our method compared to the best universal model (i.e., CurricularFace) using
different backbones and embedding dimensions. Superscripts denote embedding dimensions.

Methods Arch. TotalParam. CUB Cars SOP InShop NABird Dog Flowers Aircraft Unif. Harm.

CurricularFace ViT-S/16128 21.7M 78.3 77.9 82.0 89.1 73.0 79.3 99.1 65.6 77.9 79.5
Ours ViT-S/16128 24.2M 83.9 84.3 84.0 89.8 79.2 84.1 99.3 72.6 81.3 84.1

CurricularFace ViT-S/16512 21.9M 80.5 80.8 83.2 89.6 75.5 80.8 99.2 68.7 79.6 81.4
Ours ViT-S/16512 24.3M 84.6 85.7 85.1 90.9 80.1 84.5 99.3 74.4 82.3 85.1

CurricularFace ViT-B/16128 85.9M 79.2 80.4 84.1 91.3 75.6 80.3 99.1 69.2 80.0 81.5
Ours ViT-B/16128 90.8M 85.7 88.2 86.0 92.2 83.0 87.5 99.4 78.8 84.0 87.2

conditional prompt, allowing it to seamlessly accommodate varying data characteristics. Adapters,
with more parameters compared to prompts, exhibit a pronounced impact on performance. In con-
trast to conventional static adapters, which introduce bias on larger datasets, our stochastic adapters
consistently enhance results across all datasets. Notably, combining existing methods yields mini-
mal performance gains or sometimes performance degradation, but the combination of the proposed
modules boosts overall performance. Appendix B.2 shows more detailed ablation studies.

PUMA with Different Backbones and Dimension Scales. Table 4 presents an evaluation of per-
formance across different embedding dimensions and backbone architectures. Given a fixed model
configuration, our method consistently outperforms models fine-tuned with the state-of-the-art uni-
versal method, CurricularFace. Remarkably, our method surpasses baselines employing higher em-
bedding dimensions or larger backbone models with over three times the number of parameters.

6 CONCLUSION

Previous work on deep metric learning has focused primarily on developing dataset-specific models.
However, this approach is limited in terms of scalability since real-world applications usually ac-
comoate diverse data distributions nowadays. In this paper, we thus have investigated UML, which
enables a single model to manage multiple heterogeneous data distributions. In the UML setting,
existing metric learning baselines suffer from imbalanced data distributions. To address this issue,
we have proposed parameter-efficient tuning that is simple, lightweight, and achieving state-of-the-
art performance using only a single model. We believe our work will facilitate future investigations
into bridging the gap between metric learning and real-world applications.

9

Under review as a conference paper at ICLR 2024

Ethics Statement. In adherence to the ICLR Code of Ethics, we affirm that our research aligns
with its stipulated guidelines. All datasets and pre-trained models employed in our experiments are
publicly accessible and do not raise any ethical concerns.

Reproducibility Statement. To ensure clarity and reproducibility, we provide detailed descriptions
of the two proposed modules in Sections 4.2 and 4.3. The implementation details for all baseline
methods, as well as our approaches, are outlined in Section 5.1 and Appendix A. Since we propose
the new settings for metric learning, called universal metric learning, we elaborate on problem for-
mulation including details of constructing datasets and the experimental settings in Section 3.1. The
source codes for experiments are available in the supplementary materials.

REFERENCES

Jane Bromley, Isabelle Guyon, Yann Lecun, Eduard Säckinger, and Roopak Shah. Signature ver-
ification using a ”siamese” time delay neural network. In Proc. Neural Information Processing
Systems (NeurIPS), 1994.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. In Proc. Neural In-
formation Processing Systems (NeurIPS), 2022.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang. Beyond triplet loss: A deep
quadruplet network for person re-identification. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application
to face verification. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2005.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: a large-scale hier-
archical image database. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular mar-
gin loss for deep face recognition. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In Proc. International
Conference on Learning Representations (ICLR), 2021.

Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets. Hy-
perbolic vision transformers: Combining improvements in metric learning. In Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2022.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In Proc. International Conference on Machine Learning (ICML). PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

10

Under review as a conference paper at ICLR 2024

Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu, Pengcheng Shen, Shaoxin Li, Jilin Li, and
Feiyue Huang. Curricularface: adaptive curriculum learning loss for deep face recognition. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In Proc. European Conference on Computer Vision (ECCV).
Springer, 2022.

Deunsol Jung, Dahyun Kang, Suha Kwak, and Minsu Cho. Few-shot metric learning: Online adap-
tation of embedding for retrieval. In Proc. Asian Conference on Computer Vision (ACCV), 2022.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-
grained image categorization: Stanford dogs. In Proc. CVPR workshop on fine-grained visual
categorization (FGVC). Citeseer, 2011.

Sungyeon Kim, Minkyo Seo, Ivan Laptev, Minsu Cho, and Suha Kwak. Deep metric learning be-
yond binary supervision. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric
learning. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE International Conference on Computer Vision Work-
shops, pp. 554–561, 2013.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion: Powering robust
clothes recognition and retrieval with rich annotations. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proc. International
Conference on Learning Representations (ICLR), 2019.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh Singh. No
fuss distance metric learning using proxies. In Proc. IEEE International Conference on Computer
Vision (ICCV), 2017.

Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check. In Proc.
European Conference on Computer Vision (ECCV), 2020a.

Kevin Musgrave, Serge J. Belongie, and Ser-Nam Lim. Pytorch metric learning. ArXiv,
abs/2008.09164, 2020b.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722–729. IEEE, 2008.

11

Under review as a conference paper at ICLR 2024

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In AutoDiff, NIPS Workshop, 2017.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.

Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin. Softtriple loss: Deep metric
learning without triplet sampling. In Proc. IEEE International Conference on Computer Vision
(ICCV), 2019.

Limeng Qiao, Yemin Shi, Jia Li, Yaowei Wang, Tiejun Huang, and Yonghong Tian. Transductive
episodic-wise adaptive metric for few-shot learning. In Proc. IEEE International Conference on
Computer Vision (ICCV), 2019.

S.-A. Rebuffi, H. Bilen, and A. Vedaldi. Learning multiple visual domains with residual adapters.
In Proc. Neural Information Processing Systems (NeurIPS), 2017.

Karsten Roth, Biagio Brattoli, and Bjorn Ommer. Mic: Mining interclass characteristics for im-
proved metric learning. In Proc. IEEE International Conference on Computer Vision (ICCV),
2019.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A unified embedding for face
recognition and clustering. In Proc. IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual
decomposed attention-based prompting for rehearsal-free continual learning. arXiv preprint
arXiv:2211.13218, 2022.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Proc. Neural Information Processing Systems (NeurIPS), 2017.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In Proc. Neural
Information Processing Systems (NeurIPS), 2016.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin Murphy. Deep metric learning via facility
location. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Eu Wern Teh, Terrance DeVries, and Graham W Taylor. Proxynca++: Revisiting and revitalizing
proxy neighborhood component analysis. In European Conference on Computer Vision (ECCV).
Springer, 2020.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? In Proc. European Conference
on Computer Vision (ECCV), 2020.

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with cit-
izen scientists: The fine print in fine-grained dataset collection. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

12

Under review as a conference paper at ICLR 2024

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. Cosface: Large margin cosine loss for deep face recognition. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Jiang Wang, Yang Song, T. Leung, C. Rosenberg, Jingbin Wang, J. Philbin, Bo Chen, and Ying
Wu. Learning fine-grained image similarity with deep ranking. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos.
In Proc. IEEE International Conference on Computer Vision (ICCV), 2015.

Xinshao Wang, Yang Hua, Elyor Kodirov, Guosheng Hu, Romain Garnier, and Neil M Robertson.
Ranked list loss for deep metric learning. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019a.

Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-similarity loss
with general pair weighting for deep metric learning. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019b.

Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R Scott. Cross-batch memory for embedding
learning. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
6388–6397, 2020.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and Philipp Krahenbuhl. Sampling matters in
deep embedding learning. In Proc. IEEE International Conference on Computer Vision (ICCV),
2017.

Tong Xiao, Shuang Li, Bochao Wang, Liang Lin, and Xiaogang Wang. Joint detection and identi-
fication feature learning for person search. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches via convolutional
neural networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015.

Andrew Zhai and Hao-Yu Wu. Classification is a strong baseline for deep metric learning. arXiv
preprint arXiv:1811.12649, 2018.

Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia. Improving calibration for long-tailed recog-
nition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

13

Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS

We implement ours and all of the baselines in PyTorch (Paszke et al., 2017) and PyTorch Metric
Learning Library (Musgrave et al., 2020b). Fair comparisons, we conduct all experiments with the
following settings:

Training. We train models for 100 epochs using AdamW optimizer (Loshchilov & Hutter, 2019)
with a weight decay of 1e-4. We use the learning rate set to 3e-5 for full fine-tuning baselines
following the training setting of Hyp (Ermolov et al., 2022). We set the learning rate to 1e-4 for
parameter-efficient tuning methods including ours. Following proxy anchor loss (Kim et al., 2020),
we use a high learning rate for proxies in the proxy-based losses by scaling 1× 104.

Batch Construction. The batch size is set to 720. For proxy-based losses, the batches are con-
structed by random sampling. For pair-based losses, we construct batches by first randomly sam-
pling 180 classes, and then randomly sampling 4 images for each of the classes.

Augmentation. Following the standard metric learning augmentation strategy (Kim et al., 2020),
training images are randomly flipped horizontally and randomly cropped with a size of 224×224.
Test images are center-cropped after being resized to 256×256.

Hyperparmeters of loss functions. We set the hyperparameters of CurricularFace loss to a scale of
s = 32 and a margin of m = 0.3. The hyperparameters for the other losses are kept at their default
settings.

B EXTENDED ANALYSIS

B.1 PUMA WITH DIFFERENT LOSESS

The results of utilizing different loss functions in conjunction with PUMA are summarized in Ta-
ble 5. Our experiments, including the main paper, use CurricularFace as the default metric learning
objective. Overall, our results demonstrate that proxy-based losses outperform pair-based losses, as
shown in Table 3 in the main paper for full fine-tuning models in a UML setting. This is because
smaller datasets contain fewer samples in mini-batch, making it difficult to effectively increase the
distance between semantically dissimilar samples and the anchor sample. The use of Proxy-Anchor
loss achieves relatively lower performance performs as it has a design that assigns samples as either
positive or negative.

The use of CurricularFace loss achieves the highest performance. Losses that treat all negative sam-
ples equally during training tend to overfit specific datasets after later stages of training since the time
to converge varies by dataset. In contrast, CurricularFace loss employs a design that can concentrate
on hard negatives as training progresses. This allows the model to achieve high performance overall
by selectively learning only difficult data in later stages, without affecting already well-learned easy
data.

Table 5: Recall@1 of PUMA using different loss functions. Note that our default metric learning
objective is CurriculumFace loss (Huang et al., 2020).

Methods

Dataset-specific Accuracy Universal Accuracy

CUB Cars SOP In-Shop NABirds Dogs Flowers Aircraft Unified Harmonic

Triplet 75.2 36.5 78.5 79.9 69.3 78.3 98.7 39.8 71.1 62.3
Margin 75.4 38.2 78.4 79.1 70.1 79.2 98.9 40.2 71.3 63.1
MS 72.5 30.8 80.5 86.1 66.1 74.9 98.6 37.2 71.1 58.9
SupCon 42.5 12.4 50.0 55.6 33.2 46.3 86.2 20.0 39.0 31.3
PA 82.1 54.8 83.2 89.6 77.7 83.4 99.4 56.1 77.8 75.2
ProxyNCA++ 49.6 19.1 62.3 62.3 39.7 61.3 93.9 27.1 52.8 41.3
SoftTriple 82.7 81.2 79.9 85.6 78.6 84.5 99.3 69.7 78.5 82.0
CosFace 83.8 80.9 82.5 89.3 78.7 83.8 99.3 69.0 80.0 82.6
ArcFace 82.3 43.6 80.8 85.9 77.3 84.0 99.3 44.9 75.3 68.8
CurricularFace 83.9 84.3 84.0 89.8 79.2 84.1 99.3 72.6 81.3 84.1

14

Under review as a conference paper at ICLR 2024

0.2 0.4 0.6 0.8 1.0
Keep Probability p

78

80

82

84

Re
ca

ll@
1

Dataset-specific

CUB
SOP

0.2 0.4 0.6 0.8 1.0
Keep Probability p

78

80

82

Re
ca

ll@
1

Universal

Unified
Harmonic

Figure 7: Recall@1 versus keep probability of adapter p. Note that p = 1 means the adapter
is always used, and decreasing p leads to a higher frequency of using the features of pre-trained
model.

0 4 16 32 64 128
Adapter Dimension D

0

2

4

8Pr
om

pt
 L

en
gt

h
N

p 48.8 64.2 68.5 71.1 71.1 71.9

51.4 65.2 69.7 70.7 71.4 70.7

53.0 64.1 68.9 70.4 71.1 71.4

53.6 65.3 69.8 70.4 71.2 72.6

Aircraft

0 4 16 32 64 128
Adapter Dimension D

0

2

4

8Pr
om

pt
 L

en
gt

h
N

p 68.5 80.2 82.5 83.6 83.8 83.9

71.4 80.4 82.9 83.5 83.9 83.6

72.7 80.3 82.6 83.3 83.8 83.8

73.0 80.5 82.7 83.4 83.8 84.1

Harmonic

50

55

60

65

70

70

72

74

76

78

80

82

84

Figure 8: Ablation study on each component. The model with both prompt length and adapter
dimension set to 0 indicates that only the embedding layer is being trained.

B.2 DETAILED ABLATION STUDY

The Effect of Stochasticity for Adapter. Fig. 7 shows the impact of adapter stochasticity on the
performance of UML. For small datasets such as CUB, decreasing p leads to significant perfor-
mance improvements as features from pre-trained models are frequently used instead of adapted
features, mitigating bias issues. In contrast, large datasets like SOP show an opposite trend. In the
end, the universal accuracy increases as p decreases up to 0.5 and then decreases afterward. These
results suggest that the stochasticity of the adapter plays a critical role in acquiring dataset-specific
knowledge and mitigating the imbalance issue in UML.

Ablation Study on Each Component. Fig. 8 shows an ablation study of additional modules in
PUMA. The use of the stochastic adapter and conditional prompt has a significant impact on the
performance, and increasing their size gradually improves performance. The adapter has a greater
impact on performance than the prompt, as the prompt uses only 0.07M parameters, which are 3%
of the parameters used by the adapter. The prompt has a strong impact on smaller datasets, with a
4.8% improvement when the adapter is not used and around 1% improvement when the adapter is
used.

B.3 SCALING-UP BACKBONE

Table 6 summarizes the results of our method using a larger vision transformer backbone and its
corresponding number of parameters. As the size of the pre-trained backbone increases, the over-
all performance improves significantly across all 8 datasets. Notably, the performance on smaller
datasets shows greater improvements compared to that of larger datasets, except for the Flowers
dataset, where performance is almost saturated. As a result, we observe substantial improvements in
the harmonic mean accuracy metric. As the model size increases from ViT-B to ViT-L, performance
improvements are observed across all datasets, but an increase in the number of parameters leads
to a more pronounced bias towards large datasets. To mitigate this, attaching stochastic adapters to
some layers, as in the ViT-L† model, can be helpful.

15

Under review as a conference paper at ICLR 2024

Table 6: Recall@1 of PUMA using different backbones. The model denoted by † corresponds to
a ViT-L architecture with adapters attached to the first 12 transformer layers, while the remaining
models attach adapters to all transformer layers. The rest of the hyperparameters are the same.

Arch.

Params (M) Dataset-specific Accuracy Universal Accuracy

Train / Total CUB Cars SOP In-Shop NABirds Dogs Flowers Aircraft Unified Harmonic

ViT-S128 2.5 / 24.2 83.9 84.3 84.0 89.8 79.2 84.1 99.3 72.6 81.3 84.1
ViT-B128 5.0 / 90.8 85.7 88.2 86.0 92.2 83.0 87.5 99.4 78.8 84.0 87.2
ViT-L128 12.9 / 316.2 86.6 88.7 86.9 93.2 84.4 90.8 99.4 78.5 84.8 88.2
ViT-L128† 6.6 / 309.9 86.8 90.5 86.3 92.8 85.3 90.9 99.3 79.5 84.9 88.6

Table 7: Performance comparison of LoRA (Hu et al., 2021) variants and their combination with
PUMA. The bottleneck dimension of LoRA is set to 128, the same as that of the Adapter. The keep
probability for the stochastic version of LoRA is set to p = 0.5.

Methods

Params (M) Dataset-specific Accuracy Universal Accuracy

Train / Total CUB Cars SOP InShop NABirds Dogs Flowers Aircraft Unified Harmonic

LoRA 2.4 / 24.1 77.0 70.9 81.3 86.2 70.8 79.1 98.9 59.7 76.1 76.5
Stochastic LoRA 2.4 / 24.1 83.0 71.7 80.0 83.4 78.0 84.7 99.4 64.3 77.3 79.4
PUMA + LoRA 4.8 / 26.5 76.8 77.6 83.9 90.4 72.2 79.5 98.9 65.0 78.7 79.3
PUMA + Stochastic LoRA 4.8 / 26.5 83.1 83.8 84.7 91.2 83.9 73.5 99.2 72.2 81.5 83.9

PUMA 2.5 / 24.2 83.9 84.3 84.0 89.8 79.2 84.1 99.3 72.6 81.3 84.1

Table 8: Comparison of the performance between pair-based losses with and without cross-batch
memory.

Methods

Dataset-specific Accuracy Universal Accuracy

CUB Cars SOP InShop NABirds Dogs Flowers Aircraft Unified Harmonic

Triplet 75.2 36.5 78.5 79.9 69.3 78.3 98.7 39.8 71.1 62.3
MS 72.5 30.8 80.5 86.1 66.1 74.9 98.6 37.2 71.1 58.9

Triplet + XBM 78.4 50.6 82.8 89.9 72.8 79.3 98.9 51.3 76.0 71.6
MS + XBM 78.1 55.1 84.3 91.5 72.4 79.6 98.0 54.7 77.0 73.7

As the size of the backbone increases, the number of parameters in our approach also increases, but
to a lesser extent relative to the backbone. Therefore, even with larger backbones, PUMA enables
memory-efficient training compared to full-finetuning.

B.4 LORA FOR UML

LoRA (Hu et al., 2021) is one of the popular methods for parameter-efficient transfer learning in the
NLP field, in addition to prefix/prompt tuning (Lester et al., 2021; Li & Liang, 2021; Wang et al.,
2022; Smith et al., 2022) and adapter (Pfeiffer et al., 2020). We investigate whether LoRA effectively
operates in the UML task and whether it can be used in conjunction with PUMA to boost perfor-
mance. We evaluate the performance of plain LoRA, its stochastic variant, and their combination
with PUMA, and summarize the results in Table 7. The results show that applying LoRA directly
to UML does not work well. Like adapter, deterministic usage of LoRA leads to a significant bias
towards large datasets such as SOP and In-Shop, which can be overcome by introducing stochas-
ticity. However, despite having almost the same number of parameters as PUMA, LoRA achieves
significantly lower performance. On the other hand, incorporating stochastic LoRA with PUMA re-
sults in performance improvements for the SOP, In-Shop, and NABirds datasets. However, smaller
datasets exhibit decreased performance, suggesting that the two methods are not complementary
and that increasing capacity through an increase in the number of parameters leads to performance
improvements.

16

Under review as a conference paper at ICLR 2024

CosFace
(Universal)

Ours

CosFace
(Dataset-Specific)

CosFace
(Universal)

Ours

CosFace
(Dataset-Specific)

(a) Query from Cars-196 dataset

(b) Query from SOP dataset

Figure 9: Qualitative results comparison of a dataset-specific model using CosFace, universal model
using CosFace, and our method. For the dataset-specific and proxy anchor models, retrieval results
within the same dataset are shown, while for the universal model, results using all datasets as the
gallery are presented. Queries are shown in the leftmost column, followed by the top 7 retrievals.
True matches and false matches are colored green and red, respectively.

C FURTHER DISCUSSION

C.1 DISCUSSION ON LOSS FUNCTIONS FOR UML

Pair-based Losses. The experiments in our main paper and Table 5 clearly demonstrate that pair-
based losses do not perform well on the UML task due to the under-sampling issue in small datasets
caused by dataset imbalance. To further show that the under-sampling issue hinders the perfor-
mance of pair-based losses, we present the performance of models using triplet (Schroff et al., 2015)
and MS (Wang et al., 2019b) losses with cross-batch memory (i.e., XBM) (Wang et al., 2020) in
Table 8. While the performance overall improves when using a memory module with the two pair-
based losses, it still lags behind other proxy-based losses. This is because using a memory module
increases the exposure frequency of negative samples, but the dominance of large dataset samples
in the memory leads to a bias towards those samples. These results suggest that completely new
sampling techniques are necessary for pair-based losses to work well in the UML task. Existing
techniques such as batch sampling, sample mining, and memory used in metric learning cannot ad-
dress the issue of insufficient negative samples in mini-batches for UML. To address this problem,
we need to explore new sampling methods that enable balanced data sampling without accessing the
IDs of the datasets. Additionally, it is important to frequently supply hard negative samples to the
mini-batches. This approach would be critical for achieving better performance in the UML task.
While not addressed as a major issue in our main paper, addressing this under-sampling issue is
quite challenging and important for future UML research.

Proxy-based Losses. Proxy-based losses normally achieve higher performance than pair-based
losses as they introduce proxies, which reduces dependency on mini-batch sampling. However,
some methods underperform compared to pair-based losses, with ProxyNCA++ (Teh et al., 2020)
being a notable example. This loss modifies the softmax loss to use cosine metric and does not
enforce a margin, unlike other proxy-based losses. In contrast, ArcFace (Deng et al., 2019) enforces
a relatively large margin compared to other losses. CurricularFace (Huang et al., 2020) loss dynam-

17

Under review as a conference paper at ICLR 2024

Table 9: Comparison of performance between dataset-specific training and universal training. (-)
and (+) denote degradation and enhancement in model performance achieved when transitioning
from dataset-specific training to universal training, respectively.

Methods CUB Cars SOP InShop NABird Dog Flowers Aircraft Harmonic

(a) Models by Dataset-specific Training

PA 80.2 83.7 84.4 91.5 69.6 84.2 99.0 67.9 81.4
CurricularFace 79.7 81.3 83.2 88.2 75.3 81.2 99.1 63.9 80.4
PUMA 81.7 83.9 85.2 89.9 77.0 82.5 99.5 68.9 82.7

(b) Models by Universal Training

PA 77.2 (-3.0) 73.1 (-10.6) 83.7 (-0.7) 91.9 (+0.4) 71.5 (+1.9) 78.1 (-6.1) 96.4 (-2.6) 62.7 (-5.2) 71.0 (-10.4)
CurricularFace 78.3 (-1.4) 77.9 (-3.4) 82.0 (-1.2) 89.1 (+0.9) 73.0 (-2.3) 79.3 (-1.9) 99.1 (+0.0) 65.6 (-1.7) 79.5 (-0.9)
PUMA (Ours) 83.9 (+2.2) 84.3 (+0.4) 84.0 (-1.2) 89.8 (-0.1) 79.2 (+2.2) 84.1 (1.6) 99.3 (-0.2) 72.6 (+3.7) 84.1 (+1.4)

ically changes the margin based on the training progress and sample hardness, allowing it to achieve
high performance. These results suggest that the margin size plays a critical role in proxy-based
losses and has a significant impact on their performance. To ensure that proxy-based losses work
well for the UML task, it is essential to adaptively assign margins according to the data and train a
flexible embedding space.

C.2 METRIC LEARNING BY DATASET-SPECIFIC VS. UNIVERSAL

Fig. 9 illustrates the image retrieval results of dataset-specific models using CosFace loss, a universal
model trained using CosFace loss, and our proposed method. As shown in Fig. 9(a), the dataset-
specific model retrieves relevant samples to the query as the nearest neighbors, while the univer-
sal model retrieves samples that look alike to the query but belong to different classes. Fig. 9(b)
presents retrieval results using challenging query with various objects and complex patterns. The
dataset-specific model retrieves one true match among its neighbors, while the rest of the results are
irrelevant samples. The universal model using CosFace only retrieves samples with similar patterns
from other datasets.

The presented results demonstrate that training a model on multiple datasets, despite using the same
loss function, can significantly degrade the ability to distinguish classes of a specific dataset due to
the negative influence of other datasets. This is a unique and challenging issue in UML research
that needs to be continuously addressed in future studies. In contrast, our method enables accurate
retrieval of samples belonging to the same class as the query, even though it is trained in a univer-
sal manner. These results indicate that our model can effectively recognize both dataset-specific
discriminative features and common discriminative features. It is an important finding that can con-
tribute to resolving the aforementioned issue in UML research.

C.3 DATASET-SPECIFIC TRAINING OF PUMA

In the context of dataset-specific training of PUMA, Table 9 provides a clear insight into the per-
formance dynamics. Notably, it showcases the substantial improvements our method achieves when
compared to models trained with universal training.

The key takeaway here is that while other methods tend to become biased towards large-scale
datasets when subjected to universal training, primarily learning features associated with those
datasets, our method takes a different path. This remarkable boost in performance is attributed
to our method’s ability to effectively learn and leverage features shared across various datasets. Es-
pecially, through conditional prompt learning, our method effectively acquires an understanding of
the shared characteristics among the diverse datasets. This learning process enables the model to tap
into the common features present across these datasets, contributing significantly to the performance
improvements observed.

Furthermore, the incorporation of the stochastic adapter proves pivotal. It helps our model address
the bias that can often emerge when handling large-scale datasets during universal training. This
adaptability ensures that our approach remains impartial and doesn’t disproportionately favor spe-
cific datasets, ultimately resulting in more robust and balanced model performance.

In essence, these results demonstrate the ability of our method to capture common features across
datasets, which results in notable enhancements in model performance. This capability sets our

18

Under review as a conference paper at ICLR 2024

Table 10: Recall@1 of baselines and ours on the four standard benchmark datasets. Superscripts
denote their embedding dimensions. We note that the result of “Hyp” presented in the table is
obtained from our reimplementation.

Methods

Params (M) Dataset-specific Universal

Train / Total CUB Cars SOP InShop Unified Harmonic

(a) Dataset-specific models with CNN Backbone

Margin128 (Wu et al., 2017) 95.1 / 95.1 63.9 79.6 72.7 - - -
MIC128 (Roth et al., 2019) 95.1 / 95.1 66.1 82.6 77.2 88.2 - 77.6
MS512 (Wang et al., 2019b) 47.3 / 47.3 65.7 84.1 78.2 89.7 - 78.4
PA512 (Kim et al., 2020) 47.3 / 47.3 68.4 86.1 79.1 91.5 - 79.2
NSoftmax512 (Zhai & Wu, 2018) 98.2 / 98.2 61.3 84.2 78.2 86.6 - 76.2
PNCA++512 (Teh et al., 2020) 98.2 / 98.2 69.0 86.5 80.7 90.4 - 80.7

(b) Dataset-specific models with ViT Backbone

Triplet128 (Schroff et al., 2015) 86.9 / 86.9 81.1 75.2 80.2 87.4 61.5 80.7
Margin128 (Wu et al., 2017) 86.9 / 86.9 79.4 78.0 79.8 86.0 66.0 80.7
MS128 (Wang et al., 2019b) 86.9 / 86.9 80.0 83.7 81.4 90.8 65.3 83.8
PA128 (Kim et al., 2020) 86.9 / 86.9 80.2 83.7 84.4 91.5 62.7 84.8
SoftTriple128 (Qian et al., 2019) 86.9 / 86.9 80.5 80.0 82.9 88.7 68.4 82.9
CosFace128 (Wang et al., 2018) 86.9 / 86.9 78.8 83.2 83.2 89.6 67.2 83.5
ArcFace128 (Deng et al., 2019) 86.9 / 86.9 76.8 79.4 83.4 90.3 67.1 82.2
CurricularFace128 (Huang et al., 2020) 86.9 / 86.9 79.7 81.3 83.2 88.2 67.6 83.0
Hyp128 (Ermolov et al., 2022) 86.9 / 86.9 78.8 78.2 83.6 91.5 28.3 82.7

(c) Universal Models with ViT Backbone

Triplet128 (Schroff et al., 2015) 21.7 / 21.7 69.5 35.6 79.8 85.9 76.0 60.0
Margin128 (Wu et al., 2017) 21.7 / 21.7 70.0 37.1 79.8 82.4 75.7 60.7
MS128 (Wang et al., 2019b) 21.7 / 21.7 62.5 23.8 80.2 87.6 75.0 48.8
PA128 (Kim et al., 2020) 21.7 / 21.7 75.4 72.6 84.0 91.7 83.6 80.2
SoftTriple128 (Qian et al., 2019) 21.7 / 21.7 76.8 76.9 82.3 89.2 82.6 81.0
CosFace128 (Wang et al., 2018) 21.7 / 21.7 72.9 74.3 83.0 90.2 82.6 79.5
ArcFace128 (Deng et al., 2019) 21.7 / 21.7 62.3 20.4 57.7 49.1 53.2 38.8
CurricularFace128 (Huang et al., 2020) 21.7 / 21.7 76.9 77.5 82.7 89.4 83.0 81.3
Hyp128 (Ermolov et al., 2022) 21.7 / 21.7 75.5 56.8 83.7 90.3 81.7 74.2
Ours128 2.5 / 24.2 82.5 84.6 84.9 91.5 85.7 85.7

approach apart from others, ensuring that the model doesn’t fall into the bias trap associated with
universal training, where it may predominantly focus on features from large-scale datasets.

D SUPPLEMENTARY RESULTS

D.1 RESULTS ON FOUR STANDARD BENCHMARK DATASETS

In addition to the findings highlighted in the main paper, we also extend our investigation to the realm
of universal metric learning. Following the standard benchmark protocol, we employ four widely
used datasets: CUB, Cars-196, Stanford Online Product (SOP), and In-Shop Clothes Retrieval (In-
Shop). Our evaluation involves a comparison with state-of-the-art methods, each trained individually
on these datasets. A summary of these results is provided in Table 10.

Our method outperforms existing CNN-based state-of-the-art dataset-specific models by a signifi-
cant margin, even surpassing models with a 512 embedding dimension. In cases where a ViT-based
backbone is employed, our approach consistently achieves higher performance compared to dataset-
specific models across most datasets. While these models excel on individual datasets, their per-
formance notably degrades when assessed on a unified dataset. Furthermore, these dataset-specific
models are memory-intensive, necessitating the retention of multiple models for selection or ensem-
ble purposes. In contrast, our universal approach handles various data distributions with a single
model, eliminating the need for model selection or ensemble. Although other universal models ex-
hibit biases towards larger datasets, PUMA is unique in maintaining its performance across both
large and small datasets. This distinct capability leads to PUMA’s superiority in terms of both
dataset-specific accuracy and universal accuracy.

19

Under review as a conference paper at ICLR 2024

Table 11: Recall@k (R@k) of metric learning baselines and ours with the eight datasets.

Methods

CUB Cars SOP InShop NABirds Dogs Flowers Aircraft

R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100 R@1 R@10 R@20 R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@2 R@4

(a) Dataset-specific models by full fine-tuning

Triplet 81.1 88.1 92.9 75.2 84.2 90.2 80.2 84.9 88.6 87.4 92.1 95.2 75.2 83.4 89.5 81.0 88.4 93.3 99.1 99.5 99.7 64.7 76.6 86.6

Margin 79.4 87.8 92.3 78.0 86.0 91.9 79.8 84.6 88.5 86.0 91.6 94.9 74.6 83.1 89.4 80.3 87.8 92.7 99.0 99.5 99.7 66.8 79.0 87.1

MS 80.0 87.0 91.8 83.7 90.3 94.1 81.4 85.5 89.0 90.8 93.7 95.9 68.1 77.4 84.3 75.8 83.8 89.6 97.4 98.4 98.8 64.7 77.6 86.3

PA 80.2 87.8 92.4 83.7 90.2 94.6 84.4 88.2 91.1 91.5 94.5 96.7 69.6 78.4 85.5 84.2 91.1 94.7 99.0 99.4 99.6 67.9 78.1 87.1

SoftTriple 80.5 88.0 92.0 80.0 88.2 93.2 82.9 86.8 90.0 88.7 92.7 95.5 75.9 84.0 89.9 82.1 89.3 94.0 99.4 99.7 99.8 65.4 77.3 86.7

CosFace 78.8 86.6 91.5 83.2 89.5 93.9 83.2 87.1 90.1 89.6 93.4 95.7 71.4 80.4 87.0 79.2 87.1 92.3 99.2 99.6 99.7 61.4 74.3 83.7

ArcFace 76.8 85.1 90.9 79.4 86.5 91.6 83.4 87.3 90.1 90.3 93.7 96.2 61.0 70.8 79.1 76.1 84.2 90.2 99.2 99.6 99.7 60.0 74.1 84.7

CurricularFace 79.7 87.9 92.4 81.3 88.7 93.6 83.2 87.3 90.4 88.2 92.7 95.4 75.3 84.0 89.7 81.2 88.9 93.9 99.1 99.6 99.8 63.9 76.5 85.6

Hyp 78.8 87.1 92.3 78.2 85.6 91.0 83.6 88.0 91.1 91.5 95.2 97.1 71.0 79.7 86.4 72.6 82.0 89.1 98.7 99.3 99.5 65.7 78.2 86.7

(b) Universal models by full fine-tuning

Triplet 74.5 83.6 90.6 35.4 47.7 60.5 80.2 92.3 97.3 85.7 97.1 98.1 68.2 78.4 86.0 77.1 87.1 92.4 98.7 99.4 99.8 40.9 52.2 64.2

Margin 72.5 83.1 90.5 36.7 47.8 59.8 80.0 92.1 97.3 84.1 96.8 97.9 67.4 77.8 85.5 74.8 84.9 91.5 98.5 99.2 99.5 40.4 51.4 62.7

MS 66.3 77.1 85.0 22.9 32.6 44.7 78.9 90.9 96.7 87.2 96.0 87.2 58.6 69.4 78.5 69.8 80.4 88.0 97.3 98.4 98.8 31.5 42.7 54.5

PA 77.2 85.4 90.5 73.1 82.1 88.5 83.7 93.5 97.3 91.9 98.1 98.7 71.5 80.2 86.8 78.1 86.3 91.4 96.4 97.3 97.0 62.7 74.9 84.4

SoftTriple 78.9 87.0 91.7 77.0 85.8 91.6 81.3 92.1 86.6 88.6 97.4 98.2 73.8 82.8 89.2 79.3 87.6 92.5 99.1 99.5 99.8 64.4 77.6 86.1

CosFace 74.2 83.4 89.2 73.5 82.5 88.7 82.5 92.4 96.4 90.0 97.4 98.3 69.7 78.9 85.9 74.1 83.8 89.8 98.7 99.2 99.5 59.7 72.1 81.8

ArcFace 70.8 80.0 86.3 25.9 36.7 49.3 63.9 72.8 79.0 58.9 74.7 77.8 64.0 72.8 79.9 70.3 79.0 85.9 97.2 98.5 99.1 31.7 43.4 56.1

CurricularFace 78.3 87.0 91.7 77.9 86.4 92.1 82.0 92.7 96.9 89.1 97.5 98.5 73.0 82.2 88.7 79.3 87.7 92.9 99.1 99.4 99.6 65.6 78.0 99.3

Hyp 79.2 87.8 92.7 60.6 73.1 82.8 83.5 93.9 97.7 90.9 98.2 98.9 73.6 82.6 89.2 81.9 89.5 94.3 99.1 99.5 99.8 56.3 69.0 79.9

Ours 83.9 90.2 93.5 84.3 90.3 94.3 84.0 93.7 97.5 89.8 98.0 98.6 79.2 86.7 91.9 84.1 90.7 94.5 99.3 99.6 99.8 72.6 82.7 94.3

Table 12: Mean Average Precision at R (M@R) and R-Precision (RP) of metric learning baselines
and ours with the eight datasets.

Methods

CUB Cars SOP InShop NABirds Dogs Flowers Aircraft Harmonic

M@R RP M@R RP M@R RP M@R RP M@R RP M@R RP M@R RP M@R RP M@R RP

(a) Dataset-specific models with ViT Backbone

PA 46.2 55.5 27.8 38.3 51.5 54.2 65.5 68.1 37.0 47.1 48.5 58.8 91.7 93.3 21.4 34.7 40.5 51.6
CosFace 43.4 53.8 26.4 36.8 49.6 52.5 63.6 66.3 35.9 46.1 47.3 57.7 92.1 93.0 20.1 32.8 38.8 49.9
CurricularFace 43.8 53.5 24.0 34.8 48.9 52.2 62.0 65.3 36.4 46.8 48.4 58.8 91.1 93.0 17.9 31.3 37.0 49.1

(b) Universal models by full fine-tuning

PA 41.9 51.5 22.9 34.1 50.7 53.7 67.7 70.3 33.0 43.4 39.5 51.0 70.3 74.0 18.5 31.8 35.4 47.3
CosFace 36.6 46.7 21.3 32.1 48.4 51.4 64.1 66.8 28.7 39.2 30.4 42.7 85.1 87.0 17.3 30.1 32.3 44.3
CurricularFace 40.8 50.7 22.3 33.4 47.6 50.8 62.8 65.7 31.6 42.6 38.3 50.2 87.2 88.8 17.6 30.5 34.3 46.5
Ours 48.5 57.5 28.1 38.5 50.3 53.3 65.2 68.0 38.8 49.1 48.7 59.0 91.4 92.5 21.8 34.4 41.1 52.0

Remarkably, our proposed method achieves exceptional results. It outperforms the best universal
model by 3.1% in unified accuracy and 4.4% in harmonic mean accuracy. Notably, it even surpasses
the state-of-the-art dataset-specific models by 17.3% in unified accuracy and 0.9% in harmonic
average accuracy. This remarkable performance is achieved without employing hyperparameters
tailored to individual datasets.

D.2 RESULTS IN OTHER METRICS

The table 11 presents the Recall@k (R@k) of metric learning baselines and our method on the eight
datasets. We report R@k for the SOP and In-shop datasets following their convention, and we report
the results of R@1, R@2, and R@4 for the remaining datasets. The results show that our method
achieves significantly better performance than the existing methods in terms of R@k overall.

We also adopt the enhanced metric, Mean average precision at R (M@R) and R-Precision (RP), pro-
posed in Musgrave et al. (2020a) to thoroughly evaluate both our model and the baseline approaches.
Table 12 shows the comparative analysis between our method and the three top-performing baseline
models. Interestingly, our findings indicate that even when using the same loss function, univer-
sal models demonstrate a more pronounced performance degradation in M@R and RP on smaller
datasets compared to what is observed when employing the Recall@k metric. Remarkably, our
method consistently outperforms not only the universal models but also the dataset-specific mod-
els across diverse datasets, mirroring the previous results. This achievement finally leads to the

20

Under review as a conference paper at ICLR 2024

attainment of higher harmonic mean accuracy. Significantly, this highlights that the superiority of
our method is not confined solely to the Recall@k metric, but rather is grounded in its capacity to
establish a well-clustered embedding space across all datasets.

D.3 t-SNE VISUALIZATION

Fig. 10 shows t-SNE visualizations of universal embedding space learned by our method on multiple
datasets. The left side shows the visualization of the training set, while the right side shows that of
the unseen test set. The visualization of the training set reveals that each dataset and each class is
well-clustered. Similarly, the test set visualization also shows well-clustered groups for each dataset
and class, with CUB and NABirds, both bird species datasets, having semantically similar data
points clustered together. In conclusion, our results demonstrate that nearest neighbor data points in
the embedding space are semantically similar, suggesting that our model learns universal semantic
similarity across multiple datasets.

(a) t-SNE Visualization of Training Dataset (b) t-SNE Visualization of Unseen Dataset

Dataset
CUB

Cars

In-shop

NABird

Dogs

Flowers

Aircraft

SOP

Figure 10: t-SNE visualization of universal embedding space.

21

	Introduction
	Related Work
	Universal Metric Learning
	Revisiting Conventional Metric Learning
	Problem Formulation of UML
	Challenges in UML

	Proposed Method
	Preliminaries: ViT
	Stochastic Adapter
	Conditional Prompt Learning

	Experiments
	Experimental Setup
	Results
	Ablation Study

	Conclusion
	Implementation Details
	Extended Analysis
	PUMA with Different Losess
	Detailed Ablation Study
	Scaling-up Backbone
	LoRA for UML

	Further Discussion
	Discussion on Loss Functions for UML
	Metric Learning by Dataset-specific vs. Universal
	Dataset-specific training of PUMA

	Supplementary Results
	Results on four standard benchmark datasets
	Results in other metrics
	t-SNE Visualization

