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ABSTRACT

We introduce a Black—White-Box Optimization Network and its first instance,
Tensor-Train Creator (TTC), which couples Ising-style solves, a factorization-
machine surrogate, and tensor-train (PROTES) search. Typed couplings, lattice
realignment, and warm starts cut oracle calls and time-to-target. On black-box
benchmarks and Max-Cut, TTC attains better values under the same evaluation
budgets.

1 INTRODUCTION

Optimization “in the wild” mixes discrete choices, hidden constraints, simulator noise, and only
partially known structure. White-box methods exploit available structure and (possibly implicit)
gradients but struggle when objectives are non-differentiable or partly unknown; black-box methods
are flexible but often sample-hungry. We propose the Black—White-Box Optimization Network,
a modular framework that interleaves white-box solvers and black-box optimizers so that each fills
the other’s weak points via explicit, typed couplings.

We consider problems of the form

mi;(l flx) st h(z)=0, g(x) <0, ()
[ASS

where x may be hybrid (e.g., z = (b,8) with b € {0,1}", 6 € R™), parts of h, g can be implicit or
simulator-defined, and oracle evaluations of f are expensive and noisy.

A first instantiation: Our first Black—White-Box Optimization Network architecture—Tensor-
Train Creator (TTC)—composes three building blocks: (i) an Ising-machine path (e.g., quan-
tum/coherent annealers) as a white-box route for structured QUBO-like subproblems |Yamamoto
et al.| (2017); |[dwal (2020); |Osaba & Miranda-Rodriguez| (2024); (ii) Higher-Order Factorization
Machines (HOFM) to expose tractable low-rank polynomial structure Blondel et al. (2016)); and
(iii) a Tensor-Train (TT) based black-box search layer such as PROTES [Batsheva et al.| (2023));
Oseledets|(2011). Concretely, the white path solves binary subproblems

min b'Qb+c'b, )
be{0,1}n

yielding white-box seeds that bias the TT sampler. HOFM provides a compact surrogate

K k
f(x):wo—&-Zwimi—i-Z Z <vi(f),...,vff)>Hxij, (3)
i j=1

k=211 <--<ig

highlighting interactions amenable to Ising-structured solves and guiding variable grouping for the
search layer.

What changes in practice. Under expensive evaluations, Black—White-Box Optimization Net-
work/TTC aims to reduce overall complexity: fewer costly oracle calls and lower time-to-target than
(i) pure black-box search, (ii) pure white-box solves, or (iii) a single grey-box surrogate. We also
outline how to estimate potential quantum advantage at the systems level—i.e., when Ising-based
seeding materially lowers the number of expensive evaluations on gradient-free hard problems |dwa
(2020); |Osaba & Miranda-Rodriguez| (2024).



Under review as a conference paper at ICLR 2026

Contributions. (1) We formalize the Black—White-Box Optimization Network as a typed graph
of solver nodes (black/white) with explicit couplings; (2) we present Tensor Train Creator (TTC)
model, the first Black-White-Box Optimization Network architecture combining Ising-machine
white solves, HOFM structure, and TT/PROTES black-box search; (3) we catalogue architecture
options (alternative seeds, priors, and coupling operators) without changing the core graph; and (4)
we provide evidence that overall complexity decreases, with ablations isolating the value of seeding
and white-path updates.

Relation to prior work. Two-module pipelines such as FMQA (Factorization Machines + Quan-
tum Annealing) motivate this design, but TTC generalizes the idea to a network with explicit, it-
erative couplings and distributional control over exploration—exploitation, accommodating hybrid
variables, hidden constraints, and simulator noise |Kitai et al.| (2020)); [Endo| (2025)).

2 RELATED WORK

Bayesian Optimization of Function Networks (BOFN) models intermediate nodes and selects eval-
vations that exploit network structure [Astudillo & Frazier| (2021)); Buathong et al.| (2024). Our
Black—White-Box Optimization Network retains this networked perspective while mixing hetero-
geneous solver types (white < black), supporting typed couplings, and permitting recursion. In
parallel, differentiable optimization layers such as OptNet enable implicit/argmin differentiation
through solvers, which allows gradient-based “white-path” updates even when the outer objective is
gradient-free|Amos & Kolter| (2017).

A complementary line of work orchestrates quantum and classical components: Ising machines and
hybrid approaches—including Coherent Ising Machines and D-Wave’s hybrid solvers—tackle com-
binatorial problems via cross-paradigm coordination |Yamamoto et al.|(2017); |dwal (2020); |Osaba &
Miranda-Rodriguez| (2024); we formalize such coordination as a typed solver network with explicit
module interfaces. Recent two-module pipelines (e.g., FMQA) couple a factorization-machine sur-
rogate with quantum annealing in a tight learn—propose loop [Kitai et al.| (2020); Endo| (2025), while
PROTES performs black-box optimization via tensor-train (TT) sampling to explore massive dis-
crete spaces efficiently |Batsheva et al.| (2023)); Oseledets| (201 1)).

Our TTC framework generalizes these ideas from two-node loops to multi-node typed networks
with principled options for seeding and mixing, and it enables white-path updates wherever nodes
are differentiable.

3 THE TENSOR-TRAIN CREATOR (TTC) OPTIMIZER

We consider discrete, gradient-free black-box optimization
z* € argmin f(x), x=[n,...,nq)y, n;€{1,2,...,N;}. “4)
Before introducing TTC, we analyze PROTES, the TT-based component our method builds upon,

clarifying both its black-box usage (treating f as an oracle) and its white-box leverage (injecting
known structure directly into the TT sampler).

3.1 A TT-PARAMETERIZED SAMPLING DISTRIBUTION

PROTES (will be discussed in the next section) maintains a nonnegative probability tensor P (pos-
sibly unnormalized) whose entries define a sampling distribution over multi-indices. The tensor P
is stored in the tensor-train (TT) format|Oseledets|(2011):

Rl Rd—l
Plni,...,nq] = Z Z Gi1[1,n1,71] Ga[r1, na, 2] - - - Ga[ra—1,na, 1], &)
’I”1:1 Td,1i1

with TT-cores G; € Rfi-1XNixRi and Ry = Ry = 1. The first and last tensor cores are matrices
(second order tensors) while the rest of cores are third-order tensors as shown in Figure E} For
uniform rank R, the parameter count is O(d N R?), where N is a typical mode size.
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Figure 1: How the TT format works. Top: compute one entry x[n,...,ng]. Bottom: the same
content as a tensor network.

In the TT format, computing log P[x] for a given multi-index x costs O(dR?) (sequential R x
R matrix transfers). Additionally, one can sample from the unnormalized distribution P using a
sequential-conditional TT sampler with time complexity

O(K d((N+R)R+ a(N))) (6)

where a(N) is the cost of drawing from a categorical distribution with N outcomes. Both complex-
ity results are established in Sec. 3 of the original work.

Figure 2| (Adapted from [Batsheva et al.| (2023)), p. 3) sketches the full optimization pipeline.

3.2 PROTES: MODEL, ROLES, COMPLEXITY, AND BOTTLENECKS

The probability tensor P serves as a probability model over the search space, where each entry corre-
sponds to the likelihood of sampling a particular combination of discrete variable values. The idea of
compactly representing a multivariable probability distribution in the TT format was first proposed
in Dolgov et al.| (2020). The PROTES algorithm uses this compact representation and iteratively
refines P by increasing probabilities for regions containing good solutions while decreasing them
for poor regions, effectively concentrating sampling mass near optima. Crucially, P is stored in the
tensor-train (TT) format, which provides efficient compression for high-dimensional spaces while
enabling efficient sampling and updates through sequential core operations. This TT-parameterized
distribution allows PROTES to navigate complex discrete optimization landscapes without requiring
gradient information from the black-box objective function.

At a high level, PROTES learns a TT-structured sampler P that concentrates mass near minimizers.
One iteration proceeds as follows:

(i) Sample K candidates from P;
(ii) Evaluate f at these candidates;
(iii) Keep the top-k indices by objective value;

(iv) Update P by maximizing their log-likelihood with k4 Adam steps using automatic differ-
entiation of log P[] through the TT cores.

Formally, with elite index set S = {s1, s2, ..., sx} and candidates {z; }JK:p
k
L(P;{xs,}) =Y log Plzs,], (7)
i=1
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Figure 2: Conceptual outline of the PROTES optimization approach - Adapted from Batsheva et al.
(2023), p. 3

which is maximized with respect to the TT parameters for kyq steps per iteration. Although PROTES
is gradient-free with respect to f, its update can be connected to the REINFORCE identity by ap-
plying a monotone transformation (e.g., Fermi—Dirac) to f. In the low-temperature limit, only
elite samples contribute, yielding equation [/| Empirically, using a single hyperparameter setting
(K =100, k = 10, kgq = 1, A = 0.05, R = 5) across 20 diverse benchmarks leads to the best
value on 19 out of 20 problems.

Is PROTES BLACK-BOX OR WHITE-BOX?

PROTES is black-box with respect to the evaluator f, because it never computes V f or differentiates
through f; it only uses the scalar values f(z) to select an elite set S.

At the same time, each iteration solves a white-box, differentiable internal subproblem over the TT
parameters 6:
LO) = logPy(x),  VeL(0) = VylogPy(x),
z€S zeS
where Py is represented in Tensor-Train (TT) form and gradients are obtained by automatic differ-
entiation through the TT cores. Thus, PROTES performs gradient-based optimization, but only on
its own model Py (white-box), not on f (which remains black-box).

Table 1: PROTES roles with respect to the true objective f and the internal sampler Py.

Aspect Role What it means in PROTES

Evaluator f Black-box No V f, no backprop through f; f(z) is used only to rank K

candidates and pick the elite set S
Sampler update (FPy) White-box Optimize ¢ by maximizing »_ g
Vo log Py(z) through TT cores (AD).

log Py(x) with gradients

Known structure White-box (optional)  Constraints/priors can be encoded directly into Py (e.g., TT

indicators, structured cores), reducing wasted queries.

Internal complexity and wall time. Let M be the number of evaluations of f (budget). Since each
iteration evaluates K samples, the number of iterations is M/ K.

Theorem 1 (PROTES internal time). Excluding the cost of evaluating f, one PROTES run performs
Tiny = O(Md((N + R)R+ a(N)) + Md% kgd R2>7 (8)

4
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where o(N) is the cost of sampling a categorical with N outcomes.

Proof. Sequential-conditional TT sampling costs O(K d((IN + R)R + «(IN))) per iteration; over
M/ K iterations this yields the first term. Computing log P (z) and its gradient is O(dR?) per elite;
over kgq steps and k elites for M /K iterations gives the second term. See App. for details. O

Total wall time decomposes as
Tiotal = MTf + T}nta (9)

with T the average per-call latency of f. Two practical bottlenecks follow: (i) if f is expensive,
M Ty dominates; (ii) the outer loop is sequential across iterations because the update at t+1 depends
on elites from ¢ (even though the K evaluations within each iteration can be run in parallel).

4 WHY DENSE QUBO 1S HARD AND HUBO CAN BE EASIER

Empirically, reports by Batsheva et al.| (2023) and follow-up experiments (e.g., Salloum 2025;
Salloum et al. 2025) observe degradation on dense QUBO as dimension grows, while converting
QUBO—HUBO can improve outcomes at fixed dimension. A common misinterpretation is that
“TT is better on higher-order tensors.” In contrast, our analysis shows that the decisive factor is lat-
tice alignment: TT/MPS complexity is governed by the size of graph/hypergraph separators along
the 1D ordering, not by the algebraic order of terms.

Theorem 2 (Lattice alignment lower bound). Let pu(x) o< e () be the Gibbs distribution of
energy E on a graph/hypergraph G over variables (n1,...,ng), and let w be a 1D ordering. For
everyi € {1,...,d—1}, the TT bond dimension R; required to represent . exactly along w satisfies

R; = rank(Unfold;(p)) > 29(tw=(G0))

where tw.(G,i) is the size of the minimum separator induced by the cut
{r(1),...,m(0)}, {7 (i4+1),...,7(d)}). Moreover, the same separator controls an upper
bound: R; < 2%~(G0)_ Consequently, if G has large separators for all 1D orderings (e.g., fully
connected or 2D grids), the minimal ranks grow super-polynomially with d; if G is pruned to a
near-chain topology, ranks remain small.

Proof. In TT/MPS, the bond dimension R; equals the Schmidt rank across the bipartition at position
1. The Schmidt rank lower-bounds exponentially in the number of independent constraints crossing
the cut. For graphical models, the number of such independent constraints scales with the size of
a minimum vertex separator across the cut, i.e., the (pathwise) treewidth along 7. This yields the
exponential lower bound; see App.[B]and standard TT/MPS expressivity results Oseledets (2011).
The upper bound follows by constructing a junction-tree-like contraction across a separator of size
twx (G, 1), implying R; < 2tW=(G:9), O

Corollary (Dense QUBO is hard). Let G be the interaction graph of a QUBO on d variables. If
G is dense (e.g., G = K), then for any ordering 7 there exists an ¢ with tw, (G, i) = Q(d), hence
by Theorem 2]

R, > 2%d),

Therefore, exact TT representations of y require exponentially large bond dimensions across at least
one cut for every m, making dense QUBO intractable for TT-based methods.

Proof sketch. For G = K, every cut after position 4 has all i(d — i) cross-edges. Any separator
must involve at least min{i, d — i} vertices, so tw,(K4,4) = Q(min{i,d — i}). Taking i = |d/2]
yields Q(d), and Theorem 2| completes the claim. O
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Proposition (HUBO can be easier via lattice alignment). There exist QUBO—HUBO transfor-
mations that preserve the minimizers (and approximate the Gibbs measure on the feasible manifold)
while producing a hypergraph H that admits a near-chain ordering 7 with tw, (H,i) = O(w) for
some small window w. Consequently, by Theorem [2| all TT ranks satisfy R; < 29" ie., are
polynomially bounded when w is constant or slowly growing.

Construction proof sketch. Fix a target ordering 7 and partition variables into contiguous blocks
Bi,..., B, of size at most w. Introduce auxiliary summary bits s; that encode prescribed local
statistics of z g, , and replace dense cross-block pairwise terms by higher-order local HUBO terms
within blocks plus (optionally) interactions between adjacent summaries (s, sp+1). Enforce sp-
x g, consistency with HUBO penalties confined to Bj. The resulting hypergraph A has hyperedges
only within blocks or between adjacent blocks, so every cut intersects O(w) variables plus O(1)
summaries. Hence tw, (H,i) = O(w) and R; < 2°(") by Theorem O

Examples and sanity checks. (i) All-to-all but low intrinsic rank. Energies depending only on
>-; «i (Curie-Weiss-type) are pairwise dense but factor through a global summary. Encoding that
summary as a single higher-order term aligned with 7 yields tw, = O(1), so HUBO has small TT
ranks. (ii) Local k-HUBO chains. If each term touches variables within a sliding window of width
w along m, then tw, = O(w) and R; < 20(w),

Conclusion (why dense QUBO is hard and HUBO can be easier). TT complexity is dictated
by separator sizes of the interaction lattice along the chosen ordering, not by whether the en-
ergy is quadratic or higher-order. Dense QUBO induces large separators for all orderings, forcing
R; > 2*%(4) and yielding super-polynomial scaling. Converting QUBO—HUBO can realign inter-
actions into a near-chain hypergraph with small separators, giving R; < 2°(*) and tractable TT
compression. This explains the empirical pattern reported in Batsheva et al.| (2023)) and follow-up
work.

Path dependence. Initialization matters because the elite-likelihood ascent increases a variational
lower bound.

Theorem 3 (Initialization controls sample complexity). Fix an ordering m and rank profile
(Ri,...,Rq_1), and let P be the best TT approximation to p(z) o e /@) ynder (n,R). If

the initial sampler Py, satisfies Dx, (ISHPQO) = A, then elite-likelihood ascent with step size 1
and elite ratio k/ K reduces the gap as

]E[At-H | At] < At(l - 077%)7

for a constant ¢ > 0 depending on local smoothness and mixing, so the expected iteration count to
reach Py(x*) > 1 —¢eis O(Ay/(nk/K)).

Proof. Write L(0) = )¢ log Ps(x) and note that Dk (P||Py) = const — E5[log Py(x)] up to
approximation error. A standard smoothness argument for stochastic ascent on L with elite sampling
yields linear contraction in expectation; see App.[C| O

Theorems [2H3] explain the QUBO/HUBO observations: converting some dense QUBO instances
to HUBO can reduce separators (hence ranks) by inducing a near-chain hypergraph; the higher
algebraic order does not harm TT if interactions remain local along the chain. Conversely, simply
increasing ranks cannot overcome dense long-range couplings without reshaping the lattice.

4.1 THE TTC ARCHITECTURE

The Tensor-Train Creator (TTC) addresses two fundamental bottlenecks identified in 2H3} (1) TT
ranks blow up on non—chain-like lattices, and (ii) elite-likelihood ascent is path dependent and sensi-
tive to initialization. TTC remedies these issues by combining a higher-order factorization machine
(HOFM) surrogate to expose structure, an Ising/annealing stage to warm-start and shape the surro-
gate lattice, and an annealed PROTES loop that updates the TT sampler on the true objective. The
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Algorithm 1 TTC: Tensor-Train Creator
Require: budget M initial batch By; samples/iter K; elites k; initial order m < 2; annealing
config (temps, reads), cooling schedule 7 | 0
1: Seed: draw B points, evaluate f in parallel; D < {(z, f(x))
2: while (|D| < M) and (not converged) do
3:  (Surrogate) train HOFM fm on D (few epochs)
4:  (White-box) build QUBO E,, from fm (always we take the quadratic part of HOFM - m=2)

Bo
1

5:  (Anneal) solve Eg,; obtain best Z and edge stabilities E
6:  (Shape) prune weak couplings using E; contract consistent chains; get G’
7: (TT-Create) seriate G’ to get ordering 7; estimate ranks (R;); init Py by moment matching
8: fort = 1,2, ... whilebudget remains and validation improves do
9: sample K points X; ~ Pe(”); evaluate Y; = {f(x) : ¢ € X,} in parallel
10: select elites S; = arg minge x, (top-k by f); update 6 < 0 + 1V > o log Po(z)
11: D+ DU{(x, f(x)):x € X¢}; Te41 < Vo T2
12: if (retrain period) then update f,,, on current D end if
13:  end for

14:  if (validation plateau) then m < m + 1 end if
15: end while
16: return arg min( ,)ep Y

lattice is reshaped by restricting the HOFM surrogate to the relevant conditions, and the second is-
sue is mitigated via annealing-based pruning. The ways of pruning via annealing-based solver (Ising
machine) is shown in appendix [E]

Pipeline. Given a budget of M black-box calls, TTC maintains a dataset D, a restricted HOFM

surrogate f,,, of order m, a shaped interaction graph G, and a TT sampler Py over X = [,[N;]. A
single macro-cycle consists of:

1. Parallel seeding: evaluate an initial batch By of points to form Dy = {(x, f(x))}.

2. HOFM (order m): fit fm with ANOVA-style factorization and chain-aware penalties;
complexity per epoch is O(m d kg |D|), where kg is the HOFM rank parameter Blondel
et al.|(2016).

3. Surrogate — QUBO (white-box): take the m = 2 part from HOFM i.e. FM.

4. Annealing (warm-start & shaping): solve the QUBO via an Ising backend (quantum,
quantum-inspired, or GPU) to obtain solutions Z and edge stabilities. Use these to (a)
warm-start the TT by moment matching of low-order marginals (reduces the initial KL
gap Ay — Ay;[3), and (b) prune/contract to produce a near-chain G’ (shrinks effective
ranks; [2)).

5. TT creation & annealed PROTES: compute an ordering 7 by seriation on G’, estimate a
rank profile (R;) from surrogate matricizations (App. @, initialize Py, and run an annealed
PROTES loop on the true f: sample K points from PO(T) x P, /™ evaluate f in parallel,

update 0 with the elite objective, augment D, and periodically retrain fm. Increase m only
when validation saturates (order curriculum).

4.1.1 SPEED-UPS AND WHEN THEY APPEAR

Let Trr(R) denote the internal TT cost per f-evaluation (cf. equation . If annealing reduces the
initialization gap by Sini := Ag/A1 and the effective ranks by v € (0,1) (so R — ~R), and if the
annealer overhead per macro-cycle is Cising, then the internal speed-up (same black-box budget M)
is

Tre(R) ~ L (10)
(A1/Ao) Trr(YR) + Crsing/ M (A1/A0) 7?2 + Cusing/ (M Trr(R))’

since the dominant TT terms scale as O(dR?). This aligns with

Sint ~
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4.2 COMPLEXITY ANALYSIS

We summarize the dominant work (excluding constant factors). Let N = max; N;; R be the nominal TT rank
budget in PROTES; R be the TTC effective rank after shaping; d be the dimension; K the samples per iteration;
k the elite count; kgq the ascent steps per iteration; 7' = |D| the dataset size at a given time; m the HOFM
order; ku the HOFM rank; and «(IN) the cost of sampling a categorical (a(N) < N naively).

PROTES (for comparison). Internal time for a budget M is
TPROTES :O(Md((N+R)R+a(N)) + M dE ke R2>, (11)

and total wall-time Tha0' ™ = M Ty + TEROTES,

FMQA (for comparison). Per outer iteration: (i) fit FM/HOFM on D in O(mdkuaT') per epoch; (ii)
solve the surrogate by annealing with overhead Cising; (iii) evaluate a small batch on f. If E,, epochs and By,
new points per iteration, then over M evaluations (about M / By, iterations):

Tt = O Siew Bmm dkn T+ (M/Bin) Crsng ), TN = MTp + T (12)

int int

surrogate training annealing solves

FMQA has no TT terms but relies more heavily on annealing and surrogate quality.

TTC (this work). TTC’s internal cost over a budget M decomposes into

TT sampling : O(M d((N + R)R + a(N))), (13)

TT updates : O(M d L ke RQ) 7 (14)

HOFM training : O( S Enmdks T) , (15)
macro-cycles

Annealing & shaping : O( Z C’Ising), (16)

macro-cycles

with R = «R and an iteration contraction factor of about A;/Aq from the warm-start . Aggregating:
T = O(Md((N + R)R+ 0(N)) + Md £ ket B+ e B mdkn T+ Sy Ciong ). (1)

Total wall-time:
Tior = M Ty + Ting - (18)

Interpretation. Compared to equation TTC replaces R by R = vR in all TT terms and benefits from
faster concentration in practice (fewer effective PROTES iterations to a target quality by [B). The additional
costs are the surrogate terms equation |15| and annealing terms equation When (i) M is moderate/large;
(ii) shaping is effective (y < 1); and (iii) Clsing is amortized (batched reads), the reduction in the dominating
O(dR?) TT terms outweighs surrogate/annealing overheads, yielding the internal speed-up in equation

4.3 COMPLEXITY COMPARISON

Let Orr(R) := d((N + R)R + a(N)) + d £ keq R? denote the per-evaluation TT work. The
principal internal and total costs are:

Method Internal time Total time

PROTES M Orr(R) MTy + M Orr(R)

FMQA > EnmdkyT + (M/Biw) Ciing MT; + Y EnpmdkyT + (M/Bpm) Cing
TTC (ours) | M Orr(R) + > EmmdkuT + » Cuing | MTy + MOrr(R) + Y EnmdkuT + Y Cising

Here R = vR with v € (0, 1) determined by lattice shaping; the iteration count to reach a target is
reduced proportional to Ag/A; by warm-starting . Thus TTC’s internal advantage over PROTES
scales like =2 (rank shrink) multiplied by Siyi = Ao/A; (fewer effective TT iterations), up to the
additive surrogate/annealing terms.
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When TTC wins. If M is dominated by TT work (cheap f) and v < 1, the R? term reduction
drives clear wins. If f is expensive, all methods share the same M T, so the method that reduces
required M to reach a target wins; TTC does so via better initialization and lattice alignment.

ESTIMATING SYSTEMS-LEVEL QUANTUM ADVANTAGE FROM ISING-BASED SEEDING

Consider a baseline run requiring Mj oracle evaluations with per-call latency Ty. Let the TT internal
work per evaluation be

Orr(R) :=d((N + R) R+ a(N)) +d £ kg R?.

With Ising-based seeding, suppose the evaluation count shrinks by a factor p € (0, 1) and effective

ranks contract as R — R = ~vR with v € (0,1). Let 6HOFM+Ising be the total overhead of surrogate
training and seeding (including the annealer time-to-solution).

Systems-level win condition. TTC with Ising seeding improves total wall time over baseline
whenever

M, {(1 —p) Ty + Orp(R) — p@TT(R)} > CHOFM+sing M

Useful thresholds. Define ¢ := Cyormaising/Mo-

_ Cc— <@TT<R) — p@TT<R))
I—p

6HOFM+Ising _
(1—=p)Tf+Orr(R) — pOTT(R)

’ MO > Mrnin =

Interpreting p and y. Warm-start quality controls p (fewer expensive evaluations); rank shaping
controls y (cheaper internal work). A crude rule of thumb is O1(R) ~ 72 O (R), yielding extra
headroom (1 — py?)©7T(R) to pay for seeding overheads.

Quantum advantage. If quantum seeding has lower total overhead than classical seeding, i.e.

— —(C . .
CI(_I%LM Hsing < Cl(-lO)FM +ising and also satisfies () with the same p, v, then a systems-level quantum

advantage is achieved by materially reducing the number of expensive oracle calls.

5 NUMERICAL RESULTS

Table 2: Results by problem and algorithm. Row minima (in TTC, except Schwefel) are in bold.
Values use two decimals for |z| > 1072, and scientific notation with two significant digits for
|z] < 1072

Problem / Algorithm TTC Protes BS1 (DE) BS2 (PSO)
ackley 4.44x10716 0.78 4.30x107™3 9.10x1078
rastrigin 2.00 12.00 31.18 5.99
griewank 0.04 0.11 0.43 0.05
rosenbrock 1800.00 5942.00 2578.00 1897.00
schwefel -402.00 -401.20 -398.00 -399.50
michalewicz -45.50 -32.11 -45.10 -41.23
levy 5.90 10.39 7.84 5.98
max-cut -12686.30 -10367.80  -11123.40  -10012.90

6 CONCLUSION

TTC formalizes typed couplings and fixes TT bottlenecks, translating into faster convergence and
fewer evaluations than PROTES and classical baselines. Limits include surrogate quality and an-
nealer overhead; future work adds richer node types and sharper rank/ordering estimates.
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A PROTES: SAMPLING/UPDATE COSTS AND PROOFS

A.1 SEQUENTIAL-CONDITIONAL TT SAMPLING

The sampler generates 21 ~ P(nq), then zo ~ P(ng | n1), etc., using left/right messages com-
puted by contracting TT cores. For each step, evaluating conditionals costs O((N + R)R); sam-
pling a categorical costs a(N). Over K draws and d dimensions, the sampling cost per iteration is
O(K d((N + R)R+ «a(N))).

A.2 GRADIENT OF THE ELITE LOG-LIKELIHOOD

For any index x, evaluating log Py(z) is O(dR?) via forward contractions; reverse-mode back-
prop through cores is the same order. Over £ elites and kgq steps per iteration, the update cost is
O(kga k dR?). Summing across M /K iterations proves Theorem

B LATTICE ALIGNMENT: PROOFS OF THEOREMS

For an ordering 7, the TT bond dimension R; equals the matrix rank of the unfolding across the
cut ({1:4}, {i+1:d}). Interpreting Py as an MPS and p as a target state, R; equals the Schmidt
rank across that bipartition. In a graphical model on G, the conditional dependence across the
cut is controlled by the size of a minimal separator .S;. If |S;| grows with d, then the number of
independent constraints across the cut grows, implying R; > 25D for exact representation. This
gives Theorem

C INITIALIZATION AND KL CONTRACTION: PROOF OF THEOREM [3]

Let P be the best TT approximation under (7, R) and define ®(§) = E, pllog Py(x)]. Then

Dx1(P||Py) = const — ®(0). Elite-likelihood ascent implements a noisy ascent on ¢ (up to a
temperature scaling) with step size 1 and sampling ratio k/K. Assuming local smoothness and a
Polyak-t.ojasiewicz condition in a neighborhood of #* = arg max ®, the standard SGD recursion
gives E[®(0;11) — ®(6;)] > cn £ (©* — ®(6;)), for a constant ¢ > 0, hence geometric contraction
of the gap and the stated iterations bound.

D RESTRICTED HOFM, QUBO EXTRACTION, AND TT CREATION

D.1 HOFM TRAINING AND COMPLEXITY
The ANOVA trick Blondel et al.| (2016) computes all orders 2:m interactions in O(m d k) passes

per sample using DP recurrences, yielding O(m d kT per epoch for dataset size T.. Chain-aware
group sparsity penalizes interactions far in the current ordering.

D.2 SURROGATE — QUBO (WHITE-BOX)

For m=2, one-hot encodings yield a QUBO directly. For m>2, quadratize by introducing auxiliary
variables v and penalties A such that monomials [ ], g 2; are represented by ug with constraints

us = 2j; N+ Az g, producing Egy (2, u) = 27 Qz + Apenalty(z,u).
D.3 ORDERING AND RANK ESTIMATION
Given a pruned graph G, obtain an ordering 7 via seriation (e.g., spectral ordering). Estimate a rank

profile (R;) by inspecting singular spectra of surrogate matricizations across the cuts ¢ and selecting
minimal R; meeting an energy threshold (Tikhonov-stabilized).
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D.4 MOMENT-MATCHING INITIALIZATION AND ANNEALED SAMPLING

From best surrogate solutions, build univariate and adjacent-pair marginals along 7 and initialize TT

cores to match them at moderate inverse temperature 8. Use tempered TT sampling PQ(T) o< Pel /T
with 7 | O to balance exploration/exploitation.

E ANNEALER-GUIDED CONVERSION OF A 2D QUBO TO A STRICT 1D
NEAREST-NEIGHBOR QUBO

In this section, We present a practical pipeline that converts a quadratic unconstrained binary op-
timization (QUBO) defined on a 2D grid into a strict 1D nearest-neighbor (NN) QUBO suitable
for line-structured Ising hardware. The method is annealer-guided: (i) obtain a reference optimum
by annealing the original instance, (ii) select only the most valuable long-range couplers to embed
exactly using equality-chain ancillas, under a user-specified ancilla budget, and (iii) prune or fold
the remaining long-range interactions while preserving fidelity to the original optimum in both en-
ergy and configuration. We provide precise inputs/outputs, core identities, two selection strategies
(greedy and one-shot knapsack), a penalty sweep to calibrate equality strength, and implementable
pseudocode.

E.1 PROBLEM STATEMENT, INPUTS, AND OUTPUTS

Original QUBO.
E(z) = 2'opQx + ¢'opr + ¢, z €{0,1}", (19)

with @ € R™*™ (w.l.o.g. upper triangular, Q;; = 0), ¢ € R™, and ¢ € R, arranged on a 2D grid.

Inputs.

* QUBO coefficients (Q, ¢, ¢) and variable—grid mapping.

* Access to an annealer ANNEAL(Q, g, ¢; -) returning best energy and sample.
* Aline ordering p : {0,...,n —1}—{0,...,n — 1} (e.g., snake/Hilbert).

* Ancilla budget K (maximum total chain length allowed for embeddings).

* Equality-penalty seed M; and a small sweep set, e.g., { My, 2My, 4 My }.

* Pruning policy for non-embedded long edges: drop or fold.

Outputs.

 Astrict ID NN QUBO (Q’, ¢/, ¢) (including ancillas).
* Final annealed solution (Zfna1, Efinal) on (@', ¢, ).
* Selected set S C Ey,, of long edges embedded exactly; total ancillas < K.

E.2 PRELIMINARIES: LINE ORDER AND EDGE CLASSES

Let p be the chosen permutation (grid—1line) and define pos(i) = p(¢). Partition the quadratic terms:
= {(0,4) s pos(i) —pos(j) =1, i <j},  Egar = {(i,) : pos(i) — pos(j) > 1, i < j}.

For a long-range (“far”) edge e = (i, j), the chain length cost (ancillas needed to route it along the
line) is
L. = pos(i) — pos(j) — 1. (20)

E.3 PRUNING POLICIES FOR LONG EDGES

For a far term Q;;x;2; we consider two simple policies:

* drop: remove the term.
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* fold (energy-guided, using the reference optimum x*):
Qijl‘il‘j ~ Qij (l‘l 3?; + x; x; —xfa:;‘) 21

This replacement adds linear terms in z;, z; plus a constant, preserving strict 1D NN topol-
ogy.

E.4 EXACT 1D NN EMBEDDING VIA EQUALITY CHAINS

For a selected far edge ¢ = (3, j), let the line path be i = vg,v1,...,vr, = j. Introduce ancillas
z1,...,21—1 and enforce equality along adjacent nodes using the purely quadratic penalty:

(u,v) = M (u—v)> = M (u+v—2uw), (22)
applied to links (24,, 21), (21, 22), - - -, (20—1, Ty, ). At the minimum (for M large enough), x,, =
Z] = -+ = 21 = Ty, SO We can replace the far quadratic by a local linear term on any chain
node:

Qij TiZ; — Qij Zmy m e {1,,L71} (23)

All quadratics remain NN along the line; the model stays a pure QUBO.

E.5 REFERENCE OPTIMUM BY ANNEALING

We first solve the original instance by annealing to obtain a target optimum:
x* € argmin E(x), E* = E(z"). (24)
ze{0,1}"

This pair (z*, E*) guides selection and (if used) folding equation

E.6 SELECTION STRATEGIES FOR LONG EDGES

We propose two annealer-guided strategies to pick a budgeted subset S C E,, to embed exactly.

E.6.1 GREEDY ANNEALER-GUIDED SELECTION (ITERATIVE)

Maintain a current embedded set S and its best annealed energy Eg for the strict 1D NN model that
embeds S (and prunes others by the chosen policy). For any candidate e € Ey,, \ S, let Eg .} be
the best annealed energy when e is added (embedded via equation 22}-equation 23). Define the gain
per ancilla
Es — Esufey
L, '
Greedily add the edge with largest g. while the total chain length > fes L stays within budget K,
and stop when the best g, drops below a small threshold.

Je = (25)

E.6.2 ONE-SHOT ANNEALED VALUES + KNAPSACK

Build the base strict 1D NN model that keeps and prunes all far edges per policy, and anneal it to
get . For each e € E ¢4, build the model that embeds only e (on top of the base), anneal to get
Ec}, and define its annealed value:

ve := Eg — Eg.y (> 0 when helpful). (26)
Select S by solving the 0—1 knapsack
max Z VelYe S.L. Z Ley. <K, 27

[Efarl
ye{0. 1} R, e€Efar

or its QUBO encoding

min Y vy + )\(ZLeye—K)2, (28)

ye{o,l}‘ﬁfar‘

with A > max, v..
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E.7 PENALTY SWEEP (CHOOSING M)

Choose the smallest M in a short sweep M € { My, 2My, 4 My, ...} that (a) yields =~ 0% chain
breaks (equalities hold at minima) and (b) does not degrade best energy. Excessively large M can
drown the problem signal.

E.8 FULL PIPELINE

NOTATION HELPERS

* ANNEAL(Q, g, ¢; reads, gauges) — (Emin, Tmin)-

* BUILDMODEL(Q, g, ¢, p, S, M, policy) — (Q’, ¢, ¢, ancillas): strict ID NN model with
kept, S embedded via equation [22}-equation 23] others pruned by policy.

* CHAINLEN(e, p) = L.

* CANDIDATES(E ¢4,, S,m): the m far edges with largest Q;; not in S.

Algorithm 2 Annealer-Guided 2D-QUBO — Strict 1D NN QUBO (Greedy Selection)

Require: (@, ¢, ¢), line order p, budget K, seed My, policy € {drop, fold}, anneal settings
Ensure: Final (Q', ¢, ), (Zfnal, Einal ), selected set S

—_

DY NS RN T

13:
14:

15:

16:
17:
18:
19:
20:

21:
22:
23:
24
25:
26:
27:
28:

(E*,z*) < Anneal(Q, ¢, c; reads,f, gauges, ;) Reference optimum
Partition edges into and E,,. using p
S+ @, B+ 0, M <+ M,
(Qo, 90, co, -) + BUILDMODEL(Q, g, ¢, p, S, M, policy)
(Es, ) + ANNEAL(Qo, qo, Co; readsscore, gauges
while B < K do
C < CANDIDATES(Eq,, S, m)
(Abest7 ebest’ Ebest) — (07 1, OO)
for e € C do
L <+ CHAINLEN(e, p)
if B+ L > K then
continue
end if
(Qes Ge, Ce, -) < BUILDMODEL(Q, q, ¢, p, S U {e}, M, policy)
(ESu{e}a )+ ANNEAL(Q€7 Ge Ce; T€AdSscore, GAUEES
. Es — Esuqe
g max(L, 1)
if g > Abest then
(Abest7 ebest’ Ebest) — (97 e, ESU{e})
end if
end for
if ebest = | or Abest < ¢ then
break
end if
S <+ Su{ebst}, B < B+ ChainLen(ebt,p), Eg + Eb
end while
M « PENALTYSWEEP(Qv q,¢Dp, Sa pOliCyv {M()a 2M03 4M03 s })
(Q',q,c,-) + BUILDMODEL(Q, g, ¢, p, S, M, policy)
(Efinal, Tfinal) < ANNEAL(Q', ¢, ¢/; readsginal, gaugesg, ;)

score )

SCOI"e)

return (Q', ¢, ), (Zanal, Efinal), S
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Algorithm 3 One-Shot Selection via Annealed Values + Knapsack

Require: (Q, g, ¢), line order p, budget K, seed My, policy € {drop, fold}
Ensure: Selected set S and final model (Q’, ¢', ¢)
1: (E*,z*) + ANNEAL(Q, ¢, ¢)

Build base strict 1D NN model (keep , prune E ., per policy); (Eg, -) <~ ANNEAL(base)
for each e = (i,j) € Efq, do

Build “base + embed e with My”; (Ey.y,-) — ANNEAL

Ve <= By — Etey;  Le < pos(i) —pos(j) — 1
end for
Solve knapsack equation[27) (or QUBO equation [28) to get .S
M + PENALTYSWEEP(Q, g, ¢, p, S, policy, { My, 2My, 4 My, ... })
Build final strict 1D NN model (embed all e € S with M; keep ; prune others)
return (Q', ¢, ), and then (Zgna1, Fanal) < ANNEAL(Q', ¢, ¢)

YRR N RN

—_

F TIME COMPLEXITY OF ISING SOLVERS: FORMAL MEASURES AND O(+)
SCALINGS

Problem setting. Let G = (V, E) be a graph with |V| = n spins s; € {£1}, couplings J;;, and
(optional) fields h;. We minimize the Ising energy

Erig(s) = —5 ) Jigsis; — »_hisi. (29)
— Z,

Computing a ground state is NP-hard in general (e.g., for 3D lattices, and for planar graphs with
fields) [Barahonal (1982).

F.1 WHAT WE MEAN BY “TIME COMPLEXITY” FOR HEURISTIC ISING SOLVERS

For solvers whose single run of duration 7 succeeds with probability p(7) on a given instance, a
device/algorithm—agnostic metric is the time—to—solution (TTS) for target confidence 1 — ¢:

log §

T Tl —p(r) | G0

1-6 —

This is the standard “repeat—until-success” model used in annealing benchmarks; the optimization
over 7 emphasizes that per-size schedules must be tuned Rgnnow et al.| (2014). For Monte Carlo
algorithms we count time in Monte Carlo sweeps (MCS; cf. one attempted update per spin), then
convert to wall time by the measured seconds per sweep.

Two analytic lenses connect equation [30| to exact mathematical quantities. First, for reversible
Markov chains (SA and SQA at fixed control parameter), the mixing time tyix(€) obeys

1 1
tmix(e) < — log , 3D

Y € Tmin
where v is the spectral gap and 7, is the minimum stationary probability (Levin et al. 2017}
Thm. 20.6). Second, for closed-system QA (adiabatic evolution) the runtime 7" needed for error < ¢
satisfies the gap-controlled bound

e A2

min

T — O<IMX5€[0’1]Hd£H> : (32)

with A,,;, the minimum instantaneous spectral gap along the anneal path H (s)Jansen et al. (2007);
Albash & Lidar| (2018).

F.2 ALGORITHM-BY-ALGORITHM FORMULATIONS

(1) Simulated Annealing (SA). SA runs a temperature-dependent (often single-spin Metropolis)
Markov chain with a cooling schedule T}, | 0. A precise convergence criterion is given by Hajek: if
c

Tk = ————— ith ¢>d*
(k) Tog1+F) wi c>d", (33)
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then the algorithm converges in probability to the set of global minima; here d* is the depth of the
deepest non-global local minimum (a barrier-height functional) Hajek| (1988).

At fixed temperature 7', the chain’s mixing time obeys equation 31} running an anneal that stays
near equilibrium yields the upper bound

SAL=0 KZ L log ! (34)
-0 Y(Tk) €k Tmin (Tk) ’

k=1

for a quasi-static schedule {7} } <k~ and per-stage accuracies ¢), determined by the schedule dis-
cretization[T]

Empirical example. On random Chimera graphs with £1 couplings and optimized anneal times, SA
exhibits = exp(@(\/ﬁ)) scaling (Rgnnow et al., [2014, Fig. 3).

(2) Simulated Quantum Annealing (SQA). SQA uses path-integral QMC to sample the Gibbs
state of a stoquastic transverse-field Ising Hamiltonian; the Markov chain evolves on an expanded
state space of n x L spins (with L Trotter slices). At a fixed (/3,T"), the PIMC chain’s mixing time
tPIMC controls runtime:

19 = O(thMC(n, B,T) - log 1), per MCS cost = O(nnz(G) L), (35)
where nnz(G) counts spin—spin couplers actually touched per sweep. There are families where
tPIMC is provably polynomial, e.g., 1D stoquastic Hamiltonians at 3 = O(log n) (Crosson & Harrow
(2021)), and the “spike” cost function where SA is exponentially slow but SQA finds the optimum
in poly(n) time [Crosson & Harrow| (2016). Empirical example. On the same random Chimera

benchmarks as above, optimized SQA also exhibits = exp(@(\/ﬁ )) scaling Rgnnow et al.[(2014)).

(3) Quantum Annealing (QA; adiabatic algorithm / analog devices). For a Hamiltonian path
H(s) = (1 — s)Hy + sHi, the adiabatic theorem yields the gap-based complexity in equation
Thus,

H
QA = O<|”°C> (ideal closed system) (36)

(up to smoothness constants), so exponentially small A,,;, implies exponential time. There are
random NP-complete families (e.g., Exact Cover) where A,;, is exponentially small with high
probability, hence adiabatic QA requires exponential time |Altshuler et al.| (2010). For hardware
experiments, one computes TTS exactly as in equation[30]using the per-run anneal time and observed
success p|Rgnnow et al.| (2014)).

(4) Simulated Bifurcation (SB). SB integrates a classical time-dependent Hamiltonian flow on
variables (x;, y;) with forces

Z; (ballistic SB),
i = ij Ujs = . 7
Ji ; Jij Uy i {sgn(rj) (discrete SB). 7

Per time step, the dominant arithmetic is applying J to u, i.e.,
cost/step = O(nnz(.J)) (sparse) or O(n®) (dense). (38)

SB papers report a step—to—solution (StS) metric that is independent of machine speed: if N, steps
are taken per trial and P is the per-trial success probability, then

log 0 SB

StSi—s5 = Nsm ) 1—

s = StS;_s x (time/step). (39)

Heated/discrete variants reduce StS on Sherrington—Kirkpatrick (dense) benchmarks Kanao & Goto
(2022); see |Goto et al.| (20195 2021) for the original dynamics and high-performance variants.

'In the worst case d* can grow with n, so schedules meeting equation [33| can imply super-polynomial
runtime on typical NP-hard families; cf. Barahona (1982).
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F.3 SIDE-BY-SIDE SUMMARY (DOMINANT TERMS)

Method Asymptotic lens for ;s

SA O(Zk v(Ty) ! log%) for a quasi-static schedule;

€k Tmin (T )
converges if T'(k) = ¢/ log(1 + k) with ¢ > d* (barrier depth) Hajek|(1988); Levin et al.|(2017).
SQA O(tPIMC(n, B,T) - log 1) with per-sweep O(nnz(G)L);
polynomial on certain families (e.g. 1D stoquastic, spike). [Crosson & Harrow| (2021} 2016)
QA O(||H oo/ (e AZ,,)) (adiabatic bound); small gaps = exponential time. Jansen et al. (2007); Albash & Lidar| (2018

min

SB StS1_s x (time/step), with StS in equationand cost/step in equation Kanao & Goto|(2022);|Goto et al.| (201¢

Practical note. When reporting complexity empirically, optimize schedule/parameters per size n
and quote ;s from equation[30} failure to re-optimize can mask speedups/slowdowns Rgnnow et al.
(2014).
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