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Abstract
Knowing the features of a complex system that
are highly relevant to a particular target variable
is of fundamental interest in many areas of sci-
ence. Existing approaches are often limited to
linear settings, sometimes lack guarantees, and in
most cases, do not scale to the problem at hand,
in particular to images. We propose DRCFS, a
doubly robust feature selection method for iden-
tifying the causal features even in nonlinear and
high dimensional settings. We provide theoreti-
cal guarantees, illustrate necessary conditions for
our assumptions, and perform extensive experi-
ments across a wide range of simulated and semi-
synthetic datasets. DRCFS significantly outper-
forms existing state-of-the-art methods, selecting
robust features even in challenging highly non-
linear and high-dimensional problems.

1. Introduction
We study the fundamental problem of causal feature selec-
tion for non-linear models. That is, consider a set of features
X = {X1, . . . , Xm}, and an outcome Y specified with an
additive-noise model on some of the features (Hoyer et al.,
2008; Schölkopf et al., 2012; Peters et al., 2014):

Axiom (A) Y = f(Pa(Y )) + ε,

for a subset Pa(Y ) ⊆X and posterior additive noise ε. Our
goal is to identify the set of relevant features Pa(Y ) from
observations. Feature selection is an important cornerstone
of high-dimensional data analysis (Liu & Motoda, 2007;
Bolón-Canedo et al., 2015; Li et al., 2017; Butcher & Smith,
2020), especially in data-rich settings. By including only
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relevant variables and removing nuisance factors, feature
selection allows us to build models that are simple, inter-
pretable, and more robust (Yu et al., 2020; Janzing et al.,
2020). Moreover, in many applications in science and in-
dustry, we are not only interested in predictive features but
we also aim to identify causal relationships between them
(Pearl, 2009; Spirtes et al., 2000; Murphy, 2001).

Knowing the causal structure allows one to understand the
potential effects of interventions on a system of interest,
spanning various fields such as economics (Varian, 2016),
biology (Hu et al., 2018), medicine (Mehrjou et al., 2021;
Lv et al., 2021), software engineering (Siebert, 2022), agri-
culture (Tsoumas et al., 2022), and climate research (Runge
et al., 2019). In general, it is impractical to infer the under-
lying causal graph solely from observational data, and in
some cases, it may even be infeasible (Pearl, 2009; Spirtes
et al., 2000; Chickering et al., 2004; Maclaren & Nicholson,
2019). Often, the focus is on specific target variables, such
as stock returns in trading, genes associated with a specific
phenotype or disease, or reduction of CO2 emissions in en-
vironmental studies, rather than all the interactions between
the many variables affecting the underlying system.

Capturing the causal relationships between different features
and a particular target variable is highly non-trivial in prac-
tice. Existing approaches for causal feature selection often
make unrealistic assumptions on the data generating process
(DGP), or they simply do not scale to the problem at hand
in terms of computational efficiency (Yu et al., 2020) and/or
statistical efficiency (Yu et al., 2021). Moreover, many of
these approaches have only limited theoretical guarantees,
and they have only been evaluated on noiseless data, far
from the needs of practitioners in industry and science (Kira
& Rendell, 1992; Guyon, 2008).

To overcome these limitations, we propose a novel, doubly
robust causal feature selection method (DRCFS) that sig-
nificantly outperforms existing state-of-the-art approaches,
especially in non-linear, noisy, and data-sparse settings. Our
contributions are as follows:

• We propose DRCFS, a novel method for doubly robust
feature selection, even in non-linear and high dimen-
sional settings. In particular, our approach has guaran-
tees for realistic cases, when there are cycles or hidden
confounders between the features (see Figure 1).
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• Based on our model description, we provide theoret-
ical guarantees that substantiate our framework. In
particular, we illustrate the necessity of our assump-
tions for causal feature selection and demonstrate that
our approach is doubly robust while achieving

√
n-

consistency.

• We provide a comprehensive experimental evaluation
across various synthetic and semi-synthetic datasets,
demonstrating that DRCFS significantly outperforms
an extensive list of state-of-the-art baselines for feature
selection.

Additional related work. Learning causal features has
been investigated early on, and Guyon & Aliferis (2007)
provides a broad review of these works. Since then, multiple
other works have proposed different ideas on how to learn
causal features from data (Cawley, 2008; Paul, 2017; Yu
et al., 2021). However, none of these works recover all the
direct causal parents asymptotically or non-asymptotically,
and they do not provide guarantees, especially for the cyclic
or confounded setting.

Under the expense of additional assumptions such as faith-
fulness, there has been an orthogonal line of research aim-
ing to infer the Markov equivalence class through iterative
testing of d-separation statements using conditional inde-
pendence test as done in the PC-algorithm (Mastakouri
et al., 2019; Pearl, 2009; Spirtes et al., 2000). For a recent
overview of causal feature selection approaches and their
evaluation, we refer to Yu et al. (2020). Another approach
of interest is to consider strong assumption on the causal
structure of the DGP to achieve identifiability (Hoyer et al.,
2008; Peters et al., 2014). This approach includes the works
by Shimizu et al. (2006b) and Peters et al. (2011).

2. Model Ddescription
2.1. Causal structure

We study causal feature selection for a model as in Ax-
iom (A), using the language of probabilistic causality and
structural causal models (SCMs, see Pearl (2000); Bongers
et al. (2021)). Following Bongers et al. (2021), we define
the causal structure of a model in terms of direct causal
effects among the variables (see Appendix A for the precise
concepts introduced in this section). Direct causal effects
are defined by distribution changes due to interventions
on the DGP. An intervention amounts to actively manip-
ulating the generative process of a random variable Xj ,
without altering the remaining components of the DGP. For
instance, in a randomized experiments an intervention could
consist of giving patients a medical treatment. We specif-
ically consider perfect interventions Xj ← xj , by which
the post-interventional variable is set to a constant Xj ≡ xj .
We denote with Y | do(xj) the post-interventional out-

ε X1 X3

U

Y

X2

Figure 1: Causal structure of a DGP as in Axiom (A)-Axiom
(C). The outcome is specified as Y = f(X1, X3) + ε, with
f a deterministic non-linear function, and ε exogenous inde-
pendent noise. U is a latent variable that acts as a confounder
for X1 and X3.

come Y . Using this notation, a variable Xj has a direct
causal effect on the outcome Y if intervening on Xj can
affect the outcome while keeping fixed the other variables
Xc

j := {X1, . . . , Xj−1, Xj+1, . . . , Xm}, i.e., there exists
x′
j ̸= xj such that

P(Y | do(x′
j ,x

c
j)) ̸= P(Y | do(xj ,x

c
j)) (1)

for some array xc
j in the range of Xc

j . Following Bongers
et al. (2021), we define the causal structure G of the DGP
as a directed graph whose edges represent all direct causal
effects among the variables.

We assume unique solvability of the SCM (see Defini-
tion 3.3 by Bongers et al. (2021) and Appendix B). By
this assumption, the distribution on the observed variables
V = {X1, . . . , Xm, Y } is specified by a mixing measur-
able function of the form V = g(U). The function g is
uniquely defined by the structural equations of the model
(see Appendix B). Here, U is a random vector of latent
sources. According to our model, there may be potential
hidden confounders for the observed variables. Furthermore,
the underlying graph G may contain cycles. An example of
a causal graph for a uniquely solvable SCM is presented in
Figure 1.

2.2. Notation

We always denote with Y the outcome, with Xj the features,
for j = 1, . . . ,m, and with n, the number of observations.
We use the bold capital script, e.g. X,Z, to denote a group
of random variables. The set X always refers to the set
of all the features. For a given index j = 1, . . . ,m, we
denote with Xc

j the set consisting of all the features except
Xj . We use the standard Y | do(·) notation, to denote the
post-interventional outcome. The notation Pa(Y ) denotes
the subset of features that yield a direct causal effect on the
outcome. We use the letter D to denote a generic dataset,
and we denote with ÊD[ · ] the empirical expected value
over this dataset.
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2.3. Necessary Conditions for Causal Feature Selection

We assume that the outcome is specified by the formula
in Axiom (A). Although very general, this model does not
guarantee that we may identify Pa(Y ) from samples. In
fact, there may be multiple models as in Axiom (A) with
different causal parents, that induce the same joint probabil-
ity distribution on the observed variables. To overcome this
problem, we consider the following additional assumptions
on the data-generating process:

Axiom (B) ε is exogenous noise, independent of X .

Axiom (C) Y has no direct causal effect on any of the
features.

Axiom (B) is a standard assumption in the literature of con-
tinuous additive noise models (Peters et al., 2014). Axiom
(C) requires that the outcome Y does not causally affect
any of the features Xj . This requirement is aligned with
previous related work (Soleymani et al., 2022). As we show
in Section 3.2, under Axioms Axiom (A)-Axiom (C) we
can identify the causal parents of the outcome from sam-
ples. However, if either Axiom (B) or Axiom (C) fail, then
performing Causal Feature Selection from observations is
impossible. We show this, by considering two counterex-
amples, given in Example 2.1 and Example 2.2 respectively.

Example 2.1 (Necessity of Axiom (B)). Consider two
datasets {Xi, Yi} for i = 1, 2. The respective DGPs are
defined as follows:{

X1 = N1

Y1 = ε1
and

{
X2 = N2

Y2 = X2 + ε2

with (N1, ε1) ∼ N (0,Σ), a zero-mean joint Gaussian dis-
tribution with covariance matrix

Σ =

[
1 1
1 1

]
,

while N2 ∼ N (0, 1) and ε2 ≡ 0. Note that {X1, Y1}
satisfies Axiom (C) but violates Axiom (B), since the noise
ε1 is correlated with X1. Both datasets entail the same joint
probability distribution. However, Y1 is exogenous to the
model, whereas X2 yields a direct causal effect on Y2.

Example 2.1 shows that if Axiom (B) is violated, then it
is impossible to perform Causal Feature Selection from
observational data. We provide a second example, to show
that Axiom (C) is also necessary.
Example 2.2 (Necessity of Axiom (C)). Consider two
datasets {Xi, Yi} for i = 1, 2, with DGPs defined as:{

X1 = N1

Y1 = X1 + ε1
and

{
X2 = 0.5 · Y2 +N2

Y2 = ε2

where ε1, N1,∼ N (0, 1), ε2 ∼ N (0, 2) and N2 ∼
N (0, 0.5) are independent. In this case, dataset {X2, Y2}

satisfies Axiom (B) but violates Axiom (C), since Y2 causes
X2. Then, both datasets are jointly normal with zero mean
and the same covariance matrix. However, Y1 has as causal
parent X1, and Y2 has no causal parents.

3. Methodology
3.1. Double Machine Learning (DoubleML)

We provide a statistical test for Causal Feature Selection
based on DoubleML estimators. DoubleML is a general
framework for parameter estimation, which uses debiased
score functions and (double) cross-fitting to achieve

√
n-

consistency guarantees. Following Rotnitzky et al. (2020);
Chernozhukov et al. (2022), we provide a suitable debiased
score function using the Riesz Representation Theorem and
the Mixed Bias Property.

The Riesz Representation Theorem. Let V be the collec-
tion of observed random variables of an SCM as in Def-
inition A.1. Let X be a random variable in V , g any
real-valued function of X such that E[g2(X)] < ∞, and
consider a linear functional m(V ; g) in g. The Riesz Rep-
resentation Theorem ensures that, under certain conditions,
there exists a function α0 of X such that E[m(V ; g)] =
E[α0(X)g(X)]. The function α0 is called the Riesz Rep-
resenter (RR). Crucially, the RR only depends on the func-
tional m, and not on the function g. Chernozhukov et al.
(2021) shows that the Riesz representer can be estimated by
solving the following optimization problem:

α0 = argmin
α

E[α(X)2 − 2m(V ;α)]. (2)

Using the RR, we will derive a debiased score function for
the parameter θ0 := E[m(V ; g0)] with g0(X) = E[Y |X].
This score function is “debiased” in the sense that it fulfills
the Mixed Bias Property.

The Mixed Bias Property. The RR is crucial when learn-
ing an estimate θ̂0 of the parameter θ0 := E[m(V ; g0)]
as described above. In fact, as shown by Chernozhukov
et al. (2022); Rotnitzky et al. (2020), one can achieve

√
n-

consistency for θ̂0 by combining (double) cross-fitting with
a debiased learning objective of the form

φ(θ,η) := m(V ; g) + α(X) · (Y − g(X))− θ. (3)

Here, η := (α, g) is a nuisance parameter consisting of
a pair of square-integrable functions. Note that it holds
E[φ(θ0,η0)] = 0, with η0 := (α0, g0) consisting of the RR
α0 of the moment functional m(V ; g) and the conditional
expected value g0(X) = E[Y | X]. As shown by Cher-
nozhukov et al. (2022), the score function Eq. (3) yields

E[φ(θ0,η)] = −E[(α(X)− α0(X))(g(X)− g0(X))].

This equation corresponds to the Mixed Bias Property as in
Definition 1 of Rotnitzky et al. (2020). Hence, when cross-
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fitting or double-cross is employed, the resulting estimator
θ̂ has the double robustness property. That is, the quantity√
n(θ̂ − θ0) converges in distribution to a zero-mean Nor-

mal distribution whenever the product of the mean-square
convergence rates of α and g is faster than

√
n. By these

guarantees, if an estimator of g0 has a good convergence
rate, then the rate requirement on the estimator of the RR is
less strict, and vice versa.

3.2. The Average Controlled Direct Effect (ACDE)

Our approach to causal feature selection uses the ACDE.
The ACDE is a concept introduced by Pearl (2001) to pro-
vide an operational description of the statement “the variable
Xj directly influences the outcome Y ”. By this conceptual-
ization, we ask whether the expected outcome would change
under an intervention Xj ← xj , while holding the remain-
ing observed variables at a predetermined value. Following
the notation given in Section 2, the ACDE is defined as

ACDE(xj , x
′
j |xc

j) :=

E[Y | do(xj ,x
c
j)]− E[Y | do(x′

j ,x
c
j)]. (4)

This quantity captures the difference between the distribu-
tion of the outcome Y under Xj ← xj and Xj ← x′

j , when
we keep all other variables Xc

j fixed at some values xc
j . As

we will show later, under Axioms Axiom (A)-Axiom (C) a
variable Xj is a causal parent of Y if and only if the ACDE
is non-zero for at least a triple (xj , x

′
j ,x

c
j) of possible in-

terventional values. Hence, we can perform causal feature
selection by testing whether the ACDE is identically zero
or not.

Using the ACDE for Causal Feature Selection. Our
approach to causal feature selection essentially consists of
testing whether a feature Xj yields a non-zero average con-
trolled direct effect on the outcome. This approach is justi-
fied by the following result.

Lemma 3.1. Consider a causal model as in Axioms Ax-
iom (A)-Axiom (C), and fix a feature Xj . Then, E[Y |
do(xj ,x

c
j)] − E[Y | do(x′

j ,x
c
j)] ̸= 0 for some interven-

tional values xj , x
′
j and xc

j if and only if Xj ∈ Pa(Y ).

The proof is deferred to Appendix C. Intuitively, this proof
tells us that direct causal effects can be checked with the
expected value of the post-interventional outcome, instead
of the full distribution as in Eq. (1). This lemma crucially
relies on Axioms Axiom (A)-Axiom (C) and it does not
hold for general causal models.

Estimating the ACDE from samples. A major challenge
in using the ACDE for Causal Feature Selection is that
we do not assume knowledge of the post-interventional
outcome distribution. However, it turns out that we can
perform this test from observational data, by considering

this quantity:

χj := E(xj ,xc
j)∼(Xj ,Xc

j )

[(
E[Y |xj ,x

c
j ]− E[Y |xc

j ]
)2]

.

(5)
Under mild assumptions, testing whether χj = 0 is equiva-
lent to testing if there is no average direct effect.
Lemma 3.2. Consider a causal model as in Axioms Ax-
iom (A)-Axiom (C). Then, E[Y | do(xj ,x

c
j)] − E[Y |

do(x′
j ,x

c
j)] ̸= 0 almost surely if and only if χj ̸= 0. It

follows that χj ̸= 0 if and only if Xj ∈ Pa(Y ).

The proof is deferred to Appendix D. From this lemma, we
can use χj to estimate if a feature Xj is a causal parent of
the outcome Y , i.e., perform Causal Feature Selection, by
testing if χj = 0. Crucially, χj can be estimated efficiently
from samples.

3.3. Estimating the ACDE with DoubleML

We provide a debiased score function for χj , using the
Riesz representation theorem, as described in Section 3.1.
Crucially, we show that χj is the difference of the expected
value of two linear moment functionals. The following
lemma holds.
Lemma 3.3. Let χj be as in Eq. (5), and X = {Xj}∪Xc

j .
For any square-integrable random variable g(X), consider
the moment functional m0(V ; g) := Y g(X). Similarly, for
any square-integrable random variable h(Xc

j ), consider
the moment functional mj(V ;h) := Y h(Xc

j ).
1 Then, it

holds that

χj = E[m0(V ; g0)]− E[mj(V ;h0)],

with g0(X) = E[Y |X] and h0(X
c
j ) = E[Y |Xc

j ].

The proof is deferred to Appendix E. By this lemma, we can
estimate the parameter χj , by learning the parameters θ0 :=
E[m0(V ; g0)] and θj := E[mj(V ;h0)] separately and them
taking their difference. Both θ0 and θj are expected values
of linear moment functionals, so we can apply DoubleML as
described in Section 3.1 to obtain

√
n-consistent estimates

for them. The resulting estimators θ̂0 and θ̂j have the double
robustness property, and so does their difference χj = θ̂0 −
θ̂j . We can then take advantage of the fast convergence rate,
to determine if θ̂0 ≈ θ̂j with a paired t-test.

4. The DRCFS Algorithm
4.1. Overview

Our approach to causal discovery essentially consists of
testing whether a feature Xj yields a non-zero average con-
trolled direct effect on the outcome, following Lemma 3.1.

1Note that m0(V ; g) and mj(V ;h) are distinct functionals,
since they are defined over sets of functions with different domains.
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Algorithm 1 Doubly Robust Causal Feature Selection Algorithm (DRCFS)

1: split the n samples D = {(x1i, . . . , xmi, yi)}i=1,...,n into k disjoint sets D1, . . . ,Dk;
2: define Dc

l ← D \ Dl for all l ∈ [k];

3: for each l ∈ [k] do
4: construct an estimator ĝl(X) for E[Y |X] and an estimator α̂l(X) for the RR of m0, using samples in Dc

l ;
5: θ̂0,l ← ÊDl

[Y · ĝl(X)− Y · α̂l(X)− α̂l(X) · ĝl(X)];
6: σ̂2

0,l ← ÊDl
[(Y · ĝl(X)− Y · α̂l(X)− α̂l(X) · ĝl(X)− θ̂0,l)

2];
7: end for
8: θ̂0 ← 1

k

∑
l θ̂0,l and σ̂2

0 ← 1
k

∑
l σ̂

2
0,l;

9: for each feature Xj ∈X do
10: for each l ∈ [k] do
11: construct an estimator ĥj

l (X
c
j ) for E[Y |Xc

j ] and an estimator α̂j
l (X

c
j ) for the RR of mj

0, using samples in Dc
l ;

12: θ̂j,l ← ÊDl
[Y · ĥj

l (X
c
j )− Y · α̂j

l (X
c
j )− α̂j

l (X
c
j ) · ĥ

j
l (X

c
j )];

13: σ̂2
j,l ← ÊDl

[(Y · ĥj
l (X

c
j )− y · α̂j

l (X
c
j )− α̂j

l (X
c
j ) · ĥ

j
l (X

c
j )− θ̂jj,l)

2];
14: end for
15: θ̂j ← 1

k

∑
l θ̂j,l and σ̂2

j ← 1
k

∑
l σ̂

2
j,l;

16: perform a paired t-test to determine if θ̂j ≈ θ̂0 and select feature Xj if the null-hypotheses is rejected.
17: end for
18: return the selected features Xj ;

We refer to our approach as the Doubly Robust Causal Fea-
ture Selection Algorithm (DRCFS, see Algorithm 1). This
algorithm consists of the following steps:

• Select a variable Xj to test if Xj ∈ Pa(Y ).

• Estimate the parameter χj using DoubleML, as de-
scribed in Section 3.3. The resulting estimator χ̂j has
the double-robustness property.

• By Lemmas 3.2 and 3.1, the variable Xj is not a parent
of Y if and only if χj = 0. Use a paired t-test for χ̂j

to select or discard Xj as a parent of Y .

This procedure can be iterated for each of the features. Cru-
cially, the estimator χ̂j ought to have the double-robustness
property. To this end, we resort to Lemma 3.3. We
first estimate the parameters θ0 := E[m0(V , g0)] and
θj := E[mj(V , h0)] separately using DoubleML, and then
obtain the desired estimator χ̂j by taking the difference.

4.2. Double-Robustness of χ̂j

We now show that the estimand χ̂j as in Line 16 of Algo-
rithm 1 has the double-robustness property. To this end,
we show that θ̂0 and θ̂j in Algorithm 1 have the double
robustness property. We focus on θ̂0 since the case for θ̂j
is analogous. To this end, we can apply the Riesz represen-
tation theorem, as described in Section 3.1, to obtain that
θ0 = E[α0(X) ·m0(V ; g0)], with α0 the Riesz representer
of the moment functional, and g0 the conditional expected
value.

We can use DoubleML as in Section 3.1 to derive a debiased
score function for the term θ0. Consider a dataset of n sam-
ples D = {(x1i, . . . , xmi, yi)}i=1,...,n and let D1, . . . ,Dk

be a disjoint k-partition of this dataset. Following Eq. (3),
we provide an estimator θ̂0,l for θ0 on the partition Dl as

θ̂0,l = ÊDl
[Y · ĝl(X)− Y · α̂l(X)− α̂l(X) · ĝl(X)] (6)

Here, ÊDl
denotes the empirical expected value over Dl.

The function α̂l is an estimator for the Riesz representer
obtained by Eq. (2) over the complementary sample set
Dc

l = D \ Dl. Note that Eq. (6) corresponds to Line 5
of Algorithm 1. Similarly, ĝl is an estimator for the condi-
tional expected value, which is obtained as a solution of the
ℓ1-regularized regression problem (Rotnitzky et al., 2020)
over the sample set Dc

l = D \ Dl. We can also estimate
the variance over the samples as in Line 6 of Algorithm 1.
Estimates for the parameters θ0 and the variance are then

θ̂0 =
1

k

k∑
l=1

θ̂0,l and σ̂2
0 =

1

k

k∑
l=1

σ̂2
0,l.

These estimators are given in Line 8 of Algorithm 1, and
they have the double-robustness property, i.e.,

√
n(θ̂0 − θ0)⇝ N (0, σ2

0).

Furthermore, the empirical variance σ̂2
χj

is a
√
n-consistent

estimator for σ2
0 . Similarly, the parameters θ̂j and σ̂2

j as in
Line 15 of Algorithm 1 are doubly-robust.
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Figure 2: Performance (accuracy) of the algorithms w.r.t. number of nodes m for fully linear causal structures (f = f1 with
probability 1), where ps = 0.3, ph = 0, and ϵ ∼ N (0, 1). Each case is averaged over 50 simulations. We use ForestRiesz
with identity feature map ϕ(X) = X . DRCFS’s performance shows stability even for large graphs while the baselines
suffer in high dimensions. Plots for other metrics are provided in Appendix G, Figures 7 and 8.

4.3. Statistical Test

For a given confidence interval, testing whether χ̂j ≈ 0,
is equivalent to testing whether the estimates of θ̂j and θ̂0
have the same mean. To accomplish this, we perform paired
sample t-tests. Given the presence of multiple dependent
tests, in case the data is highly dependent, it is important to
control for false discovery rate (FDR) in order to accurately
assess the results. For this purpose, we apply the Benjamini-
Yekutieli procedure (Benjamini & Yekutieli, 2001).

5. Experiments
In this section, we evaluate the performance of our algorithm
extensively. First, we show the superiority of our method
compared to well-established algorithms, using synthetic
data consisting of causal structures created by various DGPs.
Second, we demonstrate a real-world application of DRCFS
on microbiome abundance. Lastly, we further showcase the
performance and scalability of our algorithm on bnlearn
benchmarks (Scutari, 2010).

5.1. Causal Feature Selection for Synthetic Data

Here, we discuss the data generating process, comparison
of the performance with the baselines, robustness of per-
formance w.r.t. various characteristics of the underlying
causal structure such as connectivity level, and quality of
estimations and statistical tests.

Data Generating Process. The DGP generally follows
the same procedure as Soleymani et al. (2022) to produce
direct acyclic graphs (DAGs): (1) Nodes are randomly per-
mutated to form a topological order. (2) For each pair of
nodes Xi and Xj , where Xi precedes Xj in this order, an
edge Xi → Xj is added to the graph with probability pc
(connectivity level). (3) The values are assigned to each

variable X as a transformation f of the direct causes of
that variable, plus posterior additive noise as in Axioms
Axiom (A)-Axiom (C) for each variable X ′ ∈ X ∪ {Y }.
(4) Each node X ∈ X is concealed to serve as a unseen
confounder with probability ph. The parameters of interest
in the DGP are: number of nodes m, number of observa-
tions n, connectivity level pc, transformation function f ,
random variable ϵ representing the additive noise, probabil-
ity of hiding each node ph to serve as unseen confounders.
For convenience, different choices of function f are given
in Appendix F.2. Let {f1, f2, . . . , fk} and {π1, π2, . . . , πk}
be the potential choices of f and their corresponding prob-
abilities, then f is chosen by f ∼

∑k
i=1 πiδfi , for each

variable X ′ ∈ X ∪ {Y }, where δ is the Dirac probability
measure.

Baselines. We compare the performance of our method with
a diverse set of causal structure learning and inference for
regression algorithms: LINGAM (Shimizu et al., 2006a),
order-independent PC (Colombo & Maathuis, 2014),
rankPC, rankFCI (Spirtes et al., 2000; Heinze-Deml et al.,
2018), MMHC (Tsamardinos et al., 2006), GES (Chick-
ering, 2003), rankGES, ARGES (adaptively restricted
GES (Nandy et al., 2016)), rankARGES, FCI+ (Claassen
et al., 2013), PCI (Shah & Peters, 2020), CORTH Fea-
tures (Soleymani et al., 2022), Standard Linear Regression,
Lasso with exact post-selection inference (Lee et al., 2016),
Debiased Lasso (Javanmard et al., 2015), Forward Stepwise
Regression for active variables (Loftus & Taylor, 2014; Tib-
shirani et al., 2016), Forward Stepwise Regression for all
variables (Loftus & Taylor, 2014; Tibshirani et al., 2016),
LARS for active variables (Efron et al., 2004; Tibshirani
et al., 2016), and LARS for all variables (Efron et al., 2004;
Tibshirani et al., 2016). R Packages "CompareCausalNet-
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Figure 3: Performance (CSI) of the algorithms w.r.t. number of nodes m for fully Log-sum-exp causal structures (f = f6
with probability 1), where ps = 0.5, ph = 0.1, and ϵ ∼ N (0, 1). Each case is averaged over 50 simulations. We use
ForestRiesz with identity feature map ϕ(X) = X . DRCFS’s performance shows stability even for large graphs while the
baselines suffer in high dimensions. Plots for other metric are provided in Appendix G, Figure 12.

Figure 4: Performance (accuracy) of the algorithms w.r.t. number of nodes m for causal structures with geometric mean
relationship (f = f5 with probability 0.8, f = f1 with probability 0.2), where ps = 0.5, ph = 0, and ϵ ∼ N (0, 1). Each
case is averaged over 50 simulations. We use ForestRiesz with identity feature map ϕ(X) = X . DRCFS’s performance
shows stability even for large graphs while the baselines suffer in high dimensions. Plots for other metric are provided in
Appendix G, Figures 13 and 14.

works"2 and "selectiveInference: Tools for Post-Selection
Inference"3 are used for a great number of the baselines.

Evaluation. We use accuracy, F1 score, and CSI (discussed
in Appendix F.1) as our evaluation metrics. We consider F1
score and CSI because they put emphasis on the number of
true positives.

Estimation Technique. In this section, we leverage a
special case of Generalized Random Forests (Athey et al.,
2019), called ForestRiesz (Chernozhukov et al., 2021)
to estimate the conditional expected value and RR as in
Lemma 3.3.4 We illustrate this technique, by focusing on

2https://cran.r-project.org/web/packages/
CompareCausalNetworks/index.html

3https://cran.r-project.org/web/packages/
selectiveInference/

4Another candidate estimator can be utilized to learn condi-

g0 and α0, since the case for gj , αj is analogous. As-
sume that g0 and α0 are locally linear with respect to
a smooth feature map ϕ, i.e., g0(X) = ⟨ϕ(X), β(X)⟩
and α0(X) = ⟨ϕ(X), γ(X)⟩ with β(X) and γ(X) non-
parametric estimators derived by the tree. Then, in or-
der to learn g0, we minimize the square loss R(β) =
En[(⟨ϕ(X), β(X)⟩ − Y )2]. This is equivalent to searching
for the solution of the equation

En[(⟨ϕ(X), β(X)⟩ − Y )ϕ(X) |X] = 0

in the variable β. Similarly, we learn the RR by
minimizing the score R(γ) = En[⟨ϕ(X), γ(X)⟩2 −
2γ(X)Tm(V ;ϕ(X))]. This amounts to solving

En[ϕ(X)ϕ(X)T γ(X)−m(V ;ϕ(X)) |X] = 0.

tional expected value and RR under the presence of complicated
structures is RieszNet introduced by Chernozhukov et al. (2021).
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Figure 5: The ratio of simulations that each variable is
selected by DRCFS to the total number of simulations (30)
for linear target f = f1. The ground truth about parental
status is given in the legend. DRCDS captures most of the
direct causes only with identity feature map ϕ(X) = X .

Thus, our approach is in line with the works by Athey et al.
(2019); Chernozhukov et al. (2021).

In order to effectively ensure fair evaluations against base-
lines, and to account for efficiency, the feature map used
in our evaluations within this section is set to the identity
function ϕ(X) = X . However, it should be noted that al-
ternative feature maps may be employed, to cater to specific
requirements and prior domain knowledge of the dataset.

Results. Evaluation of the performance of DRCFS and
the baselines for linear models (f = f1) are illustrated
w,r,t number of nodes in Figure 2. DRCFS significantly
outperforms the baselines in high dimensions. The same
plot for fully nonlinear models (Log-sum-exp f = f6 and
geometric mean f = f5) are shown in Figures 3 and 4. Note
that geometric mean has a highly nonlinear structure that
most of the existing models cannot support theoretically.
Similar plots for different settings, e.g., hide probability ph,
connectivity level pc, linear and nonlinear transformation
functions f , random variable ϵ are represented in Figures 7
to 14 (See Appendix G). DRCFS establishes reasonably
good performance w.r.t these settings, even though identity
feature map ϕ(X) = X is used,

5.2. Causal Feature Selection for Semi-synthetic Data on
Microbiome Abundance

In this part, to assess the performance of our algorithm
with a taste of real-world application, we conduct a semi-
synthetic experiment based on microbiome abundance data
in plant leaves from Regalado et al. (2020). The dataset con-
tains shotgun sequencing of 275 wild Arabidopsis Thaliana
leaf microbiomes. This shotgun data provides the ratio of
microbial load to plant DNA on the host planet. Microbiome
abundance datasets are known to have highly complicated

Figure 6: The ratio of simulations that each variable is se-
lected by DRCFS to the total number of simulations (30)
for Log-sum-exp target f = f6. The ground truth about
parental status is given in the legend. Despite the highly
complicated structure and limited number of observations,
DRCDS captures some of the direct causes only with iden-
tity feature map ϕ(X) = X .

underlying structures with hidden confounders such as the
environment, host genetics, and other biological interac-
tions (Lim et al., 2021; Regalado et al., 2020; Yang & Chen,
2022).

Dataset. Following the preprocessing, the dataset com-
prises 625 observations for 25 microorganisms (to serve as
confounders X) that exhibit the highest level of variations
within the dataset. These microorganisms are given in Ta-
ble 2. The natural target variables of interest for study often
include the abundance of bacterial, eukaryotic, and total
pathogenic organisms. Guided by this intuition, a subset of
10 confounders is randomly selected as direct causes from
the entire set of confounders. Subsequently, target variables
are constructed in adherence to Axioms Axiom (A)-Axiom
(C) with different choices of function f .

Results. The selection ratio by DRCFS for parent and non-
parent nodes is illustrated in Figures 5 and 6 for both linear
and nonlinear target functions. Despite a limited number of
observations, DRCFS is able to accurately identify most of
the direct causes in the linear case and many in the nonlinear
case, while maintaining a low false positive rate. Additional
plots for other target functions f can be found in Figure 15
(See Appendix G).

5.3. Causal Feature Selection for Bnlearn Benchmarks

To further demonstrate the performance, scalability, and
adaptability of our method across various domains, we
consider four additional bnlearn (Scutari, 2010)5 bench-
marks with different properties. The results and details

5https://cran.r-project.org/web/packages/
bnlearn/index.html
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Table 1: Report on Performance of DRCFS on bnlearn benchmarks. The characteristics of the included networks are
provided. To see the performance of DRCFS thoroughly on the underlying causal structure, please refer to Appendix G,
Figures 16 to 19. In the table, BN tands for “Bayesian Network”.

Category\Dataset ANDES MEHRA ALARM ARTH150

Type Discrete BN Conditional Linear Gaussian BN Discrete BN Gaussian BN
Number of nodes 223 (very large network) 24 (medium network) 37 (medium network) 107 (very large network)
Number of arcs 338 71 46 150
Number of parameters 1157 324423 509 364
Average Markov blanket size 5.61 13.75 3.51 3.35
Average degree 3.03 5.92 2.49 2.8
Maximum in-degree 6 13 4 6
Chosen target name SNode_65 pm2.5 PRSS 786

Accuracy 0.973 0.74 0.833 0.915

on these networks are reported in Table 1. The semi-
synthetic datasets that we include are ANDES (Conati
et al., 1997) (a very large size discrete Bayesian network),
MEHRA (Vitolo et al., 2018) (a medium size conditional
linear Gaussian Bayesian Network), ALARM (Beinlich
et al., 1989) (a medium size discrete Bayesian network)
and ARTH150 (Opgen-Rhein & Strimmer, 2007) (a very
large size Gaussian Bayesian network). The diagrams of
these networks with the inferred direct causes by DRCFS
are depicted in Appendix G, Figures 16 to 19. Notably, our
method shows good performance in all instances, with very
few false positives and no false negatives. In essence, it
effectively captures the entirety of direct causes while main-
taining a substantially low incidence of wrongly selected
variables.

6. Discussion
Limitations. In this work we have focused on the case
of learning causal features from observational data rather
than full causal discovery. Moreover, while we have shown√
n-consistency, the expectations in Algorithm 1 might in

practice only be approximated well if enough samples are
available to perform the required sample splitting efficiently
and without sacrificing approximation quality. Finally, since
our method is inspired by double machine learning-based
approaches (Rotnitzky et al., 2020), the focus is on bias
rather than variance reduction of estimates.

Conclusion and future work. We presented DRCFS, a dou-
bly robust feature selection method for identifying causal
features even in high-dimensional and nonlinear settings. In
extensive experiments including state-of-the-art baselines,
we demonstrated that our approach is significantly more
accurate across various metrics and across a wide range of
settings in synthetic and semi-synthetic datasets. Future
work could see the extension of our work, especially to
biomedical settings where the evaluation can not be con-
ducted with respect to the ground truth or to representation
learning approaches where features first have to be learned
before they can be selected. Another potential avenue for

future research is the extension to time series data. In the
long-term, we hope that these future algorithms as well as
the provided feature selection method will overall enable
users to better understand, interpret and explain the results
of machine learning-based decision-making.
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A. Structural Causal Models
Definition A.1 (Structural Causal Model (SCM), Definition 2.1 by Bongers et al. (2021)). A structural causal model (SCM)
is a tuple ⟨I, J,V ,U ,f ,PU ⟩ where (i) I is a finite index set of endogenous variables; (ii) J is a disjoint finite index set
of exogenous variables; (iii) V =

∏
j∈I Vj is the product of the domains of the endogenous variables, where each Vj is a

standard measurable space; (iv) U =
∏

j∈J Uj is the product of the domains of the exogenous variables, where each Uj

is a standard measurable space; (v) f : V ×U → V is a measurable function that specifies the causal mechanism; (vi)
PU =

∏
j∈J PUj

is a product measure, where PUj
is a probability measure on Uj for each j ∈ J.

In SCMs, the functional relationships between variables are expressed in terms of deterministic equations. This feature
allows us to model the cause-effect relationships of the data-generating process (DGP) using structural equations. For a
given SCM ⟨I, J,V ,U ,f ,PU ⟩ a structural equation specifies an endogenous random variable Vl via a measurable function
of the form Vl = fVl

(V ,U) for all l ∈ I. A parent i ∈ I ∪ J of l is any index for which there is no measurable function
g :

∏
j∈I\{i} Vj ×U → Vl with fVl

= g almost surely. Intuitively, each endogenous variables Vj is specified by its parents
together with the exogenous variables, via the structural equations. A structural equations model as in Definition A.1 can be
conveniently described with the causal graph, a directed graph of the form G = (I ∪ J, E). The nodes of the causal graph
consist of the entire set of indices for the variables, and the edges are specified by the structural equations, i.e., {j → l} ∈ E
iff j is a parent of l. Note that the variables in the set Pa(Vl) are indexed by the parent nodes of l in the corresponding graph
G.

A.1. Interventions

We define the causal semantics of SCMs, by considering perfect interventions (Pearl, 2000). For a given a SCM as in
Definition A.1, consider a variable W :=

∏
j∈I′ Vj for a set I′ ⊆ I, and let w :=

∏
j∈I′ vj be a point of its domain. The

perfect intervention W ← w amounts to replacing the structural equations Vj = fVj
(V ,U) with the constant functions

Vj ≡ vj for all j ∈ I′. We denote with Vl | do(w) the variable Vl after performing the intervention. This procedure define a
new probability distribution P(vl | do(w)), which we refer to as interventional distribution. This distribution entails the
following information: “Given that we have observed W = w, what would Vl have been had we set do(w), instead of the
value W had actually taken?”.

B. Unique Solvability
We introduce the notions of solvability and unique solvability as defined by (). These notions describe the existence and
uniqueness of measurable solution functions for the structural equations of a given subset of the endogenous variables.
Solvability of an SCM is a sufficient and necessary condition for the existence of a solution of an SCM, and unique solvability
implies the uniqueness of the induced observational distribution.

The notion of solvability is defined as follows.
Definition B.1 (Solvability, following Definition 3.1 by (Bongers et al., 2021)). Consider an SCM ⟨I, J,V ,U ,f ,PU ⟩. We
say that the SCM is solvable if there exists a measurable mapping g : V→ U such that v = g(u)⇒ v = f(v,u) almost
surely.

The unique solvability of an SCM is a stronger notion than mere solvability, and is defined as follows.
Definition B.2 (Unique Solvability, following Definition 3.3 by (Bongers et al., 2021)). Consider an SCM
⟨I, J,V ,U ,f ,PU ⟩. We say that the SCM is uniquely solvable if there exists a measurable mapping g : V→ U such that

v = g(u)⇔ v = f(v,u)

almost surely.

The unique solvability condition essentially ensures that there exists a measurable solution for the structural equations, and
that any possible solution induces the same observational distribution. Bongers et al. (2021) provide the following necessary
and sufficient conditions for the unique solvability of an SCM.
Theorem B.3 (Following Theorem 3.6 by Bongers et al. (2021)). Consider an SCM ⟨I, J,V ,U ,f ,PU ⟩. Then, the system
of structural equations V = f(V ,U) has a unique solution almost surely, if and only if the SCM is uniquely solvable.
Furthermore, if the SCM is uniquely solvable, then there exists a solution, and all solutions have the same observational
distribution.

13



DRCFS: Doubly Robust Causal Feature Selection

C. Proof of Lemma 3.1
Lemma 3.1. Consider a causal model as in Axioms Axiom (A)-Axiom (C), and fix a feature Xj . Then, E[Y | do(xj ,x

c
j)]−

E[Y | do(x′
j ,x

c
j)] ̸= 0 for some interventional values xj , x

′
j and xc

j if and only if Xj ∈ Pa(Y ).

Proof. Note that Xj ̸∈ Pa(Y ) if and only if Y | do(xj ,x
c
j) = Y | do(x′

j ,x
c
j) for all possible interventional values

xj ,x
c
j . Hence, the first part of the claim follows by showing that Y | do(xj ,x

c
j) = Y | do(x′

j ,x
c
j) if and only if

ACDE(xj , x
′
j |xc

j) = 0 almost surely. If Y | do(xj ,x
c
j) = Y | do(x′

j ,x
c
j), it directly follows that ACDE(xj , x

′
j |xc

j) = 0
almost surely, so it only remains to establish the converse. To this end, suppose that ACDE(xj , x

′
j |xc

j) = 0, and define the
group Z = Pa(Y ) consisting of all the parents of the outcome. Note that Z ⊆ {Xj} ∪Xc

j , since {Xj} ∪Xc
j consists of

all observed variables of the model. Hence, the intervention {Xj ,X
c
j } ← {xj ,x

c
j} defines an intervention on the parents

Z ← z, with z a sub-vector of {xj ,x
c
j}. Further, we can write the potential outcome as Y | do(xj ,x

c
j) = f(z) + ε.

Similarly, the intervention {Xj ,X
c
j } ← {x′

j ,x
c
j} defines an intervention of the form Z ← z′, and it follows that

Y | do(x′
j ,x

c
j) = f(z′) + ε. Therefore,

f(z) + E[ε] = E[Y | do(xj ,x
c
j)] = E[Y | do(x′

j ,x
c
j)] = f(z′) + E[ε]. (7)

where the first and the third equalities follow since ε is exogenous independent noise, and the second equality follows since
ACDE(xj , x

′
j |xc

j) = 0. From Eq. (7) we conclude that Y | do(xj ,x
c
j) = Y | do(x′

j ,x
c
j), as claimed.

D. Proof of Lemma 3.2
Lemma 3.2. Consider a causal model as in Axioms Axiom (A)-Axiom (C). Then, E[Y | do(xj ,x

c
j)]−E[Y | do(x′

j ,x
c
j)] ̸= 0

almost surely if and only if χj ̸= 0. It follows that χj ̸= 0 if and only if Xj ∈ Pa(Y ).

Proof. We first show that the claim follows if

E[Y | do(xj ,x
c
j)] = E[Y | xj ,x

c
j ] a.s., (8)

and then we will prove Eq. (8). To this end, assume that Eq. (8) holds and suppose that χj = 0, i.e., E[Y |xj ,x
c
j ] =

E[Y |xc
j ] = E[Y |x′

j ,x
c
j ] a.s. Then,

E[Y | do(xj ,x
c
j)] = E[Y | xj ,x

c
j ] = E[Y | x′

j ,x
c
j ] = E[Y | do(x′

j ,x
c
j)] a.s.

Here, the first and third equalities follow from Eq. (8). It follows that ACDE(xj , x
′
j |z) = 0 a.s. Conversely, suppose that

Eq. (8) holds, and that ACDE(xj , x
′
j |z) = 0. Then, it holds that E[Y | do(xj ,x

c
j)] = E[Y | do(x′

j ,x
c
j)] a.s., that is,

E[Y | do(xj ,x
c
j)] = E

[
E[Y | do(xj ,x

c
j)] | xc

j

]
. (9)

Hence,

E[Y | xj ,x
c
j ] = E[Y | do(xj ,x

c
j)] [by Eq. (8)]

= E[E[Y | do(xj ,x
c
j)] | xc

j ] [by Eq. (9)]

= E
[
E[Y | xj ,x

c
j ] | xc

j

]
[by Eq. (8)]

= E[Y | xc
j ],

and the claim follows.

We conclude the proof by showing that Eq. (8) holds. To this end, define the group Z = Pa(Y ) consisting of all the parents
of the outcome. Note that Z ⊆ {Xj} ∪Xc

j , since {Xj} ∪Xc
j consists of all observed variables of the model. By Axioms

(A)-(C), the outcome can be described as Y = f(Z) + ε, where ε is independent of {Xj} ∪Xc
j . Hence by Rule 2 of the

do-calculus (Pearl, 2000, page 85), Y | do(xj ,x
c
j) ∼ Y | xj ,x

c
j , because Y becomes independent of {Xj} ∪Xc

j once all
arrows from Z to Y are removed from the graph of the DGP. Therefore, E[Y | do(xj ,x

c
j)] = E[Y | xj ,x

c
j ].
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E. Proof of Lemma 3.3
Lemma 3.3. Let χj be as in Eq. (5), and X = {Xj} ∪Xc

j . For any square-integrable random variable g(X), consider
the moment functional m0(V ; g) := Y g(X). Similarly, for any square-integrable random variable h(Xc

j ), consider the
moment functional mj(V ;h) := Y h(Xc

j ).
6 Then, it holds that

χj = E[m0(V ; g0)]− E[mj(V ;h0)],

with g0(X) = E[Y |X] and h0(X
c
j ) = E[Y |Xc

j ].

Proof. Since Xc
j ⊂X , we have by the tower property of the expectation (Williams, 1991) that

χj = E[
(
E[Y |X]− E[Y |Xc

j ]
)2
]

= E[E[
(
E[Y |X]− E[Y |Xc

j ]
)2 |Xc

j ]]

= E[E[(E[Y |X]2 − E[Y |X]E[Y |Xc
j ]) |Xc

j ]]

= E[E[Y |X]2]− E[E[(E[Y |X]E[Y |Xc
j ]) |Xc

j ]]

= E[E[Y |X]2]− E[E[Y |Xc
j ]

2]

= E[Y E[Y |X]]− E[Y E[Y |Xc
j ]].

The claim follows since m0(V ; g0) = Y E[Y |X] and mj(V ;h0) = Y E[Y |Xc
j ].

F. Experimental Setup
F.1. Evaluation Metrics

We use Accuracy, F1 Score (harmonic mean of precision and sensitivity) and Critical Success Index (CSI) as metrics to
assess the performance of the algorithms. Given the number of true positives TP, true negatives TN, false positives FP, and
false negatives FN, these metrics are defined as,

• ACC = TP + TN
TP + TN + FP + FN • F1 = 2TP

2TP + FP + FN • CSI = TP
TP + FP + FN

The reason that we consider F1 score, and CSI is the emphasis placed on the number of true positives within their calculations.

F.2. Designs for Transformation Function f

Distributions over the different choices of the transformation function f are used in the experiments to generate the variables
based on X = f(Pa(X)) + ε, for a subset Pa(X) ⊆X:

• Linear:

f1(Pa(X)) = a
∑

X′∈Pa(X)

X ′ + b,

with a = 0.5 and b = 0, unless stated exactly other-
wise.

• Sum-sqrt:

f2(Pa(X)) = a
∑

X′∈Pa(X)

√
|X ′|+ b,

with a = 0.5 and b = 0, unless stated exactly other-
wise.

• Sum-sine:

f3(Pa(X)) = a
∑

X′∈Pa(X)

sin(c.X ′) + b,

with a = 1, b = 0 and c = 0.5, unless stated exactly
otherwise.

• Sum-tanh:

f4(Pa(X)) = a
∑

X′∈Pa(X)

tanh(c.X ′) + b,

with a = 1, b = 0 and c = 2, unless stated exactly
otherwise.

6Note that m0(V ; g) and mj(V ;h) are distinct functionals, since they are defined over sets of functions with different domains.
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• Geometric mean:

f5(Pa(X)) = a
∏

X′∈Pa(X)

|X ′|
1

card(Pa(X)) + b,

with a = 3 and b = 0.1, unless stated exactly other-
wise.
• Log-sum-exp:

f6(Pa(X)) = a log (
∑

X′∈Pa(X)

eX
′
) + b,

with a = 1 and b = log 2, unless stated exactly other-
wise.

• Sqrt-sum:

f7(Pa(X)) = a

√
|

∑
X′∈Pa(X)

X ′|+ b,

with a = 1 and b = 0, unless stated exactly otherwise.

F.3. Semi-synthetic Data on Microbiome Abundance

The 25 covariates that demonstrate the highest variations in microbiome abundance within the dataset provided by Regalado
et al. (2020) are listed in Table 2. These covariates subsume a diverse set of Bacteria/Eukaryote groups that are common in
leaves, soil, and water.

Table 2: 25 covariates of the microbiome abundance with highest variations within the dataset provided by Regalado et al.
(2020).

Microbiome Abbreviation
Enterobacteriaceae ENTE
Burkholderiaceae BURK
Pasteurellaceae PAST
Brucellaceae BRUC
Pseudomonadaceae PSEU
Acetobacteraceae ACET
Alcaligenaceae ALCA
Rhizobiaceae RHIZ
Sphingomonadaceae SPHI

Microbiome Abbreviation
Xanthomonadaceae XANT
Comamonadaceae COMA
Phyllobacteriaceae PHYL
Oxalobacteraceae OXAL
Peronosporaceae PERO
Albuginaceae ALBU
Pectobacteriaceae PECT
Bradyrhizobiaceae BRAD

Microbiome Abbreviation
Erwiniaceae ERWI
Caulobacteraceae CAUL
Methylobacteriaceae METH
Hyphomicrobiaceae HYPH
Erythrobacteraceae ERYT
Campylobacteraceae CAMP
Aurantimonadaceae AURA
Moraxellaceae MORA

G. Additional Plots
In this section, additional plots for the experiments are provided.

Figure 7: Performance (CSI) of the algorithms w.r.t. number of nodes m for fully linear causal structures (f = f1 with
probability 1), where ps = 0.3, ph = 0, and ϵ ∼ N (0, 1). Each case is averaged over 50 simulations. ForestRiesz with
identity feature map ϕ(X) = X has been used in these experiments. DRCFS’s performance shows stability even for large
graphs while the baselines suffer in high dimensions.
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Figure 8: Performance (F1 score) of the algorithms w.r.t. number of nodes m for fully linear causal structures (f = f1 with
probability 1), where ps = 0.3, ph = 0, and ϵ ∼ N (0, 1). Each case is averaged over 50 simulations. ForestRiesz with
identity feature map ϕ(X) = X has been used in these experiments. DRCFS’s performance shows stability even for large
graphs while the baselines suffer in high dimensions.

Figure 9: Performance (Accuracy) of the algorithms w.r.t. number of nodes m for causal structures defined as linear
combinations of nonlinear functions (f = f2 with probability 0.5, f = f3 with probability 0.25, f = f4 with probability
0.25), where ps = 0.5, ph = 0, and ϵ ∼ β(2, 5). Each case is averaged over 50 simulations. ForestRiesz with identity
feature map ϕ(X) = X has been used in these experiments. DRCFS shows reasonably good performance, even though
the identity feature map is used. Nevertheless, alternative feature maps taking into account prior domain knowledge of the
dataset could be used. CORTH Features dominates others because in the regime that the noise is defined, summations of
non-linear terms in DGP fro the target variable act approximately linear, hence, these results are consistent with Soleymani
et al. (2022).
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Figure 10: Performance (CSI) of the algorithms w.r.t. number of nodes m for causal structures defined as linear combinations
of nonlinear functions (f = f2 with probability 0.5, f = f3 with probability 0.25, f = f4 with probability 0.25), where
ps = 0.5, ph = 0, and ϵ ∼ β(2, 5). Each case is averaged over 50 simulations. ForestRiesz with identity feature map
ϕ(X) = X has been used in these experiments. DRCFS shows reasonably good performance, even though the identity
feature map is used. Nevertheless, alternative feature maps taking into account prior domain knowledge of the dataset could
be used. CORTH Features dominates others because in the regime that the noise is defined, summations of non-linear terms
in DGP fro the target variable act approximately linear, hence, these results are consistent with Soleymani et al. (2022).

Figure 11: Performance (F1 score) of the algorithms w.r.t. number of nodes m for causal structures defined as linear
combinations of nonlinear functions (f = f2 with probability 0.5, f = f3 with probability 0.25, f = f4 with probability
0.25), where ps = 0.5, ph = 0, and ϵ ∼ β(2, 5). Each case is averaged over 50 simulations. ForestRiesz with identity
feature map ϕ(X) = X has been used in these experiments. DRCFS shows reasonably good performance, even though
the identity feature map is used. Nevertheless, alternative feature maps taking into account prior domain knowledge of the
dataset could be used. CORTH Features dominates others because in the regime that the noise is defined, summations of
non-linear terms in DGP fro the target variable act approximately linear, hence, these results are consistent with Soleymani
et al. (2022).
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Figure 12: Performance (F1 score) of the algorithms w.r.t. number of nodes m for fully Log-sum-exp causal structures
(f = f6 with probability 1), where ps = 0.5, ph = 0.1, and ϵ ∼ N (0, 1). Each case is averaged over 50 simulations. We
use ForestRiesz with identity feature map ϕ(X) = X . DRCFS’s performance shows stability even for large graphs while
the baselines suffer in high dimensions.

Figure 13: Performance (CSI) of the algorithms w.r.t. number of nodes m for causal structures with geometric mean
relationship (f = f5 with probability 0.8, f = f1 with probability 0.2), where ps = 0.5, ph = 0, and ϵ ∼ N (0, 1). Each
case is averaged over 50 simulations. We use ForestRiesz with identity feature map ϕ(X) = X . DRCFS’s performance
shows stability even for large graphs while the baselines suffer in high dimensions.

Figure 14: Performance (F1 Score) of the algorithms w.r.t. number of nodes m for causal structures with geometric mean
relationship (f = f5 with probability 0.8, f = f1 with probability 0.2), where ps = 0.5, ph = 0, and ϵ ∼ N (0, 1). Each
case is averaged over 50 simulations. We use ForestRiesz with identity feature map ϕ(X) = X . DRCFS’s performance
shows stability even for large graphs while the baselines suffer in high dimensions.
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(a) Linear target f = f1. The ground truth about parental status
is given in the legend. Despite the highly complicated structure,
DRCDS captures most of the direct causes only with identity
feature map ϕ(X) = X .

(b) Log-sum-exp target f = f6. The ground truth about parental
status is given in the legend. Despite the highly complicated
structure and limited number of observations, DRCDS captures
some of the direct causes only with identity feature map ϕ(X) =
X .

(c) Sqrt-sum target f = f7. The ground truth about parental status
is given in the legend. Despite the highly complicated structure
and limited number of observations, DRCDS captures some of the
direct causes only with identity feature map ϕ(X) = X .

(d) Sum-tanh target f = f4. The ground truth about parental status
is given in the legend. Despite the highly complicated structure
and limited number of observations, DRCDS captures some of the
direct causes only with identity feature map ϕ(X) = X .

Figure 15: The ratio of simulations that each variable is selected by DRCFS to the total number of simulations (30) for
different target functions f .
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ANDES Dataset (n = 223, arcs = 338)

False
Positive

True
Positive

Target

Accuracy = 0.973

Figure 16: Causal Structure of ANDES benchmark (Scutari, 2010) and DRCFS’s inferred causes. ANDES is a very large
size discrete Bayesian network. DRCFS has good performance with very few false positives and no false negatives.
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MEHRA Dataset (n = 24, arcs = 71)

False
Positive

True
Positive

Target

Accuracy = 0.74

Figure 17: Causal Structure of MEHRA benchmark (Scutari, 2010) and DRCFS’s inferred causes. ANDES is a medium
size conditional linear Gaussian Bayesian network. DRCFS has good performance with very few false positives and no false
negatives.
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Target

True
Positive

False
Positive

Alarm Dataset (n = 37, arcs = 46) Accuracy = 0.833

Figure 18: Causal Structure of ALARM benchmark (Scutari, 2010) and DRCFS’s inferred causes. ANDES is a medium
size discrete Bayesian Network. DRCFS has good performance with very few false positives and no false negatives.
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ARTH150 Dataset (n = 107, arcs = 150)

Target

True
Positive

False
Positive

Accuracy = 0.915

Figure 19: Causal Structure of ARTH150 benchmark (Scutari, 2010) and DRCFS’s inferred causes. ANDES is a very large
size Gaussian Bayesian network. DRCFS has good performance with very few false positives and no false negatives.

24


