
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Efficient Computation of Signature-Restricted Views for
Semantic Web Ontologies

Anonymous Author(s)∗

ABSTRACT

Uniform Interpolation (UI) is an advanced reasoning procedure used
to narrow down an ontology to a restricted view. This new ontology,
known as a uniform interpolant, will only consist of the “relevant
names”, yet it will retain their original meanings. UI is immensely
promising due to its applicability across various domains where cus-
tom views of ontologies are essential. Nonetheless, to unlock its full
potential, we need optimized techniques to generate these tailored
views. Previous studies suggest that creating uniform interpolants
for EL-ontologies is notably challenging. In some instances, it is
not even feasible to compute a uniform interpolant. When feasible,
the size of the uniform interpolant can be up to triple exponen-
tially larger than the source ontology. Despite these challenges, our
paper introduces an improved "forgetting" technique specifically
designed for computing uniform interpolants of ELI-ontologies.
We demonstrate that, with good normalization and inference strate-
gies, such uniform interpolants can be efficiently computed, just
as swiftly as computing “modules”. A comprehensive evaluation
with a prototypical implementation of the method shows superb
success rates over two popular benchmark datasets, demonstrating
a clear computational advantage over state-of-the-art approaches.

CCS CONCEPTS

• Theory of computation→ Description logics; Automated

reasoning; • Computing methodologies → Ontology engi-

neering.

KEYWORDS

Ontologies, Module Extraction, Uniform Interpolation, Forgetting

ACM Reference Format:

Anonymous Author(s). 2018. Efficient Computation of Signature-Restricted
Views for Semantic Web Ontologies. In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation emai (Confer-
ence acronym ’XX). ACM, New York, NY, USA, 9 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION

The increasing availability of machine-processable web data has put
the desideratum of semantic interoperability on the top of theWorld
Wide Web’s agenda — a requirement to enable the exchange of data
with precise, unambiguous, shared meaning across distributed web
applications. Although it is not yet a reality in the Web of today,
much effort and progress have been made towards achieving this
vision — the Semantic Web [39]. The key idea is to add descriptions
about the web data (aka metadata), linking each data element to a
controlled vocabulary that provides a common reference point for
aggregating and comparing data about a particular subject domain.
These descriptions can rely on logical statements relating data to
some terms within a given ontology [12, 40].

Ontologies fix a controlled vocabulary of names (aka signature)
relevant to a subject domain and specify constraints among the
names by logical statements (aka axioms) [40]. However, due to the
intrinsic heterogeneity of web resources, ontologies designed for
the semantic web tend to exhibit large-scale and encompass knowl-
edge spanning a broad spectrum of topics. Nonetheless, this sheer
scale and comprehensiveness may hinder the reusability of ontolo-
gies in real-world web applications. This is primarily attributed to
the challenges associated with the management and manipulation
of large and complex ontologies, which can be unwieldy and pose
considerable computational costs when engaged in the reasoning
process. One possible strategy to address these challenges is to
extract a “module” from an ontology that retains the functionality
of the original ontology within a specific context while achieving
a substantial reduction in size. This is a desirable strategy for the
flexible reuse of ontologies for several reasons. First, many ontol-
ogy maintenance tasks can be done locally by simply adjusting
the specific module in question. Next, the single components or
respective modules can be reused in other contexts more easily.
Further, from a more technical perspective, reasoning tasks can be
done more efficiently under certain circumstances, as only a small
module might be relevant for specific deductions, or the reasoning
itself can be distributed to several machines separately handling
the modules. A general moduleM is defined as [10]:

Condition I: a syntactic subset of a given ontology O;
Condition II: preserves all logical entailments w.r.t. a specific sub-
signature Σ of O.

This means that M and O align in their logical entailments w.r.t.
Σ, and M can therefore be reused in other contexts within Σ as
a substitute for O. To satisfy both of the above conditions, M of-
ten needs to incorporate names outside of Σ. Take, for example,
O = {𝐴 ⊑ 𝐵, 𝐵 ⊑ 𝐶, 𝐷 ⊑ 𝐸} and Σ = {𝐴,𝐶}. A module M of O
w.r.t. Σ is {𝐴 ⊑ 𝐵, 𝐵 ⊑ 𝐶}. While this module preserves all logical
entailments over {𝐴,𝐶}, it must include 𝐵 — a name not in Σ — to
achieve this preservation. Such constraints can limit the reusability
of ontologies in specific real-world scenarios. For instance, in do-
mains like medicine or the military, ontologies might hold sensitive
data that should remain undisclosed when these ontologies are
made public, distributed, or shared. This is also pertinent in indus-
trial settings where proprietary details need stringent protection. A
possible solution to ensure confidentiality is to limit the exposure of
names considered sensitive. One strategy to manage this concealed
information is to disseminate a fragment of the ontology that only
includes names particular users have permission to view. This be-
comes especially vital when ontology proprietors wish to share
their data with other users or the general public, but aim to disclose
only non-sensitive details. Directly repurposing a module from an
ontology may not be suitable in this context since it cannot assure
the absolute concealment of specific names; the module might still
include names that fall outside the designated signature.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

In situations where one needs to preserve the functionality of
the source ontology but only wishes to utilize a specific subset of
names, it is more advantageous to have a signature-restricted view
of the original ontology. This paper considers creating signature-
restricted views using a uniform interpolation approach. Essentially,
Uniform Interpolation (UI) is an advanced reasoning procedure that
aims to narrow down an ontology to a smaller signature. When
provided with an ontology that utilizes a specific sub-signature, Σ,
representing the “relevant names” associated with certain topics,
UI computes a new ontology, known as a uniform interpolant, that
only employs the names in Σwhile maintaining the same semantics
of the Σ-names. However, a uniform interpolant does not just take
a part of the original ontology; it might include axioms not found
in the original. Think of it as a condensed version of a module.
To ensure the semantics of the Σ-names remain intact, numerous
new axioms will be derived from the original ontology. As a result,
uniform interpolants can contain substantially more axioms than
the source ontology. In fact, research indicates that the UI process is
more computationally challenging than modularization [4, 29, 43].

Nevertheless, creating signature-restricted views of ontologies
can be of great importance since it may be used in a variety of ap-
plications where suitable views of ontologies need to be computed,
such as debugging and repair [34, 42], merging and alignment [24,
33, 44], versioning [13, 14, 38], semantic difference [16, 17, 25, 49],
abduction and explanation generation [6, 21] and interactive ontol-
ogy revision [32]. However, this potential can only be fully realized
if a highly optimized method (and its corresponding implementa-
tion) for computing such views exists.

In this paper, we present a highly optimized method for comput-
ing uniform interpolants of ELI-ontologies. The method is based
on a “forgetting procedure” that computes uniform interpolants by
singly eliminating names from the original ontology that do not
belong in Σ. Nikitina and Rudolph [31] show that computing uni-
form interpolants of EL-ontologies is computationally extremely
hard — a finite uniform interpolant does not always exist, and if
it exists, then there exists one of at most triple exponential size in
terms of the input ontology, and that, in the worst case, no shorter
uniform interpolant exists. We show however in this paper that: (i)
this result should not constitute a fundamental technical obstacle
for UI in practice, and (ii) with good normalization and inference
strategies, uniform interpolants can be computed as fast as com-
puting modules. A comprehensive evaluation with a prototypical
implementation of the method shows superb success rates over two
popular benchmark datasets, demonstrating a clear computational
advantage over state-of-the-art tools.

A long version of this paper including all missing proofs and ad-
ditional illustrative examples, as well as the source code for the pro-
totypical UI implementation alongside the test datasets, are anony-
mously distributed for review at https://github.com/anonymous-ai-
researcher/www2024.

1.1 Related Work

Forgetting is an inherently difficult (non-standard) reasoning prob-
lem concerned with eliminating from an ontology a set of concept
and role names in its signature, namely the forgetting signature,
in such a way that all logical entailments are preserved up to the

remaining signature; it is much harder than standard reasoning (sat-
isfiability testing), and very few logics are known to be complete for
forgetting. Foundational studies have shown that: (i) forgetting so-
lutions do not always exist for the DL EL or ALC [15, 16, 29], (ii)
deciding the existence of forgetting solutions is ExpTime-complete
for EL [26] and 2ExpTime-complete for ALC [29], and (iii) for-
getting solutions can be triple exponential in size w.r.t. the input
ontologies for EL and ALC [29, 31].

Although forgetting is a challenging problem, there is however
general consensus on its tremendous potential for ontology-based
knowledge processing, and there have been continuous efforts
dedicated to the development and automation of practical methods
for computing solutions of forgetting. A few such methods have
thus been developed and automated for various DLs.

Presently, the only available forgetting tools are Lethe and Fame.
Lethe [19] utilizes the classic resolution inference system [3, 7],
and handles ontologies specified in ALC and several extensions.
Fame [50] considers a stronger notion of forgetting, namely model-
theoretic forgetting [45]; the method is based on a monotonicity
property known as Ackermann’s Lemma [1], and accommodates
ontologies as expressive as ALCOIH . The tools of Nui and [47]
are another two resolution-based approaches for EL- and SHQ-
ontologies, respectively, but neither remains accessible at the mo-
ment. Thus, in this paper, our baselines are Lethe and Fame.

2 PRELIMINARIES

Let NC and NR be pairwise disjoint and countably infinite sets of
concept and role names, respectively. Roles in ELI are a role name
r ∈ NR or its inverse r− . Concept descriptions (or concepts for short)
in ELI have one of the following forms:

⊤ | A | 𝐶 ⊓ 𝐷 | ∃r.𝐶 | ∃r− .𝐶,

where A ∈ NC, r ∈ NR, and 𝐶 and 𝐷 range over concepts. We use
r
− to denote 𝑠 if r = 𝑠− for s ∈ NR and identify (r−)− with r.
An ELI-ontology O is a finite set of axioms of the form 𝐶 ⊑ 𝐷

(general concept inclusion, or GCI), where𝐶 and 𝐷 are concepts. We
use 𝐶 ≡ 𝐷 as an abbreviation for the GCIs 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶 .

Let S ∈ NC ∪NR be a designated concept name or role name. A
concept (axiom) is called an S-concept (S-axiom) if it contains S.
An occurrence of S is said to be positive (negative) in an S-axiom
if it occurs at the right-hand (left-hand) side of the axiom.

The semantics of ELI is defined in terms of an interpretation
I = ⟨ΔI , ·I⟩, where ΔI is a non-empty set, known as the domain
of the interpretation, and ·I is the interpretation function that maps
every concept name𝐴 ∈ NC to a set𝐴I ⊆ ΔI , and every role name
𝑟 ∈ NR to a binary relation 𝑟 I ⊆ ΔI × ΔI . The interpretation
function ·I is inductively extended to concepts as follows:

⊤I = ΔI (𝐶 ⊓ 𝐷)I = 𝐶I ∩ 𝐷I

(∃𝑟 .𝐶)I = {𝑥 ∈ ΔI | ∃𝑦.(𝑥,𝑦) ∈ 𝑟I ∧ 𝑦 ∈ 𝐶I }

(𝑟−)I = {(𝑦, 𝑥) ∈ ΔI × ΔI | (𝑥,𝑦) ∈ 𝑟 I }

Let I be an interpretation. A GCI𝐶 ⊑ 𝐷 is true in I iff𝐶I ⊆ 𝐷I .
I is amodel of an ontology O, written I |= O, iff every axiom in O
is true in I. An axiom 𝛼 is a logical entailment of O, written O |= 𝛼 ,
iff 𝛼 is true in every model I of O.

2

https://github.com/anonymous-ai-researcher/www2024
https://github.com/anonymous-ai-researcher/www2024

A signature Σ ⊆ NC∪NR is a finite set of concept names and role
names. We denote by sig

C
(𝑋) and sig

R
(𝑋) the sets of respectively

the concept names and role names present in𝑋 , where𝑋 can be any
syntactic objects including concepts, roles, axioms, and ontologies.
We further define sig(𝑋) = sig

C
(𝑋) ∪ sig

R
(𝑋).

Definition 1 (Forgetting). Let O be an ELI-ontology and
S ∈ sig(O) be a concept/role name, referred to as the pivot. An ELI-
ontology V is a result of forgetting {S} from O if the following
conditions hold:

(i) sig(V) ⊆ sig(O)\{S}, and
(ii) for any ELI-axiom 𝛼 with sig(𝛼) ⊆ sig(O)\{S}, V |= 𝛼

iff O |= 𝛼 .
More generally, let F ⊆ sig(O) be a finite set of concept and role
names, referred to as the forgetting signature. An ELI-ontology V
is a result of forgetting F from O if the following conditions hold:

(i) sig(V) ⊆ sig(O)\F , and
(ii) for any ELI-axiom 𝛼 with sig(𝛼) ⊆ sig(O)\F ,V |= 𝛼 iff

O |= 𝛼 .

The process of “forgetting” distills an ontology O into a more
refined perspective,V , which is anchored sorely on a sub-signature
Σ of O. Here, Σ is defined as Σ ⊆ sig(O)\F . Notably, when consid-
ering Σ, V mirrors the behavior of O within the ELI framework,
implying that both ontologies yield identical ELI-entailments w.r.t.
Σ. Forgetting can also be defined in terms of inseparability [4, 15, 28]
and conservative extensions [9, 27]: an ELI-ontologyV is the result
of forgetting F from an ELI-ontology O, where F = sig(O)\Σ
iffV ≡ELI

Σ O, and O is an ELI-conservative extension ofV iff
V ⊆ O and V ≡ELI

Σ O. The results of forgetting are unique up
to logical equivalence, i.e., should bothV1 andV2 result from the
forgetting of F from O, they would be logically indistinguishable,
though their manifest representations may differ.

3 NORMALIZATION OF ELI-ONTOLOGIES

Our method computes the result of forgetting F from O by itera-
tively forgetting single names in F . The calculus for single-name
elimination works on specialized normal forms of ELI-ontologies.

3.1 A-Normal Form (A-NF)
Definition 2 (A-Normal Form). We say that an axiom is in

A-normal form (or A-NF for short) if it has one of the following forms,
where (i) 𝑟, 𝑠 ∈ NR, and (ii) 𝐵, 𝐶 , 𝐷 , 𝐸, and 𝐹 are concepts that do not

A-NF A-NF
I 𝐶 ⊑ A IV A ⊓ 𝐸 ⊑ 𝐹

II 𝐶 ⊑ ∃𝑟 .(A ⊓ 𝐷) V ∃𝑠 .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐵

III 𝐶 ⊑ ∃𝑟− .(A ⊓ 𝐷) VI ∃𝑠− .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐵

contain A. An ELI-ontology O is in A-NF if every A-axiom in O is
in A-NF.

One can transform a given ELI ontology O into a normalized
one by exhaustively applying the following normalization rules to
the A-axioms in O that have yet to be in A-NF (𝑋 , 𝑌 , 𝑌1 and 𝑌2 are
ELI-concepts).

(1) For each instance of a GCI 𝑋 ⊑ 𝑌1 ⊓ 𝑌2, if either 𝑌1 or 𝑌2
contains A, replace it by 𝑋 ⊑ 𝑌1 and 𝑋 ⊑ 𝑌2;

(2) For each instance of 𝑋 ⊑ 𝑌 , if A occurs more than once in
it and a concept of the form ∃𝑅.𝐶 is present at the surface
level of the left-hand side 𝑋 , where 𝑅 is a role and 𝐶 is a
concept that containsA, replace𝐶 by a fresh definer𝑍 ∈ NC

and add 𝐶 ⊑ 𝑍 to O;
(3) For each instance of 𝑋 ⊑ 𝑌 , if A occurs more than once in

it and a concept of the form ∃𝑅.𝐶 is present at the surface
level of the right-hand side 𝑌 , where 𝑅 is a role and 𝐶 is a
concept that containsA, replace𝐶 by a fresh definer𝑍 ∈ NC

and add 𝐶 ⊑ 𝑍 to O;
(4) For each instance of 𝑋 ⊑ 𝑌 , if A occurs exactly once in it

and a concept of the form∃𝑅.𝐶 is present at the surface level
of the left-hand side 𝑋 , where 𝑅 is a role — and provided
that𝐶 contains A but is not in the form of A⊓𝐸 as specified
by A-NF V or VI, replace 𝐶 by a fresh definer 𝑍 ∈ NC and
add 𝐶 ⊑ 𝑍 to O;

(5) For each instance of 𝑋 ⊑ 𝑌 , if A occurs exactly once in it
and a concept of the form ∃𝑅.𝐶 is present at the surface
level of the right-hand side 𝑌 , where 𝑅 is a role — and
provided that 𝐶 contains A but is not in the form of A ⊓ 𝐷

as specified by A-NF II or III, replace 𝐶 by a fresh definer
𝑍 ∈ NC and add 𝐶 ⊑ 𝑍 to O;

The so-called definers [23], denoted as 𝑍 in the above context,
are newly-introduced concept names that serve as “abbreviations”
for compound concepts when applying the normalization rules.

Lemma 1. Let O be an arbitrary ELI ontology. Then O can be
transformed intoA-normal formO′ by a linear number of applications
of the normalization rule 1 − 5. In addition, the size of the resulting
ontology O′ is linear in the size of O.

Lemma 2. Let O be an arbitrary ELI ontology and O′ the nor-
malized one obtained from O using the normalization rules (1) − (5).
Then we have

O |= 𝐶 ⊑ 𝐷 iff O′ |= 𝐶 ⊑ 𝐷,

for any ELI-concepts 𝐶 and 𝐷 with sig(𝐶 ⊑ 𝐷) ⊆ sig(𝑂).

Lemma 1 states the termination and completeness of the normal-
ization and Lemma 2 states its soundness.

3.2 R-Normal Form (R-NF)
Definition 3 (R-Normal Form). We say that an axiom is in

R-normal form (or R-NF) if it has one of the following forms, where

R-NF R-NF
I 𝐶 ⊑ ∃r.𝐷 III 𝐸 ⊓ ∃r.𝐹 ⊑ 𝐵

II 𝐶 ⊑ ∃r− .𝐷 IV 𝐸 ⊓ ∃r− .𝐹 ⊑ 𝐵

(i) 𝑟 ∈ NR, and (ii) 𝐵, 𝐶 , 𝐷 , 𝐸, and 𝐹 are concepts that do not contain
r. An ELI-ontology O is in R-NF if every r-axiom in O is in R-NF.

One can compute the R-NF of a given ELI-ontology O using a
slightly adjusted approach for A-NF transformation.

3

4 DEFINER INTRODUCTION STRATEGY

Compared to the SOTA methods Lethe and Fame, our forgetting
method introduces a novel normal form specification and exploits
a non-traditional, yet notably cost-effective, definer introduction
strategy for normalization, a factor that significantly bolsters the
method’s efficiency.

In closely examining Lethe and Fame, we delve into the intrica-
cies of how they employ definers to facilitate the normalization of
ontologies intended for the subsequent application of their respec-
tive forgetting rules. Lethe and Fame work on clauses of the form
𝐿1 ⊔ . . .⊔ 𝐿𝑘 , where each 𝐿𝑖 (1 ≤ 𝑖 ≤ 𝑘) is a TBox literal, defined as:

A | ¬A | ∃r.𝑍 | ∃r− .𝑍 | ∀r.𝑍 | ∀r− .𝑍,

where r ∈ NR and A, 𝑍 ∈ NC. A salient observation is that Lethe
mandates every 𝑍 (essentially, any subconcept immediately below
a ∃- or ∀-restriction) to be a definer at any stage of the forgetting
process. In contrast, our method allows for a more flexible speci-
fication of 𝑍 . Such differentiation profoundly impacts the general
applicability of the forgetting rules these methods employ, and by
extension, has implications for their inferential efficiency.

For a deeper algorithmic understanding of Lethe’s definer intro-
duction strategy, we first fix some notations. By sig

D
(O) we denote

the set of definers introduced in O, by Sub
∀
∃ (O) the set of all sub-

concepts of the form ∃r(−) .𝑋 or ∀r(−) .𝑋 in O, where r ∈ NR and𝑋
is an arbitrary concept, and by Sub𝑋 (O) the set of all subconcepts
𝑋 present in O with ∃r(−) .𝑋 ∈ Sub

∀
∃ (O) or ∀r(−) .𝑋 ∈ Sub

∀
∃ (O).

In the Lethe framework, which exploits a definer reuse strat-
egy (i.e., Lethe consistently uses a definer to refer to identical
subconcepts), an injective function 𝑓 can be defined over sig

D
(O),

namely 𝑓 : sig
D
(O) → Sub𝑋 (O). 𝑓 also exhibits surjectivity, given

Lethe’s exhaustive manner to introduce defines — Lethe man-
dates every subconcept immediately below an ∃- or ∀-restriction
to be a definer. On the other hand, within our framework, 𝑓 is
defined as non-surjective. However, for both methods, the number
of definers — denoted as | sig

D
(O)| — relevant to the normalization

of O, is bounded by O(𝑛). Here, 𝑛 corresponds to the count of ∃-
and ∀-restrictions present in O. This implies a linear growth in the
introduction of definers.

In the Lethe framework, a saturation-based reasoning proce-
dure is employed to forget individual concept names from O. This
is achieved by deriving new entailments and adding them to O
using a generalized resolution-based calculus called Res, as out-
lined by [7]. Notably, Res operates on the clausal normal form, as
defined earlier in this section. Lethe uses a two-stage approach to
iteratively compute the normal form of O. The first stage, termed as
the pre-resolution stage (as previously detailed), witnesses Lethe’s
inaugural computation of O’s normal form to fire up Res. During
this stage, definers are introduced in a linear and static manner, as
previously discussed.

Transitioning to the subsequent intra-resolution stage, Lethe
applies exhaustively Res’s inference rules on O until saturation
is achieved at Res(O), where new entailments are propagated
from existing ones. For example, applying the ∀∃-role propaga-
tion rule to 𝐶1 ⊔ ∀𝑟 .𝐷1 and 𝐶2 ⊔ ∃𝑟 .𝐷2 yields a new entailment
𝐶1 ⊔𝐶2 ⊔ ∃𝑟 .(𝐷1 ⊓ 𝐷2), for which Lethe has to introduce a fresh
definer 𝐷12 ∈ NC to replace 𝐷1 ⊓ 𝐷2 for normalization, and then

adds ¬𝐷12 ⊔ (𝐷1 ⊓𝐷2) to O — definers are dynamically introduced
as Res iterates over O. Following this process, an additional in-
jective yet non-surjective function 𝑓 ′ emerges over sig

D
(Res(O)),

defined as 𝑓 : sig
D
(Res(O)) → Sub𝑋 (Res(O)), and the size of the

codomain |Sub𝑋 (Res(O)) | = 2 |SubD (O) | . The number of the defin-
ers for the normalization of Res(𝑂) is bounded by O(2𝑛), where 𝑛
is the number of ∃- and ∀-restrictions in O. Thus, Lethe introduces
definers at an exponential rate during the intra-resolution stage. In
contrast, our forgetting method restricts its normalization endeav-
ors within the pre-resolution stage, indicating a linear trajectory in
the introduction of definers during its entire forgetting span.

Definers are extraneous to the desired signature and thus should
be excluded from the result of forgetting F from O. Consequently,
in the worst case, Lethe will be tasked with discarding as many as
(2𝑛) + |F | names and executing Res for O(2𝑛) + |F | iterations to
compute the forgetting result. In contrast, our method introduces a
maximum of𝑛 definers, and in the worst case, only needs to activate
the forgetting calculus (described next) 𝑛 + |F | times.

5 THE FORGETTING METHOD

5.1 Calculus for Forgetting A
Our forgetting method exploits a two-step calculus to forget a single
concept name A from O:
Step I: computes the A-normal form of O as described in the pre-
vious section;
Step II: forgets A by exhaustively applying the inference rules in
Figure 1.
While Lethe and Fame work on the clausal representation of O,
our method directly addresses GCIs.

At the core of the exhaustive application of the inference rules is
the endeavor to reveal all logical entailments regarding sig(O)\{A},
and subsequently incorporate these new entailments into O. This
process continues until O becomes saturated w.r.t. A. By definition,
O is said to be saturated w.r.t.A iff every entailment𝛼 of an inference
with A ∉ sig(𝛼) is already in O, i.e., 𝛼 ∈ O, or is redundant w.r.t. O,
i.e., O\{𝛼} |= 𝛼 . Upon reaching this state of saturation, all A-axioms
can be safely removed from O, resulting in the forgetting of A from
O eventually.

The process of revealing implicit entailments from O involves
the combination of positive occurrences (GCIs taking A-NF I, II, and
III) with negative occurrences (GCIs taking A-NF IV, V, and VI) of
A (i.e., resolution upon A). This results in six distinct combination
scenarios, labeled as IR1, IR2, IR3, IR4, IR5, and IR6, as depicted
in Figure 1. By the exhaustive application of these inference rules,
followed by the removal of all A-axioms, the outcome is a refined
ontology, denoted as O−A, devoid of any traces of A.

Example 1. Consider the following ELI-ontology O:

{1. E ⊑ ∃r− .(F ⊓ ∃t.A), 2. ∃t.A ⊓ ∃t− .E ⊑ D}
Let F = {A}. The first step is to compute the A-NF of O by applying
the normalization rules as described earlier, where 𝑍1 ∈ ND is a
fresh definer:

{3. E ⊑ ∃r− .𝑍1, 5. 𝑍1 ⊑ F, 6. 𝑍1 ⊑ ∃t.A, 2. ∃t.A ⊓ ∃t− .E ⊑ D}
The above ontology is now in A-normal form. The second step is to
apply the inference rules in Figure 1. Applying Rule IR5 to Axioms

4

IR1. 𝐶 ⊑ A,A ⊓ 𝐸 ⊑ 𝐹 =⇒ 𝐶 ⊓ 𝐸 ⊑ 𝐹

IR2. 𝐶 ⊑ A, ∃𝑠 .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐺 =⇒ ∃𝑠 .(𝐶 ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐺

IR3. 𝐶 ⊑ A, ∃𝑠− .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐺 =⇒ ∃𝑠− .(𝐶 ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐺

IR4. 𝐶 ⊑ ∃𝑟 .(A ⊓ 𝐷),A ⊓ 𝐸1 ⊑ 𝐹1, . . . ,A ⊓ 𝐸𝑛 ⊑ 𝐹𝑛

IR4. =⇒ 𝐶 ⊑ ∃𝑟 .(𝐹1 ⊓ . . . ⊓ 𝐹𝑛 ⊓ 𝐷)
IR4. provided that: O |= A ⊓ 𝐷 ⊑ 𝐸1 ⊓ · · · ⊓ 𝐸𝑛

IR4. 𝐶 ⊑ ∃𝑟 .(A ⊓ 𝐷),A ⊓ 𝐸 ⊑ 𝐹 =⇒ 𝐶 ⊑ ∃𝑟 .𝐷
IR4. provided that: O ̸|= A ⊓ 𝐷 ⊑ 𝐸

IR5. 𝐶 ⊑ ∃𝑟 .(A ⊓ 𝐷), ∃𝑠 .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐵

IR5. =⇒ 𝐶 ⊑ ∃𝑟 .𝐷,𝐶 ⊓ 𝐹 ⊑ 𝐵

IR5. provided that: O |= A ⊓ 𝐷 ⊑ 𝐸 and O |= 𝑟 ⊑ 𝑠

IR5. 𝐶 ⊑ ∃𝑟 .(A ⊓ 𝐷), ∃𝑠 .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐵 =⇒ 𝐶 ⊑ ∃𝑟 .𝐷
IR5. provided that: O ̸|= A ⊓ 𝐷 ⊑ 𝐸 or O ̸|= 𝑟 ⊑ 𝑠

IR6. 𝐶 ⊑ ∃𝑟 .(A ⊓ 𝐷), ∃𝑠− .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐵

IR6. =⇒ 𝐶 ⊑ ∃𝑟 .𝐷,𝐶 ⊓ 𝐹 ⊑ 𝐵

IR6. provided that: O |= A ⊓ 𝐷 ⊑ 𝐸 and O |= 𝑟 ⊑ 𝑠−

IR6. 𝐶 ⊑ ∃𝑟 .(A ⊓ 𝐷), ∃𝑠− .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐵 =⇒ 𝐶 ⊑ ∃𝑟 .𝐷
IR6. provided that: O ̸|= A ⊓ 𝐷 ⊑ 𝐸 or O ̸|= 𝑟 ⊑ 𝑠−

IR7. 𝐶 ⊑ ∃𝑟− .(A ⊓ 𝐷),A ⊓ 𝐸1 ⊑ 𝐹1, . . . ,A ⊓ 𝐸𝑛 ⊑ 𝐹𝑛

IR7. =⇒ 𝐶 ⊑ ∃𝑟− .(𝐹1 ⊓ . . . ⊓ 𝐹𝑛 ⊓ 𝐷)
IR7. provided that: O |= A ⊓ 𝐷 ⊑ 𝐸1 ⊓ · · · ⊓ 𝐸𝑛

IR7. 𝐶 ⊑ ∃𝑟− .(A ⊓ 𝐷),A ⊓ 𝐸 ⊑ 𝐹 =⇒ 𝐶 ⊑ ∃𝑟− .𝐷
IR7. provided that: O ̸|= A ⊓ 𝐷 ⊑ 𝐸

IR8. 𝐶 ⊑ ∃𝑟− .(A ⊓ 𝐷), ∃𝑠 .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐵

IR8. =⇒ 𝐶 ⊑ ∃𝑟− .𝐷,𝐶 ⊓ 𝐹 ⊑ 𝐵

IR8. provided that: O |= A ⊓ 𝐷 ⊑ 𝐸 and O |= 𝑟− ⊑ 𝑠

IR8. 𝐶 ⊑ ∃𝑟− .(A ⊓ 𝐷), ∃𝑠 .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐵 =⇒ 𝐶 ⊑ ∃𝑟 .𝐷
IR8. provided that: O ̸|= A ⊓ 𝐷 ⊑ 𝐸 or O ̸|= 𝑟− ⊑ 𝑠

IR9. 𝐶 ⊑ ∃𝑟− .(A ⊓ 𝐷), ∃𝑠− .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐵

IR9. =⇒ 𝐶 ⊑ ∃𝑟− .𝐷,𝐶 ⊓ 𝐹 ⊑ 𝐵

IR9. provided that: O |= A ⊓ 𝐷 ⊑ 𝐸 and O |= 𝑟− ⊑ 𝑠−

IR9. 𝐶 ⊑ ∃𝑟− .(A ⊓ 𝐷), ∃𝑠− .(A ⊓ 𝐸) ⊓ 𝐹 ⊑ 𝐵 =⇒ 𝐶 ⊑ ∃𝑟− .𝐷
IR9. provided that: O ̸|= A ⊓ 𝐷 ⊑ 𝐸 or O ̸|= 𝑟− ⊑ 𝑠−

Figure 1: Inference rules for forgetting A

2 and 6 gives:

{3. E ⊑ ∃r− .𝑍1, 5. 𝑍1 ⊑ F, 7. 𝑍1 ⊓ ∃t− .E ⊑ D, 8.𝑍1 ⊑ ∃𝑡 .⊤}

Definers are treated as regular concept names, and are eliminated
once the names in F have been eliminated. Applying Rule IR7 to
Axioms 3 and 7 gives {9. E ⊑ ∃𝑟− .⊤}. Applying Rule IR7 to Axioms
3, 5 and 8 gives {10. 𝐸 ⊑ ∃𝑟− .(𝐹 ⊓ ∃𝑡 .⊤)}. Axiom 9 is redundant
w.r.t. Axiom 10 and thus removed. Our method implements a set
of straightforward simplifications. In this case, {10. 𝐸 ⊑ ∃𝑟− .(𝐹 ⊓
∃𝑡 .⊤)} is a Σ-uniform interpolant of O, where Σ = 𝑠𝑖𝑔(O)\F .

An external DL reasoner is utilized to check the side conditions
of the inference rules. It is known that checking subsumption in
ELI is ExpTime-complete [2].

Lemma 3. Let O be an ELI-ontology in A-NF, and O−A an on-
tology obtained from forgetting {A} from O using the inference rules
in Figure 1, then we have:

O |= 𝐶 ⊑ 𝐷 iff O−A |= 𝐶 ⊑ 𝐷,

for any ELI-GCI 𝐶 ⊑ 𝐷 with sig(𝐶 ⊑ 𝐷) ⊆ sig(𝑂)\{A}.

Lemma 3 establishes the partial soundness of the calculus. Specif-
ically, the derived ontology O−A fulfills the second condition neces-
sary for it to be the result of forgetting {A} from O. However, O−A

may include definers which fall outside the scope of sig(𝑂)\{A},
potentially failing to fulfill the first condition. A discussion on this
will follow shortly.

5.2 Calculus for Forgetting r
The calculus for role forgetting parallels that for concept forgetting.
Specifically, the calculus proceeds in two steps — Step (1) computes
the r-NF of O as described in the previous section, and Step (2)
forgets r by exhaustive application of the inference rules in Figure 2
to the normalized O.

IR10. 𝐶 ⊑ ∃r.𝐷, 𝐹 ⊓ ∃r.𝐸 ⊑ 𝐺 =⇒ 𝐹 ⊓𝐶 ⊑ 𝐺

IR7. provided that: O |= ∃r.𝐷 ⊑ ∃r.𝐸
IR11. 𝐶 ⊑ ∃r.𝐷, 𝐹 ⊓ ∃r− .𝐸 ⊑ 𝐺 =⇒ 𝐹 ⊓𝐶 ⊑ 𝐺

IR7. provided that: O |= ∃r.𝐷 ⊑ ∃r− .𝐸
IR12. 𝐶 ⊑ ∃r− .𝐷, 𝐹 ⊓ ∃r.𝐸 ⊑ 𝐺 =⇒ 𝐹 ⊓𝐶 ⊑ 𝐺

IR7. provided that: O |= ∃r− .𝐷 ⊑ ∃r.𝐸
IR13. 𝐶 ⊑ ∃r− .𝐷, 𝐹 ⊓ ∃r− .𝐸 ⊑ 𝐺 =⇒ 𝐹 ⊓𝐶 ⊑ 𝐺

IR7. provided that: O |= ∃r.𝐷 ⊑ ∃r− .𝐸

Figure 2: Inference rule for forgetting r

The process of eliciting implicit entailments from O involves
the combination of positive occurrences (GCIs taking r-NF I and II)
with negative occurrences (GCIs taking r-NF III and IV) of r (i.e.,
resolving upon r). This results in four distinct combination scenar-
ios, labeled as IR10, IR11, IR12, and IR13, as depicted in Figure 2.
By the exhaustive application of these inference rules, followed
by the removal of all r-axioms, the outcome is a refined ontology,
denoted as O−r, devoid of any traces of r. Likewise, an auxiliary
DL reasoner is employed during the forgetting process to check the
side conditions of the inference rules.

Lemma 4. Let O be an ELI-ontology in r-NF, and O−r an ontol-
ogy obtained from forgetting {r} from O using the inference rules in
Figure 2, then we have:

O |= 𝐶 ⊑ 𝐷 iff O−r |= 𝐶 ⊑ 𝐷,

for any ELI-GCI 𝐶 ⊑ 𝐷 with sig(𝐶 ⊑ 𝐷) ⊆ sig(𝑂)\{r}.
5

5.3 Properties of the Method

Forgetting is not always successful for ELI when cyclic depen-
dencies exist over the intended names to be forgotten [17]. In these
situations, the inference process might fall into an endless loop,
causing the forgetting process to never terminate. Take an example
where we aim to forget A from an ELI-ontology {A ⊑ ∃𝑟− .A},
which exhibits cyclic behavior over A. The result is {D1 ⊑ ∃𝑟− .D1},
with D1 ∈ ND as a fresh definer. If one tried to forget D1 from
this result, it would yield a GCI of the same structure, specifically
{D2 ⊑ ∃𝑟− .D2}, with D2 ∈ ND as a fresher definer. This would re-
sult in an endless introduction of definers. Our method guarantees
the termination of the forgetting process by giving up forgetting
D1. Instead, it keeps the initial definer D1 in the resulting ontology,
declaring an unsuccessful forgetting attempt and highlighting the
method’s inherent limitation. While cyclic situations might be tack-
led using fixpoints [5], as shown by Lethe, mainstream reasoning
tools and the OWL API do not support fixpoints. Hence, to ensure
our method remains practical, we opt out of including them in our
target language, choosing practicality over completeness.

Theorem 1. Given any ELI-ontology O and any forgetting sig-
nature F ⊆ sig(O) as input, our forgetting method always terminates
and returns an ELI-ontologyV . IfV does not contain any definers,
then it is a result of forgetting F from O.

6 EXPERIMENTS

We have developed a prototype of our forgetting method in Java
using the OWL API Version 5.1.71 To assess its practicality, we jux-
taposed its performance with the state-of-the-art forgetting method,
Lethe [20] using two large corpora of real-world ontologies.2 The
first corpus was created from a snapshot of the Oxford ISG Library,3
aggregating diverse ontologies from a myriad of sources. The sec-
ond corpus was derived from a March 2017 snapshot of the NCBO
BioPortal [30], which features biomedical ontologies.

From the Oxford ISG snapshot, we cherry-picked 488 ontologies
where the logical axiom (GCI) count did not exceed 10,000. We then
excluded those ontologies lacking ∃-restrictions or inverse roles, or
exhibiting cyclic dependencies. This left us with 177 ontologies. To
refine further, we distilled the remaining ontologies down to their
ELI-fragments by omitting GCIs not expressible within ELI.
This process resulted in a 7.4% reduction in total GCIs.

To provide granular insights into the performance of our method
across differently-sized Oxford-ISG ontologies, we partitioned these
selections into three distinct categories:

• PART I: 115 ontologies with 10 ≤ |Onto| < 1000;
• PART II: 51 ontologies with 1000 ≤ |Onto| < 4999;
• PART III: 11 ontologies with 5000 ≤ |Onto| < 10000.

Implementing the same strategy for the BioPortal case, we amassed
a collection of 76 ontologies and categorized them as:

• PART I: 38 ontologies with 10 ≤ |Onto| < 1000.
• PART II: 28 ontologies with 1000 ≤ |Onto| < 4999.
• PART III: 10 ontologies with 5000 ≤ |Onto| < 10000.

1http://owlcs.github.io/owlapi/
2Note that a comparative analysis withNui and Famewas precluded due to accessibility
issues during the period of our study (they remained inaccessible as of October 8,
2023).
3http://krr-nas.cs.ox.ac.uk/ontologies/lib/

Table 1: Experimental results over Oxford-ISG and BioPortal

(Time: Time Consumption, Mem: Memory Consumption, SR:

Success Rate, TR: Timeout Rate, RER: Runtime Error Rate)

Oxford % Part Time (sec.) Mem (MB) SR TR RER

Lethe

0.1
I 4.55 37.06 92.07 4.45 3.48
II 9.92 58.76 86.57 11.19 2.24
III 14.72 88.54 77.73 22.27 0.00

0.3
I 12.76 52.24 86.98 9.54 3.48
II 29.50 75.16 74.88 22.88 2.24
III 41.75 123.11 67.91 32.09 0.00

0.5
I 14.81 71.36 79.80 16.72 3.48
II 43.41 134.65 70.16 27.60 2.24
III 74.22 189.13 63.45 36.55 0.00

Proto

0.1
I 0.18 24.76 100 0.00 0.00
II 0.49 38.78 100 0.00 0.00
III 0.87 59.45 100 0.00 0.00

0.3
I 0.30 35.72 100 0.00 0.00
II 0.77 51.11 100 0.00 0.00
III 1.12 86.82 100 0.00 0.00

0.5
I 0.81 48.36 100 0.00 0.00
II 1.41 91.65 100 0.00 0.00
III 1.62 130.50 100 0.00 0.00

BioPortal % Part Time (sec.) Mem (MB) SR TR RER

Lethe

0.1
I 5.11 39.96 92.00 5.37 2.63
II 11.23 59.04 85.14 11.29 3.57
III 15.01 95.83 74.30 25.70 0.00

0.3
I 14.19 53.26 83.29 14.08 2.63
II 32.16 88.33 73.11 23.32 3.57
III 46.15 133.20 65.50 34.50 0.00

0.5
I 14.34 76.48 77.24 20.13 2.63
II 45.98 140.11 69.00 27.43 3.57
III 81.81 187.93 60.60 39.40 0.00

Proto

0.1
I 0.17 21.45 100 0.00 0.00
II 0.45 34.11 100 0.00 0.00
III 0.85 52.16 100 0.00 0.00

0.3
I 0.32 31.34 100 0.00 0.00
II 0.69 47.66 100 0.00 0.00
III 1.06 78.38 100 0.00 0.00

0.5
I 0.77 44.16 100 0.00 0.00
II 1.36 88.67 100 0.00 0.00
III 1.55 120.94 100 0.00 0.00

A comprehensive breakdown of the refined ontologies from both
sources can be found in the long version of this paper.

We designed three sets of experiments, targeting the forgetting
of either 10%, 30%, or 50% of the concept and role names present
within the signature of each ontology. These configurations align
with well-established practices in the evaluation of forgetting meth-
ods, as evidenced in literature sources such as [20, 22, 46, 48]. For
the selection of F , we employed a shuffling algorithm to ensure
a randomized choice. The experimental set-up involved a laptop
equipped with an Intel Core i7-9750H processor, boasting 6 cores
that peak at 2.70 GHz, and bolstered by 12 GB of DDR4-1600 MHz
RAM. To ensure consistent performance metrics, we imposed con-
straints: a maximum run time of 300 seconds and an upper heap
space limit of 9GB. We deemed a forgetting experiment successful
if it met the following criteria:

(1) successful elimination of all names specified in F .
(2) absence of any definers in the forgetting results, should

they have been introduced during the process.
(3) completion within the stipulated 300-second window.
(4) operation within the set 9GB space limit.

6

 0

 500

 1000

 1500

 2000

TO
P

BO
T

STAR

M
EX

AM
EX

PrisM
-M

odel

PrisM
-Subsum

ption

LETH
E

Prototype

FAM
E

S
iz

e
s
 o

f
s
o

lu
ti
o

n
s

BioPortal

1779

1338

1086 1086 1086
1036

 798 776 775

 971

Oxford-ISG
1973

1287
1255 1255 1255 1248

 690

 854 838

1071

Figure 3: Average |Onto| in output ontologies

 0

 0.2

 0.4

 0.6

 0.8

 1

TO
P

BO
T

STAR

M
EX

AM
EX

PrisM
-M

odel

PrisM
-Subsum

ption

LETH
E

Prototype

FAM
E

R
a

ti
o

 =
 s

iz
e

s
 o

f
s
o

lu
ti
o

n
s
 /

 s
iz

e
s
 o

f
in

p
u

t
o

n
to

lo
g

ie
s

BioPortal

0.856

0.600

0.519 0.519 0.519 0.514

0.453

0.405 0.405
0.432

Oxford-ISG0.922

0.633

0.584 0.584 0.584 0.579

0.399
0.429 0.425

0.489

Figure 4: Average ratio of |Onto|: input vs. output

We repeated the experiments 100 times for each test case and took
the average to validate our results.

The results of our experiments are shown in Table 1. A notable
observation is that our prototype registered a success rate of 100%
across all evaluation tracks. A large portion of Lethe’s failures was
due to the timeout. Our logging of GPU and memory usage for each
forgetting task indicated that Lethe generally demanded more com-
putational resources compared to our prototype. Additionally, there
was a stark contrast in processing times: our prototype consistently
outperformed Lethe, being approximately 52 times faster on the
Oxford-ISG dataset and 37 times faster on BioPortal. This marked
increase in speed could be attributed to the distinct normalization
approaches used by the two tools. A deeper dive into these results
will follow later. Interestingly, Lethe incurred runtime errors when
dealing with certain ontologies, but our prototype operated without
any hitches, most likely because of the incompatibility between the
OWL API version Lethe used and those ontologies.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

TO
P

BO
T

STAR

M
EX

AM
EX

PrisM
-M

odel

PrisM
-Subsum

ption

LETH
E

Prototype

FAM
E

T
im

e
 c

o
n

s
u

m
p

ti
o

n
 (

m
s
)

BioPortal

 80 72 79 49 82

 1791
 2373

29107

 558

 1991

Oxford-ISG

 80 73 78 52 72

 1935 2097

27821

 751 786

Figure 5: Computation time consumption

 0

 20

 40

 60

 80

 100

TO
P

BO
T

STAR

M
EX

AM
EX

PrisM
-M

odel

PrisM
-Subsum

ption

LETH
E

Prototype

FAM
E

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

M
B

)

BioPortal

 10 9 10

 6

 12

 48

 94

 64

 45
 42

Oxford-ISG

 11
 9 10

 5
 8

 50

 91

 75

 50
 48

Figure 6: Memory consumption

To provide readers with a deeper insight into the inherent prop-
erties of our method and the nature of its forgetting results, we fur-
ther conducted a comprehensive comparison with various types of
modularization methods prevalent in the field, focusing on metrics
such as result size, computation time, and memory consumption.
A number of modularization approaches exist for creating views,
each with unique properties and complexities. Among them, the
MEX tool [18] extracts minimal modules from acyclic ELI ontolo-
gies with polynomial time complexity, while tools like AMEX [8]
and PrisM [36] target other types of ontologies, with PrisM offer-
ing six inseparability notions. Locality-based methods and their
extensions [11], such as TOP, BOT, and STAR, provide additional
modularization strategies. With only MEX ensuring minimal mod-
ules, other tools generally approximate them.

Surprisingly, as a forgetting method, our prototype’s output did
not reflect the theoretical projections of an exponential size increase
compared to the input ontologies. On the contrary, the forgetting
results showcased impressive compactness in comparison to the

7

Table 2: Definers introduced during forgetting (Oxford)

Onto Code Lethe

(0.1)
Proto

(0.1)
Lethe

(0.3)
Proto

(0.3)
Lethe

(0.5)
Proto

(0.5)
00646 2072 506 1329 0 2045 35
00645 1686 427 1005 0 1666 39
00522 884 359 2207 0 4233 266
00669 2628 1853 2960 638 2596 0
00696 1200 104 2992 133 6207 500
00523 4199 1361 2248 0 3173 20
00544 1349 8 5827 0 5885 0
00578 157 8 602 255 484 0
00356 1719 914 1719 228 1289 0
00367 23 5 24 0 31 0
00464 125 412 113 0 229 57
00513 14 29 37 4 28 0
00451 465 0 1156 0 2257 109
00445 27 0 120 5 88 0
00690 308 0 838 112 1276 175
00519 8 0 46 0 71 0
00527 97 0 501 57 371 0
00452 690 0 3072 257 2379 0
00650 111 0 353 0 663 49
00640 77 0 220 0 306 0
00495 417 0 1255 0 1772 0
00457 20 0 33 0 80 2
00494 446 0 1222 0 2335 133
00694 823 0 4580 480 5202 515
00469 5 0 10 0 46 0
00468 2 0 0 0 3 0
00497 1576 0 4223 0 6185 0
00520 39 0 73 6 67 0
00547 351 0 1952 327 1592 0
00433 47 0 141 0 221 20
00546 346 0 1950 255 1494 0
00591 10 0 66 0 67 0
00593 28 0 116 0 152 0
00357 331 0 1794 616 1794 285
00627 101 0 385 2 508 0
00545 1099 0 6108 0 6201 0
00592 41 0 70 0 104 0
00596 94 0 176 0 177 0
00423 129 0 338 0 458 0
00594 23 0 169 0 131 0
00770 499 0 2258 197 1968 24
00412 194 0 919 168 919 45
00413 188 0 550 0 776 0
00639 73 0 158 0 261 0
00605 33 0 75 6 69 0
00571 6 0 23 0 31 0
00411 37 0 137 0 172 0
00606 35 0 48 0 84 5
00570 38 4 19 0 32 0
00548 21 0 57 2 69 2
00366 8 0 19 5 34 2
00563 14 0 39 0 75 0
00629 111 0 419 3 471 9
00359 95 0 303 0 405 0
00403 467 0 1200 0 2479 404
00402 268 0 1407 294 1217 0
00358 37 2 90 0 85 0
00600 19 0 169 0 104 0
00006 211 0 488 0 1075 52
00562 10 0 32 0 36 0
00589 37 0 112 0 112 0
00505 9 0 3 0 9 0
00667 203 0 1181 270 890 0
00458 12 0 48 0 75 3
00498 1662 0 8316 1578 8316 754
00649 112 0 364 0 663 35
00514 27 0 35 0 36 0
00689 235 0 858 70 989 99
00515 168 0 649 35 773 27

Table 3: Definers introduced during forgetting (BioPortal)

Onto Name Lethe

(0.1)
Proto

(0.1)
Lethe

(0.3)
Proto

(0.3)
Lethe

(0.5)
Proto

(0.5)
DUO 1 0 3 0 3 0
ARO 1304 0 2559 0 3162 5
PCAO 15 0 24 0 45 0
AMPHX 190 0 831 0 1334 656
FAO 4 0 15 0 21 0

DMTO 287 0 1307 0 1244 0
HIO 6 0 38 0 47 0

HSAPDV 75 0 475 388 421 16
LMHA 70 0 254 0 486 51
PMDO 2 0 12 0 16 0

MMUSDV 122 29 92 0 173 3
HANCESTRO 44 0 118 0 178 0

EMAPA 4088 0 9295 0 18035 2302
PREO 5 0 17 0 22 0
AEO 18 0 46 0 101 0
EOL 1 0 1 0 1 0
LHN 30 4 34 3 34 0
ORDO 15892 0 35407 78 40911 1898

ORNASEQ 3 0 2 0 5 0
COGAT 78 0 272 0 376 0

input ontologies, surpassing even the results produced by modular-
ization techniques; these modules are mere syntactic subsets of the
input ontologies; see Figures 3 and 4.

Regarding time consumption (see Figure 5), our prototype, when
performing the same forgetting tasks, outpaced Lethe by what one
might hyperbolically describe as “light years”. Its speed was on par
with the modularization methods; however, it is well-known that
the computational complexity of forgetting is in general notably
greater than that of modularization [4, 43].

Regarding memory consumption (see Figure 6), forgetting typ-
ically required more memory during computation than modular-
ization. Yet, when comparing different forgetting methods, Fame
and our prototype distinctly stood out, requiring only 66% to 70%
of the memory that Lethe demanded, showcasing their efficiency.

Tables 2 and 3 present a detailed account of the definers intro-
duced by Lethe and our prototype across a number of forgetting
tasks. It is evident that, for any given task, our prototype introduced
a substantially fewer number of definers compared to Lethe. In fact,
in the Oxford-ISG settings, Lethe necessitated the introduction of
definers in 65.0% of the forgetting tasks, whereas, for our proto-
type, this figure stood at 19.1%. In the BioPortal cases, these figures
dropped to 26.3% for Lethe and a mere 5.2% for our prototype.

7 CONCLUSION AND FUTUREWORK

This paper presents a highly optimized forgetting method to pro-
duce signature-restricted views of acyclic ELI ontologies. Its en-
hanced efficiency results from a refined approach that reduces the
number of definers needed for normalization. Despite the inherent
computational challenges of the task, empirical evaluation demon-
strates its algorithmic ascendancy over state-of-the-art tools.

Our immediate next step for future work is to enhance our cur-
rent method to accommodate ABoxes. In addition, we also consider
an adaptation of the method to more expressive DLs, such asALC
and its major decidable extensions [37, 41].

8

REFERENCES

[1] Wilhelm Ackermann. 1935. Untersuchungen úber das Eliminationsproblem der
mathematischen Logik. Math. Ann. 110, 1 (1935), 390–413.

[2] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. 2017. An Introduction
to Description Logic. Cambridge University Press.

[3] Leo Bachmair, Harald Ganzinger, David A. McAllester, and Christopher Lynch.
2001. Resolution Theorem Proving. See [35], 19–99.

[4] Elena Botoeva, Boris Konev, Carsten Lutz, Vladislav Ryzhikov, Frank Wolter,
and Michael Zakharyaschev. 2016. Inseparability and Conservative Extensions
of Description Logic Ontologies: A Survey. In Proc. RW’16 (LNCS, Vol. 9885).
Springer, 27–89.

[5] Diego Calvanese, GiuseppeDeGiacomo, andMaurizio Lenzerini. 1999. Reasoning
in Expressive Description Logics with Fixpoints based on Automata on Infinite
Trees. In Proc. IJCAI’99. Morgan Kaufmann, 84–89.

[6] Warren Del-Pinto and Renate A. Schmidt. 2019. ABox Abduction via Forgetting
in ALC. In Proc. AAAI’19. AAAI Press, 2768–2775.

[7] Christian G. Fermüller, Alexander Leitsch, Ullrich Hustadt, and Tanel Tammet.
2001. Resolution Decision Procedures. See [35], 1791–1849.

[8] William Gatens, Boris Konev, and Frank Wolter. 2014. Lower and Upper Ap-
proximations for Depleting Modules of Description Logic Ontologies. In Proc.
ECAI’14 (Frontiers in Artificial Intelligence and Applications, Vol. 263). IOS Press,
345–350.

[9] Silvio Ghilardi, Carsten Lutz, and FrankWolter. 2006. Did I DamageMyOntology?
A Case for Conservative Extensions in Description Logics. In Proc. KR’06. AAAI
Press, 187–197.

[10] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. 2007.
Just the right amount: extracting modules from ontologies. In Proc. WWW’07.
ACM, 717–726.

[11] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. 2008.
Modular Reuse of Ontologies: Theory and Practice. J. Artif. Intell. Res. 31 (2008),
273–318.

[12] Ian Horrocks. 2008. Ontologies and the semantic web. Commun. ACM 51, 12
(2008), 58–67.

[13] Michel C. A. Klein and Dieter Fensel. 2001. Ontology versioning on the Semantic
Web. In Proc. SWWS’01. 75–91.

[14] Michel C. A. Klein, Dieter Fensel, Atanas Kiryakov, and Damyan Ognyanov.
2002. Ontology Versioning and Change Detection on the Web. In Proc. EKAW’02
(Lecture Notes in Computer Science, Vol. 2473). Springer, 197–212.

[15] Boris Konev, Carsten Lutz, DirkWalther, and FrankWolter. 2013. Model-theoretic
inseparability and modularity of description logic ontologies. Artif. Intell. 203
(2013), 66–103.

[16] Boris Konev, Dirk Walther, and Frank Wolter. 2008. The Logical Difference Prob-
lem for Description Logic Terminologies. In IJCAR (Lecture Notes in Computer
Science, Vol. 5195). Springer, 259–274.

[17] Boris Konev, Dirk Walther, and Frank Wolter. 2009. Forgetting and Uniform
Interpolation in Large-Scale Description Logic Terminologies. In Proc. IJCAI’09.
IJCAI/AAAI Press, 830–835.

[18] RomanKontchakov, FrankWolter, andMichael Zakharyaschev. 2010. Logic-based
ontology comparison and module extraction, with an application to DL-Lite.
Artif. Intell. 174, 15 (2010), 1093–1141.

[19] Patrick Koopmann. 2015. Practical Uniform Interpolation for Expressive Description
Logics. Ph. D. Dissertation. The University of Manchester, UK.

[20] Patrick Koopmann. 2020. LETHE: Forgetting and Uniform Interpolation for
Expressive Description Logics. Künstliche Intell. 34, 3 (2020), 381–387.

[21] Patrick Koopmann, Warren Del-Pinto, Sophie Tourret, and Renate A. Schmidt.
2020. Signature-Based Abduction for Expressive Description Logics. In Proc.
KR’20. 592–602.

[22] Patrick Koopmann and Renate A. Schmidt. 2013. Implementation and Evaluation
of Forgetting in ALC-Ontologies. In Proc. WoMo’13, Vol. 1081. CEUR-WS.org,
1–12.

[23] Patrick Koopmann and Renate A. Schmidt. 2013. Uniform Interpolation of ALC-
Ontologies Using Fixpoints. In Proc. FroCos’13 (Lecture Notes in Computer Science,
Vol. 8152). Springer, 87–102.

[24] Patrick Lambrix and He Tan. 2008. Ontology Alignment and Merging. In
Anatomy Ontologies for Bioinformatics, Principles and Practice. Computational
Biology, Vol. 6. Springer, 133–149.

[25] Michel Ludwig and Boris Konev. 2014. Practical Uniform Interpolation and
Forgetting for ALC TBoxes with Applications to Logical Difference. In Proc.
KR’14. AAAI Press.

[26] Carsten Lutz, Inanç Seylan, and Frank Wolter. 2012. An Automata-Theoretic
Approach to Uniform Interpolation and Approximation in the Description Logic
EL. In Proc. KR’12. AAAI Press, 286–296.

[27] Carsten Lutz, Dirk Walther, and Frank Wolter. 2007. Conservative Extensions in
Expressive Description Logics. In Proc. IJCAI’07. AAAI/IJCAI Press, 453–458.

[28] Carsten Lutz and Frank Wolter. 2010. Deciding inseparability and conservative
extensions in the description logic EL. J. Symb. Comput. 45, 2 (2010), 194–228.

[29] Carsten Lutz and Frank Wolter. 2011. Foundations for Uniform Interpolation
and Forgetting in Expressive Description Logics. In Proc. IJCAI’11. IJCAI/AAAI
Press, 989–995.

[30] Nicolas Matentzoglu and Bijan Parsia. 2017. BioPortal Snapshot 30.03.2017.
https://doi.org/10.5281/zenodo.439510

[31] Nadeschda Nikitina and Sebastian Rudolph. 2014. (Non-)Succinctness of uniform
interpolants of general terminologies in the description logic EL. Artif. Intell.
215 (2014), 120–140.

[32] Nadeschda Nikitina, Sebastian Rudolph, and Birte Glimm. 2011. Reasoning-
Supported Interactive Revision of Knowledge Bases. In Proc. IJCAI’11. IJ-
CAI/AAAI, 1027–1032.

[33] Natalya Fridman Noy and Mark A. Musen. 2000. PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment. In Proc. AAAI/IAAI’00. AAAI
Press/The MIT Press, 450–455.

[34] Márcio Moretto Ribeiro and Renata Wassermann. 2009. Base Revision for Ontol-
ogy Debugging. J. Log. Comput. 19, 5 (2009), 721–743.

[35] John Alan Robinson and Andrei Voronkov (Eds.). 2001. Handbook of Automated
Reasoning (in 2 volumes). Elsevier and MIT Press.

[36] Ana Armas Romero, Mark Kaminski, Bernardo Cuenca Grau, and Ian Horrocks.
2016. Module Extraction in Expressive Ontology Languages via Datalog Reason-
ing. J. Artif. Intell. Res. 55 (2016), 499–564.

[37] Manfred Schmidt-Schauß and Gert Smolka. 1991. Attributive Concept Descrip-
tions with Complements. Artif. Intell. 48, 1 (1991), 1–26.

[38] Dan Schrimpsher, Zhiqiang Wu, Anthony M. Orme, and Letha H. Etzkorn. 2010.
Dynamic ontology version control. In Proc. ACMse’10. ACM, 25.

[39] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. 2006. The Semantic Web
Revisited. IEEE Intell. Syst. 21, 3 (2006), 96–101.

[40] Steffen Staab and Rudi Studer (Eds.). 2009. Handbook on Ontologies. Springer.
[41] Stephan Tobies. 2001. Complexity results and practical algorithms for logics

in knowledge representation. Ph. D. Dissertation. RWTH Aachen University,
Germany.

[42] Nicolas Troquard, Roberto Confalonieri, Pietro Galliani, Rafael Peñaloza, Daniele
Porello, and Oliver Kutz. 2018. Repairing Ontologies via Axiom Weakening. In
Proc. AAAI’18. AAAI Press, 1981–1988.

[43] Chiara Del Vescovo, Matthew Horridge, Bijan Parsia, Uli Sattler, Thomas Schnei-
der, and Haoruo Zhao. 2020. Modular Structures and Atomic Decomposition in
Ontologies. J. Artif. Intell. Res. 69 (2020), 963–1021.

[44] KewenWang, Grigoris Antoniou, Rodney Topor, and Abdul Sattar. 2005. Merging
and Aligning Ontologies in dl-Programs. In Proc. RuleML’05 (Lecture Notes in
Computer Science, Vol. 3791). Springer, 160–171.

[45] Zhe Wang, Kewen Wang, Rodney W. Topor, and Jeff Z. Pan. 2010. Forgetting for
knowledge bases in DL-Lite. Ann. Math. Artif. Intell. 58, 1-2 (2010), 117–151.

[46] Xuan Wu, Wenxing Deng, Chang Lu, Hao Feng, and Yizheng Zhao. 2020. UI-
FAME: A High-Performance Forgetting System for Creating Views of Ontologies.
In Proc. CIKM’20. ACM, 3473–3476.

[47] Yue Xiang, Xuan Wu, Chang Lu, and Yizheng Zhao. 2022. Creating Signature-
Based Views for Description Logic Ontologies with Transitivity and Qualified
Number Restrictions. In Proc. WWW’22. ACM, 808–817.

[48] Hui Yang, Patrick Koopmann, Yue Ma, and Nicole Bidoit. 2023. Efficient Com-
putation of General Modules for ALC Ontologies. In Proc. IJCAI’23. ijcai.org,
3356–3364.

[49] Yizheng Zhao, Ghadah Alghamdi, Schmidt Renate A., Hao Feng, Giorgos Stoilos,
Damir Juric, and Mohammad Khodadadi. 2019. Tracking Logical Difference in
Large-Scale Ontologies: A Forgetting-Based Approach. In Proc. AAAI’19. AAAI
Press, 3116–3124.

[50] Yizheng Zhao and Renate A. Schmidt. 2018. FAME: An Automated Tool for
Semantic Forgetting in Expressive Description Logics. In Proc. IJCAR’18 (Lecture
Notes in Computer Science, Vol. 10900). Springer, 19–27.

9

https://doi.org/10.5281/zenodo.439510

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Normalization of ELI-Ontologies
	3.1 A-Normal Form (A-NF)
	3.2 R-Normal Form (R-NF)

	4 Definer Introduction Strategy
	5 The Forgetting Method
	5.1 Calculus for Forgetting A
	5.2 Calculus for Forgetting r
	5.3 Properties of the Method

	6 Experiments
	7 Conclusion and Future Work
	References

