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Abstract

Annotation conversion is an effective way to
construct datasets under new annotation guide-
lines based on existing datasets with little hu-
man labour. Previous work has been limited
in conversion between tree-structured datasets
and mainly focused on feature-based models
which are not easily applicable to new conver-
sion. In this paper, we propose two pretrained
model-based graph-to-graph annotation con-
version approaches, namely Label Switching
and Graph2Graph Linear Transfer, which are
able to deal with conversion between graph-
structured annotations and require no manu-
ally designed feature. We manually construct a
graph-structured parallel annotated dataset and
evaluate the proposed approaches on it as well
as four existing parallel annotated datasets.
Experimental results show that the proposed
approaches outperform two strong baselines
across all the datasets. Furthermore, the com-
bination of the two models have a better effect.

1 Introduction

While tree-structured representations have domi-
nated parsing for the last decade, graph-structured
datasets are receiving growing interest in recent
years (Oepen et al., 2019, 2020). Over the last few
years, an increasing number of graph-structured
datasets have become available. Some of them,
such as DM corpora from the SemEval 2015 task
18 dataset (Oepen et al., 2015) and AMRBank
(Banarescu et al., 2013), are manually annotated.
While some others, such as the Enhanced En-
glish Universal Dependencies dataset (Schuster
and Manning, 2016), are converted from existing
datasets with manually designed rules. As illus-
trated in Figure 1, the Semantic Dependency Graph
at the top is converted from the Universal Depen-
decy Tree at the bottom.

However, in the dataset construction process un-
der a new annotation guideline, it would be ex-
tremely expensive to annotate the whole dataset
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Figure 1: Example of annotation conversion from Uni-
versal Dependency Tree (bottom) to our Semantic De-
pendency Graph (top).

manually. While rule-based conversion, although
needs no human labour for annotation, requires ex-
pertise to design the rules, which could be difficult
if the new guideline is vastly different from the old
one. Therefore, it would be efficient and attractive
to exploit existing dataset and learn a transforma-
tion that converts them into the new guideline. The
converted dataset under the new guideline could be
used in model training or further refined by human
annotators to construct a high-quality dataset.

Such conversion has been studied in a line of
research that exploits heterogeneous treebanks to
boost parsing performance, where the approach
is typically referred to as treebank conversion (Li
et al., 2013; Jiang et al., 2018). In their case, two
existing heterogeneous treebanks (tree-structured
datasets) on different texts are available. The goal
is to convert a source treebank into the target guide-
line and use the converted treebank as extra an-
notated data for the training of the target model.
However, in our case, the goal is to construct a
dataset under a new guideline. Therefore, only the
source dataset and a small set of annotations under
the target guideline are available. Besides, the ap-
proach should support conversion between graph-
structured datasets rather than tree-structured ones.

Previous work for treebank conversion mainly
focused on feature-based methods. Normally, they
first construct parallel annotated data by manually
annotating part of the target treebank under the



source guideline (Jiang et al., 2015, 2018) or train-
ing a parser on the source treebank and parsing the
target treebank with it (Zhu et al., 2011; Li et al.,
2013). Then they use the source annotations as
extra guiding features to train an augmented target
parser that parses the whole source treebank and
generates the expected target annotations. Such
methods are not easily applicable to new conver-
sion since the annotation guidelines are normally
vastly different from each other, and thus the fea-
tures should be redesigned for every new guideline.

Pretrained models, such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), have
achieved great success in a wide range of NLP
tasks. Previous research has shown that such mod-
els are able to capture structural information implic-
itly (Jawahar et al., 2019; Lin et al., 2019), which
could be helpful for the learning of transformation
between graph-structured annotations.

Therefore, in this paper, we propose two pre-
trained model-based graph-to-graph annotation
conversion approaches, namely Label Switching
(LS) and Graph2Graph Linear Transfer (GGLT),
which are able to deal with conversion between
graph-structured datasets and require no manually
designed feature. Specifically, in the Label Switch-
ing approach, we first automatically construct large
scale pseudo target data by switching labels in
source data to target labels based on the align-
ment information obtained from the parallel an-
notated data. After that, a pretrained model-based
parser is first fine-tuned on the pseudo data and
then further fine-tuned on the small set of gold
target annotations. The parser is eventually used
to parse the source dataset to generate the target
annotation. The GGLT approach directly loads
parameters from the parser trained on source anno-
tation, then use a biaffine graph parser (Dozat and
Manning, 2018) as a decoder to linearly transfer
to the target annotation. We manually construct a
graph-structured dataset under the refined seman-
tic dependency graph (SDG) guideline (Che et al.,
2016) on part of the text from the English Web
Treebank (EWT) in the Universal Dependencies
(UD) Treebanks (v2.5) (Zeman et al., 2019).! To
verify the effectiveness of the proposed approaches,
we further evaluate them on the conversion from
UD-EWT to the Enhanced Universal Dependencies
(UD-Enhanced) guideline (Schuster and Manning,
2016), conversion from the Universal Dependency

'Referred to as UD-EWT in the rest of the paper.

Tree to the Semantic Dependency Graph and con-
version between three types of annotations (i.e.,
DM, PAS and PSD) in the SemEval 2015 task 18
dataset (Oepen et al., 2015). Experimental results
show that our approaches outperform two strong
baselines. We will release our code and data online.

In this paper, we focus on graph-structured
dataset construction under a new annotation guide-
line based on an existing source dataset and a small
set of parallel annotated data. Our contributions
are summarized as follows.

* We propose the Label Switching conversion
approach that generates pseudo target annota-
tion via data augmentation.

* We propose the Graph2Graph Linear Transfer
conversion approach that effectively transfer
source graph information to target graph.

* We verify the effectiveness of the proposed
approaches on five parallel annotated datasets.

2 Background

2.1 Semantic Dependency Graph

Chinese semantic dependency graph (SDG) (Che
et al., 2016) is a framework for representing the
meaning of different semantic units within a sen-
tence (e.g., event chains, events, arguments, and
concepts). It is in the form of directed acyclic
graphs and focuses on investigating deeper seman-
tic relations within sentences rather than morpho-
syntactic patterns compared with traditional syn-
tactic dependency trees. With the benefits of the
graph’s reentrancies and the easy-to-understand
semantic labels, the tokens are connected more
closely, making it easier to directly answer ques-
tions like who did what to whom when and where.

This framework is designed for Chinese exclu-
sively. To take advantages of its properties, we
modified the original annotation guidelines to make
them applicable to English. We manually annotated
1,000 English sentences from UD-EWT to build
a parallel annotated dataset to evaluate our anno-
tation conversion approaches. Please refer to the
Appendix for the modifications we made to the
Chinese SDG guidelines.

2.2 Biaffine Graph Parser

In this paper, we build all the approaches over the
state-of-the-art biaffine graph parser (Dozat and
Manning, 2018), which is a graph-based depen-
dency parser that employs biaffine classifiers to



predict arcs and labels in a graph. Firstly, it encodes
the input sentence with a multi-layer bidirectional
LSTM. Conventionally, the static word embeddings
are used as the input vector. To exploit the capa-
bility of pretrained models in capturing structural
information, we instead employ RoBERTa (Liu
et al., 2019) to obtain the contextual representation
as input. Secondly, the output of the LSTM of the
i-th word, denoted as h;, is fed to four single-layer
feed-forward networks (FFN) to get head and de-
pendent representations for arcs (Eq. 1) and labels

(Eq. 2).

h(arc—head) _ FpN (arc-head) (h:)

7
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hl(arc-dep) _ FFN(arC—dep)(hi) M

hl(rel-head) _ FEN (rel-head) (h;)
hl(rel—dep) _ FFN(rel-dep) ( hi)

Eventually, the scores for arcs (Eq. 4) and labels
(Eq. 5) are computed with biaffine classifiers:

2

Biaf(x;, x;) = «; Uz; + W(z; ®x;) +b (3)

SE?;C) _ Biaf(arc) (h(arc-head), hgarc-dep)) 4)

)

Sl(r;l) _ Biaf(rel) (hl('rel-head)’ hgrel-dep)) 5)
For the labeled parser, U € R4xexd wwhere ¢ is the
number of labels. While for the unlabeled parser,

U € R4 50 that sl(-ajc) is a scalar. The predic-

tions of arcs and labels are y;f;m) ={si; >0} and
/(rel) .
Y;,j = argmax s respectively.

3 Method

In this section, we first give a formal definition
of the task of supervised graph-to-graph annota-
tion conversion (Section 3.1). Then, we present
the proposed approaches, namely Label Switching
(Section 3.2) and Graph2Graph Linear Transfer
(Section 3.3) for this task.

3.1 Problem Definition

Given a set of texts 7, a graph-structured dataset
annotated following guideline s on it is denoted
by D4(7). In this paper, s is called the source
guideline and D;(7) the source dataset. Assume
we have a target guideline ¢ as well as a small set
of texts 7/ C T annotated under ¢. In other words,
we have the annotations of 7" following both s

(i.e., Ds(T")) and t (i.e., D¢(T")), which consist
the parallel annotated dataset. The goal of super-
vised graph-to-graph annotation conversion is to
learn a transformation f : Ds(7) — Dy(T) based
on Dy(T") and Dy(T"), which converts the whole
source dataset Dg(7) into the target guideline, and
thus get the annotated target dataset Dy (7).

3.2 Label Switching

The lack of training data under the target guideline
is a great challenge in supervised annotation con-
version, especially for models based on deep neural
networks. Data augmentation has been commonly
used in the NLP community to alleviate the prob-
lem. Recently, Qin et al. (2020) proposed a code-
switching data augmentation method, which gen-
erates pseudo multilingual corpus for the training
of the multilingual BERT by randomly replacing
words in a monolingual corpus based on bilingual
dictionaries.

Inspired by this work, we propose the Label
Switching approach that constructs pseudo target
annotations to help the training of the conversion
model by switching labels in source annotations to
labels in the target guideline based on the alignment
information obtained from the parallel annotated
data. Our Label Switching approach consists of
two steps: (i) label-switching data augmentation
and (ii) two-step fine-tuning, which are introduced
as follows.

Label-Switching Data Augmentation: To con-
struct pseudo training data under the target guide-
line, we first compute the label alignment-based
switching probabilities on the parallel annotations
Ds(T") and Dy(T"). Specifically, for a text X €
T’, its source and target annotations are denoted
by Ds(X) and D (X)) respectively. Let (4, j, ) de-
note the arc from word ¢ to word j with label r, we
count the number of the quadruples (7, pp, Pd, 7's)
for all the arcs that exist in both source and
target annotations (i.e., (i,7,75) € Ds(X) and
(i,4,7¢) € D¢(X)), where py, and py are the Part-
of-Speech (POS) tags for the head and dependent
words respectively.” The switching probability is
thus computed as:

N,

I

P(Tt|ph,pd, 7"5) E Z JPhsPd,Ts) (6)

r'€Ry N(T’mh sPdsTs)

where N, ,,. 5, ) 1s the number of the quadruples
in the parallel annotated data, and R is the set of

>We use gold POS tags from the source dataset in our
experiments.
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Figure 2: Schematic diagram of Graph2Graph Linear Transfer which scores each possible head for each dependent.
Embed refers to embedding layer. The parameters of a biaffine parser trained on source data is inherited by another
parser with a linear transfer function applied to its biaffine attention matrix. All the inherited parameters are fixed
while only the linear transfer function is fine-tuned on target data.

all the labels in the target guideline. Eventually,
each label r; in the source dataset, with POS tags
pp, and pg for the head and dependent respectively,
is switched to r; in the target guideline with the
probability P(r¢|pp, pd, 7s).>

Two-Step Fine-Tuning: The pseudo target data
generated in the last step is firstly used to fine-tune
a pretrained model-based biaffine graph parser as
described in Section 2.2. Secondly, the model is
further fine-tuned on the manually annotated target
data Dy(T"'). Eventually, this parser is used to
generate the annotation of the whole dataset under
the target guideline with only texts as input.

3.3 Graph2Graph Linear Transfer

Compared with the Label Switching approach
which transforms the annotations through data aug-
mentation and two-step fine-tuning, our second
approach directly learns a linear function that trans-
forms the parser trained on the source data to the
one that fit the target annotation guideline. Since
the biaffine attention matrix is the core of the bi-
affine parser and contains knowledge that is signifi-
cant for the prediction of the dependency graph. A
natural way to exploit source graph information is
to inherit such knowledge from a parser trained on
the source data.

As illustrated in Figure 2, to exploit the annota-
tion information under source guideline, we utilize

*Due to the limited number of parallel annotated data,

the switching probabilities can not cover all the labels in the
source data. For those not covered, we leave them as they are.

the knowledge learned in a biaffine parser including
pretrained model parameters, head and dependent
representations for arcs and labels, which is trained
on the source dataset. In order to be adapted to
target annotation, a linear transfer function is de-
signed for learning target biaffine attention matrix.
Specifically, let U, W, and b, be the parame-
ters of a biaffine parser trained on the source dataset
with Eq. 3. Two linear transfer functions V,, and
V. are applied to U and W respectively to obtain
the parameters U; and W, for the target parser.

U, =U;xV, (N

W, =WV, 3

Biafy(x;, x;) = x, Ujxj + Wy(z; © ;) + by
€))
Our Graph2Graph Linear Transfer approach is
divided into two steps: i) training a biaffine parser
on the source data; ii) employing a biaffine parser
with linear transfer function applied to its attention
matrix to inherit the parameters obtained in step 1),
then fine-tuning the new parser on the target data
while freezing the inherited parameters.

4 Experimental Setup

4.1 Datasets and Experimental Settings

Recall that this paper aims to construct a dataset
under a new target guideline based on the existing



Dataset #Sent #Token #Arc (avg) #Label
UD-EWT | 16,622 254,829 1.00 49
SDG 1,000 15,991 1.07 71
UD-En 16,622 254,829 1.05 398
DM | 38915 866,248 ~ T 078 ¢ 61
PAS 38,915 866,248 1.02 43
PSD 38,915 866,248 0.70 92

Table 1: Data statistics. #Sent and #Token denote the
number of sentences and tokens respectively for all the
annotated data in the dataset (including training, valid
and test sets). #Arc (avg) denotes the average number
of arcs per token, while #Label the number of label
types. UD-En. denotes the UD-Enhanced dataset.

source dataset and a small set of parallel anno-
tated data. For the evaluation of the proposed ap-
proaches, we manually construct the SDG dataset
(on part of texts from UD-EWT) and employ
two existing parallel annotated datasets, namely
{UD-EWT, UD-Enhanced} and {DM, PAS, PSD},
whose statistics are shown in Table 1.

UD-EWT is a tree-structured syntactic dataset
under the Universal Dependencies (UD) guideline.
UD (Zeman et al., 2019) is a framework for consis-
tent annotation of grammar across languages. The
UD Treebanks (v2.5)* consist of 157 treebanks in
90 languages, which could be a good source to ob-
tain source datasets for dataset construction under
a new guideline. Therefore, we use UD-EWT as
the source dataset in our experiments.

UD-Enhanced is a graph-structured syntactic
dataset converted from UD-EWT by adding rela-
tions and augmenting relation names (Schuster and
Manning, 2016).°

SDG is a graph-structured semantic dataset with
1,000 sentences annotated under the refined seman-
tic dependency graph guideline (Che et al., 2016).

DM, PAS and PSD are three types of graph-
structured semantic annotations in the SemEval
2015 task 18 dataset (Oepen et al., 2015).°

The approaches are evaluated on the following
five annotation conversion tasks. Note that be-
sides the parallel annotated data, the whole source
dataset is available in the training process.

UD-EWT to UD-Enhanced We randomly se-
lect 1,000/500/5,000 parallel annotated sentences
from the two datasets as training/valid/test sets.

UD-EWT to SDG We perform 5-fold cross-

*nttp://hdl.handle.net/11234/1-3105

Shttps://github.com/
UniversalDependencies/UD_English-EWT

®https://catalog.ldc.upenn.edu/
LDC2016T10

validation on the 1,000 parallel annotated sen-
tences.

DM to PAS / PAS to DM / PAS to PSD We
randomly select 1,000/500/10,000 parallel anno-
tated sentences from the two datasets as train-
ing/valid/test sets.

For all the approaches, we employ the biaffine
graph parser as described in Section 2.2 to pre-
dict the target graph, and use RoBERTa (Liu et al.,
2019) to obtain contextual representations as its
input. We set the learning rate of RoBERTa to 2e-5
and that of other parameters to 2e-2. Other hyper-
parameters are adopted from the paper of Dozat
and Manning (2018).

4.2 Baselines and Evaluation Metrics

Our approaches, namely Label Switching and
Graph2Graph Linear Transfer, are compared
with two RoBERTa-based strong baselines, intro-
duced as follows.

Direct Fine-Tuning (DFT) A RoBERTa-based
biaffine graph parser is directly fine-tuned on the
small set of target annotations D (7).

Two-Step Fine-Tuning (TSFT) A RoBERTa-
based biaffine graph parser is first fine-tuned on
the whole source dataset Ds(7 ), and then further
fine-tuned on the small set of target annotations
Dy(T").7 Tt is only fine-tuned for 5 epochs in the
first step to avoid over-fitting to the source data.

Moreover, It is straightforward to combine the
two approaches we proposed (LS+GGLT) by aver-
aging the scores they predicted for arcs (Eq. 4) and
labels (Eq. 5) respectively. This is also evaluated
in the experiments.

All the results are reported in terms of unlabelled
precision (UP), recall (UR) and F1 score (UF) and
labelled precision (LP), recall (LR) and F1 score
(LF) on the target test set.

5 Results
Model UP UR UF [LP LR LF
DFT 89.76 90.74 90.25 | 86.37 87.31 86.83

TSFT 91.51 93.16 92.33
LS 97.81 98.23 98.02
GGLT 97.84 98.15 97.99
LS+GGLT | 98.14 98.28 98.21

88.29 89.89 89.08
96.36 96.79 96.57
96.32 96.63 96.48
96.80 96.94 96.87

Table 2: Results for conversion from UD-EWT to UD-
Enhanced.

"In the second step, non-RoBERTa parameters are reinitial-
ized since the source and target guidelines have different label
sets, and thus only the ROBERTa parameters can be shared.
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Table 2 shows the results for conversion from
UD-EWT to UD-Enhanced. With the help of the
pretrained model, DFT achieves fair results with
only 1,000 sentences annotated under the target
guideline for training. While the other baseline,
TSFT, improves the results by fine-tuning on the
large scale source dataset first to capture the struc-
tural information implicitly. As for our approaches,
both of them significantly outperform the baselines.
With only implicit parameterized information used
during the training period, GGLT yields results
comparable to LS which exploits large scale pseudo
target data switched from the source dataset. Fur-
thermore, the combined approach achieves a better
result. The gains are 0.30 (96.87 - 96.57) in LF
compared to LS and 0.39 (96.87 - 96.48) compared
to GGLT.

Model UP UR UF LP LR LF
DFT 85.40 86.01 85.70 | 73.29 73.79 73.53
TSFT 87.26 87.78 87.51 | 74.44 74.86 74.64
LS 89.73 89.57 89.64 | 77.84 T7.67 T1.75
GGLT 89.45 89.94 89.69 | 77.42 77.83 77.62
LS+GGLT | 90.52 89.87 90.19 | 78.63 78.05 78.33
Table 3: Results (averaged across 5-fold cross-

validation) for conversion from UD-EWT to SDG.

Table 3 shows the results for conversion from
UD-EWT to SDG, which are averaged across 5-
fold cross-validation. For baselines, TSFT achieves
higher results than DFT since it uses large scale
source data during training while DFT does not.
For our approaches, both LS and GGLT outper-
form the baselines. Similar to the situation in con-
version from UD-EWT to UD-Enhanced, LS and
G2G achieve similar results. Moreover, the com-
bined approach achieves the best results, which are
higher than that of both LS and GGLT.

Model UP UR UF LP LR LF

DFT 93.50 93.98 93.74 | 91.30 91.76 91.53
TSFT 93.72 93.95 93.84 | 91.55 91.78 91.67
LS 94.52 94.79 94.65 | 92.66 92.92 92.79
GGLT 94.34 95.00 94.67 | 92.35 92.99 92.67
LS+GGLT | 94.80 94.89 94.85 | 92.98 93.07 93.02

Table 4: Results for conversion from DM to PAS.

The results for conversion from DM to PAS, PAS
to DM and PAS to PSD are shown in Table 4, 5 and
6 respectively. For the two baseline models, in all
cases, TSFT performs better than DFT. As for our
approaches, LS and GGLT consistently outperform
the two baselines. Also, the combined approach
achieves the best results in all cases including con-

Model UP UR UF LP LR LF

DFT 89.46 89.45 89.46 | 86.81 86.80 86.80
TSFT 90.19 89.74 89.96 | 87.50 87.07 87.28
LS 90.74 91.30 91.02 | 88.28 88.82 88.55
GGLT 90.60 91.30 90.95 | 88.17 88.84 88.50
LS+GGLT | 91.32 91.27 91.30 | 88.98 88.94 88.96

Table 5: Results for conversion from PAS to DM.

version from PAS to PSD, conversion from PAS to
DM and conversion from DM to PAS.

Model UP UR UF LP LR LF

DFT 90.19 91.59 90.89 | 74.79 75.95 7537
TSFT 90.72 92.40 91.56 | 74.86 76.25 75.55
LS 92.69 93.64 93.08 | 77.30 77.94 77.62
GGLT 91.97 93.44 9270 | 76.15 77.37 76.75
LS+GGLT | 93.11 93.46 93.28 | 78.17 78.46 78.31

Table 6: Results for conversion from PAS to PSD.

6 Discussion

6.1 Effect of Dataset Similarity

Intuitively, it is believed that the more similar the
source guideline is to the target one, the easier it
will be to convert an existing source dataset into the
target guideline. The similarity between the two
guidelines can also be understood as the amount
of shared information that can be used to convert
annotations from one to the other. However, it is
hard to measure the similarity between the two an-
notation guidelines. Therefore, we instead compute
the similarity between parallel annotated datasets
and explore its effect on the annotation conversion.
Specifically, for each of the five conversion tasks
introduced in Section 4.1, we directly evaluate the
original source dataset on the gold target dataset
and use the results to measure the similarity be-
tween the two datasets.

Source Target UF LF
UD-EWT | UD-Enhanced | 96.84 | 83.30
UD-EWT | SDG 86.73 -
DM PAS 64.54 -
PAS DM 64.54 -
PAS PSD 27.15 -

Table 7: Dataset similarities in terms of UF and LF.

Results are shown in Table 7, we only report
the LF for the dataset pair of {UD-EWT, UD-
Enhanced}. This is because UD-Enhanced is con-
verted from UD-EWT by adding relations and aug-
menting relation names to make implicit relations
between content words more explicit. Therefore,
UD-Enhanced shares some labels with UD-EWT.
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Figure 3: Results for conversion from UD-EWT to UD-Enhanced and PAS to DM with different parallel annotated

data sizes (best viewed in color).

While in all the other pairs, the two datasets have
completely different label sets. Thus we can not
compute the LF for them.

As for the UF which reflects the structural sim-
ilarity between datasets, we find that UD-EWT is
most similar to UD-Enhanced, which can also be
explained by the construction of UD-Enhanced in-
troduced above. The similarity between UD-EWT
and SDG is lower, indicating that the conversion
from UD-EWT to SDG is harder than that from
UD-EWT to UD-Enhanced. Moreover, the similar-
ities between DM, PAS and PSD are much lower,
with only 27.15% UF for PAS and PSD, which
suggests that the shared information between them
is much less than that for the other pairs and con-
version between them are even more challenging.
According to results reported in Section 5, the more
similar the source and target datasets are, the higher
improvements our proposed approaches can obtain.

6.2 Effect of Parallel Annotated Data Size

Recall that this paper aims to construct a dataset
under a new annotation guideline based on the exist-
ing source dataset and little human labour. There-
fore, the parallel annotated data size is of great
importance since the smaller it is, the less human
labour will be required. This section investigates
the effect of the parallel annotated data size on the
proposed approaches in the conversion from UD-
EWT to UD-Enhanced and conversion from PAS
to DM. Specifically, we evaluate the approaches
on 200/500/1,000/2,000 randomly selected train-
ing sets respectively with the same valid/test sets
introduced in Section 4.1.

Figure 3 shows the results with different paral-

lel annotated data sizes, where it is obvious that
the performances of all methods increase as the
data size increases in the annotation conversion
from PAS to DM. It suggests that the more anno-
tated data is employed, the better result we will get.
However, the performance of LS, GGLT and the
combined approach is not apparently influenced by
the change of data size in the annotation conver-
sion from UD-EWT to UD-Enhanced. It can be
explained by the similarity between them. With
high similarity, our proposed approaches can easily
obtain promising results with only 200 parallel an-
notated sentences. Another finding from Figure 3 is
that the difference of LF between our proposed ap-
proaches and the baselines shrinks as the data size
increases, which may indicates that our proposed
approaches are most suitable for cases where only
limited parallel annotated data is available. And
this is exactly the aim of this paper.

6.3 Quality of Pseudo Target Data

The proposed Label Switching approach performs
consistently well across all the five annotation con-
version tasks in Section 5. In this section, we
explore its property by analyzing the quality of
pseudo target data generated in the core data aug-
mentation step of the approach. Specifically, we
directly evaluate the pseudo target dataset switched
from the source dataset on the gold target dataset
to measure their quality.

Table 8 shows the qualities of the pseudo target
data in terms of UF and LF on five annotation con-
version tasks. Firstly, it is obvious that the UF of
each task is identical to those in Table 7. This is be-
cause only labels in the source dataset are switched



Source Target UF LF

UD-EWT | UD-En. | 96.84 | 86.46
UD-EWT SDG 86.73 | 58.52
DM PAS 64.54 | 59.85
PAS DM 64.54 | 57.91
PAS PSD 27.15 | 21.53

Table 8: Qualities of the pseudo target data in terms of
UF and LF. UD-En. denotes UD-Enhanced.

in the data augmentation step, while the arcs are
not changed.

As described in Section 3.2, due to the limited
number of parallel annotated data, the switching
probabilities computed from it can not cover all the
labels in the source data. Most of the source labels
are covered in the data augmentation step on con-
version from UD-EWT to UD-Enhanced and SDG.
However, the quality of the pseudo UD-Enhanced
data is much higher than that of the pseudo SDG
data. This is because UD-Enhanced shares parts
of its label set with UD-EWT, while SDG has a
completely different label set. As for DM, PAS,
and PSD, only half to three-fourths of the source
labels are covered, and the qualities of the pseudo
data are even lower. However, despite the low-
quality pseudo data, the approach is still effective
and outperforms the two strong baselines.

UD-EWT2UD-EN | PAS2DM
Data Size LF LF
200 86.41 55.94
500 86.28 57.11
1,000 86.46 57.91
2,000 86.54 58.14

Table 9: Qualities of the pseudo target data on conver-
sion from UD-EWT to UD-Enhanced and PAS to DM
with different parallel annotated data sizes.

In Section 6.2, we find that whether the perfor-
mance of the Label Switching approach is influ-
enced by the parallel annotated data size seems
to depend on conversion itself. To explore the
underlying reason, we compute the qualities of
the pseudo target data and the coverage rate of
switched source labels on conversion from UD-
EWT to UD-Enhanced and PAS to DM with dif-
ferent parallel annotated data sizes. Results in Ta-
ble 9 show that the labelled score on conversion
from PAS to DM increases as the size increases,
while the score remains almost the same on con-
version from UD-EWT to UD-Enhanced. This
further verifies the correlation between the quality
of pseudo target data and the approach’s perfor-
mance, and may to some extent explain why its

performance does not change with the parallel an-
notated data size on conversion from UD-EWT to
UD-Enhanced. So the quality of the pseudo tar-
get data contributes to the performance of Label
Switching method.®

7 Conclusion

This paper aims at graph-structured dataset con-
struction under a new annotation guideline based
on an existing dataset with little human labour.
We propose two pretrained model-based graph-to-
graph annotation conversion approaches, namely
Label Switching and Graph2Graph Linear Trans-
fer, and show their effectiveness on five annota-
tion conversion tasks. Results show that 1) the
Label Switching approach and Graph2Graph Lin-
ear Transfer perform consistently well across all
the tasks; 2) our proposed methods are suitable for
cases where only limited parallel annotated data is
available; 3) the two approaches can be combined
to further improve the performance.

8 [Ethical Considerations

The sentences in the Semantic Dependency Graph
(SDG) dataset we construct are collected from the
English Web Treebank (EWT) in the Universal De-
pendencies (UD) Treebanks (v2.5) (Zeman et al.,
2019) which is a publicly available dataset. The
detailed statistics of the SDG dataset are shown in
Table 1. All the annotators are voluntary partici-
pants who have given informed consent and been
fairly compensated during the annotation process.
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A Appendix

A.1 Semantic Dependency Graph Annotation Guidelines

We modified Chinese Semantic Dependency Graph guidelines® to make it applicable to English in two
ways: adding more semantic edges and reducing more semantic labels.

We added more edges between predicates and arguments. In the Chinese Semantic Dependency Graph,
it only considers omitted object and subject which has been referred in previous clauses. We also take
omitted predicates into account, thus, ensuring the semantic integrity of semantic units. An example is
shown in Figure 4. Here, the predicate "cried" has been omitted and we added an extra edge to connect
"I" with "cried" which makes the second clause more explicit.

She cried , and SO did I
Figure 4: Example of annotation for omitted predicates

As for semantic labels, we merged labels for simplification. Specifically, in semantic roles, we merged
Aft into EXP, Orig and Comp into DATYV, Reas, Int into REAS, Host, Nmod, Tmod into FEAT, Qp, Freq,
Seq into QUAN. In event relations, we merged elnf, eCau into eRESU, eConc and eAban into eSELT,
eSUM into eRECT. In semantic markers, we just kept mNEG, mRELA and mPUNC and abandoned other
markers because they most designed for Chinese specifically. We also create some new labels for unique
usage in English: mFIXED for multi-word expressions(mwe) and mDEPD for function words like articles.
The list of the semantic labels in our SDG guideline is shown in Table 10.

Semantic Class Labels

Semantic roles AGT(Agent), EXP(Experiencer), PAT(Patient), CONT(Content), PROD(Product), BEL-
GONG(Belongings), PART, MATL(Material), TOOL, REAS(Reason), LOC(location), TIME,
SCO(Scope), FEAT, QUAN(Quantity), STAT(State)

Reverse relations r+semantic roles

Nested relations d+semantic roles

Event relations eCOO(Coordination), eRECT(Recount), eSELT(Select), ePROG(Progression), eSUCC(Successor),
eRESU(Result), eCOND(Condition), eSUPP(Supposition), eEFTT(Effect), eEQU(Equal),
eADVT(adversative)

Semantic markers mNEG(Negation), mRELA((relation), mPUNC(Punctuation), mDEPD, mFIXED

Table 10: Label set of the semantic relation of EN-SDG

*https://csdp-doc.readthedocs.io/zh_CN/latest/
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