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Abstract

Annotation conversion is an effective way to001
construct datasets under new annotation guide-002
lines based on existing datasets with little hu-003
man labour. Previous work has been limited004
in conversion between tree-structured datasets005
and mainly focused on feature-based models006
which are not easily applicable to new conver-007
sion. In this paper, we propose two pretrained008
model-based graph-to-graph annotation con-009
version approaches, namely Label Switching010
and Graph2Graph Linear Transfer, which are011
able to deal with conversion between graph-012
structured annotations and require no manu-013
ally designed feature. We manually construct a014
graph-structured parallel annotated dataset and015
evaluate the proposed approaches on it as well016
as four existing parallel annotated datasets.017
Experimental results show that the proposed018
approaches outperform two strong baselines019
across all the datasets. Furthermore, the com-020
bination of the two models have a better effect.021

1 Introduction022

While tree-structured representations have domi-023

nated parsing for the last decade, graph-structured024

datasets are receiving growing interest in recent025

years (Oepen et al., 2019, 2020). Over the last few026

years, an increasing number of graph-structured027

datasets have become available. Some of them,028

such as DM corpora from the SemEval 2015 task029

18 dataset (Oepen et al., 2015) and AMRBank030

(Banarescu et al., 2013), are manually annotated.031

While some others, such as the Enhanced En-032

glish Universal Dependencies dataset (Schuster033

and Manning, 2016), are converted from existing034

datasets with manually designed rules. As illus-035

trated in Figure 1, the Semantic Dependency Graph036

at the top is converted from the Universal Depen-037

decy Tree at the bottom.038

However, in the dataset construction process un-039

der a new annotation guideline, it would be ex-040

tremely expensive to annotate the whole dataset041
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Figure 1: Example of annotation conversion from Uni-
versal Dependency Tree (bottom) to our Semantic De-
pendency Graph (top).

manually. While rule-based conversion, although 042

needs no human labour for annotation, requires ex- 043

pertise to design the rules, which could be difficult 044

if the new guideline is vastly different from the old 045

one. Therefore, it would be efficient and attractive 046

to exploit existing dataset and learn a transforma- 047

tion that converts them into the new guideline. The 048

converted dataset under the new guideline could be 049

used in model training or further refined by human 050

annotators to construct a high-quality dataset. 051

Such conversion has been studied in a line of 052

research that exploits heterogeneous treebanks to 053

boost parsing performance, where the approach 054

is typically referred to as treebank conversion (Li 055

et al., 2013; Jiang et al., 2018). In their case, two 056

existing heterogeneous treebanks (tree-structured 057

datasets) on different texts are available. The goal 058

is to convert a source treebank into the target guide- 059

line and use the converted treebank as extra an- 060

notated data for the training of the target model. 061

However, in our case, the goal is to construct a 062

dataset under a new guideline. Therefore, only the 063

source dataset and a small set of annotations under 064

the target guideline are available. Besides, the ap- 065

proach should support conversion between graph- 066

structured datasets rather than tree-structured ones. 067

Previous work for treebank conversion mainly 068

focused on feature-based methods. Normally, they 069

first construct parallel annotated data by manually 070

annotating part of the target treebank under the 071

1



source guideline (Jiang et al., 2015, 2018) or train-072

ing a parser on the source treebank and parsing the073

target treebank with it (Zhu et al., 2011; Li et al.,074

2013). Then they use the source annotations as075

extra guiding features to train an augmented target076

parser that parses the whole source treebank and077

generates the expected target annotations. Such078

methods are not easily applicable to new conver-079

sion since the annotation guidelines are normally080

vastly different from each other, and thus the fea-081

tures should be redesigned for every new guideline.082

Pretrained models, such as BERT (Devlin et al.,083

2019) and RoBERTa (Liu et al., 2019), have084

achieved great success in a wide range of NLP085

tasks. Previous research has shown that such mod-086

els are able to capture structural information implic-087

itly (Jawahar et al., 2019; Lin et al., 2019), which088

could be helpful for the learning of transformation089

between graph-structured annotations.090

Therefore, in this paper, we propose two pre-091

trained model-based graph-to-graph annotation092

conversion approaches, namely Label Switching093

(LS) and Graph2Graph Linear Transfer (GGLT),094

which are able to deal with conversion between095

graph-structured datasets and require no manually096

designed feature. Specifically, in the Label Switch-097

ing approach, we first automatically construct large098

scale pseudo target data by switching labels in099

source data to target labels based on the align-100

ment information obtained from the parallel an-101

notated data. After that, a pretrained model-based102

parser is first fine-tuned on the pseudo data and103

then further fine-tuned on the small set of gold104

target annotations. The parser is eventually used105

to parse the source dataset to generate the target106

annotation. The GGLT approach directly loads107

parameters from the parser trained on source anno-108

tation, then use a biaffine graph parser (Dozat and109

Manning, 2018) as a decoder to linearly transfer110

to the target annotation. We manually construct a111

graph-structured dataset under the refined seman-112

tic dependency graph (SDG) guideline (Che et al.,113

2016) on part of the text from the English Web114

Treebank (EWT) in the Universal Dependencies115

(UD) Treebanks (v2.5) (Zeman et al., 2019).1 To116

verify the effectiveness of the proposed approaches,117

we further evaluate them on the conversion from118

UD-EWT to the Enhanced Universal Dependencies119

(UD-Enhanced) guideline (Schuster and Manning,120

2016), conversion from the Universal Dependency121

1Referred to as UD-EWT in the rest of the paper.

Tree to the Semantic Dependency Graph and con- 122

version between three types of annotations (i.e., 123

DM, PAS and PSD) in the SemEval 2015 task 18 124

dataset (Oepen et al., 2015). Experimental results 125

show that our approaches outperform two strong 126

baselines. We will release our code and data online. 127

In this paper, we focus on graph-structured 128

dataset construction under a new annotation guide- 129

line based on an existing source dataset and a small 130

set of parallel annotated data. Our contributions 131

are summarized as follows. 132

• We propose the Label Switching conversion 133

approach that generates pseudo target annota- 134

tion via data augmentation. 135

• We propose the Graph2Graph Linear Transfer 136

conversion approach that effectively transfer 137

source graph information to target graph. 138

• We verify the effectiveness of the proposed 139

approaches on five parallel annotated datasets. 140

2 Background 141

2.1 Semantic Dependency Graph 142

Chinese semantic dependency graph (SDG) (Che 143

et al., 2016) is a framework for representing the 144

meaning of different semantic units within a sen- 145

tence (e.g., event chains, events, arguments, and 146

concepts). It is in the form of directed acyclic 147

graphs and focuses on investigating deeper seman- 148

tic relations within sentences rather than morpho- 149

syntactic patterns compared with traditional syn- 150

tactic dependency trees. With the benefits of the 151

graph’s reentrancies and the easy-to-understand 152

semantic labels, the tokens are connected more 153

closely, making it easier to directly answer ques- 154

tions like who did what to whom when and where. 155

This framework is designed for Chinese exclu- 156

sively. To take advantages of its properties, we 157

modified the original annotation guidelines to make 158

them applicable to English. We manually annotated 159

1,000 English sentences from UD-EWT to build 160

a parallel annotated dataset to evaluate our anno- 161

tation conversion approaches. Please refer to the 162

Appendix for the modifications we made to the 163

Chinese SDG guidelines. 164

2.2 Biaffine Graph Parser 165

In this paper, we build all the approaches over the 166

state-of-the-art biaffine graph parser (Dozat and 167

Manning, 2018), which is a graph-based depen- 168

dency parser that employs biaffine classifiers to 169
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predict arcs and labels in a graph. Firstly, it encodes170

the input sentence with a multi-layer bidirectional171

LSTM. Conventionally, the static word embeddings172

are used as the input vector. To exploit the capa-173

bility of pretrained models in capturing structural174

information, we instead employ RoBERTa (Liu175

et al., 2019) to obtain the contextual representation176

as input. Secondly, the output of the LSTM of the177

i-th word, denoted as hi, is fed to four single-layer178

feed-forward networks (FFN) to get head and de-179

pendent representations for arcs (Eq. 1) and labels180

(Eq. 2).181

h
(arc-head)
i = FFN(arc-head)(hi)

h
(arc-dep)
i = FFN(arc-dep)(hi)

(1)182

183

h
(rel-head)
i = FFN(rel-head)(hi)

h
(rel-dep)
i = FFN(rel-dep)(hi)

(2)184

Eventually, the scores for arcs (Eq. 4) and labels185

(Eq. 5) are computed with biaffine classifiers:186

Biaf(xi,xj) = x>i Uxj +W (xi ⊕ xj) + b (3)187

188

s
(arc)
i,j = Biaf(arc)(h

(arc-head)
i ,h

(arc-dep)
j ) (4)189

190

s
(rel)
i,j = Biaf(rel)(h

(rel-head)
i ,h

(rel-dep)
j ) (5)191

For the labeled parser, U ∈ Rd×c×d, where c is the192

number of labels. While for the unlabeled parser,193

U ∈ Rd×1×d, so that s(arc)
i,j is a scalar. The predic-194

tions of arcs and labels are y′(arc)
i,j = {si,j ≥ 0} and195

y
′(rel)
i,j = argmax si,j respectively.196

3 Method197

In this section, we first give a formal definition198

of the task of supervised graph-to-graph annota-199

tion conversion (Section 3.1). Then, we present200

the proposed approaches, namely Label Switching201

(Section 3.2) and Graph2Graph Linear Transfer202

(Section 3.3) for this task.203

3.1 Problem Definition204

Given a set of texts T , a graph-structured dataset205

annotated following guideline s on it is denoted206

by Ds(T ). In this paper, s is called the source207

guideline and Ds(T ) the source dataset. Assume208

we have a target guideline t as well as a small set209

of texts T ′ ⊆ T annotated under t. In other words,210

we have the annotations of T ′ following both s211

(i.e., Ds(T ′)) and t (i.e., Dt(T ′)), which consist 212

the parallel annotated dataset. The goal of super- 213

vised graph-to-graph annotation conversion is to 214

learn a transformation f : Ds(T )→ Dt(T ) based 215

on Ds(T ′) and Dt(T ′), which converts the whole 216

source dataset Ds(T ) into the target guideline, and 217

thus get the annotated target dataset Dt(T ). 218

3.2 Label Switching 219

The lack of training data under the target guideline 220

is a great challenge in supervised annotation con- 221

version, especially for models based on deep neural 222

networks. Data augmentation has been commonly 223

used in the NLP community to alleviate the prob- 224

lem. Recently, Qin et al. (2020) proposed a code- 225

switching data augmentation method, which gen- 226

erates pseudo multilingual corpus for the training 227

of the multilingual BERT by randomly replacing 228

words in a monolingual corpus based on bilingual 229

dictionaries. 230

Inspired by this work, we propose the Label 231

Switching approach that constructs pseudo target 232

annotations to help the training of the conversion 233

model by switching labels in source annotations to 234

labels in the target guideline based on the alignment 235

information obtained from the parallel annotated 236

data. Our Label Switching approach consists of 237

two steps: (i) label-switching data augmentation 238

and (ii) two-step fine-tuning, which are introduced 239

as follows. 240

Label-Switching Data Augmentation: To con- 241

struct pseudo training data under the target guide- 242

line, we first compute the label alignment-based 243

switching probabilities on the parallel annotations 244

Ds(T ′) and Dt(T ′). Specifically, for a text X ∈ 245

T ′, its source and target annotations are denoted 246

by Ds(X) and Dt(X) respectively. Let (i, j, r) de- 247

note the arc from word i to word j with label r, we 248

count the number of the quadruples (rt, ph, pd, rs) 249

for all the arcs that exist in both source and 250

target annotations (i.e., (i, j, rs) ∈ Ds(X) and 251

(i, j, rt) ∈ Dt(X)), where ph and pd are the Part- 252

of-Speech (POS) tags for the head and dependent 253

words respectively.2 The switching probability is 254

thus computed as: 255

P (rt|ph, pd, rs) =
N(rt,ph,pd,rs)∑

r′∈Rt
N(r′,ph,pd,rs)

, (6) 256

where N(rt,ph,pd,rs) is the number of the quadruples 257

in the parallel annotated data, andRt is the set of 258

2We use gold POS tags from the source dataset in our
experiments.

3



Embed

BiLSTM

…

you make me want to smileroot

1
1
1
1
1

𝑯 𝐚𝐫𝐜$𝐝𝐞𝐩 𝟏+

. =.
T

𝑼𝒔 𝑺𝒄𝒐𝒓𝒆𝒔

A parser trained on source data

parameters inheriting

𝑯 𝐚𝐫𝐜$𝐡𝐞𝐚𝐝 𝟏

you make me want to smileroot

A parser fine-tuned on target annotation

𝑼𝒕 = 𝑼𝒔 ∗ 𝑽𝒖

BiLSTM

…

1
1
1
1
1

𝑯 𝐚𝐫𝐜$𝐝𝐞𝐩 𝟏+

. =.
T

𝑼𝒕 𝑺𝒄𝒐𝒓𝒆𝒕𝑯 𝐚𝐫𝐜$𝐡𝐞𝐚𝐝 𝟏

MLP: 𝒉𝒊
(𝐚𝐫𝐜$𝐝𝐞𝐩), 𝒉𝒊

(𝐚𝐫𝐜$𝐡𝐞𝐚𝐝)

1
1
1
1
1

1
1
1
1
1

+ +

Figure 2: Schematic diagram of Graph2Graph Linear Transfer which scores each possible head for each dependent.
Embed refers to embedding layer. The parameters of a biaffine parser trained on source data is inherited by another
parser with a linear transfer function applied to its biaffine attention matrix. All the inherited parameters are fixed
while only the linear transfer function is fine-tuned on target data.

all the labels in the target guideline. Eventually,259

each label rs in the source dataset, with POS tags260

ph and pd for the head and dependent respectively,261

is switched to rt in the target guideline with the262

probability P (rt|ph, pd, rs).3263

Two-Step Fine-Tuning: The pseudo target data264

generated in the last step is firstly used to fine-tune265

a pretrained model-based biaffine graph parser as266

described in Section 2.2. Secondly, the model is267

further fine-tuned on the manually annotated target268

data Dt(T ′). Eventually, this parser is used to269

generate the annotation of the whole dataset under270

the target guideline with only texts as input.271

3.3 Graph2Graph Linear Transfer272

Compared with the Label Switching approach273

which transforms the annotations through data aug-274

mentation and two-step fine-tuning, our second275

approach directly learns a linear function that trans-276

forms the parser trained on the source data to the277

one that fit the target annotation guideline. Since278

the biaffine attention matrix is the core of the bi-279

affine parser and contains knowledge that is signifi-280

cant for the prediction of the dependency graph. A281

natural way to exploit source graph information is282

to inherit such knowledge from a parser trained on283

the source data.284

As illustrated in Figure 2, to exploit the annota-285

tion information under source guideline, we utilize286

3Due to the limited number of parallel annotated data,
the switching probabilities can not cover all the labels in the
source data. For those not covered, we leave them as they are.

the knowledge learned in a biaffine parser including 287

pretrained model parameters, head and dependent 288

representations for arcs and labels, which is trained 289

on the source dataset. In order to be adapted to 290

target annotation, a linear transfer function is de- 291

signed for learning target biaffine attention matrix. 292

Specifically, let Us,Ws and bs be the parame- 293

ters of a biaffine parser trained on the source dataset 294

with Eq. 3. Two linear transfer functions Vu and 295

Vw are applied to Us and Ws respectively to obtain 296

the parameters Ut and Wt for the target parser. 297

Ut = Us ∗ Vu (7) 298

299

Wt = Ws ∗ Vw (8) 300

301

Biaft(xi,xj) = x>i Utxj +Wt(xi ⊕ xj) + bs
(9) 302

Our Graph2Graph Linear Transfer approach is 303

divided into two steps: i) training a biaffine parser 304

on the source data; ii) employing a biaffine parser 305

with linear transfer function applied to its attention 306

matrix to inherit the parameters obtained in step i), 307

then fine-tuning the new parser on the target data 308

while freezing the inherited parameters. 309

4 Experimental Setup 310

4.1 Datasets and Experimental Settings 311

Recall that this paper aims to construct a dataset 312

under a new target guideline based on the existing 313
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Dataset #Sent #Token #Arc (avg) #Label
UD-EWT 16,622 254,829 1.00 49
SDG 1,000 15,991 1.07 71
UD-En. 16,622 254,829 1.05 398
DM 38,915 866,248 0.78 61
PAS 38,915 866,248 1.02 43
PSD 38,915 866,248 0.70 92

Table 1: Data statistics. #Sent and #Token denote the
number of sentences and tokens respectively for all the
annotated data in the dataset (including training, valid
and test sets). #Arc (avg) denotes the average number
of arcs per token, while #Label the number of label
types. UD-En. denotes the UD-Enhanced dataset.

source dataset and a small set of parallel anno-314

tated data. For the evaluation of the proposed ap-315

proaches, we manually construct the SDG dataset316

(on part of texts from UD-EWT) and employ317

two existing parallel annotated datasets, namely318

{UD-EWT, UD-Enhanced} and {DM, PAS, PSD},319

whose statistics are shown in Table 1.320

UD-EWT is a tree-structured syntactic dataset321

under the Universal Dependencies (UD) guideline.322

UD (Zeman et al., 2019) is a framework for consis-323

tent annotation of grammar across languages. The324

UD Treebanks (v2.5)4 consist of 157 treebanks in325

90 languages, which could be a good source to ob-326

tain source datasets for dataset construction under327

a new guideline. Therefore, we use UD-EWT as328

the source dataset in our experiments.329

UD-Enhanced is a graph-structured syntactic330

dataset converted from UD-EWT by adding rela-331

tions and augmenting relation names (Schuster and332

Manning, 2016).5333

SDG is a graph-structured semantic dataset with334

1,000 sentences annotated under the refined seman-335

tic dependency graph guideline (Che et al., 2016).336

DM, PAS and PSD are three types of graph-337

structured semantic annotations in the SemEval338

2015 task 18 dataset (Oepen et al., 2015).6339

The approaches are evaluated on the following340

five annotation conversion tasks. Note that be-341

sides the parallel annotated data, the whole source342

dataset is available in the training process.343

UD-EWT to UD-Enhanced We randomly se-344

lect 1,000/500/5,000 parallel annotated sentences345

from the two datasets as training/valid/test sets.346

UD-EWT to SDG We perform 5-fold cross-347

4http://hdl.handle.net/11234/1-3105
5https://github.com/

UniversalDependencies/UD_English-EWT
6https://catalog.ldc.upenn.edu/

LDC2016T10

validation on the 1,000 parallel annotated sen- 348

tences. 349

DM to PAS / PAS to DM / PAS to PSD We 350

randomly select 1,000/500/10,000 parallel anno- 351

tated sentences from the two datasets as train- 352

ing/valid/test sets. 353

For all the approaches, we employ the biaffine 354

graph parser as described in Section 2.2 to pre- 355

dict the target graph, and use RoBERTa (Liu et al., 356

2019) to obtain contextual representations as its 357

input. We set the learning rate of RoBERTa to 2e-5 358

and that of other parameters to 2e-2. Other hyper- 359

parameters are adopted from the paper of Dozat 360

and Manning (2018). 361

4.2 Baselines and Evaluation Metrics 362

Our approaches, namely Label Switching and 363

Graph2Graph Linear Transfer, are compared 364

with two RoBERTa-based strong baselines, intro- 365

duced as follows. 366

Direct Fine-Tuning (DFT) A RoBERTa-based 367

biaffine graph parser is directly fine-tuned on the 368

small set of target annotations Dt(T ′). 369

Two-Step Fine-Tuning (TSFT) A RoBERTa- 370

based biaffine graph parser is first fine-tuned on 371

the whole source dataset Ds(T ), and then further 372

fine-tuned on the small set of target annotations 373

Dt(T ′).7 It is only fine-tuned for 5 epochs in the 374

first step to avoid over-fitting to the source data. 375

Moreover, It is straightforward to combine the 376

two approaches we proposed (LS+GGLT) by aver- 377

aging the scores they predicted for arcs (Eq. 4) and 378

labels (Eq. 5) respectively. This is also evaluated 379

in the experiments. 380

All the results are reported in terms of unlabelled 381

precision (UP), recall (UR) and F1 score (UF) and 382

labelled precision (LP), recall (LR) and F1 score 383

(LF) on the target test set. 384

5 Results 385

Model UP UR UF LP LR LF
DFT 89.76 90.74 90.25 86.37 87.31 86.83
TSFT 91.51 93.16 92.33 88.29 89.89 89.08
LS 97.81 98.23 98.02 96.36 96.79 96.57
GGLT 97.84 98.15 97.99 96.32 96.63 96.48
LS+GGLT 98.14 98.28 98.21 96.80 96.94 96.87

Table 2: Results for conversion from UD-EWT to UD-
Enhanced.

7In the second step, non-RoBERTa parameters are reinitial-
ized since the source and target guidelines have different label
sets, and thus only the RoBERTa parameters can be shared.
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Table 2 shows the results for conversion from386

UD-EWT to UD-Enhanced. With the help of the387

pretrained model, DFT achieves fair results with388

only 1,000 sentences annotated under the target389

guideline for training. While the other baseline,390

TSFT, improves the results by fine-tuning on the391

large scale source dataset first to capture the struc-392

tural information implicitly. As for our approaches,393

both of them significantly outperform the baselines.394

With only implicit parameterized information used395

during the training period, GGLT yields results396

comparable to LS which exploits large scale pseudo397

target data switched from the source dataset. Fur-398

thermore, the combined approach achieves a better399

result. The gains are 0.30 (96.87 - 96.57) in LF400

compared to LS and 0.39 (96.87 - 96.48) compared401

to GGLT.402

Model UP UR UF LP LR LF
DFT 85.40 86.01 85.70 73.29 73.79 73.53
TSFT 87.26 87.78 87.51 74.44 74.86 74.64
LS 89.73 89.57 89.64 77.84 77.67 77.75
GGLT 89.45 89.94 89.69 77.42 77.83 77.62
LS+GGLT 90.52 89.87 90.19 78.63 78.05 78.33

Table 3: Results (averaged across 5-fold cross-
validation) for conversion from UD-EWT to SDG.

Table 3 shows the results for conversion from403

UD-EWT to SDG, which are averaged across 5-404

fold cross-validation. For baselines, TSFT achieves405

higher results than DFT since it uses large scale406

source data during training while DFT does not.407

For our approaches, both LS and GGLT outper-408

form the baselines. Similar to the situation in con-409

version from UD-EWT to UD-Enhanced, LS and410

G2G achieve similar results. Moreover, the com-411

bined approach achieves the best results, which are412

higher than that of both LS and GGLT.

Model UP UR UF LP LR LF
DFT 93.50 93.98 93.74 91.30 91.76 91.53
TSFT 93.72 93.95 93.84 91.55 91.78 91.67
LS 94.52 94.79 94.65 92.66 92.92 92.79
GGLT 94.34 95.00 94.67 92.35 92.99 92.67
LS+GGLT 94.80 94.89 94.85 92.98 93.07 93.02

Table 4: Results for conversion from DM to PAS.

413
The results for conversion from DM to PAS, PAS414

to DM and PAS to PSD are shown in Table 4, 5 and415

6 respectively. For the two baseline models, in all416

cases, TSFT performs better than DFT. As for our417

approaches, LS and GGLT consistently outperform418

the two baselines. Also, the combined approach419

achieves the best results in all cases including con-420

Model UP UR UF LP LR LF
DFT 89.46 89.45 89.46 86.81 86.80 86.80
TSFT 90.19 89.74 89.96 87.50 87.07 87.28
LS 90.74 91.30 91.02 88.28 88.82 88.55
GGLT 90.60 91.30 90.95 88.17 88.84 88.50
LS+GGLT 91.32 91.27 91.30 88.98 88.94 88.96

Table 5: Results for conversion from PAS to DM.

version from PAS to PSD, conversion from PAS to 421

DM and conversion from DM to PAS. 422

Model UP UR UF LP LR LF
DFT 90.19 91.59 90.89 74.79 75.95 75.37
TSFT 90.72 92.40 91.56 74.86 76.25 75.55
LS 92.69 93.64 93.08 77.30 77.94 77.62
GGLT 91.97 93.44 92.70 76.15 77.37 76.75
LS+GGLT 93.11 93.46 93.28 78.17 78.46 78.31

Table 6: Results for conversion from PAS to PSD.

6 Discussion 423

6.1 Effect of Dataset Similarity 424

Intuitively, it is believed that the more similar the 425

source guideline is to the target one, the easier it 426

will be to convert an existing source dataset into the 427

target guideline. The similarity between the two 428

guidelines can also be understood as the amount 429

of shared information that can be used to convert 430

annotations from one to the other. However, it is 431

hard to measure the similarity between the two an- 432

notation guidelines. Therefore, we instead compute 433

the similarity between parallel annotated datasets 434

and explore its effect on the annotation conversion. 435

Specifically, for each of the five conversion tasks 436

introduced in Section 4.1, we directly evaluate the 437

original source dataset on the gold target dataset 438

and use the results to measure the similarity be- 439

tween the two datasets. 440

Source Target UF LF
UD-EWT UD-Enhanced 96.84 83.30
UD-EWT SDG 86.73 -
DM PAS 64.54 -
PAS DM 64.54 -
PAS PSD 27.15 -

Table 7: Dataset similarities in terms of UF and LF.

Results are shown in Table 7, we only report 441

the LF for the dataset pair of {UD-EWT, UD- 442

Enhanced}. This is because UD-Enhanced is con- 443

verted from UD-EWT by adding relations and aug- 444

menting relation names to make implicit relations 445

between content words more explicit. Therefore, 446

UD-Enhanced shares some labels with UD-EWT. 447
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Figure 3: Results for conversion from UD-EWT to UD-Enhanced and PAS to DM with different parallel annotated
data sizes (best viewed in color).

While in all the other pairs, the two datasets have448

completely different label sets. Thus we can not449

compute the LF for them.450

As for the UF which reflects the structural sim-451

ilarity between datasets, we find that UD-EWT is452

most similar to UD-Enhanced, which can also be453

explained by the construction of UD-Enhanced in-454

troduced above. The similarity between UD-EWT455

and SDG is lower, indicating that the conversion456

from UD-EWT to SDG is harder than that from457

UD-EWT to UD-Enhanced. Moreover, the similar-458

ities between DM, PAS and PSD are much lower,459

with only 27.15% UF for PAS and PSD, which460

suggests that the shared information between them461

is much less than that for the other pairs and con-462

version between them are even more challenging.463

According to results reported in Section 5, the more464

similar the source and target datasets are, the higher465

improvements our proposed approaches can obtain.466

6.2 Effect of Parallel Annotated Data Size467

Recall that this paper aims to construct a dataset468

under a new annotation guideline based on the exist-469

ing source dataset and little human labour. There-470

fore, the parallel annotated data size is of great471

importance since the smaller it is, the less human472

labour will be required. This section investigates473

the effect of the parallel annotated data size on the474

proposed approaches in the conversion from UD-475

EWT to UD-Enhanced and conversion from PAS476

to DM. Specifically, we evaluate the approaches477

on 200/500/1,000/2,000 randomly selected train-478

ing sets respectively with the same valid/test sets479

introduced in Section 4.1.480

Figure 3 shows the results with different paral-481

lel annotated data sizes, where it is obvious that 482

the performances of all methods increase as the 483

data size increases in the annotation conversion 484

from PAS to DM. It suggests that the more anno- 485

tated data is employed, the better result we will get. 486

However, the performance of LS, GGLT and the 487

combined approach is not apparently influenced by 488

the change of data size in the annotation conver- 489

sion from UD-EWT to UD-Enhanced. It can be 490

explained by the similarity between them. With 491

high similarity, our proposed approaches can easily 492

obtain promising results with only 200 parallel an- 493

notated sentences. Another finding from Figure 3 is 494

that the difference of LF between our proposed ap- 495

proaches and the baselines shrinks as the data size 496

increases, which may indicates that our proposed 497

approaches are most suitable for cases where only 498

limited parallel annotated data is available. And 499

this is exactly the aim of this paper. 500

6.3 Quality of Pseudo Target Data 501

The proposed Label Switching approach performs 502

consistently well across all the five annotation con- 503

version tasks in Section 5. In this section, we 504

explore its property by analyzing the quality of 505

pseudo target data generated in the core data aug- 506

mentation step of the approach. Specifically, we 507

directly evaluate the pseudo target dataset switched 508

from the source dataset on the gold target dataset 509

to measure their quality. 510

Table 8 shows the qualities of the pseudo target 511

data in terms of UF and LF on five annotation con- 512

version tasks. Firstly, it is obvious that the UF of 513

each task is identical to those in Table 7. This is be- 514

cause only labels in the source dataset are switched 515
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Source Target UF LF
UD-EWT UD-En. 96.84 86.46
UD-EWT SDG 86.73 58.52
DM PAS 64.54 59.85
PAS DM 64.54 57.91
PAS PSD 27.15 21.53

Table 8: Qualities of the pseudo target data in terms of
UF and LF. UD-En. denotes UD-Enhanced.

in the data augmentation step, while the arcs are516

not changed.517

As described in Section 3.2, due to the limited518

number of parallel annotated data, the switching519

probabilities computed from it can not cover all the520

labels in the source data. Most of the source labels521

are covered in the data augmentation step on con-522

version from UD-EWT to UD-Enhanced and SDG.523

However, the quality of the pseudo UD-Enhanced524

data is much higher than that of the pseudo SDG525

data. This is because UD-Enhanced shares parts526

of its label set with UD-EWT, while SDG has a527

completely different label set. As for DM, PAS,528

and PSD, only half to three-fourths of the source529

labels are covered, and the qualities of the pseudo530

data are even lower. However, despite the low-531

quality pseudo data, the approach is still effective532

and outperforms the two strong baselines.533

UD-EWT2UD-EN PAS2DM
Data Size LF LF
200 86.41 55.94
500 86.28 57.11
1,000 86.46 57.91
2,000 86.54 58.14

Table 9: Qualities of the pseudo target data on conver-
sion from UD-EWT to UD-Enhanced and PAS to DM
with different parallel annotated data sizes.

In Section 6.2, we find that whether the perfor-534

mance of the Label Switching approach is influ-535

enced by the parallel annotated data size seems536

to depend on conversion itself. To explore the537

underlying reason, we compute the qualities of538

the pseudo target data and the coverage rate of539

switched source labels on conversion from UD-540

EWT to UD-Enhanced and PAS to DM with dif-541

ferent parallel annotated data sizes. Results in Ta-542

ble 9 show that the labelled score on conversion543

from PAS to DM increases as the size increases,544

while the score remains almost the same on con-545

version from UD-EWT to UD-Enhanced. This546

further verifies the correlation between the quality547

of pseudo target data and the approach’s perfor-548

mance, and may to some extent explain why its549

performance does not change with the parallel an- 550

notated data size on conversion from UD-EWT to 551

UD-Enhanced. So the quality of the pseudo tar- 552

get data contributes to the performance of Label 553

Switching method.8 554

7 Conclusion 555

This paper aims at graph-structured dataset con- 556

struction under a new annotation guideline based 557

on an existing dataset with little human labour. 558

We propose two pretrained model-based graph-to- 559

graph annotation conversion approaches, namely 560

Label Switching and Graph2Graph Linear Trans- 561

fer, and show their effectiveness on five annota- 562

tion conversion tasks. Results show that 1) the 563

Label Switching approach and Graph2Graph Lin- 564

ear Transfer perform consistently well across all 565

the tasks; 2) our proposed methods are suitable for 566

cases where only limited parallel annotated data is 567

available; 3) the two approaches can be combined 568

to further improve the performance. 569

8 Ethical Considerations 570

The sentences in the Semantic Dependency Graph 571

(SDG) dataset we construct are collected from the 572

English Web Treebank (EWT) in the Universal De- 573

pendencies (UD) Treebanks (v2.5) (Zeman et al., 574

2019) which is a publicly available dataset. The 575

detailed statistics of the SDG dataset are shown in 576

Table 1. All the annotators are voluntary partici- 577

pants who have given informed consent and been 578

fairly compensated during the annotation process. 579
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A Appendix701

A.1 Semantic Dependency Graph Annotation Guidelines702

We modified Chinese Semantic Dependency Graph guidelines9 to make it applicable to English in two703

ways: adding more semantic edges and reducing more semantic labels.704

We added more edges between predicates and arguments. In the Chinese Semantic Dependency Graph,705

it only considers omitted object and subject which has been referred in previous clauses. We also take706

omitted predicates into account, thus, ensuring the semantic integrity of semantic units. An example is707

shown in Figure 4. Here, the predicate "cried" has been omitted and we added an extra edge to connect708

"I" with "cried" which makes the second clause more explicit.709

She cried , and so did I .

ROOT

AGT mPUNC

eCOO

mDEPD
mDEPD AGT

mPUNC
AGT

Figure 4: Example of annotation for omitted predicates

As for semantic labels, we merged labels for simplification. Specifically, in semantic roles, we merged710

Aft into EXP, Orig and Comp into DATV, Reas, Int into REAS, Host, Nmod, Tmod into FEAT, Qp, Freq,711

Seq into QUAN. In event relations, we merged eInf, eCau into eRESU, eConc and eAban into eSELT,712

eSUM into eRECT. In semantic markers, we just kept mNEG, mRELA and mPUNC and abandoned other713

markers because they most designed for Chinese specifically. We also create some new labels for unique714

usage in English: mFIXED for multi-word expressions(mwe) and mDEPD for function words like articles.715

The list of the semantic labels in our SDG guideline is shown in Table 10.716

Semantic Class Labels

Semantic roles AGT(Agent), EXP(Experiencer), PAT(Patient), CONT(Content), PROD(Product), BEL-
GONG(Belongings), PART, MATL(Material), TOOL, REAS(Reason), LOC(location), TIME,
SCO(Scope), FEAT, QUAN(Quantity), STAT(State)

Reverse relations r+semantic roles

Nested relations d+semantic roles

Event relations eCOO(Coordination), eRECT(Recount), eSELT(Select), ePROG(Progression), eSUCC(Successor),
eRESU(Result), eCOND(Condition), eSUPP(Supposition), eEFTT(Effect), eEQU(Equal),
eADVT(adversative)

Semantic markers mNEG(Negation), mRELA(relation), mPUNC(Punctuation), mDEPD, mFIXED

Table 10: Label set of the semantic relation of EN-SDG

9https://csdp-doc.readthedocs.io/zh_CN/latest/

10

https://csdp-doc.readthedocs.io/zh_CN/latest/

