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ABSTRACT

Federated learning (FL) allows multiple clients to jointly train a machine learning
model in such a way that no client has to share their data with any other partic-
ipating party. In the supervised setting, where all client data is fully labeled, FL
has been widely adopted for learning tasks that require data privacy. However, it
is an ongoing research question how to best perform federated learning in a semi-
supervised setting, where the clients possess data that is only partially labeled or
even completely unlabeled. In this work, we propose a new method, FedProp,
that follows a manifold-based approach to semi-supervised learning (SSL). It es-
timates the data manifold jointly from the data of multiple clients and computes
pseudo-labels using cross-client label propagation. To avoid that clients have to
share their data with anyone, FedProp employs two cryptographically secure yet
highly efficient protocols: secure Hamming distance computation and secure sum-
mation. Experiments on three standard benchmarks show that FedProp achieves
higher classification accuracy than previous federated SSL methods. Furthermore,
as a pseudo-label-based technique, FedProp is complementary to other federated
SSL approaches, in particular consistency-based ones. We demonstrate experi-
mentally that further accuracy gains are possible by combining both.

1 INTRODUCTION

Federated Learning (FL) is a machine learning paradigm in which multiple clients, each holding
their own data, cooperate to jointly train a model. Training is coordinated by a central server, which,
however, must not have direct access to client data. Typically this is not due to the server being
viewed as a hostile party but rather to comply with external privacy and legal constraints that require
client data to remain stored on-device. FL has been receiving abundant interest in recent years as it
allows models to be trained on valuable data that would otherwise be inaccessible. To date, the vast
majority of research within FL has been focused on the supervised setting, in which client data is
fully labeled. However, in many real-world settings, this is not the case. For instance, in cross-device
FL, smartphone users are not likely to be interested in annotating more than a handful of the photos
on their devices or in a cross-silo setting the labeling of medical imaging data may be both costly
and time consuming. As such, in recent years there has been growing interest in learning from partly
labeled data in a federated setting.

In this work we propose FedProp, a method for semi-supervised learning (SSL) in the federated
setting that follows a manifold-based approach to pseudo-labeling client data. During each training
round FedProp leverages the data of multiple clients to obtain an estimate of the data manifold
which it then uses to compute pseudo-labels for clients’ unlabeled data via label propagation. Using
these pseudo-labels clients then train in a supervised manner for the remainder of the round. The
motivation for this approach comes from the fact that the more data that is available, the more
densely we have sampled the manifold and therefore the better our estimates and pseudo-labels will
be. Thus, it is of crucial importance to be able to combine information from multiple clients, rather
than treating each client’s data in isolation. The key challenge lies in how to perform such cross-
client pseudo-labeling, the steps of which would normally require the data of participating parties to
be shared in order to estimate the manifold and compute label propagation.

Our main contribution lies in the CrossClientLP subroutine of FedProp, which we propose to
address this challenge. It uses locality-sensitive hashing and secure Hamming distance computa-
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tion to efficiently estimate the cross-client data manifold. It then distributes the label propagation
computation across clients and aggregates the results using secure summation. CrossClientLP
preserves privacy, in the sense that it does not require clients to share their data with anyone else.
At the same time, it adds only limited communication and computation overhead relative to popular
federated learning methods such as FederatedAveraging.

Our experiments show that FedProp outperforms all existing methods for federated semi-supervised
learning, as well as a range of natural baselines in the standard CIFAR-10 setup. Going beyond
prior work, we also evaluate FedProp on more challenging datasets, namely CIFAR-100 and Mini-
ImageNet, where we also observe substantial improvements in accuracy. Moreover, as a method
for pseudo-labeling unlabeled data, FedProp is orthogonal to other approaches for federated SSL, in
particular those based on consistency regularization. We demonstrate this empirically by combining
FedProp with such an approach and observing that this often leads to further accuracy gains.

2 RELATED WORK

Semi-supervised Learning Semi-supervised learning (SSL) is a classical and well studied prob-
lem in machine learning where the goal is to leverage both labeled and unlabeled training examples
to improve performance on some task, see (Chapelle et al., 2006) for a full overview. In recent years
there has been a great deal of interest in applying deep learning techniques to SSL. Broadly speaking
such semi-supervised deep learning approaches can be categorized into two groups. The first group
consists of methods that add an unsupervised loss term to the objective function. In particular many
of these methods introduce some form of consistency regularization (Sajjadi et al., 2016), which
encourages the model to produce similar outputs for similar inputs, examples include (Tarvainen &
Valpola, 2017; Berthelot et al., 2019; Xie et al., 2020). The second group consists of methods that
exploit unlabeled data by computing pseudo-labels for unlabeled points and then training on these in
a supervised fashion, for instance (Lee, 2013; Shi et al., 2018; Iscen et al., 2019; Rizve et al., 2021).
Combinations of both approaches are also possible (Iscen et al., 2019; Sohn et al., 2020).

Federated Learning Federated learning (FL) (McMahan et al., 2017) was originally proposed
for learning on private fully labeled data split across multiple clients. For a survey on recent devel-
opments in the field see (Kairouz et al., 2021). A number of recent works propose federated learning
in the absence of fully labeled data. When only unlabeled data is available, methods for cluster anal-
ysis, dimensionality reduction have been proposed (Dennis et al., 2021; Grammenos et al., 2020).
Federated self-supervised learning (Zhuang et al., 2022; Makhija et al., 2022) can also be performed
where the goal is to learn representations of unlabeled data that can later be fine-tuned to other tasks.
However, all of these settings are different from the task of semi-supervised learning, in which the
goal is to directly learn better classifiers from labeled and unlabeled client data.

For semi-supervised FL, several works follow a consistency-based approach. Jeong et al. (2021)
propose inter-client consistency and parameter decomposition to separately learn from labeled and
unlabeled data. Long et al. (2020) apply consistency locally through client based teacher models.
Zhang et al. (2021) and Diao et al. (2022) focus on an alternative setting in which the server has
access to labeled data. In this setting Zhang et al. (2021) combine local consistency with grouping
of client updates to reduce gradient diversity while Diao et al. (2022) combine consistency, through
strong data augmentation, with pseudo-labeling unlabeled client data. Other methods focus exclu-
sively on pseudo-labeling: Albaseer et al. (2020) and Lin et al. (2021) both use network predictions
to assign pseudo labels, while Presotto et al. (2022) develop a specialized method for human activ-
ity recognition which uses label propagation locally on each client to pseudo label incoming data.
Unlike in classical SSL, none of the above methods fully make use of the knowledge gained from
estimating the data manifold because they exploit interactions between data points at most locally
within each client. In contrast, FedProp uses securely computed cross-client interactions, thereby
obtaining a better estimate of the data manifold.

3 PRELIMINARIES AND BACKGROUND

We assume a federated classification setting with m clients coordinated by a central server. Each
client j possesses partly labeled data (X

(j)
L , y

(j)
L , X

(j)
U ) with X

(j)
L := {x(j)1 , . . . , x

(j)

l(j)
}, y(j)L :=
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(a) Label propagation. Left: a dataset with 2 labeled
data points per class (colored) and many unlabeled ones
(black). Right: soft labels for the unlabeled data points
are estimated by propagating label information along a
10-nearest-neighbor graph.

(b) Locality sensitive hashing. The
expected number of random hyper-
planes that separate two data points
(here: 2 out of 10) is proportional to
the angle between the points.

Figure 1: Illustration of label propagation (a) and locality sensitive hashing (b).

Algorithm 1: LabelPropagation
Input: data matrix V , matrix of partial labels Y

1 A← matrix of pairwise cosine similarities Aij =
⟨vi,vj⟩

∥vi∥∥vj∥

2 B ← sparsifyA to k-NN graph by Bij =
{
Aij if Aij ∈ topk+1

(
(Ais)s∈[n]

)
and i ̸= j,

0 otherwise
3 W ← B +B⊤

4 W ← D− 1
2WD− 1

2 for D = diag(W1n)
5 Z ← (Idn − αW)−1Y

6 Ẑ ← normalize Z via Ẑij = Zij/(
∑C
c=1 Zic)

7 ŷ ← compute labels via ŷi = argmaxc∈[C] Ẑic

8 ω ← compute weights via ωi = 1−H(Ẑi)/ logC with H(p) = −
∑
j∈[C] pj log pj .

Output: pseudo-labels ŷ, weights ω

{y(j)1 , . . . , y
(j)

l(j)
} and X(j)

U := {x(j)
l(j)+1

, . . . , x
(j)

n(j)}. Here l(j) and n(j) denote the number of labels
and the total number of data points owned by client j. Let D denote the data dimension, so that
x
(j)
i ∈ RD, and C the number of classes, so that y(j)i ∈ [C] := {1, . . . , C}. We further denote by
fθ : RD → RC a parametric classifier of the data, with parameters θ, which in our case is a deep
neural network. We decompose fθ into a feature extractor fϕ : RD → Rd and a classifier head
fψ : Rd → RC , so that fθ = fψ ◦ fϕ with θ = (ψ, ϕ). In standard fashion, fθ will be trained by
stochastic gradient optimization of a loss function L(X,Y, ω; θ) =

∑n
i=1 ωiℓ(fθ(xi), yi), where ωi

are per-sample weights and ℓ is the cross entropy loss.

Our aim is to learn the classifier fθ by making use of all client data, both labeled and unlabeled,
while respecting the key principle of a federated learning setting, namely that clients should not be
required to share their data with anyone else. To this end, we build on two established techniques:
label propagation and locality-sensitive hashing, which we now introduce.

3.1 LABEL PROPAGATION (LP)

Given partly labeled data, LP is a classic technique for assigning (pseudo-)labels to the unlabeled
data. We describe a variant of the graph-based diffusion approach of Zhou et al. (2004). The key idea
is to propagate label information from labeled to unlabeled points taking into account the geometry
of the underlying data manifold, see Figure 1a for an illustration. The manifold is approximated by
a neighborhood graph of the data, in which points are connected based on how similar they are.

Algorithm 1 describes the procedure in pseudocode. As input, it takes a set of data vectors, V =
VL ∪ VU = {v1, . . . vl, vl+1, . . . vn}, and partial labels {y1, . . . , yl} from C classes, which we
encode in one-hot matrix form: Y ∈ Rn×C with Yic = 1(yi=c) for i ≤ l and Yic = 0 otherwise.
The algorithm starts by computing a matrix A ∈ Rn×n of pairwise similarities between all data
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Algorithm 2: FedProp

Input: labeled data (X
(j)
L , y

(j)
L )mj=1, unlabeled data (X

(j)
U )mj=1 // stored on-device at clients

1 θ ← initialize randomly
2 θ ← FederatedOptimization(X(j)

L , y
(j)
L ) // initial training on labeled examples

3 for round t ∈ [1, . . . T ] do
4 P ← server randomly selects τm clients
5 Server broadcasts θ to each client in P
6 for client j ∈ P in parallel do
7 V (j) ← fϕ(X

(j)) with X(j) := X
(j)
L ∪X

(j)
U // embed labeled and unlabeled data

8 ŷ(j), ω(j) ← CrossClientLP(V (j), Y (j), P, Server) // compute pseudo-labels
9 θ(j) ← ClientUpdate(X(j), ŷ(j), ω(j), E; θ) // train with pseudo-labels

10 Client j sends θ(j) to the server

11 θ ← ServerUpdate
(
(θ(j))j∈P )

)
Output: model parameters θ

points (line 1). A is sparsified by keeping only each point’s k nearest neighbors, symmetrized, and
then normalized (lines 2–4), resulting in a transition matrix, W . Label propagation now amounts
to repeatedly spreading label information across the resulting graph by multiplying with αW until
convergence, where α ∈ (0, 1) is a hyper-parameter reflecting how much the algorithm should
weight the original labels. The outcome of this can be computed in closed form (line 5). The
resulting matrix, Z ∈ Rn×C , can be interpreted as unnormalized class scores for each data point.
Normalizing Z across rows yields, for each point, a probability distribution across all classes (line
6). From this, one assigns a maximum-likelihood label to each point (line 7) as well as a weight
reflecting the confidence in the assignment based on the entropy of class probabilities (line 8).

3.2 LOCALITY-SENSITIVE HASHING (LSH)

LSH (Indyk & Motwani, 1998) is a procedure for hashing real-valued vectors into binary vectors
while preserving their similarity. Let v ∈ Rd be a vector. To encode v into a binary vector b of length
L, LSH randomly samples L hyperplanes in Rd. For each hyperplane it checks whether v lies above
or below it and sets the ith bit in b as 1 or 0 accordingly. Formally, bi = 1⟨v,ui⟩≥0, where ui ∈ Rd
is the normal vector of the ith hyperplane. A key property of LSH is that it approximately preserves
cosine-similarity. Concretely, for vectors v1, v2 with LSH encodings b1, b2, one has ⟨v1,v2⟩

∥v1∥∥v2∥ ≈
cos(πH(b1, b2)/L) where H is the Hamming distance (number of bits that differ) between two
binary vectors. The reason is that the probability of b1 and b2 differing at any bit i is the probability
that the ith sampled hyperplane lies between v1 and v2, which is equal to ∠(v1, v2)/π, see Figure 1b.
By the law of large numbers, the more hyperplanes one samples, the better the approximation quality.

4 FEDPROP: LABEL PROPAGATION FOR FEDERATED SSL

In the following section we describe our approach to the problem of federated semi-supervised learn-
ing. FedProp, shown in pseudocode in Algorithm 2, follows a general FL template of alternating lo-
cal and global model updates. As such, it is compatible with existing FL optimization schemes such
as FederatedAveraging (McMahan et al., 2017), FedProx (Li et al., 2020), or SCAFFOLD (Karim-
ireddy et al., 2020). The choice of scheme, which we refer to as FederatedOptimization,
determines the exact form of ClientUpdate and ServerUpdate.

The first stage of FedProp (lines 1–2) is to initialize the model with federated training on only the
labeled examples. The second stage takes place over T rounds. To start each round the server
samples some fraction τ of the clients. Each sampled client gets the current model parameters from
the server and embeds its labeled and unlabeled data with the feature extractor fϕ. Clients and
server then collaboratively execute a cross-client label propagation step on these embeddings (line
8), which we discuss in detail in Section 4.1. As output of this step each client gets pseudo-labels and
weights for their unlabeled data, which they then use to run E epochs of local supervised training.
Finally, clients send the updated local models to the server which aggregates them (lines 10–11).
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Algorithm 3: CrossClientLP
Input: set of clients P , client data (V (j), Y (j))j∈P // data stored on-device at clients
1-XS: Setup: clients exchange private and public keys, agree on random seeds
2-CS: for client j ∈ P in parallel do
3-CS: Π← L random projections // same Π for each client
4-CS: B(j) ← LSH(V (j),Π)

5-XS: H ← SecureHamming((B(j))j∈P ) // server gets Hamming matrix
6-SS: A← compute cosine similarity matrix from H // line 1 of Alg. 1
7-SS: B ← sparsify A to k-NN graph // line 2 of Alg. 1
8-SS: W = B +B⊤ // line 3 of Alg. 1
9-SS: W ← D− 1

2WD− 1
2 // line 4 of Alg. 1

10-SS: S ← (Idn − αW)−1 // line 5 of Alg. 1 (server part)
11-CS: for client j ∈ P in parallel do
12-CS: S

(j)
L ← labeled-colsj(S) // client gets columns corresponding to labeled data

13-CS: Z̄(j) ← S
(j)
L Y

(j)
L // line 5 of Alg. 1 (per-client part)

14-XS: Z(j) ← SecureSum
(
(rowsj(Z̄(k))k∈P

)
// line 5 of Alg. 1 (cross-client part)

15-CS: Ẑ(j) ← normalize(Z(j)) // line 6 of Alg. 1
16-CS: ŷ(j), ω(j) ← pseudo-labels and weights // lines 7 – 8 of Alg. 1

Output: pseudo-labels and weights (ŷ(j), ω(j))j∈P // available only to respective clients

4.1 CROSS-CLIENT LABEL PROPAGATION

To compute pseudo-labels, we would like to execute label propagation over a cross-client neighbor-
hood graph built from the embedded data of all currently selected clients. The challenge lies in how
to carry out this computation. By default, Algorithm 1 would require the clients to share the feature
embeddings of their data in order to compute the similarity matrixA (line 1) and to share their labels
when computing the class score matrix Z (line 5), thereby violating the constraints of the federated
setting. A naive solution to overcoming this problem would be to execute Algorithm 1 in its entirety
using multi-party computation (MPC) (Yao, 1982; Cramer et al., 2015), a set of cryptographic tools
that—in principle—allow participants to jointly compute any function in a way that leaks no infor-
mation to any of them. However, for complicated functions of real-valued inputs, such as matrix
inversion, MPC has high computational and communication overhead and would not be practical.

Our main contribution lies in the CrossClientLP routine, which allows secure yet efficient com-
putation of pseudo-labels based on cross-client label propagation. The key idea is to take a hybrid
approach and divide the steps of the LP algorithm into three groups: steps that clients execute locally
using only their own data (client steps, CS), steps that the server executes on aggregated data (server
steps, SS), and steps that require computing quantities based on cross-client data (cross steps, XS).

Adopting the viewpoint in which the server is non-hostile, we trust the server to execute its steps
on non-revealing aggregate data and return correct results of computations.1 Client steps are also
unproblematic from a privacy viewpoint, so what remains is how to execute the cross steps efficiently
yet without leaking client data. To do so, we transform the problem into a form that is equivalent but
allows for the application of tailored cryptographic tools, that are highly efficient yet fully secure.

Algorithm 3 shows pseudo-code for CrossClientLP. For simplicity of exposition, we describe
it as if communication between clients were possible, which is a reasonable assumption in a cross-
silo setting. If this is not possible, as is likely the case in cross-device FL, then communication
is orchestrated by the server, see e.g. Bonawitz et al. (2017). First, the clients use a secure key
exchange procedure to agree on a shared random seed that remains unknown to the server (line 1).
This is a common step in federated learning when cryptographic methods are meant to be employed,
see e.g. the description in Bonawitz et al. (2017). The clients use the agreed-on random seed to
generate a common set of L random projections (line 3). Each client then uses LSH to hash its

1In particular we do not consider malicious servers in the cryptographic sense, which would be allowed to
employ attacks such as model poisoning or generating fake clients in order to break the protocol.
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feature vectors into a binary representation (line 4), as this is the most efficient input format for
cryptographic computation. The key insight here is that all clients should use the same random
projections. That way, it is possible to recover the cosine similarity between any two feature vectors,
even across clients, from the Hamming distance between their binary representations. To securely
compute all Hamming distances, each pair of clients run a suitable cryptographic routine, such
as SHADE (Bringer et al., 2013). From this, the server receives a matrix, H ∈ Nn×n, for n =∑
j∈P n

(j), containing the Hamming distances between all pairs of embedded feature vectors across
all currently selected clients (line 5). Crucially, no clients need to share their data to make this
possible and the security guarantees of the cryptographic protocols mean that no participating party
(server or client) can learn anything from intermediate stages of the computation. With H the server
can now execute a number of steps by itself (lines 6–10): it converts H to an estimate of the cosine
similarity matrixA using the relation from Section 3.2, it computes the normalized and symmetrized
nearest-neighbors matrix, and then inverts that to obtain the propagation matrix, S ∈ Rn×n.

The next step of label propagation would be to compute Z = SY , where the matrix Y ∈ Rn×C
contains the label information of all participating clients. To do this without the clients having to
share their labels, we express the computation as Z =

∑
j∈P S

(j)Y (j) where S(j) ∈ Rn×n(j)

is the
sub-matrix of S consisting of only the columns that correspond to the data of client j. In fact we can
refine this further by observing that by definition the rows of Y (j) that correspond to the unlabeled
data of client j are identically 0 and hence do not contribute to the multiplication. We therefore
let Y (j)

L ∈ Rl(j)×C be the rows of Y (j) corresponding to labeled points and S(j)
L ∈ Rn×l(j) be

the corresponding columns S(j) and we still have that Z =
∑
j∈P S

(j)
L Y

(j)
L . This observation has

allowed us to distribute the computation of Z among the clients while minimizing the size of the
matrices that must be transmitted. Therefore, each client j ∈ P receives S(j)

L from the server (line
12) and locally computes Z̄(j) = S

(j)
L Y

(j)
L ∈ Rn×C , (line 13), which reflects the influence of j’s

labels on all other data points. By now we have computed Z, but the result is additively split across
the clients since Z =

∑
j∈P Z̄

(j). Each client k requires only the rows of Z that correspond to their

own data points which we denote by Z(k) ∈ Rn(k)×C . This is computed by client k using a secure
summation routine over these rows of the matrices held by all other clients in P . Note that secure
summation is commonly used in FL for model averaging (Bonawitz et al., 2017). Finally, each client
k locally computes their pseudo-labels and weights from Z(k) (lines 15 – 16).

4.2 ANALYSIS

In this section, we analyze the correctness, privacy, efficiency and robustness of Algorithm 3.

Correctness Algorithm 3 implements the same computation as Algorithm 1, except it estimates
cosine similarity via the Hamming distance of the LSH binary vectors. Thus, the output of Algo-
rithm 3 approximates that of Algorithm 1. The approximation quality depends on L, the LSH vector
length. In practice, we observe no difference in behavior already for small values, e.g. L = 4096.

Privacy The main insight is that Algorithm 3 adheres to the federated learning principle that
clients do not have to share their data or labels with any other party. This is ensured by the fact
that all cross-client operations are computed using cryptographically secure methods. The only
information seen by the server about client data is contained in the matrix of Hamming distances
H , which approximates the matrix W of cosine similarities between client feature vectors. While
certainly influenced by the client data, we consider W (and therefore H) a rather benign object for
a non-hostile server to have access to: first, the similarity is not computed between input data itself,
but its feature representation according to the current model. Second, even the feature vectors could
not be reconstructed fromW because cosine similarity depends only on angles, so any rescaling and
rotation of the feature vectors would result in the same W matrix. Clients do not see W but they see
some of the columns of S. These reflect how their labeled data can influence all other datapoints
according to the data manifold as estimated from the participating clients’ feature vectors. However,
this influence is unnormalized and hence the influence relative to other clients cannot be known.

Efficiency – Computational Ordinarily, LP imposes only a small overhead compared to the
computational cost of training the deep network on the clients. That is because the matrices it
makes use of scale with the number of datapoints, rather than the (much larger) number of network
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parameters. The same holds for CrossClientLP, which—with the exception of the additional
LSH steps—performs the same computational steps as ordinary LP. Furthermore, the most expensive
steps of normalization and matrix inversion are carried out by the server. LSH itself requires only one
additional matrix multiplication per client which adds negligible overhead on top of the computation
of client features. By design all cryptographic primitives are chosen to allow maximal efficiency.
For the SecureHamming step, special-purpose routines, such as SHADE (Bringer et al., 2013),
rely on oblivious transfer (OT) (Ishai et al., 2003; Roy, 2022) as the only cryptographic primitive.
Highly optimized libraries exist for this, such as libOTe (Peter Rindal), which allows for hundreds
of thousands of OT operations per second. SecureSum can be implemented efficiently using, e.g.,
secret sharing (Shamir, 1979) or garbled circuits (Yao, 1986). A similar secure summation step is
already used in FL to avoid information leakage during model averaging (Bonawitz et al., 2017).
A number of libraries exist that are tailored to this task, for instance SAFELearn (Fereidooni et al.,
2021), which allows for aggregation of tens of megabytes per second. The computational overhead
added by both of these methods is typically small compared to the training of the network itself.

Efficiency – Communcation CrossClientLP incurs additional communication costs at two
steps of Algorithm 3. Let p = |P | be the number of participating clients and n =

∑
j∈P n

(j) the
total number of data points they possess. For computing the Hamming matrix, each client k has to
communicate (in encrypted form) (p − 1)Ln(k) bits to other clients, and the server receives n(k)n
values. To propagate the labels via the distributed matrix multiplication, each client k first receives
from the server a matrix of size n× l(k) and then transmits a matrix of size n(j) × C to every other
client j ∈ P\{k}. For example, in our CIFAR-10 experiments, in total this adds up to approximately
2.5MB of data per client, whereas transferring the model to the client and back requires 24MB
of payload per client. Thus, in this setting, FedProp adds an overhead of about 10% over pure
FederatedAveraging. When using larger networks the cost of sending model updates becomes even
more dominant, e.g. in our MiniImageNet experiments the overhead drops to approximately 4%.

Robustness In cross-device FL clients may be unreliable and prone to disconnecting during train-
ing. Therefore, it is important that FL algorithms can still execute and make progress even in the
event of client dropouts. This is indeed the case for FedProp: a client dropping out before the
SecureHamming step (Algorithm 3, line 5), is equivalent to it not having been sampled by the
server in the first place: its data will not be used for this round of label propagation and the sub-
sequent model update. Because the Hamming computation is executed pairwise, a client dropping
out during this step has no effect on the computation of other clients. The result will be missing
entries in the Hamming matrix, H , which the server can remove, thereby leading to the same out-
come as if the client had dropped out earlier. If clients drop out after H has been computed, but
before the SecureSum step (Algorithm 3, line 14), they will have contributed to the estimate of the
data manifold, but they will not contribute label information to the propagation step. This has the
same effect as if a client only had unlabeled data. The exact effect of dropouts during SecureSum
depends on the characteristics of its underlying cryptographic implementation. For example, when
using (k, n)-threshold secret sharing, the computation can be completed as long as at least k out of
n clients participate until the end (Shamir, 1979). Any later dropout will only result in that client not
contributing to the following model update step, but it will not affect the other clients’ computations.

5 EXPERIMENTS

In this section, we evaluate the accuracy of FedProp against other methods for semi-supervised FL
as well as report on ablation studies. As our emphasis here is on accuracy, not real-world efficiency,
we use a simulated setting of federated learning, rather than distributing the clients across multiple
devices. Therefore, we also use plaintext placeholders for the cryptographic steps that have identical
output. Source code for our experiments will be made publicly available.

5.1 EXPERIMENTAL SETUP

Datasets We evaluate FedProp on three standard datasets for multi-class classification: CIFAR-
10 (Krizhevsky, 2009), which has 10 classes and is used in previous federated SSL works, as well as
the more difficult CIFAR-100 (Krizhevsky, 2009) and Mini-ImageNet (Vinyals et al., 2016) which
both have 100 classes. To the best of our knowledge ours is the first work in this federated SSL
setting to evaluate on these more challenging datasets. All three datasets consist of 60,000 images
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which we split into training sets of size N := 50,000 and test sets of size 10,000. From the training
set, NL examples are labeled and the remaining N −NL are unlabeled. For CIFAR-10 we evaluate
with NL = 1,000 and 5,000. For CIFAR-100 and Mini-ImageNet we take NL = 5,000 and 10,000.

Federated Setup We simulate a FL scenario by splitting the training data (labeled and unlabeled)
between m clients. mL of these have partly labeled data, while the others have only unlabeled data.
Each client is assigned a total ofN/m data points of whichNL/mL are labeled if the client is one of
the mL which possess labels. We simulate statistical heterogeneity among the clients by controlling
the number of classes each client has access to. In the i.i.d. setting all clients have uniform class
distributions and receive an equal number of labels of each class. In the non-i.i.d. setting we assign
a class distribution to each client and clients receive labels according to their own distribution.

Networks Following prior work, we use 13-layer CNNs (Tarvainen & Valpola, 2017) for CIFAR-
10 and 100 and a ResNet-18 (He et al., 2016) for Mini-ImageNet. Feature extractors are all layers
except the last fully connected one, thus embeddings have dimension 128 and 512, respectively.

Hyper-parameters We use FederatedAveraging as the FederatedOptimization
scheme. We choose hyper-parameters for all methods based on training progress (LSH dimension,
k-NN parameter) or accuracy on a held-out validation set consisting of 10% of the training data
(batchsize, learning rate). Detailed values are provided in the appendix.

Baselines We compare FedProp to a broad range of other methods, both from the existing feder-
ated SSL literature as well as our own baselines. For fairness all methods use the same network archi-
tectures, and hyper-parameters are chosen individually to maximize each method’s performance. As
representatives of consistency regularization we report results for three methods: FedMatch (Jeong
et al., 2021), FedSiam (Long et al., 2020), and FedAvg+MT, where the last is our own adaptation of
mean teacher (MT) (Tarvainen & Valpola, 2017) to the FL setting: In each training round the server
broadcasts both a global (student) model and a teacher model to the clients. Clients locally train the
student model and update the teacher model as the empirical moving average of the student. Clients
then return both models to the server which separately averages the local students and teachers. To
reflect pseudo-label (PL) based approaches, we include three methods: FedAvg+PL(network) re-
peatedly uses network predictions to pseudo-label sampled client data. FedSem+, which is based on
FedSem (Albaseer et al., 2020), computes all pseudo-labels only once during training, but it addi-
tionally uses entropy-based sample weights, as we found this to consistently improve performance.
FedAvg+PL(localLP), based on FedHar (Presotto et al., 2022), uses per-client label propagation,
otherwise it is identical to Algorithm 3. Additionally, we report results for training in a supervised
manner on only the available labeled examples, FedAvg (labeled only). This provides a lower bound
for all SSL methods which have access to both the labeled and unlabeled data held by the clients.

Combinations As a pseudo-label based approach, FedProp is orthogonal to techniques that utilize
unlabeled data by modifying the loss function, such as the consistency regularization in FedAvg+MT.
To demonstrate this, we also report results when combining both approaches as FedProp +MT.

5.2 EXPERIMENTAL RESULTS

We report the results of our experiments in Tables 1 and 2 as the average accuracy and standard
deviation over three random splits of the data for each setting. Table 1 provides a comparison of
FedProp to other approaches and baselines in the standard setting of CIFAR-10 with 100 clients,
which has been previously used to evaluate FL and SSL methods. In each case, we report results
when 1,000 or 5,000 of the data points are labeled. Either all or half of the clients have labels,
which are either i.i.d. or non-i.i.d. across clients. In all cases but one, FedProp achieves the best
results among all methods, in some cases by a large margin. The most competitive alternative is the
FedAvg+MT baseline. As a method based on consistency-regularization, it can be readily combined
with our pseudo-label based approach and we observe that this combination (FedProp+MT) achieves
even better results across the board. Table 2 reports on the harder situation with many more classes,
for which the previous methods have not been evaluated. Again, FedProp achieves better results
than the baselines here, and for CIFAR-100 can be further improved by combining it FedProp+MT .

Besides a ranking of methods, Tables 1–2 also provide some insights: First, pseudo-labels based on
LP tend to help more than those based on network outputs. Presumably, this is because they do not
just reinforce information that is already in the classifier but potentially also correct prediction errors
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Table 1: Classifical accuracy [in %] on CIFAR-10 (average and standard deviation across three runs)

CIFAR-10, i.i.d. (m = 100)
mL = 100 mL = 50

Method NL = 1000 NL = 5000 NL = 1000 NL = 5000
FedAvg (labeled only) 55.46± 0.43 76.13± 0.46 56.97± 0.59 80.36± 0.07
FedAvg+PL(network) 60.12± 0.15 79.45± 0.31 59.14± 0.35 81.04± 0.20
FedAvg+PL(localLP) 61.75± 2.22 85.11± 0.73 65.29± 2.50 84.41± 0.25

FedMatch 50.93± 0.56 72.22± 0.14 57.10± 0.46 77.80± 0.32
FedSem+ 59.98± 0.49 79.49± 0.15 59.67± 0.47 80.94± 0.25
FedSiam 67.02± 0.98 82.06± 0.56 62.98± 1.61 78.45± 0.34

FedAvg+MT 62.37± 1.69 84.92± 0.64 70.14± 1.87 85.34± 0.18
FedProp (ours) 70.91± 0.71 86.65± 0.16 70.81± 1.65 86.29± 0.34

FedProp+MT (ours) 72.58± 0.36 88.17± 0.18 73.63± 1.99 87.54± 0.14

CIFAR-10, non-i.i.d. (m = 100)
mL = 100 mL = 50

Method NL = 1000 NL = 5000 NL = 1000 NL = 5000
FedAvg (labeled only) 50.94± 0.14 75.34± 1.38 53.26± 0.69 79.65± 0.12
FedAvg+PL(network) 60.60± 0.60 80.07± 0.53 59.82± 1.05 81.14± 0.23
FedAvg+PL(localLP) 50.94± 0.14 76.61± 1.50 53.26± 0.69 79.65± 0.12

FedMatch 50.71± 1.57 71.99± 0.70 48.24± 0.86 66.37± 0.41
FedSem+ 60.93± 0.97 79.70± 0.78 59.74± 0.74 81.30± 0.09
FedSiam 67.85± 0.26 82.23± 0.46 62.29± 1.84 78.84± 0.72

FedAvg+MT 64.54± 2.11 84.07± 0.60 67.40± 0.53 85.58± 0.35
FedProp (ours) 73.76± 0.71 85.53± 0.56 70.01± 1.29 85.42± 0.43

FedProp+MT (ours) 70.56± 0.75 88.47± 0.28 68.35± 1.07 87.71± 0.49

Table 2: Classifical accuracy [in %] on CIFAR-100 and Mini-Imagenet (average and standard devi-
ation across three runs)

CIFAR-100, i.i.d. Mini-Imagenet, i.i.d.
m = mL = 50 m = mL = 100 m = mL = 50 m = mL = 100

Method NL = 5000 NL = 10000 NL = 5000 NL = 10000
FedAvg (labeled only) 43.80± 0.19 53.91± 0.25 23.39± 0.52 31.72± 0.54
FedAvg+PL(network) 43.80± 0.19 54.19± 0.21 23.98± 0.36 31.86± 0.57
FedAvg+PL(localLP) 43.82± 0.59 54.38± 0.36 25.53± 0.22 33.09± 0.62

FedAvg+MT 49.09± 0.38 56.05± 0.23 25.98± 0.70 33.20± 0.68
FedProp (ours) 50.19± 0.60 57.00± 0.08 26.93± 0.41 35.78± 0.56

FedProp+MT (ours) 50.60± 0.28 58.66± 0.28 25.62± 0.75 33.24± 0.71

in regions close to the classifier decision boundaries. Second, the fact that FedProp always has a
clear advantage over FedAvg+PL(localLP) supports the hypothesis that it is beneficial to obtain an
estimate of the underlying data manifold by combining data from multiple clients. In the i.i.d. case
this is particularly noticeable when the number of examples per class is small. In the non-i.i.d. case,
where the local label distribution does not match the overall one, we even observed local LP to often
reduce the accuracy, which caused the model selection procedure to completely deactivate it. This
is in contrast to FedProp, which consistently improves the accuracy even in this case.

6 CONCLUSIONS

In this work we introduced the FedProp method for federated semi-supervised learning. Building on
efficient cryptographic primitives, it allows the computation of label propagation along an estimate
of the data manifold to which the data of all participating clients contribute, without the clients
having to actually share their data with anyone else. Rather, the server received only a matrix of
approximate similarity values between embedded data points. An interesting aspect for future work
would be how to add additional security to this step, such as making it differentially private, which
could allow an extension of the current approach to the malicious server setting. Our experiments
established that cross-client label propagation can substantially increase the classification accuracy
compared to training only on labeled examples, pseudo-labels based on network outputs or using
per-client label propagation. In future work, it would be interesting to study not just FedProp’s
accuracy, but also its efficiency on real-world federated learning tasks.
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A EXPERIMENTAL DETAILS

A.1 HYPER-PARAMETER SETTINGS

Here we detail specific parameter settings in our experiments. For clarity we separate the parameters
into those relating to federated learning, those relating to network training and those belonging to
the CrossClientLP routine.

Federated learning parameters We set the number of clients to m = 100, except for our exper-
iments on CIFAR-100 and Mini-Imagenet with nL = 5000. In these cases we set m = 50 as it is
not possible to create an i.i.d. split of the data over 100 clients since the number of classes (C=100)
is too large. For CIFAR-10 we set the number of clients which possess labels to mL = 100 and
mL = 50. On CIFAR-100 and Mini-Imagenet we set mL = m.

For the FederatedOptimization method we choose FederatedAveraging. The
ClientUpdate step therefore corresponds to E epochs of stochastic gradient descent (SGD) of
a loss function. We set the number local epochs to E = 5 and the loss function is (per sample
weighted) cross-entropy loss. The ServerUpdate step corresponds to averaging the model
updates:

ServerUpdate(θ(j) for j ∈ P ) = 1

|P |
∑
j∈P

θ(j).

The number of training rounds is set to T = 1500 and the number of clients sampled by the server
per training round is set to 5, so τ = 0.05 when m = 100 and τ = 0.1 when m = 50. Note
that when mL < m we ensure that the server samples τmL clients from the labeled portion (and
τ(m−mL) from the unlabeled) to ensure that there are some labels present in the graph.

Network training parameters We use standard data augmentation following Tarvainen & Valpola
(2017). On CIFAR-10 and CIFAR-100 this is performed by 4×4 random translations followed by a
random horizontal flip. On Mini-ImageNet, each image is randomly rotated by 10 degrees before a
random horizontal flip. We use weight decay for all network parameters which is set to 2 × 10−4.
When carrying out SGD in the ClientUpdate we use batches of data B = BL ∪ BU where BL
is a batch of labeled data and BU is a batch of pseudo-labeled (previously unlabeled) data. We set
|BL| according to how many labeled samples the client has available, |BL| = min(50,#labels).
We set |BU | = |BL|. Learning rate for SGD is set according to this batch size. On CIFAR-10, for
|BL| < 50 we set the learning rate to 0.1 and for |BL| = 50 we set the learning rate to 0.3. On
CIFAR-100 and MiniImageNet we always have |BL| = 50 and we set the learning rates to 0.5 and
1.0 respectively. We decay the learning rate using cosine annealing so that the learning rate would
be 0 after 2000 rounds.

CrossClientLP parameters We set the LSH dimension to L = 4096 as this gave near exact
approximation of the cosine similarities while still being computationally fast (less than 1 second
per round). We set the sparsification parameter to k = 10, so that each point is connected to its 10
most similar neighbors in the graph, and the label propagation parameter to α = 0.99.
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