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ABSTRACT

Differentiable Architecture Search (DARTS) relaxes the discrete search space into
a continuous form, significantly improving architecture search efficiency through
gradient-based optimization. However, DARTS often suffers from performance
collapse, where the performance of discovered architectures degrades during the
search process, and the final architectures tend to be dominated by excessive skip-
connections. In this work, we analyze how continuous relaxation impacts archi-
tecture optimization, identifying two main causes for performance collapse. First,
the continuous relaxation framework introduces coupling between parametric op-
eration weights and architecture parameters. This coupling leads to insufficient
training of parametric operations, resulting in smaller architecture parameters for
these operations. Second, DARTS’s unrolled estimation property leads to larger
architecture parameters for skip-connections. To attack this issue, we propose
Edge Mutation Differentiable Architecture Search (EM-DARTS), where during
network weight updates, edges have a probability of mutating from a weighted
sum of candidate operations to a specific parametric operation. EM-DARTS re-
duces the impact of architecture parameters on parametric operations, allowing for
better training of the parametric operations, thereby increasing their architecture
parameters and preventing performance collapse. Theoretical results and experi-
mental studies across diverse search spaces and datasets validate the effectiveness
of the proposed method.

1 INTRODUCTION

Neural Architecture Search (NAS) has attracted considerable attention for its potential to automate
and optimize the design of neural networks, which traditionally requires human expertise and ex-
tensive experimentation. Early NAS approaches were dominated by reinforcement learning and
evolutionary algorithms (Zoph & Lel 2017} Real et al.l [2017), which, though effective, were com-
putationally expensive. In response, researchers proposed more efficient approaches, such as per-
formance estimation techniques (Klein et al., 2016), network morphisms (Cai et al., [2018), and
one-shot architecture search methods (Pham et al.| 2018 |Liu et al., 2019). Among these, one-shot
methods stand out by leveraging weight sharing, enabling the training of a supernet encompassing
all candidate sub-networks in a single pass.

Differentiable Architecture Search (DARTS) (Liu et al.,2019)), a leading one-shot method, enhances
efficiency by relaxing the discrete search space into a continuous one through architecture param-
eters. This enables gradient-based optimization of both the network weights and the architecture
parameters in an alternating manner, making DARTS one of the most computationally efficient NAS
approaches. Despite its advantages, DARTS is prone to performance collapse during the search pro-
cess, as pointed by several studies (Zela et al.l |2020; |Chu et al., [2021). Specifically, the selected
architectures are often dominated by excessive skip-connections, which reduce the representational
capacity of the architectures and degrade performance. This issue is usually attributed to overfitting
during the search process (Liang et al., [2020)), the undue advantage of skip-connection (Chu et al.,
2020; Xue et al.l 2021} |Ye et al.| [2022), and limitations in weight-sharing frameworks (Movahedi
et al., 2023), among other factors (Chen et al., 20195 |Chen & Hsiehl [2020; |Gu et al.| 2021} [Zhang
et al.,[2021).
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Figure 1: The edge mutation mechanism of EM-DARTS, where edges have a probability of mutating
from a weighted sum of candidate operations to a specific parametric operation during network
weight updates. Where a, represents the architecture parameter of operation o, and py,.x indicates
the maximum probability of edges.

However, these DARTS alternatives overlook the impairment caused by the continuous relaxation
framework on parametric operationsﬂ Specifically, assuming that there is an optimal feature map
for the output of an edge in the supernet, we found that the closer the output of the edge operation
is to the optimal feature map, the larger the corresponding architecture parameter. However, the
continuous relaxation framework introduces coupling between parametric operation weights and ar-
chitecture parameters. By theoretical analysis, we show that this coupling causes the update targets
of parametric operations to deviate from the direction of the optimal feature map, leading to insuffi-
cient training of these operations, where the distance between the operation output and the optimal
feature map can hardly be minimized, resulting in smaller architecture parameters. Additionally, due
to DARTS’s unrolled estimation property (Greff et al.,|2017; |Wang et al.,|2021), the output of skip-
connection is closer to the optimal feature map, which results in larger architecture parameters for
skip-connection. Consequently, the architecture parameters of parametric operations are frequently
smaller than those of skip-connection, leading to the final searched architectures being dominated
by an excessive skip-connections and resulting in poor performance.

Inspired by the sparse strategy of DSNAS (Hu et al., [2020), which can reduce the coupling be-
tween network weights and architectural parameters, we address this issue by introducing a muta-
tion mechanism for edges in the DARTS supernet during network weight updates (see Figure[T). We
term this method Edge Mutation Differentiable ARchiTecture Search (EM-DARTS). EM-DARTS
introduces randomness during the network weight update process, providing parametric operations
with the opportunity to correct their update targets to the optimal feature map, effectively break-
ing the coupling between parametric operation weights and architecture parameters. Specifically,
the mutation mechanism allows parametric operations to independently receive input data and per-
form forward and backward propagation. This process enables parametric operations to learn useful
feature representations more effectively, optimize their architecture parameters, and prevent per-
formance collapse. Additionally, as the mutation mechanism introduces negligible computational
overhead, EM-DARTS preserves the efficiency of the DARTS search process. Our contributions are
summarized as follows:

* We discover that that the performance collapse is primarily due to insufficient training of
parameter operations, which results from the coupling issues between parametric operation
weights and architecture parameters caused by the continuous relaxation framework.

! Candidate operations can be categorized into parametric and non-parametric operations based on whether
they contain parameters. For example, parametric operation can be dilated convolution or separable convolu-
tion; non-parametric operation can be skip-connection, pooling, or no operation.
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* We propose EM-DARTS and theoretically demonstrate that it allows for more thorough
training of parametric operations, thereby preventing performance collapse.

* Extensive experiments on NAS-Bench-201, DARTS, and the reduced DARTS search
spaces show that EM-DARTS achieves state-of-the-art performance, proving its effective-
ness in addressing the performance collapse issue.

2 RELATED WORK

Several studies (Zela et al., [2020; |Chu et al |2021) have found that the performance of the archi-
tectures discovered during the DARTS search process tends to degrade continuously. To address
this issue, researchers have proposed several improved DARTS methods. P-DARTS (Chen et al.,
2019) addresses suboptimal architectures caused by the depth disparity between search and evalua-
tion networks by gradually increasing the search network’s depth. SmoothDARTS (Chen & Hsiehl,
2020) identifies that a steep validation loss surface leads to sharp performance drops and smooths
it through Hessian regularization, thereby improving search stability. DARTS+ (Liang et al., [2020)
identifies the presence of overfitting during the architecture search process, which leads to perfor-
mance degradation, and addresses this issue by introducing early stopping mechanisms. DOTS (Gu
et al.l 2021) observes that architecture parameters often fail to reflect the true importance of opera-
tions and introduces new evaluation and optimization strategies to improve search results. Likewise,
IDARTS (Zhang et al., 2021} contends that the coupling of architecture parameters obscures their
true importance, addressing this challenge through a backtracking method to manage different pa-
rameter types. Fair DARTS (Chu et al., |2020) identifies the unfair advantage of skip-connection
in operation competition and mitigates it by using an independent sigmoid function to balance
the weights of competing operations. DARTS- (Xue et al. 2021)) reduces the influence of skip-
connection by embedding auxiliary skip-connection within the cell design. Similarly, 5-DARTS (Ye
et al.l 2022)) introduces Beta-Decay regularization to limit the dominance of skip-connection, re-
placing the traditional [, regularization to improve balance. Recently, A-DARTS (Movahedi et al.,
2023)) finds that the weight-sharing framework limits DARTS’ convergence by saturating the soft-
max function and improves convergence by aligning gradient layers to better harmonize operation
selection, further stabilizing the search process. While these improvements offer valuable insights
and partially mitigate performance collapse, they largely overlook how the continuous relaxation
framework hampers parametric operations.

Meanwhile, SPOS (Guo et al.| [2020) reduces computational resource usage by randomly selecting
a single path for training within a supernet, maintaining the diversity of the search space and en-
hancing search efficiency. Building on this, GDAS (Dong & Yang] [2019) uses the Gumbel-Softmax
distribution to make the search space continuous, allowing for gradient-based optimization of ar-
chitecture parameters, thus further improving efficiency and stability. Finally, DSNAS (Hu et al.,
2020) adds sparsity constraints to SPOS, directly optimizing network architectures and eliminating
the need for parameter retraining, simplifying the search process. Inspired by the sparse strategy
of DSNAS, which can reduce the coupling between network weights and architectural parameters,
we propose EM-DARTS. However, unlike the aforementioned methods that primarily focus on im-
proving search efficiency, EM-DARTS is specifically designed to address the issue of performance
collapse in DARTS. By introducing an edge mutation mechanism, EM-DARTS aims to mitigate
the adverse effects of the continuous relaxation framework on the training of parametric operations.
This edge mutation mechanism can be seen as an extension of sparsity constraints. Because the
purpose of using edge mutation is to enhance the training level of parametric operations, it differs
from the sparsity strategies in SPOS and DSNAS. In EM-DARTS, edge mutations are restricted to
parametric operations, rather than all operations. Moreover, EM-DARTS allows each edge to mutate
into a specific parametric operation with a certain probability p, rather than enforcing each edge to
mutate into a single operation.

3 METHOD

3.1 DIFFERENTIABLE ARCHITECTURE SEARCH OVERVIEW

The DARTS supernet consists of stacked normal and reduction cells, with each cell type sharing a
set of architecture parameters. Each cell is structured as a directed acyclic graph (DAG) comprising
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N nodes {xi}f\!ol, where each node represents a feature map. An edge (¢, j) connects node x; to
x4, using x; as input. DARTS achieves continuous relaxation of the search space by introducing
architecture parameters that represent each edge as a weighted combination of candidate operations
from a set O. The output of edge (i, j) is defined as

o) (z;) = Z BYD (), (1)
ocO
where B((,i’j ) is obtained by applying the softmax function to the vector a(*7) = {agi’j ) 1 ie.,
eXp(ozgi’j))

> oreo exp(a

Bl = @)

(,9)y’
o’ )
and o) is the architecture parameter for operation o(-) on edge (7, j). The architecture parameters
for all edges in a cell form its architecture parameter set o = {a/(%7)}.

Each cell contains two input nodes, N — 3 intermediate nodes, and one output node. The input nodes
are derived from the output nodes of the two preceding layer cells. Each intermediate node x; is
computed as a sum of the outputs from all its predecessor nodes z; (i < j), i.e.,

zp =Y 0" (x;). 3)
i<j
The output node of the cell is obtained by concatenating the outputs of all intermediate nodes. To de-
termine the optimal architecture parameters, DARTS alternates between gradient-based optimization
of network weights w and architecture parameters o by solving the following bi-level optimization
problem, i.e.,
moin Loyar(w* (@), a)

“4)

s.t. w* (O[) = arg Hl(jn Actrain (wa a)ﬂ

where Liyqin and L, denote the training and validation loss functions, respectively. DARTS pro-
poses two methods to approximate w* («): the first-order and second-order methods. In our work, we
utilize the first-order method. For further details on DARTS, please refer to the original paper (Liu
et al.,[2019).

3.2 THEORETICAL ANALYSIS OF PERFORMANCE COLLAPSE

DARTS introduces architecture parameters to continuously relax the search space, allowing us to
select the optimal operations based on the magnitude of these parameters. However, the introduced
architecture parameters form a coupling between parametric operation weights and architecture pa-
rameters, which affects the training of parametric operations and makes the architecture optimiza-
tion process more complex. In this section, we will provide a theoretical analysis of the impact of
continuous relaxation on architecture optimization.

As indicated by DARTS-PT (Wang et al.| [2021), DARTS exhibits an unrolled estimation property,
where all edges within a cell attempt to estimate the same optimal feature map. For simplicity, we
assume that when DARTS converges, the distance between edges’ outputs within each cell and the
cell’s optimal feature map is minimized. Since the outputs of operations on each edge in DARTS are
normalized to the same scale, both the edge output and the optimal feature map of the cell should also
have the same scale. Therefore, the distance between the operation output and the optimal feature
map can be represented by variance of the difference between them, and the distance between the
edge output and the optimal feature map can be similarly applied In the following proposition, we
focus on an edge of a supernet cell and analyze the properties of the architecture parameters on this
edge under the continuous relaxation framework, when DARTS converges.

Proposition 1. Ler (i,j) be an edge in a supernet cell and o* be the optimal feature map on this
cell. Under the assumptions that (1) weight-sharing has no impact on the architecture parameters,

(2,9)

and (2) the DARTS algorithm is convergent, then the architecture parameter oy ' is approximately

*When variables X and Y have the same scale, then E[X] = E[Y], and the variance of the difference
between them is Var(X — V) = E[(X — Y)?].
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inversely proportional to the variance of the difference between the operation output o(x;) and the
optimal feature map o*. That is,
1

Var(o(z;) — 0*)’ ©®)

a((f’j )
Its proof is postponed to Appendix According to Proposition |1} the smaller the distance
Var(o(x;) —0*) between the operation output and the optimal feature map, the larger the correspond-
ing architecture parameter a(ow ) will be. However, parametric operations can reduce the distance
between their output and the optimal feature map by adjusting their weights, thereby improving
their architecture parameters. In contrast, non-parametric operations lack this flexibility, and their
distance remains fixed. Therefore, to ensure that the architecture parameters accurately reflect the
importance of each operation, parametric operations must be fully trained to minimize the distance
between their output and the optimal feature map. In the following proposition, we will evaluate the
training of parametric operations under the condition of DARTS convergence.

Proposition 2. Let (i,]) be an edge in a supernet cell and o* be the optimal feature map on this
cell. Define O1 as the set of all parametric operations in O. Assuming DARTS converges, then,
for o € Oy, the variance of the difference between the parametric operation’s output o(x;) and the
optimal feature map o* does not reach its minimum value.

See Appendix for a detailed proof. Proposition 2]indicates that due to the coupling introduced
by continuous relaxation, parametric operations cannot be fully trained, which is a critical flaw of
the continuous relaxation framework. In fact, for any o € O, the goal of the parametric operation o
is not to be fully trained itself, but to contribute to the overall performance of the edge. That is, o(x;)
converges not to the optimal feature map o*, but to a shifted target o influenced by other operations,
ie.,

0" — 20/60\{0} 55’”0/(%)

i

where ﬁ((f’] ) is defined in Equation li In addition, since the output of the skip-connection z; is
derived from the mixed output of the previous edges, and each edge estimates o*, x; directly ap-
proximates o*. Consequently, this results in a very small Var(x; — 0*), making the architecture
parameters of the skip-connection larger. As a result, the architecture parameters of parametric
operations are frequently smaller than those of the skip-connection, leading to the final searched
architectures being dominated by an excessive number of skip-connections and resulting in perfor-
mance collapse.

. (6)

5:

3.3 EDGE MUTATION DIFFERENTIABLE ARCHITECTURE SEARCH

To preserve DARTS’ efficiency and address performance collapse, we propose a novel method of
introducing a mutation mechanism on the edges during network weight updates, and at the same
time preserving the edge states during architectural parameter updates. This mechanism assigns a
probability to edges, allowing the output of a weighted sum of candidate operations to mutate into
that of a specific parametric operation. Therefore, during network weight updates, the output of
edge (4, j) is calculated using the following formula,

) = 3 (4EDF0D 4 (1 = 460569 o), 0
o€

where v("7) and B(()” ) are the mutation factor and mutation weight, respectively The mutation
factor v("7) follows a Bernoulli distribution with probability p, with its probability mass function is

(L,]) _ _ p, lf k = ].7
Pl k) {l—p, if k=0 ®
The mutation weight Bff’j ) is given by
A(4,7) ~ rand
57 =1, 0+— O,
{/f", | T ©)
B =0, o €O\fo},

3The values of 'y(i’j ) and BS,” ) are unique across different layers.
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where 6 £24 O means that 6 is randomly selected from the set of parametric operations O;. So,
the bi-level optimization process of architecture parameters o and network weights w is modified in
the following way,

Hgn Lyal (w* (Oé), a)
. (10)
S.t. w*(a) — arg H}uin Etrain<w777ﬁ)a

where ~y represents the collection of mutation factors for all edges, and B represents the mutation
weights for all operations. For the proposed method, increasing the edge mutation probability p
provides parametric operations with more opportunities to align with the optimal feature map o*.
However, if p is chosen to be too large, it will lead to an increase in the number of edges that mutate
to have only one parametric operation, thereby causing drastic structural changes in the supernet
and potentially destabilizing network weight updates. Conversely, if p is set too small, the training
improvement for parametric operations will be limited, still posing a risk of performance collapse.
Previous studies (Zela et al., [2020; |(Chu et al., 2021)) have shown that in DARTS, the architecture
performance typically begins to decline in the middle of the search process, and this degradation
becomes more severe as training progresses. This indicates that although parametric operations can
initially approach the optimal feature map o* to some extent, they gradually deviate from o* as
the search progresses due to the shifting of their update targets. Therefore, we suggest gradually
increasing support for parametric operations as the search progresses. To achieve this, we propose a
growth strategy where the mutation probability p starts at 0 and increases linearly during the search
process until it reaches its maximum value py,,x. The details of this approach are summarized in
Algorithm

Algorithm 1: EDGE MUTATION DIFFERENTIABLE ARCHITECTURE SEARCH
Input: Training data, validation data, search hyper-graph, hyper-parameters p,ax
Output: Network architecture
Create architecture parameters «; sett = 1, 7" = 50
while t < T do

1. Update architecture parameters « by descending V o, Lyq1(w, a)

2. Set p ¢ % Pmax

3. Compute v and B using Equations (8) and @), respectively
4. Update network weights w by descending V,Lyrqin (W, 7, B)
5.8ett+—t+1

Derive the final architecture based on the optimized «

The edge mutation mechanism effectively breaks the coupling between parametric operation weights
and architecture parameters by introducing randomness during the network weight update process
of the supernet. Specifically, during each network weight update, each edge has a certain probabil-
ity p of mutating into a specific parametric operation, rather than continuing to rely on the weighted
average of all candidate operations. This mutation process grants parametric operations the opportu-
nity to independently receive input data and perform forward and backward propagation, facilitating
more effective learning of useful feature representations. Through this method, parametric opera-
tions can better approximate optimal feature maps, thereby optimizing their architecture parameters.
The following theorem validates the effectiveness of the edge mutation mechanism in improving the
overall training of parametric operations.

Theorem 1. Let (i,j) be an edge in a supernet cell and o* be the optimal feature map on this
cell. Define Oy as the set of all parametric operations in O, with 01,04,...,05 € O1 having
parameters wy, . . .,ws. Assuming DARTS converges, the parameters of these operatlons and the
architecture parametersfor edge (i, ]) are 1,ws, . .., ws and @, respectively. Additionally, if EM-
DARTS converges, its parameters are (1, W2, . . . ,Ws and a. Then we have the following inequality,

Z Var(o;(x;,0;) — 0*) < Z Var(o;(x;,&;) — o). (11)
= i=1

The proof is provided in Appendix [A.3] Theorem [I|demonstrates that EM-DARTS achieves better
training of parametric operations compared to DARTS. Actually, EM-DARTS provides parametric
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operations with an opportunity to correct their update targets to the optimal feature map o*, as shown
in Figure |1} This reduces the interference from architectural parameters on the parametric opera-
tions, allowing them to be trained more thoroughly, which in turn reduces the distance between their
output and o*. Consequently, this increases the architecture parameters of the parametric operations,
making them larger than those of the skip-connection, thus avoiding performance collapse.

4 EXPERIMENTAL STUDIES

In this section, we evaluate the effectiveness of EM-DARTS through a series of experiments on
the NAS-Bench-201 and DARTS search space (Dong & Yang, 2020; [Liu et al.l [2019). We test
its robustness in the reduced DARTS search space (Zela et al., 2020) across various datasets. In
addition, we conduct an ablation study within the NAS-Bench-201 search space to further validate
the effectiveness of EM-DARTS, demonstrate the robustness of growth strategy, and explore the
impact of various hyperparameters. The details of the datasets, search costs, experimental settings,
and discovered architectures are provided in Appendices [A.4] [A.6] [A.5] and [A.§] respectively. In
addition, we define a search space S5 that contains only parametric operations, and validate the
effectiveness of EM-DARTS in this search space. See Appendix [A.7]for details.

4.1 NAS-BENCH-201 SEARCH SPACE

We began by evaluating the effectiveness of EM-DARTS in the NAS-Bench-201 search space. As
shown in Table [l EM-DARTS demonstrates significant performance improvements compared to
other DARTS-based algorithms. It consistently achieves performance on par with state-of-the-art
methods such as A-DARTS and S-DARTS (Movahedi et al.,[2023};[Ye et al.,[2022).

Table 1: Performance comparison on the NAS-Bench-201 benchmark. EM-DARTS are conducted
by searching on the CIFAR-10 dataset and evaluating on CIFAR-10, CIFAR-100, and ImageNet16-
120. The reported accuracy values are the mean and standard deviation derived from 4 independent
runs. (1st): first-order; (2nd): second-order.

Method CIFAR-10 CIFAR-100 ImageNet16-120

Valid Test Valid Test Valid Test
DARTS(1st) (Liu et al.][2019) 39.77+0.00 54.30£0.00 15.03+£0.00 15.61+0.00 16.43+0.00 16.32+0.00
DARTS(2nd) (Liu et al.[[2019) 39.77+0.00 54.30+£0.00 15.03+£0.00 15.61+0.00 16.434+0.00 16.32+0.00
GDAS (Dong & Yang!|2019) 89.80+£0.08 93.61+0.09 71.34+£0.04 70.70+0.30 41.594+1.33 41.71+0.98
SNAS (Xie et al.;[2019) 90.10 £ 1.04 92.77 £0.83 69.69 £ 2.39 69.34 £1.98 42.84 +1.79 43.16 £ 2.64
DSNAS (Hu et al.|[2020) 89.66 £0.29  93.08 £0.13  30.87+16.40 31.01+16.38 40.61+0.09 41.07£0.09
PC-DARTS (Xu et al.{[2020) 89.96 £0.15 93.41 £ 0.30 67.12 £ 0.39 67.48 £ 0.89 40.83 +0.08 41.31 £0.22
iDARTS (Zhang et al.|[2021) 89.86 £0.60 93.58 £0.32  70.57+0.24 70.83+048  40.38+0.59  40.89 £ 0.68
DARTS- (Chu et al.[[2021) 91.03 £0.44 93.80 £ 0.40 71.36 £1.51 71.53 £1.51 44.87 +1.46 45.12 £0.82
VIM-NAS (Yaoming et al.|[2021)  91.48 +0.09 94.31 £0.11 73.12£0.51 73.07 £0.58 45.92 £ 0.51 46.27 £0.17
DrNAS (Chen et al.[|[2021} 91.55+0.00 94.36 £0.00 73.49+0.00 73.51+0.00 46.37+0.00 46.34+0.00
[-DARTS (Ye et al.||2022) 91.55+0.00 94.36 £0.00 73.49+0.00 73.51+0.00 46.37+0.00 46.34+0.00
A-DARTS (Movahedi et al.{2023) 91.55+0.00 94.36 £0.00 73.49+0.00 73.51+0.00 46.37+0.00 46.34 +0.00
EM-DARTS ) 91.55+0.00 94.36 £0.00 73.49+0.00 73.51+0.00 46.37+0.00 46.34£0.00
Optimal (Dong & Yang|[2020) 91.61 94.37 73.49 73.51 46.77 47.31

4.2 DARTS SEARCH SPACE

To verify its effectiveness in preventing performance collapse, we tested EM-DARTS in the original
DARTS search space (Liu et al.| [ 2019) across multiple datasets. Table@]shows that EM-DARTS sub-
stantially outperforms baseline models. Specifically, on the CIFAR-10, CIFAR-100, and ImageNet
datasets, EM-DARTS achieves average accuracies of 97.62%, 83.96%, and 76.2%, respectively,
surpassing current state-of-the-art methods by 0.05%, 0.11%, and 0.2%.

4.3 REDUCED SEARCH SPACES

We conducted experiments in the Reduced DARTS search space, as proposed by R-DARTS (Zela
et al [2020), to validate the robustness of EM-DARTS. As shown in Table [3] EM-DARTS outper-
forms the current state-of-the-art methods in 9 out of 12 experiments, while performing comparably
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Table 2: Performance comparison on the DARTS benchmark. The first block reports the best per-
formance of the architecture, whereas the second block reports the average performance of multiple
searches, except for results on ImageNet. EM-DARTS are conducted by searching on the CIFAR-10
dataset and evaluating on CIFAR-10, CIFAR-100, and ImageNet. The reported accuracy values are
the mean and standard deviation derived from 4 independent runs.

t: Searching on ImageNet.

Method CIFAR-10 CIFAR-100 ImageNet
Params (M) Test Acc (%) Params (M) Test Acc (%) Params (M) Test Acc (%)

NASNet-A (Zoph et al.[2018) 3.3 97.35 3.3 83.18 5.3 74.0
DARTS(1st) (Liu et al.|[2019) 3.4 97.00+£0.14 34 82.46 - -
DARTS(2nd) (Liu et al.|[2019) 3.3 97.24+£0.09 - - 4.7 73.3
SNAS (Xie et al.[|2019) 2.8 97.15+0.02 2.8 82.45 4.3 2.7
GDAS (Dong & Yang||2019) 3.4 97.07 3.4 81.62 5.3 74.0
P-DARTS (Chen et al.|[2019) 34 97.50 3.6 82.51 5.1 75.3
PC-DARTS (Xu et al.|[2020) 3.6 97.43+0.07 3.6 83.10 5.3 75.8
DrNAS (Chen et al.[2021] 4.0 97.46 £0.03 - - 5.2 75.8
VIM-NAS (Yaoming et al.|[2021) 3.9 97.55+0.04 - - - 76.0
SWAP-NAS (Peng et al.[|2024) 4.3 97.52+0.04 - - 5.8 76.0
R-DARTS (Zela et al.[|2020) - 97.05+0.21 - 81.99+0.26 - -
P-DARTS (Chen et al.|[2019) 3.3+021 97.19+0.14 - - - -
SDARTS-ADV (Chen & Hsieh![2020) 3.3 97.39+0.02 - - 5.4 74.8
DOTS (Gu et al.|[2021) 3.5 97.51+0.06 4.1 83.52+0.13 5.2 75.7
DARTS-PT (Wang et al.|[2021) 3.0 97.39+0.08 - - 4.6 74.5
DARTS- (Chu et al.[[2021}) 3.5+£0.13 97.41+0.08 34 82.49+0.25 4.9 76.21
B-DARTS (Ye et al.|[2022) 3.8+£0.08 97.49+£0.07 3.8+0.08 8348+0.03 5.4 75.8
A-DARTS (Movahedi et al.|[2023) 3.6+013 97.57+0.05 3.6+0.1 83.85+0.38 3.8 75.7
EM-DARTS (avg) 4.3+0.1 97.62+0.05 44+0.1 83.96 £0.19 - -
EM-DARTS (best) 4.4 97.67 4.5 84.19 6.2 76.2

in the remaining two. These results confirm that EM-DARTS is highly effective at preventing per-

formance collapse across different environments.

Table 3: Performance comparison on the Reduced DARTS benchmark. The reported test error rate
(%) is from the best-performing architecture of 4 independent runs.

Dataset Search Space  DARTS PC-DARTS R-DARTS SDARTS-RS A-DARTS EM-DARTS

S1 3.84 3.11 2.78 2.78 2.83 2.74

S2 4.85 3.02 3.31 2.75 2.56 2.39

CIFAR-10 S3 3.34 2.51 2.51 2.53 2.38 2.44
S4 7.20 3.02 3.56 2.93 2.46 2.32

S1 29.46 24.25 23.51 24.48 22.79 23.37
S2 26.05 22.48 22.44 22.28 21.68 21.47
CIFAR-100 S3 28.90 21.69 23.99 21.09 21.03 20.33
S4 22.85 21.50 21.94 21.46 20.65 20.35

S1 4.58 247 2.35 2.62 2.39 2.49

S2 3.53 2.42 2.51 2.39 2.37 2.34

SVHN S3 3.41 2.41 2.48 2.36 2.31 2.30
S4 3.05 2.43 2.50 2.46 2.34 2.27

4.4 ABLATION STUDY

To further verify the effectiveness of the edge muta-
tion mechanism and the probability growth strategy,
we conducted several comparative experiments. We
set up three phases of edge mutation: early phase with
a mutation probability of 0.2 for the first 1/3 of epochs,
middle phase with a mutation probability of 0.2 for
the next 1/3 of epochs, and late phase with a mutation
probability of 0.2 for the last 1/3 of epochs. We com-
pared these settings with fixed mutation probabilities
of 0.1 and 0.2, as well as a linearly increasing prob-
ability from O to 0.2. To assess the robustness of the
probability growth strategy, we compared linear, ex-
ponential, and cosine growth strategies. We also per-

Table 4: Performance variation of differ-
ent growth strategies. The experiment is
conducted in the NAS-Bench-201 bench-
mark using CIFAR-10. The mean and stan-
dard deviation of the accuracy are calcu-
lated over 4 independent runs.

Strategy Accuracy (%)

linear 91.55 +0.00
exponential ~ 91.52 £ 0.02
cosine 91.53 £ 0.03

formed experiments with different p,,.x values (0.1, 0.2, 0.3, 0.4, and 0.5). Finally, to further explore
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Figure 2: Performance variation of the architecture during the search process. The experiment is
conducted in the NAS-Bench-201 benchmark using CIFAR-10. Results are averaged over 4 runs
and presented with a 95% confidence interval.

the capability of EM-DARTS in preventing performance collapse, we extended the search process
to 400 epochs and rigorously evaluated the discovered architectures’ performance.

Figure 2] shows that when the mutation strategy is not applied, performance collapse occurs again.
Interestingly, all methods that use the edge mutation mechanism successfully avoid performance
collapse, with the final architectures achieving accuracies exceeding 90%, highlighting the effec-
tiveness of the mutation mechanism. Additionally, we find that using a probability growth strategy
ensures that the optimal architecture is found early and remains stable. These findings emphasize
the necessity of the growth strategy. Table [4] shows that all growth strategies yield similar results,
confirming the overall robustness of the approach. However, the linear growth strategy slightly
outperforms the others and is simpler to implement, so we recommend using it.
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Figure 3: The impact of hyperparameters on EM-DARTS performance is analyzed. The experiment
is conducted in the NAS-Bench-201 benchmark using CIFAR-10. Results are averaged over four
runs and presented with a 95% confidence interval.

Figure [3[a) shows that as ppa.x increases, performance initially improves, peaking at pmax = 0.2
before declining. This trend reflects that the hyperparameter pp,.x needs to find a balance between
reducing the interference of architecture parameters on parametric operations and avoiding instabil-
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ity in the supernet structure. Figure [3(b) shows that extending training to 400 epochs results in only
a slight 0.7% drop in performance, with optimal performance maintained at 100 epochs and a minor
0.1% decline by 300 epochs. This demonstrates that EM-DARTS effectively prevents performance
degradation over extended training periods.

5 CONCLUSION

In response to the issue of performance collapse caused by the continuous relaxation framework, we
propose the EM-DARTS method, which probabilistically mutates the edges of the DARTS supernet
from weighted combinations of candidate operations to a specific parametric operation during net-
work weight updates. This method effectively mitigates the issue of performance collapse, leading
to more robust and efficient network architectures, which is supported by both theoretical analysis
and extensive experimental validation. Although EM-DARTS successfully addresses the problem
of performance degradation, the effectiveness of this method heavily depends on the setting of the
mutation probability. An important direction for future research is to explore search frameworks
that can break through the limitation of dependence on the setting.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proof. The variance of the difference between 6("/)(z;) and 0* can be expressed as

Var(6"9) (z;) — 0*) = Var <Z B o(;) — 0*) . (12)

1@
Expanding the variance term, we have

Var(o(z;) — 0*) = 3 B9 Var(o(x;) - o°)

o€

> > BB Cov(o(r) — 0" o () o).

0€0 o'eO\{o}

13)

Empirically, Cov(o(x;) — 0*,0'(x;) — 0*) is relatively small compared to Var(o(x;) — o*), and
retaining it would considerably complicate subsequent calculations. Therefore, we assume that
Cov(o(x;) — 0*,0'(x;) — 0*) = 0. Thus, we have
L SN2
Var(69) (z;) — 0*) = Z BSI) Var(o(z;) — 0*). (14)
ocO
When DARTS converges, Var(6("7) (z;) — 0*) reaches its minimum value. Additionally, the weights

[3((,” ) must satisfy the constraint ZO co ﬁoi’j ) — 1. To solve for ﬂg” ) at DARTS convergence, we
use the Lagrangian method,

LBED,BED, . BEIA) =D B Var(o(x;) — 0*) = A (Z B — 1) . ()

0cO 0O

where A is the Lagrange multiplier enforcing the constraint. Taking the derivative of £ with respect
to 6((,” ) and setting it to zero, we obtain

oL
05"

= 2859 Var(o(z;) — 0*) = A =0, (16)

which simplifies to

B9 Var(o(a;) —0") =

A
5 a7

12
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Applying the constraint ) ., 55]’»]’ ) = 1 and solving for A, we find

. —1
A=2 <Z Var(o(z;) — 0*)) '

e

Substituting A back into the expression for Bgi’j ), we obtain

1
gl = Vo=

1 .
ZO’EO Var(o’ (x;)—o0*)
: (4,9) - exp(afh?)) :
Since B, 7’ is defined as ﬁ it follows that
o' co expla

1

(4,9)
exp() X o) — o)

Therefore, we conclude that
1

(1,5)
o X Nar(o(z:) — o)

A.2 PROOF OF PROPOSITION 2

Proof. Consider that the variance Var(6(x;) — o*) can be expanded as

Var(6(9) (z;) — 0*) = Z ﬁgivj)QVar(o(xi) —0")

e

+ Z Z ﬁgi’j)ﬂg’j)COV(o(@) —0*,0'(z;) — 0o").

0€0 o'eO\{o}

For any o € O; with parameter w,, the derivative of this variance with respect to w, is

OVar(o() (z;) — o*)
Ow,

=By 9o,

(i,j)2 OVar(o(z;) — o)

. ZaC i) — *, / D) — *
Loy g CVlofe) o (a) ~ )

o'€O\{o} Owo

Since DARTS, at convergence, minimizes Var(3\*7) (x;) — 0*), we have

dVar(6h9) (x;) — 0*)

=0.
Ow,
This leads to
glig) OVarlo(zs) —o") _ ) i) 0Cov(o(z:) — 0", 0/ () — 0")
o awo o
o’eO\{o}
Since

Ow,

Z ﬁ(i’j) dCov(o(z;) — 0*,0' (x;) — 0*)
0'€O\{o} 0o

which implies that
OVar(o(x;) — 0*)

oo, #0.

(18)

19)

(20)

2n

(22)

(23)

(24)

(25)

(26)

27)

Therefore, the convergence of DARTS does not necessarily guarantee that the variance Var(o(z;) —

0*) for each 0 € Oy is minimized.
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A.3 PROOF OF THEOREM 1

Proof. In EM-DARTS, the expected value of the objective function for parametric operations is
given by

Pmax - *
9y Wsy = Var \Liy Wi ) —
flwn Ws, @) . Z (0i(zi,w;) — 0¥)

i=1 (28)
+ (1 — Pmax) Var(o(x;, w1, . . ., ws, @) — 0%),
Since f reaches its minimum at @y, . . ., W, @, We have the following inequality
Prnax S™ Var(oy (25, i) — 0) + (1 — punax)Var(6(4, @1, . . ., &5, @) — 0°)
5 &
=t (29)
< Pmax > Var(oi(2:,@;) — 0") + (1 = pmax) Var(o(z;, @1, . . ., &y, @) — 0%).
s
i=1
Because &1, . . . ,Ws, @ minimize the variance of the difference between the combined output and o*,
we have
Var(o(z;, 01, ... ,Ws, @) — 0°) < Var(o(x;, w1, .. .,w0s, &) — 0¥). (30)
Therefore, we have
ZV&I‘(Oi(.’Ei,ZZ}i) — 0*) < ZV&I‘(Oi({L‘i,@i) — O*). 31
i=1 i=1
O

A.4 DATASET

CIFAR-10: This popular dataset for image classification contains 60,000 32x32 color images,
which are divided into 10 distinct classes. The training set is composed of 50,000 images, with
each class represented by 5,000 images. The test set includes 10,000 images, with 1,000 images per
class.

CIFAR-100: This extensive image classification dataset comprises 60,000 32x32 color images,
which are categorized into 100 distinct classes. The training set includes 50,000 images, with each
class represented by 500 images. The test set has 10,000 images, with 100 images per class.

ImageNet-16-120: This dataset, part of the broader ImageNet project, comprises 151,700 16x16
color images distributed across 120 distinct classes. The training set includes 139,200 images, while
the validation and test sets consist of 6,000 and 6,500 images, respectively (Chrabaszcz et al.,[2017)).

SVHN: The SVHN dataset is composed of more than 600,000 32x32 color images, each depicting
a house number extracted from Google Street View imagery. The dataset is organized into three
main parts: a training set with 73,257 images, an extra set containing 531,131 images and a test set
comprising 26,032 images. Each image in the dataset features a single digit ranging from O to 9,
thereby forming a 10-class classification problem (Netzer et al.,[2011).

ImageNet (ILSVRC2012): This renowned image classification dataset consists of over 1.2 million
high-resolution images across 1,000 classes. The training set includes approximately 1.28 million
images, while the validation and test sets contain 50,000 and 100,000 images, respectively (Deng
et al.,[2009).

A.5 EXPERIMENT SETTINGS
Each experiment involves two stages: architecture search and architecture evaluation. In the search

stage, the original dataset is randomly split in half, with one part used for training and the other for
validation.

14
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A.5.1 NAS-BENCH-201 SEARCH SPACE

Architecture Search: The NAS-Bench-201 search network (Dong & Yang| 2020) is structured with
three stages of cells linked by residual blocks. Each stage consists of five cells, with output channels
configured to 16, 32, and 64 for the first, second, and third stages, respectively. The residual blocks
double the channels of the input feature map and downsample the spatial dimensions. The candidate
operation set O includes: zero, skip-connection, 1 x 1 convolution, 3 x 3 convolution, and 3 X 3
average pooling.

Network parameters (w) are optimized using stochastic gradient descent (SGD) with an initial learn-
ing rate of 0.025, reduced to 0.001 through cosine annealing. The weight decay is set to 0.0005,
and momentum to 0.9. The maximum mutation probability py,.x is 0.2. For architecture parameters
(ar), the Adam optimizer is used with a learning rate of 10~* and a weight decay rate of 0.001, with
momentum terms 7 = 0.5 and B2 = 0.999. The search on CIFAR-10 runs for 50 epochs.

Architecture Evaluation: We utilize the API provided by NAS-Bench-201 (Dong & Yang| 2020)
to evaluate the performance of the discovered architectures on the CIFAR-10, CIFAR-100, and
ImageNet16-120 datasets.

A.5.2 DARTS SEARCH SPACE

Architecture Search: The DARTS supernet (Liu et al., [2019) consists of normal and reduction
cells. These cells form an 8-layer architecture, with reduction cells positioned at layers N/3 and
2N/3 to downsample spatial dimensions and double the channels. The set of candidate operations
O includes 3 x 3 and 5 x 5 separable and dilated convolutions, 3 x 3 max and average pooling,
skip-connection, and zero.

Network parameters (w) are optimized using SGD with an initial learning rate of 0.025, reduced via
cosine annealing to 0.001, with 0.0003 weight decay and 0.9 momentum. The maximum mutation
probability pyax is 0.125. Architecture parameters («) are optimized with Adam (learning rate
3 x 10~%, weight decay 0.001, 8; = 0.5, B2 = 0.999). The search process spans 50 epochs, using
the CIFAR-10 dataset.

Architecture Evaluation: For the CIFAR-10 and CIFAR-100 datasets (Xu et al., 2020), the evalua-
tion is conducted on a network consisting of 20 cells, including 18 normal cells and 2 reduction cells.
The network starts with 36 channels and is trained for 600 epochs. We use the SGD optimizer with
an initial learning rate of 0.025 (cosine decay to 0), momentum of 0.9, weight decay of 3 x 1074,
gradient clipping at a norm of 5, and a batch size of 128. Additionally, we incorporate Scheduled-
DropPath (with the maximum drop probability linearly increasing to 0.2), cutout (DeVries & Taylor,
2017), and an auxiliary loss with a weight of 0.4.

On the ImageNet dataset (Xu et al., 2020), the evaluative network contains 14 cells (12 normal, 2
reduction) with 48 initial channels. It is trained from scratch for 250 epochs with a batch size of
1024, SGD (momentum of 0.9, learning rate 0.5 with linear decay to 0), weight decay of 3 x 1075,
label smoothing, and an auxiliary tower with a weight of 0.4. A learning rate warm-up is applied for
the first 5 epochs.

A.5.3 REDUCED DARTS SEARCH SPACE

Architecture Search: The four search spaces defined in

R-DARTS (Zela et al/, [2020) are subsets of the DARTS = Typle 5: The value of ppay in different
search space, except for search space S4, which intro-  datasets and search spaces.

duces random noise as one of its operations. Architec-

ture search and evaluation for CIFAR-10, CIFAR-100, and s s2 s3 s4
SVHN are performed using settings similar to those in e I
Section .2] Depending on the varying needs of different SVHN 04 04 02 04
spaces and datasets for preventing performance collapse,

we have made targeted adjustments to the setting of p,ax. Through such adjustments, we ensure that
the value of py,.x is just right to achieve the effect of suppressing performance collapse, meaning
that the number of skip connections in the searched cell architectures will not exceed two. Specific
values for the maximum mutation probability pi,ax are detailed in Table E}
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Architecture Evaluation: On CIFAR-100 and SVHN, architectures are trained from scratch with
16 initial channels and 8 cells, while on CIFAR-10, 36 initial channels and 20 cells are used. All
other settings remain consistent with Section .2}

A.5.4 ABLATION STUDY

The same settings as in Section [4.1] are used. When varying the number of training epochs, the
mutation probability p starts at 0 and increases linearly to pyax = 0.2 over the first 50 epochs, after
which it remains at p,,.x for searches exceeding 50 epochs.

A.6 SEARCH COST

One of the critical aspects of NAS is the computational expense associated with searching on
large datasets, often quantified in GPU days using the DARTS search space and the CIFAR-10
dataset (Elsken et al 2019). EM-DARTS uses first-order DARTS, and the edge mutation mecha-
nism adds a step of generating random numbers in each training batch, which has a minor impact on
overall computational cost. When an edge undergoes mutation, the unselected operations do not up-
date their weights, thus saving some computational time. We set p,,,x to 0, 0.5, and 1, respectively,
to calculate the computational time. The results show that the computational time for different py,,x
values is approximately 0.4 GPU days. Therefore, the total computational cost of our method is 0.4
GPU days on a GTX 1080 Ti GPU. The details are shown in Table 6}

Table 6: Search cost comparison on the DARTS benchmark, provided in GPU days on a 1080 Ti.

Test Acc (%) Params (M) Search Cost (GPU days)

97.35 3.3 2000

97.11 4.6 0.5

97.00 3.4 0.4

97.24 3.3 1.0

97.15 2.8 15

97.07 3.4 0.3

97.50 3.6 0.3

97.43 3.6 0.1

97.46 4.0 0.4

97.39 3.3 1.3

97.41 3.5 0.4

97.39 3.0 0.8

. 97.57 3.6 0.8

EM-DARTS 97.62 4.3 0.4

EM-DARTS (pyax = 0) - - 0.4
EM-DARTS (piyax = 0.5) - - 0.407
EM-DARTS (pryiax = 1) - - 0.394

A.7 SEARCH SPACE CONTAINING ONLY PARAMETRIC OPERATIONS

To validate the performance of EM-DARTS in a search space containing only parametric operations,
we defined a new search space S5, in which the set of candidate operations O includes only 3 x 3 and
5 x b separable and dilated convolutions. The hyperparameter py,,x for EM-DARTS is set to 0.125.
We conducted comparative experiments using DARTS and random sampling as baselines, with all
other settings remaining consistent with those in Sectionf.2] The experimental results are shown in
Table [/} From the table, it can be seen that DARTS outperforms random sampling, indicating that
DARTS is indeed an effective search method when it does not experience performance collapse.
However, EM-DARTS still achieves the best performance. This suggests that EM-DARTS not only
avoids performance collapse but also trains parametric operations more effectively in a search space
containing only parametric operations, leading to architectures with better performance.

Table 7: Performance comparison on the search space with only parametric operations, conducted
using the CIFAR-10 dataset for both search and evaluation. The reported accuracy values are the
mean and standard deviation from four independent runs.

Method Random Sampling DARTS(I1st) EM-DARTS
Test Acc (%) 96.99 +£0.13 97.29+£0.12 97.41 +0.06
Params (M) 4.25+0.14 4.16£0.15 4.4+£0.25
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A.8 DISCOVERED ARCHITECTURES

nor_conv_3x3

nor_conv_3x3

skip_connect

Figure 4: Best searched cell in CIFAR-10 and NAS-Bench-201 benchmark using EM-DARTS.

sep_conv_3x3

.
:

(a) Normal Cell (b) Reduction Cell

Figure 5: Best searched normal and reduction cells in CIFAR-10 and DARTS benchmark using EM-
DARTS.

(a) Normal Cell (b) Reduction Cell

Figure 6: Best searched normal and reduction cells in CIFAR-10 and S1 using EM-DARTS.
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Figure 7: Best searched normal and reduction cells in CIFAR-10 and S2 using EM-DARTS.
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Figure 8: Best searched normal and reduction cells in CIFAR-10 and S3 using EM-DARTS.
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Figure 9: Best searched normal and reduction cells in CIFAR-10 and S4 using EM-DARTS.

(a) Normal Cell (b) Reduction Cell

Figure 10: Best searched normal and reduction cells in CIFAR-100 and S1 using EM-DARTS.
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(a) Normal Cell (b) Reduction Cell

Figure 11: Best searched normal and reduction cells in CIFAR-100 and S2 using EM-DARTS.

(a) Normal Cell (b) Reduction Cell

Figure 12: Best searched normal and reduction cells in CIFAR-100 and S3 using EM-DARTS.
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Figure 13: Best searched normal and reduction cells in CIFAR-100 and S4 using EM-DARTS.
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Figure 14: Best searched normal and reduction cells in SVHN and S1 using EM-DARTS.
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(a) Normal Cell (b) Reduction Cell

Figure 15: Best searched normal and reduction cells in SVHN and S2 using EM-DARTS.
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Figure 16: Best searched normal and reduction cells in SVHN and S3 using EM-DARTS.
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Figure 17: Best searched normal and reduction cells in SVHN and S4 using EM-DARTS.
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Figure 18: Best searched normal and reduction cells in CIFAR-10 and S5 using EM-DARTS.
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Figure 19: Best searched normal and reduction cells in CIFAR-10 and S5 using DARTS.
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Figure 20: Best searched normal and reduction cells in CIFAR-10 and S5 using Random Sampling.
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