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RiemannGFM: Learning a Graph Foundation Model from
Structural Geometry

Anonymous Author(s)

Abstract
The foundation model has heralded a new era in artificial intelli-

gence, pretraining a single model to offer cross-domain transferabil-

ity on different datasets. Graphs are omnipresent non-Euclidean

structures, ranging from recommender systems to biochemical

structures. Graph neural networks excel at learning graph data,

but often lack the generalization capacity. Hence, graph foun-
dation model is drawing increasing attention, and recent efforts

have been made to leverage Large Language Models, encouraged

by the remarkable success of GPT-4. On the one hand, existing

studies primarily focus on text-attributed graphs, while a wider

range of real graphs do not contain fruitful textual attributes. On

the other hand, the sequential graph description tailored for the

Large Language Model neglects the structural complexity, which is

a predominant characteristic of the graph. Such limitations moti-

vate an important question: Can we go beyond Large Language
Models, and pretrain a universal model to learn the struc-
tural knowledge for any graph? The answer in the language

or vision domain is a shared vocabulary. We observe the fact that

there also exist shared substructures underlying graph domain, and

thereby open a new opportunity of graph foundation model with

structural vocabulary (by which any graph can be constructed).

The key innovation of this paper is the discovery of a simple yet ef-

fective structural vocabulary of trees and cycles, and we explore its

inherent connection to Riemannian geometry. Herein, we present

a universal pretraining model, RiemannGFM, with geometric con-

trastive learning. Concretely, we first construct a novel product

bundle to incorporate the diverse geometries of the vocabulary.

On this constructed space, we stack Riemannian layers where the

structural vocabulary, regardless of specific graph, is learned in

Riemannian manifold. This offers the shared structural knowledge

for cross-domain transferability, and node encoding is generated in

the tangent space for arbitrary input graph. Empirical results show

the superiority of RiemannGFM on a diversity of real graphs.
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1 Introduction
Designing a foundation model has been a longstanding objective

in artificial intelligence that pre-trains a single, universal model

on massive data allowing for cross-domain transferability on dif-

ferent datasets. Recently, the Large Language Model (LLM) such

as GPT-4 [28] marks a revolutionary advancement of the founda-

tion model in the language realm. In the real world, graphs are

also ubiquitous, describing the data from Web applications, social

networks, biochemical structures, etc. Unlike word sequences in

the language, graphs present distinct, non-Euclidean structures

encapsulating the complex intercorrelation among objects, which

prevents the direct deployment of LLM. Graph Neural Networks

(GNNs) [10, 20, 36, 38] conduct neighborhood aggregation over the

graph and achieve state-of-the-art performance on learning graph

data. The significant limitation of GNNs is the lack of generalization

capacity. GNNs are often designed for specific tasks, and re-training

is typically required on different tasks or datasets to maintain ex-

pressiveness. Consequently, Graph Foundation Models (GFMs)

are emerging as an interesting research topic in the graph domain.

Compared to the tremendous success of the foundation model

in other domains, GFM is still in the infant stage. Pioneering work

[35] designs the graph prompting to unify the downstream tasks,

the analogy to language prompt. GCOPE [47] further conducts

model training on multi-domain graphs with coordinators in order

to improve the generalization capacity to different datasets. Recent

efforts have been made to integrate GNN with LLM. For example,

LLaGA [5] develops a graph translation technique that reshapes a

graph into node sequences, while OFA [22] unifies different graph

data by describing nodes and edges with natural language. Also,

there are successful practices in specific domains (e.g., knowledge

graphs [9, 16] and molecular structures [2]) or specific tasks (e.g.,

node classification [48]), which are far from the universal GFM.

On the one hand, existing studies primarily focus on the text-

attributed graphs. The structural knowledge is coupled with textual

attributes (or language description), and the transferability relies on

the commonness of text [24]. Consequently, it leads to suboptimal

performance on the graphs other than text-attributed ones, as in-

vestigated in our Experiment as well. However, there exists a wide

range of graphs that do not contain fruitful textual attributes, and

may only have structural information. An alternative perspective

is to seek the transferability from the structures (e.g., the common

substructures), so that such knowledge is applicable to any graph.

Surprisingly, it has not yet been touched in the context of GFM.

On the other hand, the sequential graph description, tailored

for the language model, tends to fail in capturing the structural

complexity, which is a predominant characteristic of graphs. GFMs

so far work with the traditional Euclidean space, while recent ad-

vances report superior expressiveness of hyperbolic spaces in learn-

ing tree-like (hierarchical) graphs [3, 27]. However, modeling the

1
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structural complexity is challenging. For instance, hyperbolic mod-

els trained on tree-like graphs cannot be generalized to those of

different structures. In addition, graph structures are indeed quite

complex, tree-like in some regions and cyclical in others [12]. We

also notice the product manifold is leveraged to fine-tune the ge-

ometry of given structures [7, 34], which is orthogonal to our focus.

In other words, it is still not clear how to connect such geometric

expressiveness to GFM.

Motivated by the aforementioned limitations, we raise an impor-

tant question: Can we go beyond Large Language Models, and
pre-train a universal model to learn the structural knowl-
edge for any graph? The answer to the foundation model in lan-

guage or vision domain is a shared vocabulary [4]. In fact, there

also exist common substructures underlying the graph domain,

and the observation offers us a fresh perspective to build graph

foundation models. Accordingly, we introduce the concept of struc-
tural vocabulary by which any graph can be constructed. The key

innovation of this paper is the discovery of a simple yet effective

structural vocabulary consisting of substructures of trees and cycles

(e.g., node triangles). We explore the inherent connection between

the structural vocabulary and Riemannian geometry, where hy-
perbolic space aligns tree structures [10, 32], while hyperspherical

space is suitable to cycles [12, 29].

Accordingly, it calls for a representation space to model both

local geometry (trees or cycles) and graph structure. To this end,

we for the first time introduce the tangent bundle to the graph do-

main, coupling a Riemannian manifold and its surrounding tangent

spaces. We leverage the node coordinate on the manifold to embed

the local geometry, while the node encoding in tangent spaces ac-

commodates the information of graph structure. Grounded on the

elegant framework of Riemannian geometry, we present a universal

pre-training model (RiemannGFM) on the product bundle to incor-

porate the vocabulary of diverse geometries. RiemannGFM stacks

the universal Riemannian layer, which consists of a vocabulary

learning module and a global learning module. In the vocabulary

learning module, we focus on embedding the structural vocabu-

lary into Riemannian manifolds, regardless of the specific graph.

Specifically, this involves updating the node coordinates of a tree

(or cycle) in hyperbolic (or hyperspherical) space. For each substruc-

ture, cross-geometry attention is formulated in the manifolds in

which we derive a manifold-preserving linear operation. The global

learning module is responsible for updating the node encoding.

With multiple substructures sampled in the graph, we first perform

substructure-level aggregation by the proposed bundle convolution,

solving the incompatibility issue over tangent bundle, and then cal-

culate the graph-level node encoding with the geometric midpoint

and parallel transport. Finally, we conduct geometric contrastive

learning among different views, provided by different geometries,

so that RiemannGFM is capable of generating informative node en-

coding for an arbitrary graph, underpinned by the shared structural

knowledge learned in Riemannian geometry.

ContributionHighlights.Overall, key contributions are three-
fold: A. Foundation Model for Graph Structures. We explore

GFM for a wider range of real graphs, not limited to text-attributed

ones, and for the first time study GFM from structural geometry to

the our best knowledge. B. Universal Riemannian Pre-training.
We propose a universal pre-trained model (RiemannGFM) on a novel

product bundle where the structural vocabulary is learned in Rie-

mannian manifold, offering the shared structural knowledge for

cross-domain transferability.C. Extensive Experiments.We eval-

uate the superiority of RiemannGFM in cross-domain transfer learn-

ing and few-shot learning on a diversity of real graphs.

2 Preliminaries
This section reviews the basic concepts of Riemannian Geometry

and the model space of Lorentz/Spherical Model, and then formally

describes the novel problem of graph foundation model from struc-

tural geometry. Important notations are summarized in Appx. A.

Riemannian Geometry. Geometrically, a complex structure is

related to a Riemannian manifold, which is a smooth manifoldM

endowed with a Riemannian metric g. Each point x in the mani-

fold is associated with a tangent space TxM where the metric g is

defined. The mapping between the tangent space and manifold is

done via exponential and logarithmic maps, and parallel transport

conducts the transformation between two tangent spaces. The geo-

desic between two points is the curve of the minimal length that

connects them on the manifold. The curvature κx is the geometric

quantity measuring the extent of how a surface deviates from being

flat at x . A manifold is referred to as aConstant Curvature Space
(CCS) if and only if curvature κx is equal everywhere, so that the

closed-form metric is derived. There exist three types of CCS (a.k.a.

isotropic manifold): hyperbolic spaceH with negative curvature,

hyperspherical space S with positive curvature, and zero-curvature

Euclidean space, a special case of Riemannian geometry.

Lorentz/Spherical Model. Here, we give a unified formalism of

hyperbolic and hyperspherical space. Specifically, a d-dimensional

CCS with constant curvature κ (κ , 0) is defined on the smooth

manifold of Ld
κ = {x =

[
xt
xs

]
∈ Rd+1 |⟨x,x⟩κ =

1

κ , xt > 0,xs ∈

Rd } equipped with the curvature-aware inner product as follows,

⟨x,y⟩κ := sgn(κ)xtyt + x
⊤
s ys , x,y ∈ Ld

κ , (1)

where sgn is the sign function and thereby the Riemannian metric

atx is induced as gx = diag(sgn(k), 1, . . . , 1), a diagonal matrix. The

north pole of Ld
κ is given as o = [ 1√

|κ |
, 0, · · · , 0]⊤. Closed-form

exponential and logarithmic maps exist (detailed in Appendix D).

In particular, Ld
κ becomes the Lorentz model of hyperbolic space

(a.k.a. hyperboloid model) under negative κ, and shifts to Spherical

model of hyperspherical space when κ > 0.

Notations & Problem Formulation. A graph G is defined over

node set V and edge set E ⊆ V × V , and each node is option-

ally associated with an attribute x . Note that, the attribute is not
necessarily required given a wide range of non-attributed graphs

exist in the real world. Analogy to the foundation model for the

language, the graph foundation model aims to pre-train a single,

universal model Φ parameterized by Θ, which is applicable to other

graphs to generate informative representations z for downstream

tasks (e.g., node-level and edge-level). In particular, the model Φ
offers the cross-domain transferability that the parameters Θ
pre-trained on one domain can be utilized on another domain with

slight treatments. In this paper, we argue that GFM should also offer

the universality to any graph (not limited to textual-attributed

graphs), and highlight the inherent structural geometry which

is largely ignored in the previous GFMs.

2
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Figure 1: Overall architecture of the proposed graph foundation model: RiemannGFM.

3 RiemannGFM: Learning Structural Vocabulary
in Riemannian Geometry

Different from previous GFMs coupling the structural knowledge

with textual attributes, we put forward a fresh perspective of study-

ing graph structures, and propose a universal pre-training model

named RiemannGFM, which is capable of learning the structural

knowledge so as to offer the cross-domain transferability among a

wider range of real graphs. The key novelty lies in that we discover

an effective structural vocabulary for any graph structure and ex-

plore its connection to Riemannian Geometry. At the beginning, we
introduce a novel concept of structural vocabulary.

Definition 1 (Structural Vocabulary). A collection of sub-
structures is said to be a structural vocabulary when they are able to
construct an arbitrary graph.

Structural Vocabulary andConstantCurvature Spaces (CCS).
The answer to the foundation model in language or vision domain

is a shared vocabulary. For a language model, the text is broken

down into smaller units such as words by which the commonness

and transferability are encoded [4]. Analogous to word vocabulary

of the language, the structural vocabulary considers the shared

units in graph domain, . In RiemannGFM, we leverage a simple yet

effective structural vocabulary, consisting of trees and cycles. An

intuitive example is that a tree and cycles with coinciding edges

form an arbitrary connected component unless it is exactly a tree.

Onmodeling the vocabulary, we notice the fact that a tree cannot be

embedded in Euclidean space with bounded distortion
1
, while the

embedding distortion is proved to be bounded in low-dimensional

hyperbolic spaces [32]. The geometric analogy of cycle is the hyper-

spherical space, as both cycle and hyperspherical space present the

rotational invariant [29]. Therefore, we propose to utilize the con-

stant curvature spaces (i.e., hyperbolic and hyperspherical spaces)

to model the substructures of trees and cycles. Note that there exists

1
Embedding distortion is measured by

1

|V|2

∑
i j

��� dG (vi ,vj )
d (xi ,xj )

− 1

���, where each node

vi ∈ V is embedded as xi in representation space. dG and d denote the distance in

the graph and the space, respectively.

no isometric mapping between CCS and Euclidean one, and we

discuss the significance of introducing CCS in the Experiment.

Overall Architecture. Wedesign the universal pre-trainingmodel

(RiemannGFM) on the product bundle in light of the diverse substruc-
tures in the vocabulary. The overall architecture is illustrated in Fig.

1. According to the structural vocabulary, we first sample the trees

and cycles in the graph, as shown in Fig. 1(a). Subsequently, we stack

the universal Riemannian layers on the product bundle, consisting

of the Vocabulary Learning Module in Fig. 1(b) and Global Learning

Module in Fig. 1(c). Without graph augmentation, RiemannGFM is
pre-trained with the geometric contrastive loss in Fig. 1(d).

3.1 Universal Riemannian Layer
In the heart of RiemannGFM, we stack the universal Riemannian

layer on the product bundle, where Vocabulary Learning Module

performs cross-geometry attention to embed the structural vo-
cabulary into CCSs, regardless of specific graphs, thus offer-
ing the shared structural knowledge for cross-domain trans-
ferability. Global Learning Module aligns different substructures

with a global view and, accordingly, generates node encodings

through the proposed bundle convolution.

3.1.1 A Layer on the Product Bundle. We elaborate on a novel

representation space for GFM, where the tangent bundle is intro-
duced to graph domain for the first time. In Riemannian geometry,

a tangent bundle
2
typically consists of (1) a CCS highlighting the

local geometry, and (2) the tangent spaces describing the comple-

mentary information [29]. In our design, each node i in the bundle is
associated with node coordinate and node encoding. Concretely, the

coordinate in the manifold pi ∈ M contains the relative position

in substructures (i.e., structural vocabulary), while the encoding in

tangent space zi ∈ Tp iM carries the information of global structure

(in the graph level). To incorporate the substructures of different

geometries, we construct a product bundle as

PdP =
(
H

dH
κH ⊗ TH

dH
κH

)
⊗

(
S
dS
κS ⊗ TS

dS
κS

)
,dP = 2dH + 2dS , (2)

2
A tangent bundle is defined as a smooth manifold M attached with a disjoint union

of tangent spaces surrounding it TM =
⊔
x ∈M TxM.

3
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where ⊗ denotes Cartesian product, d(·) and κ(·) are the dimension

and curvature, respectively. For each node in this product, we have

x i = [pHi | |zHi | |pSi | |z
H
i ] ∈ PdP

, where | | is vector concatenation,

and pHi ∈ H
dH
κH , zHi ∈ TpHi

H
dH
κH , pSi ∈ S

dS
κS , z

S
i ∈ TpSi

H
dH
κH . Ac-

cordingly, Riemannian metric of the product bundle is yielded as

gPx = g
κH
x ⊕ IdH+1 ⊕ g

κS
x ⊕ IdH+1, where IdH+1 is the (dH + 1)-

dimensional identity matrix, and ⊕ denotes the direct sum among

matrices. In Eq. (2), hyperbolic bundleH
dH
κH ⊗ TH

dH
κH and hyper-

spherical bundle S
dS
κS ⊗ TS

dS
κS are responsible for trees and cycles,

respectively. Our framework is applicable to multiple bundles with

any curvatures, and we use the two-bundle product for simplicity.

In this paper, we opt for the unified formalism Ld
κ in Eq. (1) for

hyperbolic and hyperspherical spaces.

3.1.2 Deriving Riemannian Operations. Before designing the

neural architecture, we derive a closed-form Riemannian linear

operation and introduce a geometric midpoint for mathematical

preparation. (Proofs are given in Appendix B.) In Riemannian ge-

ometry, the operation output is required to remain on the mani-

fold, i.e., manifold preserving. Previous works typically meet this

requirement by involving an additional tangent space with the

exponential/logarithmic maps [3, 23]. However, the lack of isome-

try and possible mapping error [44] motivate a fully Riemannian

formulation. We formulate the linear operation with matrix-left-

multiplication. The operation parameterized byW is derived as

∀x =

[
xt
xs

]
∈ Ld

κ , fW (x) =

[
1 0⊤

0 αW

] [
xt
xs

]
, (3)

where re-scaling factor is defined as α =

√
κ−1−sдn(κ)x 2

t

∥W x s ∥2
and ∥ · ∥

denotes the L2 norm. The theoretical guarantee is given below.

Theorem 1 (Manifold-preserving of Proposed Operation).

Given x ∈ L
d1
κ and κ , 0, fW (x) ∈ L

d1
κ preserves on the manifold

with anyW ∈ Rd1×d1 , and fW (x) ∈ L
d2
κ holds for anyW ∈ Rd1×d2 .

We notice that Chen et al. [6] and Yang et al. [42] propose linear

operation in fully Riemannian fashion recently, but none of them

allows for operating in any constant curvature. The aggregation is

typically given as an arithmetic mean in Euclidean spaces [13, 46].

With a set of points and their weights {x i ,νi }i ∈Ω , x i ∈ Ld
κ , νi ∈ R,

the arithmetic mean in CCS takes the form of

midκ ({x i ,νi }i ∈Ω) =
1√
|κ |

∑
i ∈Ω

νix i��∥∑j ∈Ω νjx j ∥κ
�� , κ , 0, (4)

with the definition of ∥x ∥2κ = ⟨x,x⟩κ . We demonstrate the fact that

the mean in Eq. (4) is the geometric midpoint on the manifold.

Theorem 2 (Arithmetic Mean as Geometric Midpoint). The
arithmeticmean in Eq. (4) is on themanifoldc =midκ ({x i ,νi }i ∈Ω) ∈
Ld
κ , and is the geometricmidpointc = argminc ∈Ld

κ

∑
i ∈Ω νid

2

κ (c,x i )

w.r.t. the squared distance d .

3.1.3 Vocabulary Learning Module. This module focuses on

the substructure, with the objective of embedding the structural

vocabulary into the constant curvature spaces. In other words, we

are interested in how to place a tree (or cycle) in the hyperbolic (or

hyperspherical) space. To this end, we propose a Cross-geometry

Attention to learn node coordinates in the substructure. We elabo-

rate the formulation with the tree in hyperbolic factor. In hyperbolic

manifold, we propose to update a tree in bottom-up fashion, and

thus this problem is reduced to induce the node coordinate from its

descendant nodes. The node coordinate is given by the attentional

aggregation with attentional weights as follows,

vi =midκ ({v j ,αi j }(i , j)∈Ω) ∈ Ld
κ , v j ∈ Ld

κ , (5)

αi j =
exp(ϕ([qi | |k j ]))∑

(i ,t )∈Ω exp(ϕ([qi | |kt ]))
, (6)

where j is the descendant node of i , and we slightly abuse j to
include the coordinate information of i itself. In cross-geometry

attention, the key, query and value are derived with the Riemann-

ian linear operation ki = fV (pHi ), qi = fQ (pSi ) andvi = fV (pHi ),

respectively. ϕ can be any function that returns a scalar. As a result,

the node coordinate pHi is updated asvi . Note that, the query value

is given from Sd
κ so as to leverage the compensatory information of

the other geometry. (Compared to performing attention in a single

geometry, the superiority of our design is evaluated in the Ablation

Study.) In addition, the proposed aggregation is unidirectional
which is different from that of traditional bidirectional aggrega-

tions in graph model [13, 20, 46]. In traditional aggregations, each

node considers its information in the neighborhood, and vice versa.

However, as in Eq. (5), each node receives the coordinates of the

descendant nodes to locate itself on the manifold, while the reverse

information path does not exist, that is, the node’s coordinate is

not affected by the ancestor node in bottom-up construction.

Similarly, the cycle is refined on hyperspherical manifold where

the node coordinate is updated by the two nodes connecting it. The

unidirectional path is from neighboring nodes to the center.

Comparison to Graph Transformers. Despite the differences in
generalization capacity, the proposed architecture is fundamentally

different from that of graph transformers, which conducts the bidi-

rectional attention to all nodes, typically in Euclidean space. On the

contrary, the proposed attention is unidirectional and is performed

over graph substructure in account of its Riemannian geometry.

We notice that Yang et al. [42] introduces a transformer net (Hyp-

former) very recently. However, we consider each substructure in

the corresponding Riemannian manifold with cross-geometry keys,

while Hypformer places the input as a whole in hyperbolic space.

3.1.4 Global LearningModule. Samplingmultiple substructures

from the graph, this module examines the entire graph to learn node

encodings from a global perspective. This objective is achieved by

the following two phases.

Firstly, we study the node encoding at substructure level. Note

that, node encodings live in the tangent bundle surrounding the

manifold, where the tangent space of one point is incompatible

with that of another point [29]. Hence, existing message passing

formulations (e.g., GCN [20], Constant Curvature GCN [1]) cannot

be used due to space incompatibility. To bridge this gap, we propose

a Bundle Convolution for message passing over tangent bundles.

The unified formalism for arbitrary curvature is derived as,

BCp t ({pi , zi }i ∈Λ) =
∑
i ∈Λ

(
αitzi −

καit ⟨zi ,pt ⟩κ
1 + κ⟨pi ,pt ⟩κ

(pi + pt )

)
, (7)
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Figure 2: An illustration of bundle convolution.

where Λ is the node set of the substructure and the attentional

weight αit is derived by Eq. (6) over the substructure. The ratio-

nale of resolving space incompatibility lies in parallel transport, a

canonical way to connect different tangent spaces.

Parallel Transport. In Riemannian geometry, the parallel trans-
port w.r.t. the Levi-Civita connection PTx→y transports a vector in
v ∈ TxM to another tangent space TyM with a linear isometry
along the geodesic between x,y ∈ M.

Accordingly, Eq. (7) can be explained as the following process. The

encodings are parallel transported to the tangent space of the tar-

get point, in which message passing is subsequently conducted.

A visual illustration is given in Fig. 2, where a is the target point

whose encoding is to be updated. The advantage of bundle convolu-

tion is that we consider the encoding of the global structure while

encapsulating the local geometry of the manifold. (The detailed

derivation is provided in Appendix C.)

Secondly, we obtain the output node encoding at the graph level.

As in Fig. 1(c), there are three cycles (and trees) containing node

a, and we aim to align the coordinates of node a and obtain the

graph-level node encoding. With K samples of a, the alignment is

given by the geometric midpoint of coordinates on the manifold,

pa =midκ ({pai }i=1, · · · ,K ) ∈ Ld
κ , where aggregation weight is set

as 1. Then, node encodings of each sample are parallel transported

to the tangent space of the midpoint. Consequently, the graph-level

node encoding is derived as za = BCpa ({pai , zai }i=1, · · · ,K ).

On Stacking Multiple Layers. The main advantage is to enlarge

the receptive field. For example, a node in the tree is updated by

its first-order descendant nodes with one layer, as in Eq. (5), and is

further affected by the second-order descendant nodes with another

layer. By stacking multiple layers, a node can perceive a larger

region in the substructure, while simultaneously broadening its

global view by calculating the agreement across the entire graph.

Comparison to PreviousRiemannianGraphModels. Our idea
is fundamentally different from that of previous Riemannian mod-

els. All of them explore advanced techniques to embed nodes in

themanifold, either in a single CCS [1], the product [7, 12], or the

quotient [21, 41], to the best of our knowledge. Note that, we seek

node encodings in the tangent bundle, considering the structural

vocabulary and global information.

3.2 Geometric Contrastive Learning
A foundation model requires self-supervised learning to acquire

shared knowledge that is not tied to specific annotations. Con-

trastive learning has become an effective method for self-supervised

learning, but it is nontrivial for graphs; for example, graph aug-

mentation to generate contrastive views is not as easily accessible

Algorithm 1: Training Algorithm of RiemannGFM

Input: pre-training graphs, Hyperparameters of the product

bundle and RiemannGFM.
Output:Model parameters of RiemannGFM

1 Initialize node encodings and node coordinates on CCSs;

2 Sample substructures according to the structural vocabulary;

3 while model not converged do
4 for each substructure in each geometry do
5 Conduct the cross-geometry attention in Eq. (5) to

update node coordinates;

6 Conduct the bundle convolution in Eq. (7) to update

node encodings in the substructure;

7 Induce the node encodings with global view with the

geometric midpoint for each geometry;

8 Generate the hyperbolic and hyperspherical views;

9 Compute the geometric contrastive loss with Eq. (8);

10 Update model parameters via gradient descent.

as cropping/rotating of images. Thanks to the diverse structural

geometries in our design, they offer different views for graph con-

trastive learning (i.e., hyperbolic view and hyperspherical view).

Here, we introduce the geometric contrastive objective on the

product bundle for the self-supervised learning of our model, free of

graph augmentation. Concretely, the node encoding in the tangent

space acts as the geometric view of the corresponding manifold.

Thus, the remaining ingredient is a score function that contrasts

positive and negative samples, and the challenge lies in the incom-

patibility between different geometries. To bridge this gap, we con-

sider a shared tangent space of the north pole of Lorentz/Spherical

model. Thus, the geometric contrast is given as follows,

J(H , S) = −
∑N
i=1 log

exp(⟨PT
pHi →o

(zHi ),PT
pSi →o

(zSi )⟩)∑N
j=1 exp(⟨PTpHi →o

(zHi ),PT
pSj →o

(zSj )⟩)
. (8)

The overall objective is formulated as J0 = J(H , S) + J(S,H ),

where N is the number of nodes. Though the geometric contrast

is done over node encodings in tangent spaces, the parameters of

factor manifolds are encapsulated in the parallel transport among

tangent spaces. The training procedure is summarized in Algorithm

1, whose computational complexity is yielded asO(|V|2 + |E |),

whereV and E are the node set and edge set, respectively, and the

proposed model supports minibatch training. Finally, RiemannGFM
is capable of generating informative node encodings for an
arbitrary graph,with the shared structural knowledge of the
graph domain learned in Riemannian geometry.

4 Experiment
In this section, we aim to answer the following research questions:

• RQ1.How does RiemannGFM perform in cross-domain trans-

fer learning?

• RQ2. How significant is embedding structural vocabulary

into Riemannian geometry, rather than Euclidean ones?

• RQ3.How effective is RiemannGFM under few-shot learning?
• RQ4. How expressive is the structural knowledge learned

by RiemannGFM?
• RQ5.Howdoes the pre-training dataset impact RiemannGFM?

5
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Table 1: Cross-domain transfer learning performance on Citeseer, Pubmed, GitHub and Airport datasets. Node classification
and link prediction results are reported. The best results are in boldfaced.

Node Classification Results Link Prediction Results
Method Citeseer Pubmed GitHub Airport Citeseer Pubmed GitHub Airport

ACC F1 ACC F1 ACC F1 ACC F1 AUC AP AUC AP AUC AP AUC AP

GCN [3] 70.30 68.56 78.90 77.83 85.68 84.34 50.80 48.09 90.70 92.91 91.16 89.96 87.48 85.34 92.37 94.24

SAGE [13] 68.24 67.60 77.57 73.61 85.12 77.36 49.16 47.57 87.29 89.03 87.02 86.85 79.13 81.21 92.17 93.56

DGI [37] 71.30 71.02 76.60 76.52 85.19 84.10 50.10 49.56 96.90 97.05 88.39 87.37 86.39 86.61 92.50 91.63

GraphMAE2 [14] 73.40 71.68 81.10 79.78 85.23 83.34 52.34 49.02 92.75 89.23 89.46 85.37 87.11 86.23 88.23 90.23

G
F
M

GCOPE [47] 65.33 62.34 74.15 74.33 82.29 72.89 39.96 36.40 88.60 83.03 90.84 86.45 82.16 83.22 86.17 84.91

OFA [22] 58.32 65.41 74.40 72.42 - - - - 82.62 83.74 92.26 91.36 - - - -

GraphAny [48] 66.10 63.01 76.10 70.12 79.45 77.19 47.98 46.88 - - - - - - - -

OpenGraph[40] 58.58 76.78 58.40 56.49 30.16 30.16 40.45 38.28 76.78 77.35 70.02 72.23 86.72 87.42 85.32 83.25

LLaGA [5] 59.00 56.91 71.21 63.38 53.33 54.17 38.49 39.89 86.26 83.35 84.04 76.48 71.25 70.63 77.90 74.30

RiemannGFM 66.38 66.41 76.20 75.83 85.96 85.57 55.29 53.27 99.40 98.42 94.12 91.64 89.18 93.52 93.68 96.07

Table 2: Geometric ablation on Citeseer, Pubmed, and Air-
port datasets. Link prediction results are reported in terms
of AUC (%). The results are given in the form of mean±std.
R32

0
denotes the Euclidean space.

Trees Cycles Citeseer Pubmed Airport
H32

−1
S32

1
99.40 ± 0.06 94.12 ± 1.38 93.68 ± 0.09

H32

−1
R32

0
98.48 ± 0.32 92.41 ± 2.14 92.22 ± 1.43

H32

−1
H32

−1
98.21 ± 0.45 92.32 ± 2.57 91.79 ± 1.58

H32

−1
S32

1
99.40 ± 0.06 94.12 ± 1.38 93.68 ± 0.09

R32

0
S32

1
98.72 ± 0.08 92.43 ± 1.53 92.51 ± 0.18

S32

1
S32

1
98.85 ± 0.09 92.88 ± 1.47 92.85 ± 0.23

4.1 Experimental Setups
4.1.1 Datasets. The experiments are conducted on a diversity

of datasets. Specifically, we include two text-attributed graphs

(the popular Citeseer and Pubmed [43]), one mix-attributed graph

(GitHub [31], whose attributes consist of the location, starred repos-

itories, employer, and e-mail address), and one non-attributed graph

(Airports [30], containing airports and connections among them).

4.1.2 Baselines. We include 9 strong baselines categorized into

three groups: The first group is the vanilla GNNs: GCN [20] and

GraphSAGE [13] with the end-to-end training paradigm. The sec-

ond group consists of self-supervised graph learning models:
DGI [37] and GraphMAE2 [14]. The third group is graph foun-
dation models, including OFA [22], GCOPE [47], GraphAny [48],

LLaGA [5] and OpenGraph [40]. The proposed model is named

RiemannGFM, considering the shared structural knowledge. (Dataset
and baseline description is detailed in Appendix E.)

4.1.3 Evaluation Metrics. We evaluated the comparison meth-

ods by both node classification and link prediction tasks. For node

classification, we employ two popular metrics of classification accu-

racy (ACC) and weighted F1-score (F1), while for the link prediction,

the mean Area Under the Receiver Operating Characteristic curve

(AUC-ROC) and average precision (AP) are utilized. To ensure statis-

tical robustness and fair comparison, we conducted 10 independent

runs for each model and reported the mean performance along with

the standard deviation. All experiments are conducted on a server

equipped with an NVIDIA GeForce RTX 4090D GPU (24GB VRAM)

utilizing CUDA 11.8, an AMD EPYC 9754 128-Core Processor (18

vCPUs allocated), 60GB of RAM.

4.1.4 Model Configuration and Reproducibility. First, we in-
troduce the model initialization of the proposed RiemannGFM as fol-
lows. The input node encoding is given from the Laplacian matrix,

encapsulating the structural information. Note that, we leverage

the eigenvectors of K largest eigenvalues, which normalizes dif-

ferent graph datasets with a predefined K . Correspondingly, node
coordinates are initialized on the constant curvature spaces by the

exponential map with the reference point of the north pole. Second,

on model configuration, we utilize the standard curvature for hyper-

bolic and hyperspherical spaces, and the dimension is set as 32 by

default. That is, RiemannGFM is instantiated on the product bundle

of

(
H32

−1
⊗ TH32

−1

)
⊗

(
S32

1
⊗ TS32

1

)
. The RiemannGFM consists of

two universal Riemannian layers. As for the structural vocabulary,

trees are in hyperbolic space, while hyperspherical space accommo-

dates cycles of node triangles and quadruples. The parameters are

optimized by Adam [19] with the learning rate and dropout rate

are tuned with grid search. Codes are provided in the anonymous

link of https://anonymous.4open.science/r/Geo-GFM-1603. (Please

refer to Appendix E for further implementation notes.)

4.2 Results and Discussion
4.2.1 Cross-domain Transfer Learning Performance (RQ1).
The results for both node classification and link prediction are sum-

marized in Table 1. The proposed RiemannGFM is pre-trained on

the datasets of ogbn-arxiv [15], Physics [33], Amazon-Computers

[33] and its classification head is the same as that of popular GFMs

[39, 40, 47]. Note that, OFA [22] cannot work on the graphs without

textual attributes (i.e., Github and Airport datasets). GraphAny

[48] generates classification logistics only, and thereby cannot

be utilized for link prediction. As shown in Table 1, in the link

prediction task, the proposed RiemannGFM consistently achieves

the best results among GFMs and specialized models, i.e., GCN,

SAGE, DGI and GraphMAE2. The structural vocabulary embedded

in Riemannian manifolds contributes to our success, which is fur-

ther discussed in RQ3. In node classification tasks, the proposed

RiemannGFM achieves the best results on the graphs without textual

attributes. On text-attributed graphs, RiemannGFM still obtain com-

parable performance to previous GFMs. This shows the importance

of building GFM that can capture the structural information.

4.2.2 The Connection between Structural Vocabulary and
Constant Curvature Spaces (CCSs) (RQ2). Given the signifi-

cance of structural vocabulary, we are interested in which CCS is

6
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Table 3: Few-shot learning performance on Citeseer, Pubmed, GitHub, and Airport datasets. The best results are in boldfaced.

Node Classification Results
Setting Method Citeseer Pubmed GitHub Airport

ACC F1 ACC F1 ACC F1 ACC F1

1-Shot

DGI [37] 37.40 ±9.98 32.29 ±12.17 39.29 ±3.79 34.76 ±5.12 59.90 ±4.89 55.48 ±9.73 30.63 ±6.14 17.57 ±7.28

GraphMAE2 [14] 34.62 ±4.23 31.34 ±1.21 39.10 ±6.45 35.97 ±8.83 52.47 ±3.98 50.25 ±4.78 29.89 ±5.45 20.27 ±6.51

OFA [22] 37.58 ±10.51 30.90 ±2.85 39.80 ±0.74 27.54 ±3.05 - - - -

GCOPE [47] 36.03 ±4.63 31.89 ±4.54 37.36 ±4.21 23.64 ±3.80 56.07 ±5.09 43.89 ±6.22 26.09 ±0.99 18.05 ±4.95

OpenGraph [48] 20.60 ±2.43 18.30 ±1.01 43.58 ±1.12 35.39 ±1.03 22.19 ±0.03 40.32 ±0.65 31.94 ±2.99 23.38 ±2.13

LLaGA [5] 18.10 ±2.03 14.57 ±0.97 35.68 ±1.58 33.48 ±1.34 26.67 ±1.96 28.89 ±2.54 23.53 ±2.02 19.17 ±2.31

RiemannGFM (Ours) 38.02 ±9.45 32.42 ±9.87 45.24 ±3.55 37.87 ±6.56 77.83 ±4.53 72.46 ±7.54 32.61 ±4.74 27.18 ±7.46

5-Shot

DGI [37] 46.48 ±1.32 43.62 ±1.49 51.38 ±4.05 50.90 ±3.86 65.38 ±0.13 64.55 ±0.28 37.61±6.41 28.85 ±6.16

GraphMAE2 [14] 47.12 ±4.01 44.71 ±1.88 53.04 ±4.11 47.74 ±4.37 62.22 ±2.19 60.88 ±7.42 37.09 ±6.02 29.11 ±2.02

OFA [22] 31.90 ±4.27 23.04 ±0.83 36.72 ±9.40 24.43 ±6.12 - - - -

GCOPE [47] 43.48 ±9.55 38.65 ±9.07 46.35 ±9.59 44.85 ±9.36 73.26 ±2.07 63.13 ±1.57 33.18 ±2.38 27.71 ±6.09

OpenGraph [48] 29.30 ±1.81 27.46 ±1.41 37.52 ±2.52 35.51 ±3.24 24.32 ±0.45 42.30 ±0.04 33.51 ±3.55 23.74 ±2.15

LLaGA [5] 21.60 ±2.11 24.89 ±2.32 32.02 ±1.85 35.84 ±1.96 58.33 ±1.35 56.86 ±1.26 32.86 ±1.24 30.50 ±1.23

RiemannGFM (Ours) 53.46 ±4.17 51.89 ±4.60 66.18 ±5.99 64.56 ±9.38 84.19 ±1.05 83.13 ±1.89 38.72 ±5.98 33.40 ±5.66
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Figure 3: Ablation on cross-geometric attention.

suitable to model trees and cycles. Theoretically, hyperbolic space

aligns with the tree as evidenced in the consistency of volume

growth [27], while hyperspherical space acts as the geometric anal-

ogy of cycles according to the common rotational invariant [29].

Here, we empirically investigate our choice by geometric ablation.

To be specific, we place trees and cycles in hyperbolic, hyperspher-

ical, and Euclidean spaces, respectively, and summarize and link

prediction results in Table 2. It achieves the best performance when

trees are embedded in hyperbolic space, and cycles in hyperspheri-

cal space, aligning with our choices.

4.2.3 Ablation Study on Cross-geometry Attention. We con-

duct an ablation study to evaluate the effectiveness of cross-geometry

attention, whose query vector is in the counterpart CCS of key and

value vector. To this end, we introduce a model of a single-geometry

variant, which utilizes the key, query, and value vectors in the same

CCS. Fig. 3 collects node classification and link prediction results

on different datasets. The cross-geometry attention consistently

outperforms the single-geometry variant, demonstrating the effec-

tiveness of our design.

4.2.4 Few-shot Learning Performance (RQ3). We report the

node classification results under 1-shot and 5-shot learning in Ta-

ble 3. The self-supervised models (i.e., DGI and GraphMAE2) are

trained merely on the few-shot set, while the GFMs undergo model

pre-training and are subsequently fine-tuned on the few-shot, fol-

lowing the setting of [40]. (Further details are introduced in Appen-

dix E.) As shown in Table 3, we observe an interesting phenomenon:

OpenGraph and LLaGA exhibit negative transfer on GitHub and
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Figure 4: Link prediction results with structural knowledge

Airport datasets. They leverage the LLM and enjoy shared knowl-

edge among textural attributes. However, it becomes problematic

when transferring such knowledge to mixed attributes (e.g., the

numbers and addresses in GitHub) or to the graphs without at-

tributes. This highlights the limitation of coupling graph transfer

with textual attributes, and thus supports our motivation to explore

common structures for better universality.

4.2.5 On theExpressiveness of StructuralKnowledge (RQ4).
We show that, despite the universality of structures in the graph

domain, the structural knowledge itself presents promising expres-

siveness. Concretely, we examine the link prediction performance

of RiemannGFM, compared to node2vec [11] and GFMs, i.e., Open-

Graph [40]. In this case, node encodings generated from pre-trained

RiemannGFM are utilized for link prediction; that is, we leverage the
structural knowledge learned on pre-training datasets and do not

include attributes of the target graph, while node2vec is trained

on the target datasets. The results are given in Fig. 4. Note that,

structural knowledge of RiemannGFM acquires competitive even

superior results to specialized model for specific graphs and GFMs

incorporated with attributes, showing its promising expressiveness.

4.2.6 Impact of Pre-trainingDatasets (RQ5). To further inves-
tigate the transferability, we study the performance of RiemannGFM
with different pre-training datasets. We adopt Flicker [45], Amazon-

Computers [33], and WikiCS [26] as pre-training datasets respec-

tively, and report the results in Table 4. We find that: RiemannGFM
shows more stable performance over different pre-training graphs,

that is, the pre-training datasets have limited impact on our model.

However, GCOPE and OpenGraph have higher requirements for

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM TheWebConf’25, April 28–May 02, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Cross-domain link prediction prformance on differ-
ent pre-training datasets.

Testing Datasets
Pre-training Method Citeseer Pubmed Airport

Flickr

OpenGraph 65.16±2.54 50.66±2.14 86.42±2.15

GCOPE 84.20±0.12 85.60±0.62 84.54±1.09

RiemannGFM 99.33±1.36 92.51±0.73 93.52±0.06

AComp

OpenGraph 60.16±3.21 60.56±2.24 87.31±0.56

GCOPE 85.01±1.00 84.63±1.30 85.21±0.89

RiemannGFM 99.40±1.72 92.75±0.61 93.21±0.03

WikiCS

OpenGraph 89.64±3.45 72.24±4.24 86.89±3.12

GCOPE 88.51±0.47 89.07 ±0.58 86.09±1.14

RiemannGFM 99.31±0.02 92.47±0.73 93.17±0.07

pre-training datasets. Pre-training on similar domains enhances the

performance of downstream tasks. For example, when tested on

the citation network of Citeseer, OpenGraph achieves 89.64% with

the pre-training dataset WikiCS (citation network), but has perfor-

mance loss with pre-training datasets of other domains (65.16% on

Flickr and 60.16% on AComp). GCOPE is potentially affected by dif-

ferences in attribute distribution across different domains. The rea-

son is two-fold: 1) The structural transferability of RiemannGFM en-

joys greater universality, especially when attributes show obvious

disparities across in different domains. 2) The structural vocabulary

is proposed to learn the shared structural knowledge underlying

the graph domain and is not tied to any specific structures.

4.2.7 Visualization andDiscussion. Here, we visualize the node
encoding of Cora via t-sne in Fig. 5, where different colors denote

different node classes. Fig. 5(b) shows the results of GCN, while the

visualization of pre-trained RiemannGFM in Fig. 5(c) is given by its

node encodings in the shared tangent space of the north pole of

Lorentz/Spherical model. It shows that the encodings of pre-trained

RiemannGFM are more separable than those of a specialized graph

model, demonstrating the expressiveness of the knowledge learned

in RiemannGFM. (Additional results are given in Appendix F.)

5 Related Work
Graph Neural Network & Self-supervised Graph Learning.
Popular GNNs include graph convolutional nets and graph trans-

formers. The former conducts neighborhood aggregation with

layer-wise message passing [8, 13, 38], while the latter leverages

a transformer-like encoder [18]. Both of them are typically paired

with a classification head or reconstructive loss on a specified graph.

Thus, a major shortcoming of traditional graph models is their lim-

ited generalization capability. Self-supervised learning has been

integrated into GNNs in recent years [14, 37]. Instead of coupling

GNNs with downstream tasks, self-supervised learning conducts

parameter training from the graph data itself via specialized pretext

tasks. However, graph augmentation for self-supervised learning

is nontrivial [17, 50], and the parameters trained on one graph

cannot be directly applied to another owing to the difference in

attribute distribution. In other words, existing graph models lack

the universality, and are still far from being a foundation model.

Graph Foundation Model. Recent efforts are generally catego-

rized into two groups. The first group enhances the vanilla GNNs

to achieve better generalization capacity, e.g., unifying the down-

stream tasks with graph prompt [35], and training on multi-domain

(a) Original (b) GCN (c) RiemannGFM

Figure 5: Visualization on Cora

graphs with coordinators [47]. Zhao et al. [48] generalize SGC [38]

for node classification on any graph. The second group adapts LLM

for analyzing graphs. LLaGA [5] tailors graphs for the language

model with node sequences, generated via graph translation, while

OFA [22] unifies different graph data by the language description of

nodes and edges. OpenGraph [40] re-frames textual attributes into

language with a hierarchy. Very recently, Xia and Huang [39] pro-

pose a mixture of graph experts. Existing models typically struggle

to maintain the performance on graphs without textual attributes.

Also, they model graphs in Euclidean space, and tend to trivialize

the structural complexity. Distinguishing from the prior studies,

we consider graphs in Riemannian geometry, and design the first

GFM exploring graph substructures (structural vocabulary), to the

best of our knowledge.

Riemannian Manifold & Graphs. Euclidean space has been the

workhorse of graph representation learning for decades, and Rie-

mannian manifolds are emerging as exciting alternatives in recent

years. Among Riemannian manifolds, hyperbolic space is well rec-

ognized for its alignment with tree-like (hierarchical) structures,

and hyperbolic GNNs show superior results to Euclidean coun-

terparts [3, 10]. The geometric analogy of cycles is hyperspherical

space, whose advantage of embedding cyclical structures is reported

[25, 49]. Bachmann et al. [1] formulate a graph convolutional net in

constant curvature spaces. We notice that the product manifold has

been introduced to study graphs recently, and advanced techniques

are proposed for node embedding [7, 12]. However, all of them

lack the generalization capability to unseen graph structures, and

consider node embeddings on the manifold, while we introduce the

notion of tangent bundle to model graphs for the first time. So far,

the potential of Riemannian geometry has not yet been released on

GFM, and we are dedicated to bridging this gap.

6 Conclusion
This work opens a new opportunity to build GFM with a shared

structural vocabulary of the graph domain. Ourmain contribution is

the discovery of tree-cycle vocabulary with the inherent connection

to Riemannian geometry, and we present a universal pre-training

model RemannGFM accordingly. Concretely, we first propose a novel
product bundle to incorporate diverse geometries of the vocabulary.

On this constructed space, we stack the Riemannian layers where

the structural vocabulary, regardless of specific graphs, is learned on

Riemannian manifold. This offers the shared structural knowledge

for cross-domain transferability, and informative node encodings

are generated with the bundle convolution for arbitrary graphs. Ex-

tensive experiments show the superior performance of RemannGFM
in cross-domain transfer learning and few-shot learning.
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A Notation Table
Table 5: Importation Notations.

Notation Description
M, g A smooth manifold and Riemannian metric.

TxM The tangent space at x .
TM The tangent bundle surrounding the manifold.

d,κ Dimension and curvature.

H , S Hyperbolic/Hyperspherical space.

L A unified formalism of Lorentz/Spherical model.

o North pole of the model space.

G = (V, E) A graph with nodes setV and edges set E.

p ∈ L Node coordinate on the manifold.

z ∈ TpL Node encoding in the tangent space.

ϕ : L × L → R A parameterized scalar map.

f (·) : Lm → Ln
Manifold-reserving linear operation.

[·| |·] Vector concatenation.

Expx (·) The exponential map at point z
Logx (·) The logarithmic map at point z
PTx→y (·) The parallel transport from x to y

B Proofs and Derivations
In this section, we detail the proofs of Theorem 1 and 2, and show

the derivation of the proposed bundle convolution.

B.1 The Proposed Linear Operation
Theorem 1 (Manifold-preserving of Proposed Operation).

Given x ∈ L
d1
κ and κ , 0, fW (x) ∈ L

d1
κ preserves on the manifold

with anyW ∈ Rd1×d1 , and fW (x) ∈ L
d2
κ holds for anyW ∈ Rd1×d2 .

Proof. We give all the key equations, and do not list all the

algebra for clarity. The theorem holds if, with a given curvature κ,

κ , 0, the proposed linear operation satisfies fW : L
d1
κ → L

d2
κ for

anyW ∈ Rd1×d2 . For x ∈ L
d1
κ , we conduct the linear operation,

fW (x) =

[
1 0⊤

0 αW

] [
xt
xs

]
=

[
xt

αWxs

]
. (9)

With the re-scaling factor α defined as

√
κ−1−sдn(κ)x 2

t

∥W x s ∥2
, the result is

yielded as follows

fW (x) =


xt√

κ−1−sдn(κ)x 2

t

∥W x s ∥2
Wxs

 . (10)

Given the equality of sдn(κ)x2t + x
⊤
s xs =

1

κ , it is easy to verify the

following equality

sдn(κ)x2t + x
′⊤
s x

′
s =

1

κ
, x ′

s =

√
κ−1 − sдn(κ)x2t

∥Wxs ∥2
Wxs , (11)

holds for any W ∈ Rd1×d2 . That is, fW (x) ∈ L
d2
κ is ensured,

completing the proof. □

B.2 Geometric Midpoint
Theorem 2 (Arithmetic Mean as Geometric Midpoint). The

arithmetic mean defined as

midκ ({x i ,νi }i ∈Ω) =
1√
|κ |

∑
i ∈Ω

νix i��∥∑j ∈Ω νjx j ∥κ
�� , κ , 0, (12)

is on the manifold c =midκ ({x i ,νi }i ∈Ω) ∈ Ld
κ , and is the geometric

midpoint w.r.t. the squared distance d .

Proof. The theorem claims two facts. The first is the manifold-

preserving of the given arithmetic mean, and the second is the

equivalence between the mean and geometric midpoint. We verify

the manifold-preserving by manifold definition sдn(κ)c2t + c
⊤
s cs =

1

κ , for any κ, κ , 0.

We elaborate on the geometric midpoint (a.k.a. geometric cen-

troid) before proving the equivalence. Given the set of points of

the manifold x i ∈ Ld
κ each attached with a weight νi , i ∈ Ω, the

geometric midpoint of squared distance in the manifoldLd
κ is given

by the following optimization problem,

c = argminc ∈Ld
κ

∑
i ∈Ω

νid
2

κ (c,x i ), x i ∈ Ld
κ . (13)

Now, we derive the geometric midpoint as follows. Recall the fact

that ⟨x,x⟩κ =
1

κ and d2κ (x,y) = 2

κ − 2⟨x,y⟩κ . We equivalently

transform the minimization of the midpoint in Eq. (13) to the maxi-

mization as follows,

c = argmaxc ∈Ld
κ
⟨α

∑
i ∈Ω

νix j ,c⟩κ , (14)

where α is a scaling coefficient so that α
∑
i ∈Ω νix j ∈ Ld

κ (α > 0).

Note that, for any two points x,y ∈ Ld
κ , we have the inequality

⟨x,y⟩κ <
1

κ and ⟨x,y⟩κ =
1

κ if and only if x = y. That is, we
need to find an α to satisfy α

∑
i ∈Ω νix j = c . Let α0 > 0 satisfies

α0
∑
j ∈ ˆNi

νi jhj = c . As the midpoint is required to live in the

manifold, i.e., α0
∑
i ∈Ω νix j ∈ Ld

κ , we have the following equality

⟨α0
∑

i ∈Ω
νix j ,α0

∑
i ∈Ω

νix j ⟩κ =
1

κ
, (15)

according to the definition of the manifold in Eq. (1), yielding the

scaling coefficient as follows,

α0 =
1√

|κ |
��| |∑i ∈Ω νix j | |κ

�� > 0. (16)

Consequently, the geometric midpoint is given as

midκ ({x i ,νi }i ∈Ω) =
1√
|κ |

∑
i ∈Ω

νix i��∥∑j ∈Ω νjx j ∥κ
�� , (17)

completing the proof. □

B.3 Bundle Convolution
The unified formalism for Bundle Convolution is given as follows,

BCp t ({pi , zi }i ∈Λ) =
∑
i ∈Λ

(
αitzi −

καit ⟨zi ,pt ⟩κ
1 + κ⟨pi ,pt ⟩κ

(pi + pt )

)
. (18)

We leverage the equation above to aggregate the node encodings

in the corresponding tangent spaces, which span the tangent bun-

dle surrounding the manifold. The key ingredient of the proposed

convolution lies in the parallel transport, which solves the incom-

patibility issue among different tangent spaces.

The parallel transport w.r.t. the Levi-Civita connection PTx→y
transports a vector in v ∈ TxL to another tangent space TyL

with a linear isometry along the geodesic between x,y ∈ L. Con-

cretely, the unit speed geodesic from x tov is γx ,v (t) = x cosκ (t)+
1√
|κ |

sinκ (t)v , for t ∈ [0, 1]. The generic form in L is given as

PTp i→p t (zi ) = zi −
⟨Loдκp i

(pt ), zi ⟩x

dL(pi ,pt )

(
Loдκp i (pt ) + Loд

κ
p t
(pi )

)
,

(19)

where ⟨a,b⟩x = a⊤gxb is the inner product at the point x , and gx
10
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is the Riemannian metric of L at x . Given the logarithmic map

with curvature-aware cosine as follows,

Loдκp i (pt ) =
cos

−1
κ (β)√
β2 − 1

(pt − βpi ), β = κ⟨pi ,pt ⟩κ . (20)

The parallel transport in this case is derived as

PTp i→p t (zi ) = zi −
κ⟨zi ,pt ⟩κ

1 + κ⟨pi ,pt ⟩κ
(pi + pt ), ∀pi ,pt ∈ L, (21)

where the curvature-aware cosine is defined as cosκ (·) = cos(·)

when κ > 0, and cosκ (·) = cosh(·) with κ > 0, and its superscript

−1 denotes the inverse function. Therefore, Eq. (18) is given with

aggregation over the set Λ.

C Algorithm
We give the pseudocode of cross-geometry attention in Algo. 2.

D Riemannian Geometry
A Riemannian manifold (M, g) is a smooth manifoldM endowed

with a Riemannian metric g. Each point on the manifold is associ-

ated with a tangent space where the metric g is defined. The curva-

ture is a notion describing the extent of how a manifold derivatives

from being “flat”. It is typically viewed as a measure R(X ,Y )Z of

the extent to which the operator (X ,Y ) → ∇X∇YZ is symmetric,

where ∇ is a connection onM (whereX ,Y ,Z are vector fields, with

Z fixed). Sectional curvature, defined on two independent vector

unit in the tangent space, is often utilized. The reason is the cur-

vature operator R can be recovered from the sectional curvature,

when ∇ is the canonical Levi-Civita connection induced by g. A

manifold is said to be a Constant Curvature Space (CCS) if the

sectional curvature is constant scalar everywhere on the manifold.

Among Riemannian manifolds, there exist three types of CCSs:

the negative curvature hyperbolic space, the positive curvature hy-

perspherical space, and the zero-curvature Euclidean space. There

are several model spaces of CCSs, e.g., Poincaré ball model, Poincaré

half-plane, Klein model, Lorentz model, and Stereographical model,

and they are equivalent to each other in essence
3
. In this paper, we

opt for the Lorentz/Spherical model
4
, and give a unified formalism,

Ld
κ = {

[
xt
xs

]
∈ Rd+1 |⟨x,x⟩κ =

1

κ
, xt > 0,xs ∈ Rd }, (22)

where d and κ denote the dimension and curvature, respectively.

xt corresponds to the axis of symmetry of the hyperboloid and is

termed the time-like dimension, while all other axes xs are called
space-like dimensions. In particular,Ld

κ becomes the Lorentz model

of hyperbolic space under negative κ, and shifts to Spherical model

of hyperspherical space when κ > 0. Note that, Euclidean space is

not included in the formalism, and it requires κ , 0. The induced

hyperbolic space is a d-dimensional upper hyperboloid embedded

(d + 1)-dimensional Minkowski space, a.k.a. hyperboloid model.

Similarly, the corresponding hyperspherical space is also expressed

in a (d + 1)-dimensional space. All the mathematical construction

in this paper is based on the Lorentz/Spherical model. Accordingly,

given a point in the manifold x ∈ Ld
κ , the exponential map projects

3
They are the same in structure and geometry but have different coordinate systems.

4
The Lorentz model of hyperbolic space corresponds to the Spherical model of hyper-

spherical space in account of the coordinate systems.

Algorithm 2: Cross-geometry Attention in Hyperbolic

Space

Input: A substructure, Node coordinates pH and pS , Linear
operation fW , A parameterized scalar map

ϕ : L × L → R.

Output: The updated node coordinates pH .

1 Compute the key, query and value via ki = fV (pHi ),

qi = fQ (pSi ) andvi = fV (pHi ), respectively;

2 Compute the score of ϕ([qi ,k j ]) for i , j in the substructure;

3 Derive attentional weight by the softmax of scores over the

substructure αi j =
exp(ϕ([qi | |k j ]))∑

(i ,t )∈Ω exp(ϕ([qi | |k t ]))
;

4 Update node coordinate by the weighted geometric

midpointvi =midκ ({v j ,αi j }(i , j)∈Ω);

a vector v in the tangent space at x to the manifold Expx (v) :

TxL
d
κ → Ld

κ , and the closed form expression is given as follows,

Expx (v) = cosκ (
√
|κ |∥v ∥κ )x + sinκ (

√
|κ |∥v ∥κ )

v√
|κ |∥v ∥κ

. (23)

The logarithmic map Loдx (y) : Ld
κ → TxL

d
κ projects a point y in

the manifold to the tangent space of x , serving as the inverse of

the exponential map. It takes the form of

Loдx (y) =
cos

−1
κ (−κ⟨x,y⟩κ )√
κ2⟨x,y⟩2κ − 1

(y + κ⟨x,y⟩κx) . (24)

The parallel transport maps between two tangent spaces, and its

closed form expression is given in Appendix B.

E Experiment Details
E.1 Datasets
We give the statistics in Table 6, and introduce the datasets below.

• Citeseer [43] consists of scientific publications in six classes.
Nodes and edges denote publications and citation relation-

ship, respectively. Each publication is described as a binary

word vector from the dictionary of 3703 unique words.

• Pubmed [43] is citation network among scientific publi-

cations in three classes. Each publication is described by

a TF/IDF weighted word vector from a dictionary of 500

unique words.

• GitHub [31] is a social network where nodes are developers

who have starred at least 10 repositories, and edges denote

mutual follower relationships. Node features are location,

starred repositories, employer, and e-mail address.

• Airports [30] is a commercial air transportation network

within the United States. The node corresponds to a distinct

airport facility, and are stratified into four discrete classes.

The edges indicate the existence of commercial flight routes.

• ogbn-arxiv [15] is the citation network among Computer

Science (CS) arXiv papers. Each paper is given as a 128-

dimensional feature vector by averaging the embeddings of

words in its title and abstract.

• Physics [33] is co-authorship graphs based on the Microsoft

Academic Graph from the KDD Cup 2016 challenge. Nodes

and edges denote authors and co-authored relationship, re-

spectively.
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Table 6: Summary of Datasets

Dataset #(Nodes) #(Edges) Feature Dim.

Cora 2,708 5,429 1,433

Pubmed 19,717 44,338 500

GitHub 37,700 578,006 0

Airports 1,190 13,599 0

ogbn-arxiv 169,343 1,166,243 128

Physics 34,493 495,924 8,415

AComp 13,752 491,722 767

• AComp (Amazon Computers dataset) [33] is segments of

the Amazon co-purchase graph. Nodes denote goods and

edges indicate that two goods are frequently bought.

E.2 Baselines
• GCN [20] resorts neighborhood aggregation in spectral do-

main.

• DGI [37] introduces a self-supervised paradigm by maximiz-

ing the mutual information between the local node view and

the global graph view.

• GraphMAE2 [14] conducts self-supervised learning in the

reconstruction of masked node features with masked autoen-

coders.

• OFA [22] describes all nodes and edges with natural lan-

guage to feed into LLMs, and subsequently utilizes graph

prompting that appends prompting substructures to the in-

put graph.

• LLaGA [5] re-organizes graph nodes to sequences and then

maps the sequences into the token embedding space via a

versatile projector in order to leverage the LLM for graph

analysis.

• OpenGraph [40] is trained on diverse datasets with a uni-

fied graph tokenizer, scalable graph transformer, and LLM-

enhanced data augmentation, so as to comprehend the nu-

ances of diverse graphs.

• GCOPE [47] is a graph pre-training framework designed

to enhance the efficacy of downstream tasks by harnessing

collective insights from multiple source domains.

• GraphAny [48] models the inference on a new graph as an

analytical solution to a GNNwith designs invariant to feature

and label permutations and robust to dimension changes.

E.3 Reproducibility & Implementation Notes
E.3.1 On Few-shot Learning. Few-shot learning performance

is significant to evaluate a pre-trained model. In particular, a pre-

trained model is examined by classifying new data, which has not

been seen during training, with only a few labeled samples for each

class. In our experiment, following the setting of Xia et al. [40], we

retain up to k training instances for labeled classes. For example, we

first pre-train our model on ogbn-Arxiv [15], Amazon Computers

[33], and Coauthor Physics [33] datasets, and then fetch k samples

per class on Citeseer [43] to train the classification head, so as to

infer the classification results.

E.3.2 Initialization and Configurations. For model initializa-

tion, we first compute the normalized graph Laplacian L = I −

D−1/2AD−1/2
of the given graph, where A is the adjacency ma-

trix and D is the degree matrix. Second, we conduct eigenvalue

Table 7: Geometric ablation on Citeseer, Pubmed, and Air-
port datasets. Node classification results are reported in
terms of AUC (%). The results are given in the form of
mean±std. R32

0
denotes the Euclidean space.

Trees Cycles Citeseer Pubmed Airport
H32

−1
S32

1
66.38 ± 0.31 76.20 ± 0.79 55.29 ± 2.26

H32

−1
R32

0
66.26 ± 1.45 73.10 ± 6.36 50.42 ± 1.48

H32

−1
H32

−1
63.37 ± 1.69 72.26 ± 2.12 52.66 ± 1.46

H32

−1
S32

1
66.38 ± 0.31 76.20 ± 0.79 55.29 ± 2.26

R32

0
S32

1
65.52 ± 1.46 71.12 ± 8.73 50.17 ± 1.26

S32

1
S32

1
64.26 ± 1.09 71.46 ± 0.72 53.72 ± 0.46

Table 8: Cross-domain node classification prformance on
different pre-training datasets.

Testing Datasets
Pre-training Method Citeseer Pubmed Airport

Flickr

OpenGraph 63.16±4.45 60.35±5.53 43.32±2.23

GCOPE 64.47±2.87 72.48±0.97 36.74±2.38

RiemannGFM 65.20±1.73 74.04±0.53 46.13±2.78

AComp

OpenGraph 60.24±1.25 64.45±1.24 45.02±4.25

GCOPE 63.79±0.88 72.80±2.14 44.19±1.53

RiemannGFM 64.80±1.96 77.00±0.42 49.41±1.77

WikiCS

OpenGraph 67.54±2.24 74.98±3.25 48.92±1.22

GCOPE 65.47±2.87 75.38±0.83 46.05±2.51

RiemannGFM 66.56±1.15 75.78±1.36 51.25±1.76

decomposition on L and utilize the largest K eignvectors as node

encodings, where K is a predefined number. Note that, the ini-

tialization process indeed normalizes different graphs with the

K-dimensional encoding z. Subsequently, we induce node coordi-
nates via p = Expo ([0| |z⊤]⊤) so that the coordinates are placed on

the manifold p ∈ L, where the reference point is the north pole

o. RiemannGFM allows for mini-batch training, and the mini-batch

sampling strategy is the same as that of SAGE [13].

E.3.3 Hyperparameters. The hyperparameters are tuned with

grid search. In particular, we set the dropout rate as 0.1 to enhance

the model robustness, and set learning rate of the pre-training as

0.01 to balance convergence speed and stability. The dimension of

each factor in the product bundle is set as 32, that is, we instantiate

RiemannGFM on

(
H32

−1
⊗ TH32

−1

)
⊗

(
S32

1
⊗ TS32

1

)
. RiemannGFM is

implemented with 2 Riemannian layers. The parameterized scalar

map in cross-geometry attention is a multi-layer perceptions with

one hidden layer, whose dimension is set as 256. The model is built

on PyTorch, and further details are provided in the anonymous link

of https://anonymous.4open.science/r/Geo-GFM-1603.

F Additional Results
Owing to the limit of space, we show the additional results of

the geometric ablation in Table 7 and the impact of pre-training

datasets in Table 8. The geometric ablation in node classification

exhibits the similar pattern to that in link prediction, showing

the alignment between trees and hyperbolic space (and between

cycles and hyperspherical space). As shown in in Table 8, the stable

performance of ourmodel demonstrates the superiority of exploring

GFM with structural vocabulary (i.e., the common substructures of

trees and cycles underlying the graph domain).
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