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Abstract
In an era where digital text is proliferating at001
an unprecedented rate, efficient summarization002
tools are becoming indispensable. While Large003
Language Models (LLMs) have been success-004
fully applied in various NLP tasks, their role in005
extractive text summarization remains underex-006
plored. This paper introduces EYEGLAXS007
(Easy Yet Efficient larGe LAnguage model008
for eXtractive Summarization), a framework009
that leverages LLMs, specifically LLAMA2-010
7B and ChatGLM2-6B, for extractive summa-011
rization of lengthy text documents. Instead of012
abstractive methods, which often suffer from013
issues like factual inaccuracies and hallucina-014
tions, EYEGLAXS focuses on extractive sum-015
marization to ensure factual and grammatical016
integrity. Utilizing state-of-the-art techniques017
such as Flash Attention and Parameter-Efficient018
Fine-Tuning (PEFT), EYEGLAXS addresses019
the computational and resource challenges typ-020
ically associated with LLMs. The system sets021
new performance benchmarks on well-known022
datasets like PubMed and ArXiv. Furthermore,023
we extend our research through additional anal-024
yses that explore the adaptability of LLMs in025
handling different sequence lengths and their026
efficiency in training on smaller datasets. These027
contributions not only set a new standard in the028
field but also open up promising avenues for fu-029
ture research in extractive text summarization.030

1 Introduction031

In the era of information overload, text summariza-032

tion has emerged as a critical tool for distilling es-033

sential information from expansive text documents.034

This paper focuses on automatic text summariza-035

tion, which can be broadly categorized into two036

paradigms: abstractive and extractive methods. Ab-037

stractive methods, despite their ability to generate038

flexible and creative summaries, often grapple with039

issues of grammatical inaccuracy and factual in-040

consistencies, commonly referred to as "hallucina-041

tions" (Bishop et al., 2022; Ji et al., 2023; Zhang042

et al., 2023b). These challenges are exacerbated 043

when summarizing long texts and can be partic- 044

ularly detrimental in critical applications such as 045

healthcare, scientific research, and legislation. In 046

contrast, extractive summarization offers a more re- 047

liable approach by selecting pertinent sentences 048

directly from the source text, thereby ensuring 049

grammatical and factual integrity. Traditionally, 050

this task has been framed as a sentence classifi- 051

cation problem and has predominantly employed 052

encoder-only pre-trained models (Liu and Lapata, 053

2019; Cho et al., 2022; Bian et al., 2023). De- 054

spite the promising capabilities of Large Language 055

Models (LLMs) in various NLP tasks, their poten- 056

tial in extractive summarization remains largely 057

untapped. This oversight is partly due to the com- 058

putational challenges and fine-tuning limitations 059

associated with these sizable models. However, 060

recent advancements in long sequence process- 061

ing for decoder-only models offer a glimmer of 062

hope for harnessing LLMs in this context. To 063

bridge this gap, our paper introduces EYEGLAXS 064

(Easy Yet Efficient larGe LAnguage model for 065

eXtractive Summarization), a system that lever- 066

ages the power of LLMs—specifically LLAMA2- 067

7B(Touvron et al., 2023) and ChatGLM2-6B (Zeng 068

et al., 2022). We employ Flash Attention 2 069

(Dao, 2023) and Parameter-Efficient Fine-Tuning 070

(PEFT)(Lialin et al., 2023) techniques to miti- 071

gate some of the challenges associated with us- 072

ing LLMs. Our contributions are manifold: we 073

not only propose a novel method for employing 074

LLMs in long extractive summarization tasks but 075

also demonstrate their competitive performance 076

against state-of-the-art methods. We further ex- 077

plore the adaptability of LLMs in handling varying 078

sequence lengths and investigate their training ef- 079

ficiency on smaller datasets. Lastly, we delve into 080

the issue of position bias inherent in LLMs. 081
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2 Litterature Review082

2.1 Long Extractive Text Summarization083

In the literature, the task of extractive text summa-084

rization is predominantly approached as a sentence085

classification problem. In this framework, models086

are trained to predict a label for each sentence in087

the input document to determine whether or not088

the sentence should be included in the generated089

summary. Most state-of-the-art methods leverage090

pre-trained transformer models that are adapted091

for natural language understanding tasks. One of092

the pioneering works in this area slightly modi-093

fied BERT’s architecture by incorporating a priori094

information on sentence splitting and adding lay-095

ers of inter-sentence transformers before feeding096

them into the classifier for prediction (Liu and La-097

pata, 2019). To address the issue of limited con-098

text size, various transformer architectures have099

been proposed to mitigate the quadratic complex-100

ity problem associated with self-attention compu-101

tation. For instance, Longformer (Beltagy et al.,102

2020) and Bigbird (Zaheer et al., 2020) employ at-103

tention sparse methods such as sliding windows to104

handle longer sequences. Building on these archi-105

tectures, many systems introduce additional mech-106

anisms that exploit the unique characteristics of107

documents to improve performance on long se-108

quences. For example, the work by (Xiao and109

Carenini, 2019) generates different representations110

that consider both local and global contexts. The111

system described in (Ruan et al., 2022) explicitly112

incorporates hierarchical information by using sec-113

tion titles and the hierarchical position of sentences114

to enrich representations. Similarly, (Bian et al.,115

2023) represents the hierarchical structure of the116

text through a heterogeneous graph of sentences117

and sections, while integrating reinforcement learn-118

ing with a graph neural network. The approach119

by (Cho et al., 2022) aims to discover the latent120

structure of the document by jointly optimizing a121

secondary task of section segmentation alongside122

sentence extraction. Moreover, (Xie et al., 2022)123

incorporates domain-specific knowledge into the124

model by using adapters to infuse medical exper-125

tise. The abstractive-extractive approach has also126

been explored. For instance, (Bishop et al., 2022)127

generates an abstractive summary that later guides128

the extraction of salient sentences, irrespective of129

document length. Most of these approaches employ130

pre-trained RoBERTa (Liu et al., 2019) as the back-131

bone model. However, this comes with limitations,132

such as the complexity of learning new positional 133

encoding tokens and the relatively small number 134

of parameters and tokens encountered during the 135

pre-training stage, especially when compared to 136

larger language models. 137

2.2 Large Language Models 138

Over the past few years, pre-trained Large Lan- 139

guage Models (LLMs) have transitioned from be- 140

ing virtually unknown to becoming pervasive in 141

the realm of machine learning. Their widespread 142

adoption is largely due to their proven effective- 143

ness in addressing zero-shot and few-shot learning 144

challenges. They have been successfully applied to 145

tasks such as abstractive summarization and trans- 146

lation of short documents. While these models 147

excel in generative tasks, their application to ex- 148

tractive tasks poses greater challenges. A common 149

workaround is to transform an extractive task into 150

a text generation task by utilizing cloze prompting 151

templates (Liu et al., 2021). While this technique is 152

well-suited for simpler tasks like sentiment detec- 153

tion, its complexity escalates for tasks with more in- 154

tricate scoring systems, such as named entity recog- 155

nition, and becomes nearly unfeasible for tasks like 156

extractive summarization (Wang et al., 2023). Ad- 157

ditionally, these models are prone to hallucination 158

issues, limiting their applicability in critical fields 159

like healthcare (Kaddour et al., 2023). Although 160

zero-shot approaches to extractive summarization 161

have been explored (Zhang et al., 2023a), to the 162

best of our knowledge, no attempts have been made 163

to evaluate the fine-tuning of these models specif- 164

ically for extractive summarization. Furthermore, 165

it is plausible that the representations learned by 166

these LLMs are richer than those learned by en- 167

coder models, owing to their larger number of pa- 168

rameters and more extensive pretraining data (Ni 169

et al., 2022). Finally, efforts have been made to sig- 170

nificantly increase the context size of these LLMs, 171

notably through the use of scalable positional en- 172

codings (Su et al., 2021), extending the initial pre- 173

training context length (Chen et al., 2023), or opti- 174

mizing attention computation at the GPU memory 175

level (Dao et al., 2022; Dao, 2023). 176

2.3 Parameter-Efficient Fine-Tuning methods 177

Large Language Models (LLMs) are increasingly 178

being utilized to achieve state-of-the-art perfor- 179

mance in various NLP tasks, capturing the atten- 180

tion of both researchers and industry professionals 181

(Bubeck et al., 2023). However, these models come 182
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Figure 1: The overall framework of EYEGLAXS. Resid-
ual connections and normalizations do not appear for
better readability. Snowflake logo means that weights
are frozen, while Fire logo means that weights are train-
able.

with significant computational and memory require-183

ments for training from scratch. Recent iterations184

of these models often boast more than 70 billion pa-185

rameters (Touvron et al., 2023; Zeng et al., 2022),186

making the fine-tuning process highly resource-187

intensive. To address this challenge, a new family188

of techniques known as Parameter-Efficient Fine-189

Tuning (PEFT)(Lialin et al., 2023) has been intro-190

duced. These methods advocate for the training of191

a relatively small number of additional parameters,192

which, in comparison to the overall size of the mod-193

els, represent only a fraction. This approach sub-194

stantially reduces both storage and computational195

costs. Among the PEFT techniques, prompt tuning,196

prefix tuning (Liu et al., 2022), and LoRA (Hu et al.,197

2022) have garnered significant attention. Models198

trained using PEFT methods have demonstrated199

performance levels comparable to those achieved200

through full fine-tuning (Lialin et al., 2023). In this201

article, we propose to fine-tune pre-trained LLMs202

using LoRA for the specific task of extractive sum-203

marization.204

3 Method205

3.1 Task Definition206

We define extractive summarization as a sen-207

tence classification problem. Let note D =208

{s1, s2, . . . , sn} the document D consisting of n 209

sentences. The extractive summarization task aims 210

to predict labels ŷi ∈ (0, 1) for each i ∈ [0, n] 211

where ŷi = 1 and ŷi = 0 means the sentence 212

should be included , or not, in the summary re- 213

spectively. As datasets only contain document- 214

abstract pairs, in order to train these models in a 215

supervised manner, reference extractive abstracts 216

are generated using methods such as greedy algo- 217

rithms with the objective to maximize a chosen 218

metric, mostly ROUGE scores (Kedzie et al., 2018; 219

Lin, 2004). This allows associating a label to each 220

sentence of the original document based on their 221

inclusion in these oracle summaries. These oracle 222

summaries represent an upper bound for the ex- 223

pected performances of extractive models. Thus a 224

label yi ∈ (0, 1), is associated to each sentence of 225

the text depending on its inclusion in the oracle. 226

We propose a system called EYEGLAXS (Easy 227

Yet Efficient larGe LAnguage model for eXtractive 228

Summarization), a system based on Large Lan- 229

guage Models for the long text extractive summa- 230

rization task described in Figure 1. 231

3.2 Choice of Large Language Models 232

Large Language Models (LLMs) are notably 233

resource-intensive to train from scratch, making it 234

common practice to leverage pre-existing architec- 235

tures for new applications. To improve both repro- 236

ducibility and evaluation, we employ fine-tuning 237

techniques on models that have publicly available 238

checkpoints. A crucial aspect of our selection pro- 239

cess is the choice of models that feature extendable 240

positional encoding mechanisms (Su et al., 2021; 241

Press et al., 2021). We also ensure that the selected 242

positional encoding can be efficiently parallelized 243

to benefit from Flash Attention 2, which offers effi- 244

cient GPU memory consumption (Dao et al., 2022; 245

Dao, 2023). As a result, models relying on relative 246

positional encoding—such as those based on the 247

T5 architecture—are not suitable for our use case. 248

Likewise, models with learned positional encod- 249

ing, like XLM (Goyal et al., 2021), pose scalability 250

challenges unless new positional encodings are re- 251

trained. Guided by these considerations, we have 252

narrowed our evaluation to two distinct LLMs: first, 253

LLAMA2 (Touvron et al., 2023), a decoder-only 254

model that has gained widespread adoption; and 255

second, ChatGLM2 (Zeng et al., 2022), a prefix de- 256

coder model that shows promise for superior infor- 257

mation integration through the use of bidirectional 258

attention mechanisms. More specifically, we assess 259
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the performance of the pre-trained long-sequence260

instruct-based models LLAMA2-7B-32K-Instruct1261

and ChatGLM2-6B-32K2, both available on Hug-262

gingFace. The former has been fine-tuned for long-263

context summarization using the BookSum dataset,264

while the latter excels in conversational contexts.265

During our experiments, the focus was primarily266

on evaluating the feasibility of fine-tuning these267

models using LoRA. We did not place particular268

emphasis on the instructions used during training.269

Instead, we adhered to minimalist prompts, which270

were formed by concatenating the sentences of the271

input documents. This approach respected the for-272

mat used by each model and did not include any273

additional instructions.274

3.3 Transformer275

Large Language Models (LLMs) are commonly276

built using transformer architectures. Architectures277

such as LLAMA2 (Touvron et al., 2023) and GLM278

(Zeng et al., 2022) consist of an initial embedding279

input layer followed by multiple decoder layers.280

Each of these decoder layers comprises Query-Key-281

Value (QKV) Projection Layers, Rotary Position282

Encoding, a self-attention module, an output projec-283

tion, a multi-layer perceptron, residual connections,284

and normalization. For the sake of readability, we285

focus solely on our modifications to the original286

architecture in the areas of QKV Projection Layers,287

Rotary Position Encoding, self-attention module,288

and output projection.289

3.4 Query Key Value Projection Layers with290

LoRA291

This module transforms the input token xm with292

position m into a trio of queries, keys, and val-293

ues—represented as {qm, km, vm} —through lin-294

ear projection layers with corresponding weight295

matrices {Wq,Wk,Wv}. These matrices are later296

used to compute attention values. We apply LoRA297

on these specific matrices. More precisely, for a298

pre-trained matrix W ∈ Rd·p , we add low rank299

adapter δW such as :300

qm = (Wq + δWq)xm = (W +BqAq)xm

km = (Wk + δWk)xm = (W +BkAk)xm

vm = (Wv + δWv)xm = (W +BvAv)xm

(1)301

1https://huggingface.co/togethercomputer/Llama-2-7B-
32K-Instruct

2https://huggingface.co/THUDM/chatglm2-6b-32k

where B{q,k,v} ∈ Rd×r , A{q,k,v} ∈ Rr×p, d is 302

the dimension of xm and with r ≪ min(d, p) . 303

The idea is that the weight updates in pre-trained 304

models have a low intrinsic rank during adapta- 305

tion. Thus, during training, W{q,k,v} weights are 306

frozen and the number of trainable parameters (i.e. 307

B{q,k,v} and A{q,k,v} ) are drastically reduced com- 308

pared to full fine-tuning setting. 309

3.5 Rotary Positional Encoding 310

We employ architectures using a novel positional 311

encoding scheme called Rotary Positional Embed- 312

dings (RoPE)(Su et al., 2021). RoPE is a distinc- 313

tive form of positional embedding used in Trans- 314

former models to encode the absolute and relative 315

positional information of tokens within a sequence. 316

Moreover, RoPE is valued for its flexibility to ex- 317

pand to any sequence lengths (Su et al., 2021). 318

The mathematical intuition behind RoPE aims 319

to devise a positional encoding function f(x,m) 320

for a token x at position m such that for a query 321

vector qm and a key vector kl at positions m and l 322

respectively, the inner product between f(qm,m) 323

and f(kl, l) is sensitive only to the values of qm, 324

kn, and their relative position (m− l). 325

In practice, new vectors q̃m and k̃l are computed 326

following this specific equation 327

q̃m = Rm
θ,d(qm)

k̃l = Rl
θ,d(kl)

(2) 328

with 329

Rd
Θ,m(x) =



x1
x2
x3
x4
...

xd−1

xd


⊗



cosmθ1
cosmθ1
cosmθ2
cosmθ2

...
cosmθd/2
cosmθd/2


+



−x2
x1
−x4
x3
...

−xd−1

xd


⊗



sinmθ1
sinmθ1
sinmθ2
sinmθ2

...
sinmθd/2
sinmθd/2



(3) 330

where m is the indice position and d is the di- 331

mension of the x. 332

While RoPE is in theory expandable to any se- 333

quence lengths, we found an exploding perplex- 334

ity when directly extending a pre-trained model 335

4



beyond the context length L of the pretraining336

process(Chen et al., 2023). In order to overcome337

this problem, we interpolate position indices from338

longer context length L′ (i.e., [0, L′)) to original339

pre-trained context length L (i.e., [0, L)) in order340

to match the original range of indices.341

Formally, we replace Rd
Θ,m(x) by R

′d
Θ,m(x)342

function where343

R
′d
Θ,m(x) = Rd

Θ,m·α(x) (4)344

with a parameterized scaling factor α defined as345

below:346

α =
L

L′347

3.6 Self-Attention Module and Output348

Projection349

Once {q̃, k̃, v} are computed, we compute the out-350

puts o via a self-attention module as351

o = softmax(q̃k̃T )v (5)352

A significant challenge associated with self-353

attention is its computational burden when han-354

dling long sequences. Specifically, both computa-355

tional and memory requirements increase quadrati-356

cally with the length of the sequence. To address357

this limitation, we replace the original attention358

computation with Flash Attention 2(Dao, 2023), an359

Input-Output attention algorithm that scales mem-360

ory consumption linearly and accelerates the train-361

ing process. It’s important to note that the attention362

computed using Flash Attention 2 is identical to363

that of the original operation. In practical terms,364

this allows us to process sequences of up to 12,000365

tokens on a single A10 GPU card.366

Subsequently, these outputs are projected by a367

linear layer with a weight matrix Wo. Similarly to368

the projection matrices {Wq,Wk,Wv} We apply369

LoRA to the output projection matrix Wo.370

3.7 Mean Pooling and Classification Layer371

Unlike BERT models, LLMs such as LLAMA2 or372

ChatGLM2 do not use a ’CLS’ token like in other373

models at the beginning of each sentence to get its374

representation. Nonetheless, we think that some375

knowledge is still well encoded within the token376

representations and a mean pooling across all input377

sentence tokens should provide a natural sentence378

representation(Ni et al., 2022). Therefore, we ap-379

ply a mean pooling at the sentence level. More380

precisely, for each sentence si comprised of a list381

of Mi contextualized words processed by previous382

decoder layers of the LLM {wi,1, wi,2 . . . wi,Mi}, 383

we compute s̄i 384

s̄i =
1

Mi

Mi∑
j=1

wi,j (6) 385

Once, s̄i obtained, we pass it through a linear 386

classification layer : 387

ŷi = σ(Wcs̄i + b) (7) 388

where Wc is a weight matrix trainable, b is a 389

biais term trainable and σ is the sigmoid function. 390

The loss function used is the binary cross entropy 391

between ŷi and the oracle yi. 392

4 Experiments 393

In this section, we present the results of our vari- 394

ous experiments demonstrating the performances 395

of our models in different settings compared to 396

strong baselines of the state-of-the-art. We specify 397

the detailed experimental settings of each experi- 398

ment and share the models and used code on our 399

repository 3. 400

4.1 Datasets 401

For our experiments, we evaluate our approach 402

with two sources wildly used in summariza- 403

tion tasks, namely the arXiv and PubMed 404

datasets(Cohan et al., 2018). They consist of rather 405

long scientific papers, with PubMed focusing on 406

the biomedical domain while arXiv includes arti- 407

cles from various scientific fields. 408

To train the model in a supervised manner for the 409

extractive summarization task, sentence labels are 410

needed. We use the already-computed labels from 411

(Cho et al., 2022)4. They followed the methodol- 412

ogy of (Kedzie et al., 2018) with the objective of 413

maximizing the average of the R1 and R2 scores. 414

Moreover, we derive from the original dataset two 415

filtered datasets containing only documents shorter 416

that a given sequence length, in order to evaluate 417

EYEGLAXS trained on shorter documents when 418

tested on longer documents. Characteristics of the 419

resulting datasets are shown in the Table 1. 420

4.2 Experimental settings 421

We used and modified the implementation released 422

on the TransformerSum5. Experiments have been 423

3anonymous
4https://github.com/tencent-ailab/Lodoss/tree/main
5https://github.com/HHousen/TransformerSum/tree/master
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Set PubMed Arxiv
Length-4K Length-12K Length-16K Length-4K Length-12K Length-32K

Train 70893 127192 131233 38532 153802 202648
Validation 3630 6442 6630 1124 5089 6435

Test 3682 6472 6657 1076 5085 6439

Table 1: The datasets we used in the experiments. cell values correspond to the number of documents for each
dataset and split. Pubmed-16k and Arxiv-32k have been truncated from original datasets, contrary to the other
datasets where longer documents have been filtered out.

carried out on 8 NVIDIA A10G GPUs. Aside from424

the experiments on low-volume data, models have425

been trained for 5 epochs, with a validation step oc-426

curring every fifth of an epoch. Models were saved427

based on the smallest validation loss achieved. We428

use a batch size of 1 with gradient accumulation429

every 32 steps and the adam8bit optimizer with430

a 3e-5 learning rate. Gradient-checkpointing and431

bf16-mixed precision are used. Deepspeed stage 1432

is employed. No advanced hyperparameter search433

was performed. We use sequence lengths of 4k and434

12k to train our models before testing them on the435

full length dataset. Results are obtained without436

trigram blocking by selecting the 7 and 5 sentences437

with the highest probability scores for the PubMed438

and arXiv datasets respectively as it is done in (Cho439

et al., 2022). The scaling factor α for RoPE is set440

to 8 to handle up to 32K length context. Rank r of441

LoRA is set to 8.442

4.3 Evaluation Metrics443

We use ROUGE scores to evaluate the model per-444

formance(Lin, 2004). More precisely, we report the445

F1 score of unigram, bigram overlap (ROUGE-1,446

ROUGE-2) and the longest common subsequence447

(ROUGE-L). We use the python implementation6.448

4.4 Baseline systems449

Using the arXiv and PubMed datasets, which are450

two popular datasets in the domain of extractive451

summarization, allows us to easily assess the rele-452

vance of our approach. We can directly compare453

the results obtained with our models against pre-454

vious systems of the state-of-the-art on the same455

ROUGE metrics. Among the baselines, we com-456

pare our approach with standard lexical methods457

like Sumbasic (Vanderwende et al., 2007) that is458

based on word frequencies or LexRank (Erkan and459

Radev, 2004) that uses a graph-based approach460

and centrality scoring of sentences. Taking advan-461

tage of what language models have to offer and462

6https://github.com/google-research/google-
research/tree/master/rouge

Models R-1 R-2 R-L
Abstractive Models

Bigbird-large 46.32 20.65 42.33
Long-T5 50.23 24.76 46.67

Extractive Models
ORACLE 61.49 34.70 55.92
LEAD-10 37.45 14.19 34.07
SumBasic 37.15 11.36 33.43
LexRank 39.19 13.89 34.59
Sent-PTR 45.01 19.91 41.16
GenCompareSum 42.10 16.51 38.25
Histruct+ 46.59 20.39 42.11
Lodoss-base (Longformer) 48.10 22.53 43.51
Lodoss-full-LG 49.38 23.89 44.84
GoSum 49.83 23.56 45.10

Our system EYEGLAXS (Extractive)
CHATGLM2-6B (4K) 49.96 24.04 45.50
CHATGLM2-6B (12K) 50.17 24.41 45.66
LLAMA2-7B (4K) 49.48 23.64 45.08
LLAMA2-7B (12K) 50.34 24.57 45.96

Table 2: ROUGE results on the PubMed dataset

building upon the BERTSUM framework (Liu and 463

Lapata, 2019), we have strong extractive baselines: 464

HiStruct+ (Ruan et al., 2022) explicitly exploits 465

the hierarchical structure of the text, taking advan- 466

tage of the position of sentences within sections. 467

Among more recent models, Lodoss (Cho et al., 468

2022) represents a strong baseline that achieved 469

great performances by being jointly trained for text 470

summarization and segmentation in addition to us- 471

ing a novel regularizer to boost diversity among the 472

selected summary sentences. GoSum (Bian et al., 473

2023) is another state-of-the-art model that showed 474

some of the best results by exploiting graph neural 475

networks and reinforcement learning. Alongside 476

these extractive models that we directly compare 477

ourselves to, we also show the performances of 478

some popular abstractive baseline. Rather than 479

measuring up against them, we simply add them as 480

a reference to put the results into perspective. 481

5 Results and Analyses 482

Results on PubMed and arXiv are shown respec- 483

tively in table 2 and table 3. For both datasets, 484

the EYEGLAXS variants, specifically ChatGLM2- 485
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Models R-1 R-2 R-L
Abstractive Models

Bigbird-large 46.63 19.02 41.77
Long-T5 48.35 21.92 44.27

Extractive Models
ORACLE 59.41 30.05 52.34
LEAD-10 35.52 10.33 31.44
SumBasic 29.47 6.95 26.30
LexRank 33.85 10.73 28.99
Sent-PTR 42.32 15.63 38.06

GenCompareSum 39.66 12.30 35.38
Histruct+ 45.22 17.67 40.16

Lodoss-base (Longformer) 47.64 19.73 41.71
Lodoss-full-LG 48.45 20.72 42.55

GoSum 48.61 20.53 42.80
Our system EYEGLAXS (Extractive)

CHATGLM2-6B (4K) 46.87 18.96 41.37
CHATGLM2-6B (12K) 49.02 21.01 43.33

LLAMA2-7B (4K) 48.68 20.72 42.97
LLAMA2-7B (12K) 48.96 21.07 43.30

Table 3: ROUGE results on the arXiv dataset

6B (4K) and ChatGLM2-6B (12K), alongside486

the LLAMA variants, LLAMA2-7B (4K) and487

LLAMA2-7B (12K), showcase competitive perfor-488

mance compared to the state-of-the-art even if they489

are trained on smaller and shorter dataset. Mod-490

els trained on a longer context (12K variant) ex-491

hibit superior performance compared to their coun-492

terpart trained on a shorter context. LLAMA2-493

7B (12K) and ChatGLM2-6B (12K) seem to have494

similar performances on both datasets. However,495

ChatGLM2-6B (4K) seems to underperform com-496

pared to LLAMA2-7B (4K) on arXiv, we hypoth-497

esize that since the arXiv dataset contains longer498

documents, LLAMA2 benefited more from his pre-499

training stage on long document compared to Chat-500

GLM2 and could potentially need less amount of501

training data to converge (see section 5.3 ). Finally,502

we obtain new state-of-the-art results compared to503

other extractive methods on both datasets. We pro-504

vide also in appendix the complete table results on505

filtered datasets (e.g. training LLAMA2-7B on the506

4K dataset and testing it on the 12K dataset).507

5.1 Evaluating LoRA’s Impact on508

Fine-Tuning EYEGLAXS509

To assess the contribution of LoRA and determine510

the relevance of the hidden representations pro-511

vided by LLMs, we contrasted the performance of512

EYEGLAXS models trained on the 4K PubMed513

filtered dataset with a variant of same models514

with frozen weights, albeit with a trainable clas-515

sifier head. The comparative outcomes are pre-516

sented in Table 4. The notable enhancement in517

Model 4K PubMed Dataset
R1 R2 RL

CHATGLM2-6B (4K) - Frozen 42.79 17.20 38.68
CHATGLM2-6B (4K) - LoRA 49.96 24.04 45.50
LLAMA2-7B (4K) - Frozen 42.38 17.12 38.42
LLAMA2-7B (4K) - LoRA 49.48 23.64 45.08

Table 4: Comparison of ROUGE Scores between Frozen
Weights and EYEGLAXS Models on 4K PubMed
Dataset

Figure 2: Number of sentences selected at each relative
position by the EYEGLAXS models and baselines com-
pared to the oracles

ROUGE scores underscores the necessity of em- 518

ploying Parameter-Efficient Fine-Tuning (PEFT) 519

methodologies like LoRA to fine-tune LLMs, sug- 520

gesting that the standalone hidden representations 521

from LLMs may fall short of ensuring optimal per- 522

formance. 523

5.2 Position Error Analysis 524

To get a better understanding of the strengths and 525

weaknesses of our system, we further analyze the 526

outputs of our models. This section is used to 527

check the general behavior of the model, and can 528

help verify some reported problems with bias when 529

using LLMs for long sequences, including a natu- 530

ral bias at the beginning and end of each document 531

(Liu et al., 2023). We choose to examine the ex- 532

tracted sentences and compare them to the ones 533

forming the oracles. To achieve this, we first trace 534

out the distribution of the selected sentences for 535

both versions of our model as well as a Longformer 536

baseline (Lodoss-base) (Cho et al., 2022) and the 537

oracles. The lengths of the documents forming the 538

datasets having a wide amplitude, we choose to 539

use the relative positions of sentences to ensure 540

an overall homogeneous comparison. To do so, 541

we compare the absolute index of each extracted 542

7



Figure 3: ROUGE-2 F1 Measure scores for Longformer
(Lodoss-base), ChatGLM2-LoRA (4K) and LLAMA2-
LoRA across varying training data sizes. The exact
number of training instances is indicated in parentheses.

sentences against the document’s total number of543

sentences, then plot the resulting histogram. This544

gives us a histogram showing the relative position545

of the sentences selected by each model. The re-546

sults are showed for the PubMed dataset on the547

test split. From the Figure 2, we can see that the548

sentences chosen for the oracles or predicted by549

the models tend to be near the beginning and the550

end of the document. It is not surprising since both551

the introduction and the conclusion usually contain552

sentences that are representative of the document’s553

subject. We can observe that the three models tend554

to choose sentences near both ends of the text in555

excess. On the subject of accessing relevant infor-556

mation located in the middle of inputs, even though557

all the models are lagging behind compared to the558

oracles, we notice that the EYEGLAXS models559

follow the oracle trend a little better.560

5.3 Training on smaller datasets561

In the medical field, obtaining a large database like562

PubMed is often challenging. Assessing the per-563

formance of Large Language Models (LLMs) on564

smaller databases compared to traditional meth-565

ods becomes crucial. To this end, we conducted566

an experiment comparing the performance of567

ChatGLM2-6B (4K), Longformer (Lodoss-base)568

(Cho et al., 2022), and LLAMA2-7B LoRA (4k),569

on the filtered PubMed 4K dataset using varying570

portions of the training data. Specifically, we ex-571

amined the performance when utilizing 1%, 5%,572

10%, and 100% of the PubMed 4K dataset. The573

findings are illustrated in Figure 3. The results574

confirm a positive correlation between the size of575

the training dataset and the performance metrics576

for all three models, aligning with the intuitive ex- 577

pectation that larger training sets generally lead to 578

improved model performance. Interestingly, the 579

performance gap among the three models exhibits 580

varying dynamics as the training data size increases. 581

ChatGLM2-6B (4K) and LLAMA2-7B(4K) con- 582

sistently outperform Longformer across all sizes 583

of training data, validating the efficacy of LLMs 584

even when limited data is available. LLAMA2-7B 585

LoRA (4K) starts off with a strong performance at 586

just 1% of the training data and maintains the lead 587

as the dataset grows. However, its performance 588

appears to converge, showing marginal gains as the 589

dataset size increases compared to CHATGLM2- 590

6B (4K) which seems to show improvements as the 591

dataset size increases. This divergence in behavior 592

may be attributed to the architectural differences be- 593

tween the two models. Specifically, ChatGLM2-6B 594

(4K) employs bidirectional attention mechanisms, 595

which could require a larger dataset to optimize 596

but also offer a more favorable inductive bias for 597

information extraction tasks. 598

6 Conclusion 599

This paper introduces EYEGLAXS, a novel sys- 600

tem that leverages Large Language Models (LLMs) 601

for long text extractive summarization. Our work 602

challenges the traditional reliance on encoder-only 603

models, showcases the adaptability of LLMs in 604

managing different sequence lengths, and sets new 605

performance standards on the PubMed and arXiv 606

datasets. Despite these advancements, the use of 607

LLMs comes with its own set of challenges, no- 608

tably in computational resource requirements and 609

the limitations of fine-tuning. Looking ahead, we 610

aim to integrate sliding attention mechanisms in 611

LLMs to further refine our system. Additionally, 612

we plan to enrich the LLM backbone with existing 613

techniques such as graph-based methods or Re- 614

inforcement Learning. Overall, our work paves 615

the way for new research avenues in extractive 616

text summarization and substantiates the utility of 617

LLMs in this field. 618

7 Limitations 619

While EYEGLAXS demonstrates promising ad- 620

vancements in extractive text summarization, it is 621

not without its challenges. The use of Large Lan- 622

guage Models (LLMs) requires significant com- 623

putational resources, making it less accessible for 624

those with limited capabilities. Moreover, we re- 625

8



port only a single run for each of our experiment626

due to the expensive training time, as can be seen627

in the Table 6 in the appendix showing the duration628

of the training epochs. Additionally, the sheer size629

of these LLMs restricts the possibility of full fine-630

tuning, thereby limiting further optimization and631

reporting upper limit of the full fine-tuning. The632

model’s performance is also closely tied to the size633

of the training dataset, especially for CHATGLM2,634

which could be a constraint in fields where large,635

labeled datasets are not readily available. Lastly,636

the system’s generalizability remains untested out-637

side of scientific contexts like PubMed and arXiv.638

These limitations offer valuable avenues for future639

research to improve the system’s robustness and640

applicability. Finally, we wanted to highlight again641

the security risk if such tool is used in sensitive ap-642

plications (e.g., legal, medical), poor performance643

or errors could lead to serious consequences.644
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Model Training Context Length Evaluation Context Length
ARXIV

4K 12K 32K
R1 R2 RL R1 R2 RL R1 R2 RL

CHATGLM2-6b 4K 45.18 18.07 39.73 47.55 19.64 41.97 46.87 18.96 41.37
12k 46.11 19.10 40.59 48.96 21.11 43.26 49.02 21.01 43.33

LLAMA2-7b 4K 45.84 18.84 40.37 48.58 20.81 42.90 48.68 20.72 42.98
12K 45.97 19.08 40.54 48.80 21.09 43.16 48.96 21.07 43.30

PUBMED
4K 12K 16K

R1 R2 RL R1 R2 RL R1 R2 RL
CHATGLM2-6b 4K 49.43 25.17 45.35 50.08 24.24 45.64 49.96 24.04 45.50

12k 49.40 25.21 45.26 50.21 24.52 45.72 50.17 24.41 45.66
LLAMA2-7b 4K 48.59 24.55 44.58 49.54 23.80 45.15 49.48 23.64 45.08

12K 50.38 24.70 46.02 50.39 24.70 46.03 50.34 24.57 45.96

Table 5: ROUGE Metrics of EYEGLAXS Variants on ARXIV and PUBMED Datasets at Different Training and
Evaluation Context Lengths.

Model
Training Context Training Time

Length ARXIV PUBMED
CHATGLM2-6b 4K 8h 08m 8h 06m
CHATGLM2-6b 12K 52h 54m 31h 14m

LLAMA2-7b 4K 8h 36mn 8h 33m
LLAMA2-7b 12K 51h 35m 32h 29m

Table 6: Training Time for One Epoch of CHATGLM2-
6b and LLAMA2-7b Models on ARXIV and PUBMED
Datasets at Different Context Lengths.

A Results on the different datasets845

We provide in Table 5 the different results of all846

variants from EYEGLAXS tested on the different847

versions of datasets we have built. This table pro-848

vides us a better idea about how model trained849

on short document perfom on a dataset containing850

longer documents.851

B Model Training Time852

We show in Table 6 the training time for one epoch853

for each model on both arXiv and PubMed. Hard-854

ware specifics and training parameters are specified855

in the Experimental Settings section.856
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