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Abstract

While Large language models (LLMs) are driving the rapid advancement of ar-
tificial intelligence, effectively and reliably training these large models remains
one of the field’s most significant challenges. To address this challenge, we
propose POET, a novel reParameterized training algorithm that uses Orthogonal
Equivalence Transformation to optimize neurons. Specifically, POET reparame-
terizes each neuron with two learnable orthogonal matrices and a fixed random
weight matrix. Because of its provable preservation of spectral properties of weight
matrices, POET can stably optimize the objective function with improved general-
ization. We further develop efficient approximations that make POET flexible and
scalable for training large-scale neural networks. Extensive experiments validate
the effectiveness and scalability of POET in training LLMs.

1 Introduction

Recent years have witnessed the increasing popularity of large language models (LLMs) in various ap-
plications, such as mathematical reasoning [13] and program synthesis [3] and decision-making [77].
Current LLMs are typically pre-trained using enormous computational resources on massive datasets
containing trillions of tokens, with each training run that can take months to complete. Given such a
huge training cost, how to effectively and reliably train them poses significant challenges.

The de facto way for training LLMs is to directly optimize weight matrices with the Adam opti-
mizer [37, 55]. While conceptually simple, this direct optimization can be computationally intensive
(due to the poor scaling with model size) and requires careful hyperparameter tuning to ensure stable
convergence. More importantly, its generalization can remain suboptimal even if the training loss is
perfectly minimized [36]. To stabilize training and enhance generalization, various weight regular-
ization methods [4, 10, 12, 47, 49, 79] and weight normalization techniques [28, 38, 39, 50, 52, 54]
have been proposed. Most of these methods boil down to improving spectral properties of weight
matrices (i.e., singular values) either explicitly or implicitly. Intuitively, the spectral norm of a weight
matrix (i.e., the largest singular value) provides an upper bound on how much a matrix can amplify
the input vectors, which connects to the generalization properties. In general, smaller spectral norms
(i.e., better smoothness) are considered to be associated with stronger generalization, which inspires
explicit spectrum control [33, 59, 67, 79]. Theoretical results [6] also suggest that weight matrices
with bounded spectrum can provably guarantee generalization. Given the importance of the spectral
properties of weight matrices, what prevents us from controlling them during LLM training?

* Inefficacy of spectrum control: Existing spectrum control methods constrain only the largest
singular value, failing to effectively regularizing the full singular value spectrum. Moreover, there
is also no guarantee for spectral norm regularization to effectively control the largest singular value.

* Computational overhead: Both spectral norm regularization [79] and spectral normalization [59]
require computing the largest singular value of weight matrices. Even with power iteration, this still
adds a significant overhead to the training process, especially when training large neural networks.
Additionally, spectral regularization does not scale efficiently with increasing model size.
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* Strong spectrum control: Because orthogonal transformations do not change the singular values
of weight matrices, POET keeps the weight spectrum the same as the randomly initialized weight
matrices (empirically validated by Figure 1 even with approximations). Through the initialization
scheme, POET thus directly controls the singular value distribution of its weight matrices. As a
result, and in contrast to standard LLM training, POET matrices avoid undesirable large singular
values after training (Figure 1 and Appendix I). To further facilitate the POET algorithm, we
introduce two new initialization schemes: normalized Gaussian initialization and uniform spectrum
initialization, which can ensure the resulting weight matrices have bounded singular values.

* Efficient approximation: While a naive implementation of POET can be computationally expen-
sive, its inherent flexibility opens up opportunities for efficient and scalable training. To address the
key challenge of optimizing large orthogonal matrices, we introduce two levels of approximations:

— Stochastic primitive optimization: The first-level approximation aims to reduce the number of
learnable parameters when optimizing a large orthogonal matrix. To this end, we propose the
stochastic primitive optimization (SPO) algorithm. Given a large orthogonal matrix R € R™*™,
SPO factorizes it into a product of primitive orthogonal matrices, each involving significantly
fewer trainable parameters. These primitives are constructed by parameterizing randomly
sampled submatrices of the full matrix. This factorization is implemented as a memory-efficient
iterative algorithm that sequentially updates one primitive orthogonal matrix at a time. To
improve the expressiveness of the sequential factorization, we adopt a merge-then-reinitialize
trick, where we merge each learned primitive orthogonal matrix into the weight matrix, and then
reinitialize the primitive orthogonal matrix to be identity after every fixed number of iterations.

— Approximate orthogonality via Cayley-Neumann parameterization: The second-level approxi-
mation addresses how to maintain orthogonality without introducing significant computational
overhead. To achieve this, we develop the Cayley-Neumann parameterization (CNP) which
approximates the Cayley orthogonal parameterization [48, 65] with Neumann series. Our
merge-then-reinitialize trick can effectively prevent the accumulation of approximation errors.

POET can be viewed as a natural generalization of orthogonal training [48, 51, 65], wherein the
model training is done by learning a layer-shared orthogonal transformation for neurons. Orthogonal
training preserves the hyperspherical energy [47, 49] within each layer—a quantity that characterizes
pairwise neuron relationships on the unit hypersphere. While preserving hyperspherical energy proves
effective for many finetuning tasks [51], it limits the flexibility of pretraining. Motivated by this,
POET generalizes energy preservation to spectrum preservation and subsumes orthogonal training as
its special case. The better flexibility of POET comes from its inductive structures for preserving
weight spectrum, rather than more learnable parameters. We empirically validate that POET achieves
better pretraining performance than orthogonal training given the same budget of parameters.

To better understand how POET functions, we employ vector probing to analyze the learning dynamics
of the orthogonal matrices. Vector probing evaluates an orthogonal matrix R using a fixed, randomly
generated unit vector v by computing v ' Rv which corresponds to the cosine similarity between
Rwv and v. By inspecting the cosine similarities of seven orthogonal matrices throughout training, we
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Figure 2: POET’s three learning phases. Left: illustration; Middle: angle; Right: loss and validation.

* We introduce POET, a novel training framework that provably preserves spectral properties of
weight matrices through orthogonal equivalence transformation.

* To enhance POET’s scalability, we develop two simple yet effective approximations: stochastic
principal submatrix optimization for large orthogonal matrices and the Cayley-Neumann parame-
terization for efficient representation of orthogonal matrices.

* We empirically validate POET’s training stability and generalization across multiple model scales.

2  From Energy-preserving Training to Spectrum-preserving Training

Orthogonal training [48, 51, 65] is a framework to train neural networks by learning a layer-shared
orthogonal transformation for neurons in each layer. For a weight matrix W = {wy, -+ ,w,} €
R™*" where w; € R™ is the i-th neuron, the layer’s forward pass is y = W T x with input € R™
and output y € R"™. Unlike standard training, which directly optimizes W, orthogonal training keeps
W fixed at its random initialization Wy = w9, ..., w? and instead learns an orthogonal matrix
R € R™*™ to jointly transform all neurons in the layer. The forward pass becomes y = (RW,) .

R

The effective weight matrix is Wi = {wft ... wl} where wf* = Rw,. A key property is its

preservation of hyperspherical energy. With w; = w; /||w;||, orthogonal training ensures
~0 ~0

HE(Wo) := > [|[@? —@?|| " = | Ribi — Ru;|| " =: HE(W™), (1)
i#i i#]

where hyperspherical energy HE(+) characterizes the uniformity of neurons on a unit hypersphere.
Prior work [47-49, 76] has shown that energy-preserving training can effectively improve general-
ization. Orthogonal finetuning (OFT) [51, 65] also demonstrates that finetuning foundation models
while preserving hyperspherical energy achieves a favorable trade-off between efficient adaptation to
downstream tasks and retention of pretraining knowledge. While the hyperspherical energy preserva-
tion is effective for finetuning, it can be too restrictive for pretraining. To allow greater flexibility in
the pretraining phase, we relax the constraint from preserving hyperspherical energy to preserving the
singular-value spectrum instead. By inherently maintaining the spectrum, energy-preserving training
is a special case of spectrum-preserving training. As a generalization, spectrum-preserving training
learns a transformation 7 : R"*"™ — R"™*" that preserves the spectrum:

{01 (T(W0)), 02T (Wh)), -+, Omingm.) (T (W) } = {01 (Wh), 02(Wo), -, Tumin(m,m) (Wo) }5 (D)

where o;(W)) denotes the i-th singular value of Wy (sorted by descending order with o1 being
the largest singular value). How we instantiate the transformation 7 results in different algorithms.
Generally, T is a spectrum-preserving map, and can be either linear [42] or nonlinear [5]. If we only
consider 7 to be a linear map, then Theorem 1 can fully characterize the form of 7

Theorem 1 (Simplified results from [42]). For a linear map T : R™*" — R™*" (m £ n), if
o1(T(W)) = 01(W) always holds for all W € R™*", then the linear map T must be of the
Sollowing form: T(W) = RW P, for all W € R™*™ where R € R™*™ and P € R™*™ are some
fixed elements in orthogonal groups O(m) and O(n), respectively.

All parameterizations for the linear map 7 can be expressed as 7 (W )=RW P, where R and
P are orthogonal matrices. For instance, OFT is an energy-preserving method (a special case of
spectrum-preserving training), where the map simplifies to 7 (W)= RW I, with I as the identity.



POET preserves hyperspherical energy under isotropic Gaussian initialization. [48] shows
that weight matrices that are initialized by zero-mean isotropic Gaussian distribution (e.g., [17]) are
guaranteed to have small hyperspherical energy. Because zero-mean isotropic Gaussian is invariant
under orthogonal transformation, RW P also has small energy (see Section 4 and Appendix B).

3 Reparameterized Training via Orthogonal Equivalence Transformation

This section introduces the POET framework, which reparameterizes each neuron as the product of a
fixed random weight matrix and two learnable orthogonal matrices applied on both sides. POET serves
as a specific implementation of spectrum-preserving training. Inspired by Theorem 1, it parameterizes
the spectrum-preserving transformation 7 using a left orthogonal matrix that transforms the column
space of the weight matrix and a right orthogonal matrix that transforms its row space.

3.1 General Framework

Following the general form of spectrum-preserving linear maps discussed in the last section, POET
reparameterizes the neuron as RW, P, where W, € R™*" is a randomly initialized weight matrix
that remains fixed during training, and R € R™*™ P € R™*" are trainable orthogonal matrices.
This reparameterization effectively applies an orthogonal equivalence transformation (OET) to random
weight matrices. Specifically, OET is a double-sided transformation, defined as OET(W; R, P) =
RW P, where the input matrix W is multiplied on the left and on the right by orthogonal matrices
R and P, respectively. The forward pass of POET can be thus written as

y=Wgpx = (RWoP) 'z, st {R'TR=RR' =1, P'"P=PP' =1}, 3)

where R and P can be merged into a single weight matrix Wrp = RW), P after training. Therefore,
the inference speed of POET-trained neural networks is the same as conventionally trained ones.

Spectrum control. POET can be interpreted as learning weight matrices by simultaneously transform-
ing their left singular vectors and right singular vectors while keeping the singular values unchanged.
Given the singular value decomposition (SVD) Wy = U3V ', the reparameterized neuron weight
matrix becomes Wgrp = RUX,V T P where both RU and V' T P are orthogonal matrices. This
effectively constitutes an SVD of Wxp. It is also straightforward to verify that the spectral properties
of Wrp remain identical to those of the initial matrix Wj,.

Neuron initialization. Since POET preserves the spectral proper-  1s — Standard

ties of the initial weight matrix Wy, the choice of initialization plays ' Uniform spectrum
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is directly inspired by prior work showing that normalized neurons improve convergence [48, 50, 52].
To ensure that the POET-reparameterized network is statistically equivalent to a standard network at
initialization, we always initialize both orthogonal matrices as identity matrices.
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3.2 Efficient Approximation to Orthogonality

POET is conceptually simple, requiring only the optimization of two orthogonal matrices. However,
these matrices are typically large, and naively optimizing them leads to significant computational
challenges. We start by introducing the following efficient approximations.

3.2.1 Stochastic Primitive Optimization

The core idea of SPO is inspired by how QR factorization is performed using Givens rotations and
Householder transformations. Both methods construct a large orthogonal matrix R by sequentially
applying primitive orthogonal transformations (e.g., Givens rotations or Householder reflections),
i.e., R = [[;_; G;, where G; denotes the i-th primitive orthogonal matrix. While each G is of
the same size as R, it is parameterized by significantly fewer degrees of freedom. See Figure 4
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Figure 4: Examples of the primitive orthogonal transformation matrix G'; in different orthogonalizations (two examples for each method). Note
that, blue blocks represent 1, light purple blocks denote 0 and deep purple blocks are the actual orthogonal parameterization to be learned.

for an illustration. Both Givens rotation and Householder reflection use relatively low-capacity
parameterizations—for example, each Givens rotation G; involves only a single effective parameter—
which limits their efficiency in representing the full orthogonal matrix. SPO follows a similar idea
of factorizing the original orthogonal matrix into multiple primitive orthogonal matrices. However,
unlike Givens and Householder methods, SPO treats the number of effective parameters in each
primitive matrix as a tunable hyperparameter and adopts a stochastic sparsity pattern.

Fully stochastic SPO. The basic idea of fully stochastic SPO is to randomly sample a small
submatrix and enforce its orthogonality, allowing it to be easily extended to a full orthogonal
matrix by embedding it within an identity matrix—a process similar to Givens or Householder
transformations. To represent a large orthogonal matrix R € R™*™, we start by defining ¢ index
sets 87 = {s],---,s1} C {1,---,m} (j € [1,c]), where each set has cardinality |S/| = b, a
hyperparameter controlling the number of effective parameters of a primitive orthogonal matrix.
S7,Vj are randomly sampled from the full indices {1,--- ,m}. Let G; € R?*? be a small orthogonal
matrix, and D(S7) = {e(s]), - ,e(s])} € R™*" be a selection matrix, where e(k) is the standard
basis vector with a 1 in the k-th position and 0 elsewhere. The factorization is given by

R=][(In+D(8) - (Gi— L) -D(S)"), stG/G =GG =1, Vi, 4)

=1

G ;: The i-th primitive orthogonal matrix

where D(S?) - (A) - D(S%) T is a projector that replaces the b x b sub-block with A. I,,, and I, are
identity matrices of size m x m and b x b, respectively. To efficiently parameterize small orthogonal

matrices G;, we can use the CNP introduced in the next section.

Block-stochastic SPO. While fully stochastic SPO is simple, it may fail to transform all neuron
dimensions because the identity matrix leaves part of the space unchanged. See the blue blocks in
Figure 4(c) as an example. To address this, we propose block-stochastic SPO, which first constructs
a block-diagonal orthogonal matrix with small blocks for parameter efficiency, and then applies a
random permutation to enhance expressiveness by randomizing the sparsity pattern. Block-stochastic
SPO transforms all neuron dimensions simultaneously, as shown in Figure 4(d). Formally we have

R=T] (%] Diag(G},G%---,G[" )W), st(G)TGI=GIG) =L, Vij,

i=1

G;: The i-th primitive orthogonal matrix

where CNv'i € RP*? s the j-th block of the block diagonal matrix, and ¥, Vi are all random permuta-
tion matrices. As long as each diagonal block G is an orthogonal matrix, both G; and R are also
orthogonal matrices. We also use CNP to efficiently parameterize each orthogonal block G7.

The merge-then-reinitialize trick. The factorizations in Equation (4) and (5) offer a simple approach
to optimizing large orthogonal matrices by sequentially updating primitive orthogonal matrices.
However, storing all previous primitives incurs high GPU memory overhead. To mitigate this, we
propose the merge-then-reinitialize trick, where the learned primitive orthogonal matrix can be
merged into the weight matrix after every certain number of iterations, and then reinitialized to the
identity matrix. After reinitialization, stochastic sampling is repeated to select a new index set (in
fully stochastic SPO) or generate a new permutation (in block-stochastic SPO). This trick allows only
one primitive matrix to be stored at a time, substantially reducing GPU memory usage.

3.2.2 Cayley-Neumann Parameterization

The classic Cayley parameterization generates an orthogonal matrix R in the form of R = (I +
Q)(I — Q)~! where Q is a skew-symmetric matrix satisfying @ = —Q . A minor caveat of this
parameterization is that it only produces orthogonal matrices with determinant 1 (i.e., elements of the
special orthogonal group), but empirical results in [48, 51, 65] indicate that this constraint does not
hurt performance. However, the matrix inverse in the original Cayley parameterization introduces



numerical instability and computational overhead, limiting its scalability to large orthogonal matrices.
To address this, we approximate the matrix inverse using a truncated Neumann serieS'

R=I+QI-Q '=(I+Q)- ZQ I+Q)- I+ZQ (6)

where a larger number of approximation terms k leads to a smaller appr0x1mat10n error. By avoiding
matrix inversion, the training stability of POET is improved; however, this comes with a price—the
approximation is valid only when the Neumann series converges in the operator norm. To initialize
orthogonal matrices as identity, we set @ to a zero matrix in CNP, satisfying the convergence
condition initially. As the training progresses, however, updates to 2 may cause its operator norm to
exceed 1, violating this condition. Fortunately, our merge-then-reinitialize trick mitigates this issue
by periodically resetting @ to a zero matrix, ensuring its operator norm remains small.

3.2.3 Overall Training Algorithm
Step 1: Initialization. We initialize the weight matrices using normalized Gaussian: W < W,

Step 2: Orthogonal matrix initialization. For fully stochastic SPO, we randomly sample an index

set S, and parameterize G r € RP*? and Gp € RbxD using CNP (Equation (6)). Both matrices are
initialized as identity, so R and P also start as identity matrices. For block-stochastic SPO, we sample

arandom permutation matrix W g, ¥ p, and parameterize {CNJ}?, - é;ﬂ} and {é};, cee CNT‘[Dﬂ}
using CNP. Then we initialize them as the identity, so R and P again starts as identity matrices.

Step 3: Efficient orthogonal parameterization. For fully stochastic SPO, we have R = I, +
D(S)(Ggr — I,)D(S)" and P = I,,, + D(S)(Gp — I,)D(S)". For block-stochastic SPO, we
have R = ¥ ,Diag(GL, - - - GT " and P = ¥ L Diag(GL, - - ,G’IL%])\II

Step 4: Inner training loop for updating orthogonal matrices. The equivalent weight matrix in the

forward pass is RW P. Gradients are backpropagated through R and P to update Gr,Gp (fully
stochastic) or Gzé, Gﬁ;, Vi (block-stochastic). This inner loop runs for a fixed number of iterations.

Step 5: Merge-then-reinitialize. The learned orthogonal matrices R and P are merged into the
weight matrix by W < RW P. If not terminated, return to Step 2 for reinitialization.

4 Discussions and Intriguing Insights

Parameter and memory complexity. By intro- Method  # trainable params Memory cost
ducing a hyperparameter b as the sampling budget, ~AdamW mn 3mn
fully stochastic SPO decouples parameter com-  GaLore [82] mn mn +mr + 2nr
plexity from the size of the weight matrices. Witha ~ POET(FS) b(b—1) mn + 3b(b — 1)

small b, POET becomes highly parameter-efficient, ~FOFT (BS) el G e Ve

though at the cost of slower convergence. This of- Table 1: Comparison to existing methods. Assume W € R™*™
. . (m < n), GalLore with rank r and POET with block size b. FS

fers users a flexible trade-off between. efﬁ01ency denotes fully stochastic SPO, and BS denotes block-stochastic SPO.

and speed. In contrast, block-stochastic SPO has

parameter complexity dependent on the matrix size (i.e., m + n), making it more scalable than

AdamW, which requires mn trainable parameters. In terms of memory complexity, both POET

variants can be much more efficient than AdamW with a suitable sampling budget b. A comparison

of parameter and memory complexity is given in Table 1.
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34 Small budget

Performance under a constant parameter budget. Since POET
optimizes two orthogonal matrices R, P simultaneously, a natural - Medium budso
question arises: which matrix should receive more parameter budget % ., L
under a fixed total constraint? To investigate this, we conduct a ¥, \/
controlled experiment where different ratios of trainable parameters T - AT
are allocated to R and P under a fixed total budget. All other =~ 70 701 702 705 20T 709 P
settings (e.g., architecture, data) remain unchanged, with full details i‘)‘f}:{jﬂf mfﬁrgﬁ:; gﬁdlzgf; ‘ﬁde;,a
provided in the Appendix. We use validation perplexity as the T
evaluation metric. The total parameter budget matches that of fully stochastic POET with b = %m
for Rand b = %n for P, where h = 8, 4, and 3 correspond to small, medium, and large budgets,
respectively. We explore seven allocation settings: R: P=1:0 (i.e., orthogonal training [48, 51, 65]),
0.9:0.1, 0.75:0.25, 0.5:0.5 (i.e., standard POET), 0.25:0.75, 0.1:0.9, and 0: 1. Results in Figure 5
show that POET with a balanced allocation between R and P yields the best performance.

Validation perplexity
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Figure 6: Dynamics comparison of average singular value entropy (singular value diversity) between direct training (AdamW, Muon) and POET.

Guarantees of weight spectrum. For POET with standard and normalized Gaussian initializations,
we have proved in Appendix C that the largest and smallest singular values of weights can be bounded.
For normalized Gaussian, the bound is only dependent on the row-to-column ratio of the weight
matrix. For standard Gaussian, the bound has an extra dependence on the neuron dimension.

Connection to generalization theory. Several generalization results [6, 63, 76] based on bounding
the spectral norm of weight matrices. In particular, the spectrally-normalized margin analysis in [6]
bounds the misclassification error in terms of a margin-based training loss and a complexity term.
The complexity term is proportional to Q/(yn) where v and n are margin and sample size and Q
bounds the spectral complexity. For an L-layer ReLU MLP and maximal width d, @) is bounded by

L L 3/2
_ ‘ (Vd||Wil|r)*?
9= (E'W’”> (; ARE @
where ||-|| and ||-|| 7 denote spectral and Frobenius norm respectively. Those norms remain invariant
when training the network with POET and at initialization they can be bounded with high probability

using standard results from random matrix theory (Appendix C). The scale at initialization is typically
chosen such that W € R4 satisfies |[W| = O(1) and |W|| = O(v/d) so that Q = Or,(d).

Approximation properties of SPO. We have seen in Theorem 1 that the factorization RW P with
orthogonal matrices R and P is the most general spectrum preserving transformation of W. Here
we express R and P as products of stochastic primitives, but as we state next, this does not reduce
representation power when using sufficiently many primitives.

Lemma 1. If ¢ > amIn(m)(m/b)? for some o > 0 then with probability at least 1 — m~(@~2)
over the randomness of the index sets S* we can express any orthogonal matrix R as a product of c
primitives G; as in Eq. (4). Moreover; the orthogonal matrix G; depends only on the sets 87 and
matrices GY selected in earlier steps.

The proof of this lemma can be found in Appendix D. The result extends to Block-stochastic SPO as
this is strictly more expressive than fully stochastic SPO. The key idea of the proof is similar to the
factorization of orthogonal matrices into a product of Givens rotations. Indeed, by multiplying R "
with properly chosen primitive matrices G; we can create zeros below the diagonal for one column
after another. Note that each G; has b(b — 1)/2 parameters while R has m(m — 1)/2 parameters,
which implies that generally at least Q((m/b)?) primitives are necessary. In Appendix D we also
provide a heuristic that with high probability for ¢ = O(In(m)(m/b)?) every orthogonal matrix can
be written as a product of ¢ orthogonal primitives G ;.

Inductive bias. POET-reparameterized neurons result in neural networks that maintain identical
architecture and parameter count during inference as conventionally trained networks. While standard
training could technically learn equivalent parameters, they consistently fail to do so in practice. This
indicates POET provides a unique inductive bias unavailable through standard training. POET also
aligns with prior findings in [2, 18] that optimizing factorized matrices yields implicit inductive bias.

Dynamics of singular spectrum. Inspired by [46], we conduct a spectral analysis by comparing
the singular spectrum among AdamW, Muon and POET. Following [1, 68], we compute SVD



entropy of the trained Llama-60M model at different iteration. Specifically, the SVD entropy, defined

2 2
as H(o) = @ > Ziiaf- log ﬁ measures the diversity of singular values; higher entropy

indicates a more uniform and diverse spectrum. [46] attributes the favorable performance of Muon
over AdamW to the more diverse spectrum of weight matrices updates. As shown in Figure 6, POET
consistently maintains high spectral diversity throughout training, owing to its orthogonal equivalence
transformation. Therefore, POET can better explore diverse optimization directions.

POET minimizes hyperspherical energy. While POET generalizes energy-preserving training to
spectrum-preserving training, it still ensures low hyperspherical energy when initialized with a zero-
mean isotropic Gaussian distribution. This is significant, as POET retains the generalization benefits
of minimal hyperspherical energy [47—49]. This property comes from the invariance of zero-mean
isotropic Gaussian to orthogonal transformation. [48] shows that for a weight matrix W initialized
by zero-mean isotropic Gaussian, its neurons, after being normalized, are uniformly distributed on
the unit hypersphere. This property provably leads to a small hyperspherical energy. Since zero-mean
isotropic Gaussian is invariant to orthogonal transformation, OET(W'; R, P) = RW P does not
change the distribution of W, i.e., RW P =; W. We give a derivation in Appendix B. Therefore,
the transformed neurons of the new weight matrix RW P are also uniformly distributed over the unit
hypersphere after being normalized. This validates that POET provably preserves a small energy.

The property that POET preserves singular spectrum while retaining
small hyperspherical energy well justifies why POET yields stable
training and good generalization. Such a property only holds true
when the weight initialization follows zero-mean isotropic Gaussian,
which is perfectly satisfied by current weight initialization. It may
also justify why zero-mean isotropic Gaussian initialization works —
better than the uniform spectrum initialization in our experiments. T
To further validate that POET maintains a small hyperspherical ~Fisire 7: Hyperspherical encrey compari-
. son between AdamW, Muon and POET.
energy, we plot the hyperspherical energy of the Llama-60M model
at different iterations in Figure 7. We compare the sum of the hyperspherical energy of all the
layers trained by AdamW, Muon or POET. The results again verify POET’s energy-minimizing
property. Different from previous orthogonal training [48], POET can not preserve exactly the
same hyperspherical energy during training, but it can well minimize hyperspherical energy in an
expectation sense. We also find that Muon can better minimize hyperspherical energy than AdamW.

— MUON
— AdamW
— POET

5 Experiments and Results

We start by evaluating POET on large-scale LLaMA pretraining, followed by an extensive ablation
study to justify our design choices. Detailed settings and additional results are given in Appendices.

5.1 LLM Pretraining using LLaMA Transformers

We perform the pretraining ex-  Model (# tokens) ~ 60M (30B) ~ 130M (40B)  350M (40B) 1.3B (50B)

periments on the Llama trans-  AdamW 26.68 (2530M)  20.82 (84.93M)  16.78 (302.38M)  14.73 (1.21B)
formers of varying sizes (60M, Galore 29.81 (25.30M) 22.35(84.93M)  17.99 (302.38M) 18.33 (1.21B)
]3()M’ 35()M, 1,3B) for POET. LoRA—¢4 39.70 4.85M)  32.07 (11.21M)  25.19 (30.28M)  20.55 (59.38M)
We use the C4 dataset [66], a POETss b4 20.52 2390M)  24.52(5.52M)  20.29 (1490M)  18.28 (29.22M)
cleaned web crawl corpus from POETgs p-128 26.90 4.81M) 21.86 (11.12M)  18.05 (30.04M)  16.24 (58.91M)
Common Crawl, widely used POETsgs =256 2529 9.66M) 19.88 (22.33M)  16.27 (60.32M)  14.56 (118.26M)
for LLM pretraining [29, 56, J oo essan 1942 1760000
. FS,b=1/4 d b o o 4 o d 4
82]. For POETBS, b is the POETEs p-12 25.37 8.54M)  19.94 (28.56M)  15.95 (101.86M)  13.70 (406.88M)

block size of the block-diagonal
orthogonal matrix. For POET-
FS, bj,=bm for R and by,=bn
for P. We compare POET against GaLore [82], a low-rank pretraining method, and AdamW, the
standard pretraining optimizer. We generally follow the settings in [82]. To better simulate the
practical pretraining setting, we significantly increase the number of training tokens for all methods.

Table 2 shows that both POET-FS (b=1/2) and POET-BS (b=256) consistently outperform both GaL.ore
and AdamW with significantly fewer parameters. For LLaMA-1B, POET-FS (b=1/2) yields the best
overall performance, achieving a validation perplexity of 13.70, much better than AdamW (14.73)
and GaLore (18.33). Block-stochastic POET with =256 achieves the second-best performance

Table 2: Comparison of POET with popular pretraining methods using different sizes of LLaMA
models. Validation perplexity and the number of trainable parameters are reported.



(14.56), which still surpasses AdamW I — Admw —y—

A , . | POET(BS, 64) —— POET(BS, 256)
with only one-tenth of AdamW'’s train-  «| |\ — FoeTis 1 POETES, 12
able parameters. Similar patterns can POETES, 1)
be observed for models of smaller

POET(FS, 1/4)
~ POE Hlﬁ. 1/2) k> Pt
sizes. Moreover, we compare the —_— . !A

training dynamics between AdamW R o T W —ow
and POET in Figure 8. The training - .

dynamics of POET is quite different

from AdamW. After an initial rapid drop in perplexity, POET improves more slowly than AdamW.
As seen in Phase II (Figure 2), this slower but stable progress can lead to better performance in later
stages. We attribute this intriguing phenomenon to the unique reparameterization of POET and How
we efficiently approximate orthogonality. The exact mechanism behind this phenomenon remains an
open question, and understanding it could offer valuable insights into large-scale model training.

//
Perplexity

Perplexity

Figure 8: Validation perplexity dynamics on LLaMA-350M and LLaMA-1.3B.

To highlight POET’s non-trivial performance improvement, we in- E—
crease the training steps (i.e., effectively tokens seen) for AdamW, POET(FS, 12)
and find that POET-FS (b=1/2) still outperforms AdamW even even T 250 s

if AdamW is trained with almost triple the number of tokens. Re- £” AdamW with >700K steps
sults are given in Figure 9. In this experiment, the AdamW learning i
rate was carefully tuned for the full training run, and no training s

tokens were repeated. Thus, the improvement is non-trivial and can- ™ ™ ™ ™ ™ o ™
not be attributed to merely increasing training steps. Interestingly, Figure 9: Validation perplexity dynamics of
we also observe from Table 2 that POET’s performance appears gg&%g& gjifr)fjﬁgs‘;iaxx;& {;{l‘inm;
strongly correlated with the parameter budget and larger budgets with almost twice the number of seen tokens.
consistently yield better results across model scales. This is particu-

larly important for model scaling law [35]. Another notable observation is that POET significantly
outperforms LoRA [26] given a similar parameter budget. For instance, with approximately 30M
trainable parameters, POET attains a validation perplexity of 18.05, significantly better than LoRA’s
25.19. We further observe that the block-stochastic variant is more parameter-efficient than the fully
stochastic one. On the 130M model, it achieves a validation perplexity of 19.88 with nearly 6M fewer
trainable parameters, compared to 19.94 for the fully stochastic variant. We hypothesize that this is
due to better coverage of weight parameters. Specifically, the block-stochastic variant ensures all
corresponding weights are updated at each step, unlike the more uneven updates in the fully stochastic
variant. Experimental details and results on weight update coverage are provided in Appendix H.

Perplexity

Pretraining Llama-3B. To demonstrate the scalability of POET, we apply ~_Method Perplexity
POET to pretrain Llama with 3B parameters while reusing the same hyperpa-  AdamW 19.61
rameters from the 1.3B model. This model was trained with only 1/10 of the = POETesp=12  16.90
tokens used for the 1.3B model. Compared to Table 2, the slightly higher final ~ Table 3: Validation perplex-
perplexity is attributed to the reduced training data (5B tokens). Table 3 shows ﬁ,{,;’;‘f,‘“;i‘;";gﬂf;;ﬁiﬁﬁjB
that POET maintains the performance advantage over AdamW at the 3B scale,

consistent with the conclusion drawn from Table 2 for smaller models. Our findings confirm that the

benefits of POET are not limited to smaller models but can extend robustly to larger scales.

5.2 LLM Finetuning on Downstream Tasks

To better evaluate models  FT Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

beyond the validation per- gy pp AdmW 0361 0658 0696 0818 0829 0534 0914 0880
plexity, we show the results POET 0523 0818 0.824 0885 0902 0.661 0920 0873
9

of fnctuning the tined o AN 0800w 0w 0w 0o oo
model on the GLUE bench- = < = = = = = =

; AdamW 0435 0.804 0806 0.856 0889 0.653 0904 0878
. POET
mark [75]. This benchmark POET 0505 0.821 0826 0.892 0902 0.682 0931 0.887
provides a comprehensive

5 Table 4: Downstream performance on GLUE between AdamW- and POET-pretrained models.
assessment of a model’s

language understanding capabilities through a diverse set of downstream tasks. The performance on
GLUE serves as an important indicator of the transferability of the model’s learned representations.
Performance was measured using accuracy for MNLI, MRPC, QNLI, QQP, RTE, and SST-2; the
Matthews Correlation Coefficient for CoLLA; and the Pearson Correlation Coefficient for STS-B. For
each task, we finetune the models for 10 epochs using a consistent learning rate of 2e-5. The evalua-
tion covers several finetuning strategies: full finetuning (Full FT) with AdamW, orthogonal finetuning
(OFT) [51, 65], and finetuning with POET. The results in Table 4 show that the POET-pretrained




model consistently outperforms the AdamW-pretrained baseline across all tasks and finetuning meth-
ods. The results further validate POET’s generalizability. In this setting, OFT uses significantly less
parameters than both Full FT and POET, so OFT generally performs worse. However, the comparison
between Full FT and POET is fair, since both methods update the entire model.

5.3 Ablation Studies and Empirical Analyses

Initialization schemes. We empirically compare different random initial- _Scheme Perplexity
ization schemes for POET, including two commonly used ones (standard  Standard 26.22
Gaussian, Xavier [17]) and two proposed ones (uniform spectrum, normalized ~— Xavier 25.79
Gaussian). Specifically, we use fully stochastic POET with =1/2 to train Eg;;;:;?m i;;:

Llama-60M on 30B tokens and report the validation perplexity in Table 5. Table S: Performance of dif.
Results show that the normalized initialization will lead to the best final ¢ .. initializations.
performance, and we stick to it as a default choice. Interestingly, uniform

spectrum initialization performs poorly. This suggests a trade-off between preserving good weight
spectral properties and achieving strong expressiveness. it may limit its expressiveness. Finding the

optimal singular value structure for weights remains an important open problem. I Peroexit
m erplexity

Merge-then-reinitialize frequency. The proposed merge-then-reinitialize trick s 30.29
allows POET to train only a small fraction of the large orthogonal matrices R and 25 21.27
P per iteration, significantly reducing GPU memory usage. However, this trick 50 2599
also introduces a reinitialization frequency hyperparameter 7},,, which determines 2% 237
how often the orthogonal matrix is merged and reset to the identity. The index set ngo zzz;

in POET-FS and the permutation matrix in POET-BS are also resampled at each "

C e 4o . A . . able 6: Val. perplex-
reinitialization. Therefore, it is quite important to understand how this hyperparam- jy of different T,.
eter 1, affects performance. Following the previous initialization experiment, we
use POET-FS with b=1/2 to train Llama-60M on 30B tokens. We vary the reinitialization frequency
from 5 to 1600 and report the validation perplexity in Table 6. Results show that both 200 and 400

perform well. Therefore, we set 73, = 400 in all experiments by default. .
Scheme  Perplexity

Neumann series approximation. CNP approximates the matrix inverse using k=1 Not converged

a Neumann series. As the number of Neumann terms directly influences & =2 22.56
the approximation quality, understanding its impact on model performance * =3 2154
is essential. To this end, we evaluate how varying the number of Neumann Z :: igﬁ

terms affects performance, using POET-FS with b = 1/2 to train LLaMA-130M.
Results in Table 7 show that increasing the number of Neumann terms generally
improves validation perplexity. However, this also leads to slower training.
Moreover, Using only 1 Neumann term (k£ = 1) leads to training divergence, highlighting the critical
role of maintaining orthogonality. To balance overhead and performance, we find that using 5
Neumann terms is a good trade-off.

Table 7: Number of terms
in Neumann series.

Additionally, we evaluate the accu-
racy of the Neumann approximation
to understand how the number of
Neumann terms affects the orthog-
onality. The Orthogonal approxi- 200 400 ste 600 800 1000 [ 200 400 W‘(.rm 800 1000

mation error iS deﬁned by eorth — . o A(a) Orlh(ug«’\;c%)l matrix R o ] A 1(;) Orl?o;im:ilfmalrix.l’h A
: 1] i trices t matrix.
H RRT _ I || r / | | I ‘ ‘ . “]e randomly gure pproximation error or orthogonal matrices an Oor a weight matrix

Approximation error

select a weight matrix and compute the approximation error of corresponding orthogonal matrices R
and P. For clarity, we visualize the error in the initial 1000 training steps in Figure 10. We observe
that, with more Neumann terms, the orthogonal approximation error is indeed lower. Moreover, the
merge-then-reinitialize trick can periodically reset the error. More results are given in Appendix L

6 Related Work, Concluding Remarks and Acknowledgement

Related work. Inspired by low-rank adaptation methods such as LoRA [26], a number of recent
approaches [11, 20, 27, 30-32, 43-45, 53, 58, 71, 81, 82] have explored low-rank structures to
enable efficient pretraining of large language models (LLMs). In parallel, sparsity has also been
extensively studied as a means to improve training efficiency in neural networks [9, 14, 15, 25,72, 78].
Compared to approaches that exploit low-rank structures, relatively few works have explored sparsity
for pretraining. Our work broadly aligns with the sparse training paradigm, as POET leverages

10



sparsely optimized orthogonal matrices to enhance training efficiency. A parallel line of research [34,
46, 60, 69, 80] focuses on developing efficient optimizers for large-scale neural networks. While
our work also targets efficient training of large models, it is orthogonal to these efforts, as POET
can be integrated with any optimizer. The way POET uses orthogonal matrices to transform neurons
may also relate to preconditioned optimizers such as Muon [34], Shampoo [19] and SOAP [73],
as well as to the broader field of manifold optimization (e.g., [7]). POET-trained weight matrices
remain statistically indistinguishable from randomly initialized ones due to the isotropy of zero-
mean independent Gaussian distributions. This yields interesting connections to random neural
networks [21, 40, 40, 62, 74], random geometry [22], and random matrix theory [16].

Concluding remarks. This paper introduces POET, a reparameterized training algorithm for large
language models. POET models each neuron as the product of two orthogonal matrices and a fixed
random weight matrix. By efficiently learning large orthogonal transformations, POET achieves
superior generalization while being much more parameter-efficient than existing LLM pretraining
methods. Experiments show that POET is broadly applicable to both pretraining and finetuning tasks.

Acknowledgement. The authors would like to sincerely thank Lixin Liu, Han Shi, Gege Gao,
Zhen Liu and many colleagues at Max Planck Institute for Intelligent Systems for many helpful
suggestions. Additionally, the authors also sincerely thank all the anonymous NeurIPS reviewers for
their constructive suggestions that greatly improved the quality of our work.
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A Delving into POET’s Three Training Phases

A.1 More Details on Vector Probing

The three training phases of POET are summarized from the empirical observation of the vector
probing results. The idea of vector probing is very straightforward. We generate a constant vector v
that is randomly initialized. Then we let it to be transformed by the learned orthogonal matrices R
and P. Finally, we compute the cosine of their angle: v " Rv and v " Pw. In this process, the probing
vector v is always fixed. The full results are given in Appendix G.

Beyond a particular constant probing vector, we also consider a set of randomly sampled probing
vectors that follow our proposed normalized Gaussian initialization. Specifically, we consider the
following expectation:

Eysm-1{v' Rv}, ®)

where v is a vector initialized by normalized Gaussian distribution (thus uniformly distributed on a
unit hypersphere S™~1). Because E{vv '} = %, then we have that

1
Eysm-1{v' Rv} = —Tr(R). )
m
where Tr(-) denotes the matrix trace. Its geometric interpretation is the cosine of the rotation angle

between v and Rv.

Next, we look into the variance of g(z) = v Rv (we simplify the expectation over the unit
hypersphere to E):
Var(g(x)) = E{(v Rv)?} — (E{v" Ro})”. (10)

First we compute E{ (v Rv)?}:

R'+R
Tr(R)2+2H72+ H

T .21 _
E{(v' Rv)°} = mm +2) an
_ Tr(R)? + Tr(R?*) +m
B m(m + 2)
Then we compute (E{v " Rv})2:
(E{v" Rv})? = TI;RQ)Q. (12)

Finally, we combine pieces and have the final variance:

m + Tr(R?) + 2T(R)*
m(m + 2)

Var(v ' Rv) = (13)

which shrinks at the order of O(1/m). Therefore, when the dimension of orthogonal matrices is
large, even if we use a fixed random probing vector v, this rotation angle is quite consistent.

A.2 Geometric Interpretation of the Trace of Orthogonal Matrices

Let’s delve deeper into the trace of orthogonal matrices. It generally represents how much a trans-
formation preserves vectors in their original directions. Specifically, the trace indicates how much
“alignment” or similarity there is between the original vectors and their images after transformation.

The trace of an orthogonal matrix R € R™*™ can be written as

m

Tr(R) = ZeiTRei (14)
i=1

where e;, Vi are unit basis vectors. This expression reveals that the trace measures the sum of inner
products between each original direction e; and its transformed version Re;. Since e, Re; can
be interpreted as the cosine of the angle between e; and Re;, the trace thus reflects how much the
orthogonal transformation aligns with or deviates from the original coordinate directions.
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We also plot the trace of both R and P during the POET training. The results are shown in Figure 13
and Figure 14. After dividing the trace by the orthogonal matrix dimension, we obtain that the result

is generally in the range of [0.6, 0.65] after training. This is similar to the results of vector probing.
Tr(R)

Therefore, we empirically verify the conclusion that the expectation of vector probing results is —-

with a small variance.

A.3 Empirical Observations

The training dynamics of POET presents three geometry-driven phases. We note that these phase
changes are based on empirical observation, and further theoretical understanding of this process
remains an open problem.

Phase I: conical-shell searching rotates each orthogonal matrix R and P smoothly away from the
identity while preserving their singular values, so the cosine similarity between transformed and
initial weight vectors falls from 1 to ~ 0.6; this provides a spectrally well-conditioned “cone” in
which learning can proceed safely. this phase serves the role of “spectral warm-up”. By plotting
the cosine similarity of any one layer, we always see the same graceful slide towards 0.6-0.65,
independent of model size, layer type, or whether you train with fully-stochastic or block-stochastic
SPO. This phase carves out the thin “shell” in which subsequent learning lives.

Phase II: stable learning on the conical shell occupies the bulk of training: the angles to the
initial vectors stay locked in that narrow band, optimization now shears weights within the cone, and
validation perplexity drops almost linearly because spectra remain frozen and gradients act only on
meaningful directions. In this phase, the trace of the orthogonal matrices stay almost as a constant.

Specifically, we hypothesize that the orthogonal transforms have reached a “good” cone; thereafter
they mostly shear vectors inside that shell, leaving the angle to the original vector unchanged. The
spectrum continues to be exactly that of the random initial matrix, so gradients can no longer distort
singular values and instead devote capacity to learning meaningful directions. Because the geometry
is stabilized in this phase, the learning of patterns happen in a stable subspace. This stable learning
phase takes up 80% of the training time.

Phase III: final adjusting coincides with learning-rate decay; the orthogonal transforms barely move,
making only tiny refinements to singular vectors, so additional steps yield diminishing returns. This
phase is merely the LR cooldown; weights and spectra are already near their final configuration, so
progress naturally slows.
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B Minimum Hyperspherical Energy in POET

We start by showing that orthogonal equivalence transformation in POET can provably obtain small
hyperspherical energy for its transformed weight matrices. This result holds when the weight matrices
are independently initialized by zero-mean isotropic Gaussian distribution. Both Xavier [17] and
Kaiming [23] initializations satisfy such a weight initialization condition. Orthogonal equivalence
transformation is given by OET(W; R, P) = RW P, where the input matrix W is multiplied on
the left and on the right by orthogonal matrices R and P, respectively.

When W is initialized by zero-mean isotropic Gaussian distribution, [48] has shown that these
random neurons, if normalized, are uniformly distributed on the unit hypersphere. This leads to a
provably small hyperspherical energy for the randomly initialized weight matrix. In the following,
we will show that after orthogonal equivalence transformation, the weight matrix still maintains a
small hyperspherical energy.

We consider a weight matrix W € R™*™ where each entry is i.i.d. sampled from a zero-mean
Gaussian distribution with variance the same variance o2, i.e., W;; ~ N(0,02). After applying
orthogonal equivalence transformation, we have W™ = RW P where R and P are two orthogonal
matrices. Then we compute the distribution of W"*". Because linear maps preserve Gaussianity,
each entry of W is a finite linear combination of W;;, and hence, W™ follows a joint Gaussian
which can be fully characterized by mean and covariance.

The mean of W™V is given by
EW™]=R-EW]-P=R-0-P=0=E[W]. (15)

For its covariance, we consider two generic entries Wi‘}ew and WZE‘}",V:

Wi = " Ry Wi Py,
k,l (16)
B =) Rin WIS Py

Then we compute the covariance between the two entries:

Cov(WiE™, W) = Y RigRira Pij PojrCov(Wiy, W)
k,l,uv
=*(RR")in(PTP)j

= 0‘26ii/(5jj/

a7

which implies the following resutls:

* The covariance matrix is a diagonal matrix, so different entries of W™ are uncorrelated.

* Because WV is a joint Gaussian and different entries are uncorrelated, each entry of W%
is independent.

* Each entry of W™ has identical variance o2.

To sum up, each entry of W™ is i.i.d. N'(0, 0?), which is identical to the distribution of each entry
of W. Because we have W™V =; W, we can conclude that, similar to W, W, also has provably
small hyperspherical energy among neurons.

Despite being extremely simple, we find that this is in fact a significant result. Under zero-mean
isotropic Gaussian initialization, spectrum-preserving training and energy-preserving training can
be achieved simultaneously. It also partially explains why the proposed normalized Gaussian
initialization achieves the best performance.
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C Guarantees of Weight Spectrum under POET

For standard Gaussian initialization where each element of the weight matrix W € d x n is sampled
with a normal distribution, we have the following standard results [8, 70]:

1 a.s.
—Omax(W) —— 1+ ﬁ
Vd (W) n—o0

1 a.s.
—Omin(W) =2 1 — VX
Vd (W) n—oo

(18)

which gives spectrum guarantees for weight matrices generated by the standard Gaussian initialization.

In the following, we give the spectrum guarantees for the normalized Gaussian initialization. We
start by stating the following theorem from [49]:

Theorem 2. Let ¥y, - - , ¥, €R? be i.i.d. random vectors where each element follows the Gaussian
distribution with mean 0 and variance 1. Then v, = ”g’ﬁ, e Uy = ”5’7"”2 are uniformly distributed
on the unit hypersphere S*=1. If the ratio o converges to a constant A€ (0, 1), asymptotically we
have for W ={vy, - ,v,} €R¥":

lim opax (W) < (Vd + VAd) - (max ——)

n—oo K3 ||€Y,L||2
)

lim opin(W) > (Vd — VAd) - (min
where max (+) and omin (+) denote the largest and the smallest singular value of a matrix, respectively.

(19)

n—c0 i vl

Proof. We first introduce the following lemma as the characterization of a unit vector that is uniformly
distributed on the unit hypersphere S

Lemma 2 ([64]). Let v be a random vector that is uniformly distributed on the unit hypersphere
S9=1. Then v has the same distribution as the following:

Ui U2 Ud
{ P } 4 sy 4 } (20)
2 2 2
\/Zz’:l i \/Zi:l Us; Die1 U
where uy,ug, - - -, uq are i.i.d. standard normal random variables.

Proof. The lemma follows naturally from the fact that the Gaussian vector {u;}%_, is rotationally

invariant. O
Then we consider a random matrix W = {01, -+, 0, } where v, follows the same distribution of
{u1,- -+ ,uq}. Therefore, it is also equivalent to a random matrix with each element distributed

normally. For such a matrix W, we have from [70] that

lim omax(W) = Vd+ VAd

n— oo

. (21)
lim omin(W) = Vid -V
where o ppax () and omin(+) denote the largest and the smallest singular value, respectively.
Then we write the matrix W as follows:
W=W.Q
1
ol 0 0
- 1 22
—w.| Y TeE 0 (22)
0 0 L
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which leads to ~
lim Opmax(W) = lim omax (W - Q)
o0

n—oo n— (23)
m Opin(W) = lim opmin(W - Q)
n—oo n—oo

We fist assume that for a symmetric matrix A € R"*™ \;(A) > --- > A\, (A). Then we introduce
the following inequalities for eigenvalues:

Lemma 3 ([57]). Let G, H € R"*™ be positive semi-definite symmetric, and let 1 < i1 < --- <

i, < n. Then we have that

k

[[».(cH) < H (24)
t=1 t=1

and

Ea

k
H i (GH) > [[ X (G)An—iga (H) (25)

t=1

where \; denotes the i-th largest eigenvalue.

We firstlet 1 <47 < --- < 17 < n. Because W € R9%" and Q € R™™ "™ we have the following:

k ~ k — —
[[oWa) = [ Vr. (We@™w)
t=1 t=1

- (26)
= $ [Th.(wTwQQT)

t=1

by applying Lemma 3 to the above equation, we have that

k k
J [[N.ovTweQT) > J [T[X WTW)x 1 (QQT)
t=1 t=1 27)
= H i (W)on-1+1(Q)
t=1
k k
[T W™WQQT™) < | [ }.(WTW)A(QQT)
t=1 t=1 (28)
k
Therefore, we have that
k
H 0i,(WQ) > H (W)on_141(Q) (29)
t=1 =
k ~
H 0i,(WQ) < [[ o2, (W)a:(Q) (30)
t=1 t=1
Suppose we have & = 1 and i; = n, then Eq. (29) gives
o (WQ) > 0,(W)0,(Q) 31
Then suppose we have kK = 1 and i; = 1, then Eq. (30) gives
1(WQ) < 01(W)o1(Q) (32)
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Combining the above results with Eq. (21) and Eq. (23), we have that
hm Utrlax(W) = 11*>H1 O'max(W ° Q) S hm (Umax(W) . Umax(Q))

n— n— oo
= (Vd+ VAd) - max ——
o ol (33)
i . = i AW - > 1 AW - oo
i onin(W) =l 0win(W - Q) 2l (min(W) - in (@)
1
= (Vd — VAd) - min ——
i [oill2
which concludes the proof. O
Combing with the fact that
: K2 PY—— ] P
lim max = lim min =1, 34
we essentially have that
m omax(W) = 1+ VA,
lim opin(W) - 1— V.
n—oo
which can be written to the following results:
Omax(W) =2 14V
n—oo
s (36)
Tmin(W) =1 - VA
n—oo

which shows that under our proposed normalized Gaussian initialization, the maximal and minimal
singular values are well bounded by a constant that is only dependent on the size of weight matrix.
These results justify the effectiveness of our proposed normalized Gaussian initialization in POET.
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D Proofs of Lemma 1

Proof of Lemma 1. We consider an orthogonal matrix R and orthogonal primitives G’ corresponding
to uniformly random subsets S7 C [m] of size b as explained in the main text (see equation (4)). The
main claim we need to prove is that given any vector v € R™ and a set S C [m] with k € [m] we
can find an orthogonal primitive matrix G corresponding to the set .S such that

(Gv); =0 forie Swithl >k

(Gv), >0 (37)

(Gv),=v, forl¢sS.

Moreover, for all w € R with w; = 0 for ¢ > k the relation

Gw =w (38)
holds. We can assume that the matrix D(S) = {e(s1),...,e(sp)} contains the entries s; in
ascending order. Then we write

D(S) v = o (39)
=&,

where 9, € R™ corresponds to the entries s; with s; < k and v2 € Rz to the remaining entries, in
particular sp, 1 = k because k € S. It is well known that for every vector v there is a rotation Q
aligning v with the first standard basis vector, i.e., such that Qv = Ae(1) for some A > 0. Consider

such a matrix Q for the vector v and then define the orthogonal matrix
~ 1, 06, xb
G = ! A 40
(Obg xb1 Q > ( )

Careful inspection of (4) implies that the last part of (37) is actually true for any G as the second
term has rows with all entries equal to zero for all [ ¢ S. For the first part we find

D(S)GD(S) v = D(S)G (Z;) = D(S) (Af(ﬂ)) =) e(si)(B1)i + Ae(k). (1)
i<by
Here we used s, 1 = k in the last step. Since in addition
(1, = D(S)-1,-D(S) " )v); =0 (42)

for all I € S we conclude that indeed (Gv); = 0forl € S and! > k, (Gv); > 0. The remaining
statement (38) follows from the observation that when decomposing as in (39) we find

(D(s)Tw= () @3)
(because w; = 0 for ¢ > k) and therefore
(G —1,)(D(S)) w =0, (44)

by definition of G and we find Gw = w.

The rest of the proof is straightforward by induction combined with a simple coin collector problem.

For the rest of the proof it is convenient to reverse the indices, i.e., to consider products G - . .. - G
Assume that we have chosen G; for i < ¢, and some ¢;, € N such that the product
P =G, -....G,-R" (45)

satisfies P/{M = 0 forall ¥ < kand !’ > k' and P,f,,k, > 0for k' < k. Let e > ¢ +

a(m/b)? In(m). Then, we can bound for any [ > k the probability that there is no ¢, < j < cp41
such that {k,1} C S7 using that S” follows a uniform i.i.d. distribution by

) bQ Ck4+1—Ck b2 m2
P(Ack <j<cksr: k,leS)< <1 - ) < exp <m2 . aln(m)> =m~ .

m?2 b2
(46)
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The union bound implies that with probability at least 1 — m~ T thereis forall | > kacy, < j <
ck+1 such that {k, 1} C S7. If this holds we set G for ¢, < j < ¢y, as constructed above if k € S7
and G; = 1,,, otherwise. This then ensures that

Pl =@ ...-G1-RT (47)

Cr4+1

satisfies P/,H,;,l =0fork’ < kand! > K. For k' < k this follows from (38) and for ¥’ = k from
(37). We conclude by the union bound that P™ is an upper triangular matrix with non-negative

diagonal entries with probability at least 1 — mm~*t! =1 — m~(®*=2)_ But we also know that P™
is orthogonal and therefore satisfies P™ = 1,,, and we thus find

G. -....G,=R. (48)
O

Cm

Next we give a heuristic that actually O (In(m)m? /b?) terms are sufficient to express every orthogonal
map as a product of stochsastic primitives. For fixed ¢ we consider the map

©:0(b)° = 0(m) ®(G,...,G) =[] G- (49)
j=1

If ¢ > aln(m)m?/b? we have that with probability at least 1 — m~(®=2) forall k, [ € [m)] there is
j < csuch that k,1l € S7. Assume that this is the case. Recall that the tangent space of O(k) at

the identity is the space of skew-symmetric matrices. Consider a tangent vector (X7, ..., X.) with
X, € Skew(k). Then

DO(1y,...,1)(Xy,..., X,.) = ZD(Sj) -X;-D(S")". (50)

j=1

This is a surjective map on Skew(m) under the condition that for all &, € [m] there is j < ¢ such
that k,] € S7. We can therefore conclude that the image of ® contains a neighbourhood of the
identity. Moreover, since ¢ is a polynomial map, D® is surjective everywhere except for a variety of
codimension one. While this is not sufficient to conclude that the image of ® is O(d) or dense in
O(d) it provides some indication that this is the case.
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E Experimental Details

Parameter ‘ Llama 60M Llama 130M Llama 350M Llama 1.3B
Hidden dimension 512 768 1024 2048
Intermediate dimension 1280 2048 2816 5376
Number of attention heads 8 12 16 32
Number of hidden layers 8 12 24 24

Table 8: Model architectures for different Llama variants.

Model Spec. #GPU Ir (base) Ir (POET) trainingsteps batchsize grad acc.
b=1/2 1 le-2 le-3 300,000 256 2
Llama 60M b=1/4 1 le-2 2e-3 300,000 256 2
b=1/8 1 le-2 4e-3 300,000 256 2
b=1/2 1 5e-3 le-3 400,000 128 2
Llama 130M | b =1/4 1 Se-3 2e-3 400,000 128 2
b=1/8 1 Se-3 4e-3 400,000 128 2
b=1/2 4 Se-3 le-3 400,000 128 1
Llama 350M | b =1/4 4 Se-3 2e-3 400,000 128 1
b=1/8 4 Se-3 4e-3 400,000 128 1
b=1/2 8 le-3 le-3 500,000 64 1
Llama 1.3B b=1/4 8 le-3 2e-3 500,000 64 1
=1/8 8 le-3 4e-3 500,000 64 1

Table 9: Hyper-parameter setup of POET-FS.

This section outlines our experimental setup, including the codebase, datasets, and computational
resources used.

Code framework. Our method is implemented on top of the codebase from [82]' (Apache 2.0
license), which we also use to reproduce the AdamW and GaLore baselines. We will release our code
for reproducing all training results prior to publication.

Training details. We employed the AdamW optimizer [55] for all our training runs. The
specific hyperparameters used for each experiment are detailed in the Table 9 and Table 10
referenced below. We use the consine learning rate scheduler with the minimum learning ra-
tio of 0.01. We use the number of warmup steps of 0, weight decay of 0.01 and gradient
clipping of 0.1. For the AdamW baseline, we report results for the optimal learning rate
from [1x1072,5x1073,1x1073,5x1074,1x1074,5x107°,1x1075]. After each merge-then-
reinitalize step, we additionally increase the gradient clipping for 10 training steps to improve
training stability.

Model architecture. Our work utilized the Hugging Face Transformers” code base to construct
the Llama model for pretraining, which is under the Apache 2.0 license. The specific layer setups
for the different scaled Llama models are summarized in Table 8. Note, the intermediate dimension
of the Feed-Forward Network (FFN) has been slightly modified for the POET-BS, compared to the
configs in [82], because the linear layer dimensions have to be divisible by the POET-BS block size b.

Dataset. We use the Colossal Clean Crawled Corpus (C4) dataset [66] for pretraining. The C4
data is a large-scale, meticulously cleaned version of Common Crawl’s web crawl corpus. It was

"https://github.com/jiaweizzhao/GaLore
Zhttps://github.com/huggingface/transformers
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Model Spec. #GPU Ir (base) Ir(POET) trainingsteps batchsize grad acc.
b= 256 1 le-2 le-3 300,000 256 2
Llama 60M b=128 1 le-2 2e-3 300,000 256 2
b=64 1 le-2 4e-3 300,000 256 2
b =256 | Se-3 le-3 400,000 256 2
Llama 130M | b = 128 1 Se-3 2e-3 400,000 256 2
b=64 1 Se-3 4e-3 400,000 256 2
b = 256 4 5e-3 le-3 400,000 128 1
Llama 350M | b = 128 4 5e-3 2e-3 400,000 128 1
b=164 4 5e-3 4e-3 400,000 128 1
b = 256 8 le-3 le-3 500,000 64 1
Llama 1.3B b=128 8 le-3 2e-3 500,000 64 1
b=064 8 le-3 4e-3 500,000 64 1

Table 10: Hyper-parameter setup of POET-BS.

originally introduced for training the Text-to-Text Transfer Transformer (T5) model and has since
become a standard pre-training dataset for testing training algorithms for pre-training large language
models. The dataset is released under the ODC-BY license.

Compute Resources. All the training tasks are performed on a NVIDIA HGX H100 8-GPU
System node with 80GB memory each. Depending on the model scale, we train on 1, 4 or 8 GPUs.
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F Implementation and CUDA Acceleration

To enable efficient POET training, we implement the Cayley—Neumann parameterization. To reduce
memory usage, we leverage the structure of the skew-symmetric matrix @ € R™*", where the
diagonal entries are zero (Q);; = 0) and off-diagonal elements satisfy );; = —Q);;. This structure
allows us to store only the upper triangular part of @ as a vector, reducing the number of trainable
parameters from n? to n(n — 1)/2. During the forward pass, @ is reconstructed on-the-fly using
a specialized CUDA kernel, significantly accelerating this process. In addition, the Neumann
approximation removes the need for costly and numerically unstable matrix inversion, offering further
computational gains. Overall, training a 1.3B LLaMA model on a single HI00 8-GPU node yields a
3.8x speedup over the baseline (i.e., native implementation). Table 11 summarizes the contribution of
each component to the overall training time.

Design ‘ Speed-Up
Neumann approximation 1.5x
Skew-symmetric CUDA kernel 1.3x
Total 3.8x

Table 11: Method design and clock time speed-up.
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G Results of Vector Probing for R and P

In this ablation study, we perform vector probing on the orthogonal matrices R € R™*™ P € R™"*"
for all linear layers for all blocks of a 60M Llama model trained with POET-FS. The cosine similarity
results are reported in Figure 11 and Figure 12, and the trace results are reported in Figure 13 and
Figure 14. Since we want to understand the learning dynamics of the orthogonal matrices, we employ
b = 1 with POET learning rate of 5x10~* to eliminate the need for resampling and reinitialization
of the orthogonal matrices. Interestingly, we observe this three-phased learning dynamics across
different types of linear layers and different-depth transformer blocks.
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Figure 11: Cosine similarity for vector probing of P across the self-attention components (query, key, value, and
output projections) and feed-forward network components (up-, down-, and gate-projections) in all transformer
blocks of a POET-trained Llama 60M model.
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Figure 12: Cosine similarity for vector probing of R across the self-attention components (query, key, value,
and output projections) and feed-forward network components (up-, down-, and gate-projections) from all
transformer blocks of a POET-trained Llama 60M model.
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Figure 13: Trace of P across the self-attention components (query, key, value, and output projections) and feed-
forward network components (up-, down-, and gate-projections) from all transformer blocks of a POET-trained
Llama 60M model.
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Figure 14: Trace of R across the self-attention components (query, key, value, and output projections) and feed-
forward network components (up-, down-, and gate-projections) from all transformer blocks of a POET-trained
Llama 60M model.
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H Weight Update Evenness of Different POET Variants

To understand the higher parameter efficiency of POET-BS compared to POET-FS, we employ a
toy example to visualize their different weight update mechanisms by counting the total number of
updates for each element of the weight matrix. The visualization results are given in Figure 15 and
Figure 16. Specifically, in this experiment, a 64 x 64 matrix was randomly initialized and trained for
100 steps under various POET-BS and POET-FS configurations. The merge-then-reinitialize trick is
performed at each iteration, and the same set of weight elements was effectively updated between
two successive merge-then-reinitialize operations. For each weight element, we compute its total
number of update in these 100 steps.

Given 100 training steps and updates from both R and P, each element of the weight matrix can be
updated at most 200 times. This target is consistently achieved by POET-BS, and it is also agnostic
to the block size. All POET-BS variants can enable the maximal number of updates for each weight
element to be 200. In contrast, POET-FS results in significantly fewer updates per weight element,
with updates also unevenly distributed. This unevenness arises from stochasticity, causing certain
weights to be updated more frequently than others. While this is less problematic at large iteration
counts, it can introduce unexpected training difficulties in earlier stages.
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Figure 15: Visualization of the weight update mechanism of POET-BS after 100 steps of update and 75, = 1.
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Figure 16: Visualization of the weight update mechanism of POET-FS after 100 steps of update and 75, = 1.
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I Training Dynamics of Singular Values

We conduct an ablation study to compare the training dynamics of singular values of weight matrices
between AdamW and POET. The results of AdamW are given in Figure 17, Figure 18 and Figure 19.
The results of POET are given in Figure 20, Figure 21 and Figure 22. A 60M LLaMA model was
trained for 50,000 iterations with an effective batch size of 512, using both AdamW and POET-FS
(b = 1/2). The model was evaluated every 5,000 steps, and the singular value dynamics are computed
by performing singular value decomposition on the weight matrices. For POET, a merge-then-
reinitialize step was applied before each evaluation. Training is finished at 50,000 steps, as the
spectral norm of the AdamW-trained model plateaued at this point.
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Figure 17: Training dynamics of the singular values of weight matrices within Blocks 0-1 (the ¢-th row represents
Block 7) of a 60M Llama Transformer trained with AdamW.
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Figure 18: Training dynamics of the singular values of weight matrices within Blocks 2—4 (the ¢-th row represents
Block 7) of a 60M Llama Transformer trained with AdamW.
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Figure 19: Training dynamics of the singular values of weight matrices within Blocks 5-7 (the ¢-th row represents
Block 7) of a 60M Llama Transformer trained with AdamW.
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Figure 20: This plot illustrates the singular value training dynamics for individual weight matrices within Blocks
0-2 of a 60M Llama transformer model trained with POET. For each block, the dynamics are shown for the
self-attention components (query, key, value, and output projections) and the feed-forward network components
(up-projection, down-projection, and gate-projection).
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Figure 21: This plot illustrates the singular value training dynamics for individual weight matrices within Blocks
3-5 of a 60M Llama transformer model trained with POET. For each block, the dynamics are shown for the
self-attention components (query, key, value, and output projections) and the feed-forward network components
(up-projection, down-projection, and gate-projection).
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Figure 22: This plot illustrates the singular value training dynamics for individual weight matrices within Blocks
6-7 of a 60M Llama transformer model trained with POET. For each block, the dynamics are shown for the
self-attention components (query, key, value, and output projections) and the feed-forward network components
(up-projection, down-projection, and gate-projection).
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J Orthogonality Approximation Quality using Neumann Series

In this ablation study, we evaluate the approximation error of the orthogonal matrices R € R™*™
and P € R™*™ across all linear layers in Block 0 of a 130M LLaMA model trained with POET-FS
(b = 1/2) for 10,000 steps. Figure 23 and Figure 24 show the approximation error over the first
1,000 steps. Since the error difference between k& = 4 and £ = 5 was negligible, we used & = 4
for better computational efficiency. Empirically, while £ = 2 or & = 3 suffices for smaller LLaMA
models, larger k values are needed to avoid training divergence caused by exploding gradients due to
approximation error.
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Figure 23: For the transformer block 0, we show approximation error of orthogonal matrix R for the self-
attention components (query, key, value, and output projections) and the feed-forward network components
(up-projection, down-projection, and gate-projection).
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Figure 24: For the transformer block 0, we show approximation error of orthogonal matrix P for the self-
attention components (query, key, value, and output projections) and the feed-forward network components
(up-projection, down-projection, and gate-projection).
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Additionally, Figure 25 shows the orthogonality approximation error of Neumann series with different
k over the first 10,000 training steps, illustrating how it decreases as training progresses. We observe
a general downward trend in approximation error, indicating improved approximation over time.
The results also suggest that using too few Neumann series terms (e.g., £ = 1) can lead to training
divergence in POET.
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Figure 25: The approximation error of orthogonal matrix P in a randomly selected down-projection layer after
training 10000 steps.
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K Full Results of Training Dynamics

We provide the full training dynamics of different POET variants under Llama 60M, Llama 130M,
Llama 350M and Llama 1.3B in Figure 26. This figure is essentially an extended result of Figure 8.
One can observe that the training dynamics of POET is quite different from AdamW, and more
importantly, POET consistently yields better parameter-efficiency and generalization.
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Figure 26: Validation perplexity during the training of the LLama-based transformer with 60M, 130M, 350M
and 1.3B parameters.
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L. More Results of POET as a Finetuning Method

To demonstrate the applicability of POET to general finetuning tasks, we apply it to finetune a
BART-large model [41] on the NLP task of text summarization. Specifically, we evaluate POET
on the XSum [61] and CNN/DailyMail [24] datasets, reporting ROUGE-1/2/L scores in Table 12.
We note that both LoRA and OFT are designed solely for parameter-efficient finetuning and are not
applicable to pretraining. Our goal here is to demonstrate that POET is also effective as a finetuning
method. For consistency, we use the same configuration as in the pretraining setup, resulting in a
higher parameter count. Experimental results show that POET not only supports finetuning effectively
but also outperforms both full-model finetuning and parameter-efficient methods.

Method # Params XSum CNN/DailyMail

LoRA (r=32) 17.30M 43.38 / 20.20 / 35.25 43.17 / 2031 / 29.72
OFT (b=064) 8.52M 44.12 / 20.96 / 36.01 44.08 / 21.02 / 30.68
Full FT 406.29M 45.14 / 22.27 / 37.25 44.16 / 21.28 / 40.90
POET (FS,b=1/2) 144.57M 45.23 / 22.41 / 37.28 44.27 / 21.29 / 41.02

Table 12: Finetuning BART-large on XSum and CNN/DailyMail for text summarization. We report ROUGE-
1/2/L results (higher is better).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction reflect our work’s goal, scope, idea and contribu-
tion.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included analysis in the paper to discuss our method’s limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Yes, we provide a detailed derivation of the theory and reference all theoretical
results our method is based on.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, all methods are described in details to ensure the reproducibility of the
results. We will also release the code and data.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Yes, the code and data will be released to ensure full reproducibility.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described the training and testing in details both in the main paper
and also in the Appendix section to ensure reproducibility and ease the understanding.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have described the experiments in detail in the Appendix sections, ensuring
reproducibility and soundness of our results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have described the experiments in the main paper, more focusing on its
setting and its results and have included the specific type of compute we used to develop our
methods. We have included detailed descriptions in our Appendix section.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, our research conforms with the ethics guidelines of NeurIPS.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our method mainly focuses on methods and its theoretical implications and
other interesting findings. Our work does not facilitate down-stream applications that will
have a negative impact on the society.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

44


https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We mainly work on methods, we will release the code but will not release any
data or trained model.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We will credit the owners of the code, data and models in our Appendix section,
where we describe the implementation more thoroughly. We already included the citations
for the assets we used in the main paper. Here are an overview of the most important licenses:

Bart (License: apache-2.0), Llama 2 (LLAMA 2 COMMUNITY LICENSE AGREEMENT),
Code (apache-2.0), C4 dataset (ODC-BY).

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our project does not release any new assets (dataset, model weights etc.).
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our project does not involve any crowd sourcing or involve human experiments.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our project does not involve any crowd sourcing or involve human experiments.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs to develop our methods but developed it independently.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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