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Abstract: We propose CARE (Collision Avoidance via Repulsive Estimation) to
improve the robustness of learning-based visual navigation methods. Recently,
visual navigation models, particularly foundation models, have demonstrated
promising performance by generating viable trajectories using only RGB images.
However, these policies can generalize poorly to environments containing out-
of-distribution (OOD) scenes characterized by unseen objects or different camera
setups (e.g., variations in field of view, camera pose, or focal length). Without
fine-tuning, such models could produce trajectories that lead to collisions, neces-
sitating substantial efforts in data collection and additional training. To address
this limitation, we introduce CARE, an attachable module that enhances the safety
of visual navigation without requiring additional range sensors or fine-tuning of
pretrained models. CARE can be integrated seamlessly into any RGB-based nav-
igation model that generates local robot trajectories. It dynamically adjusts tra-
jectories produced by a pretrained model using repulsive force vectors computed
from depth images estimated directly from RGB inputs. We evaluate CARE by in-
tegrating it with state-of-the-art visual navigation models across diverse robot plat-
forms. Real-world experiments show that CARE significantly reduces collisions
(up to 100%) without compromising navigation performance in goal-conditioned
navigation, and further improves collision-free travel distance (up to 10.7×) in
exploration tasks. Project page: https://airlab-sogang.github.io/CARE/
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Figure 1: Comparison of trajectory outputs under out-of-distribution (OOD) obstacle settings. (a) A
test environment with trajectories with and without CARE. (b) Trajectories adjusted using CARE to
avoid collision. (c) Trajectories from the original models without CARE result in collisions.

1 Introduction
Recent advances in image representation learning and large language models (LLMs) have led to the
development of vision-language models (VLMs) capable of contextual reasoning and high-level in-
struction following [1]. These models enable robust robotic navigation across varied tasks with min-
imal task-specific engineering, achieving strong performance even in few-shot [2] or zero-shot [3]
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settings. VLMs further allow robots to localize goals from language [4] and perform long-horizon
navigation [5] based on human-language instructions.

To extend such high-level generalization to low-level control on physical robots, vision-based nav-
igation models have been developed to handle variations in camera intrinsics, robot dynamics, and
hardware configurations [6]. Foundation models such as GNM [7] and ViNT [8] are designed for this
purpose, enabling generalization across heterogeneous platforms with minimal fine-tuning. These
models support a range of tasks including goal-directed navigation, long-horizon planning with
high-level policies [9], and exploration [10], relying solely on monocular RGB input.

Despite their generalization capabilities, vision-based foundation models face safety limitations,
particularly in out-of-distribution (OOD) environments (see Figure 1). As they rely on appearance-
based reasoning without explicit geometric understanding, they may produce unsafe trajectories
that lead to collisions [11]. Adapting them to new robot platforms or camera setups often requires
retraining and data collection [12], limiting their real-world applicability.

To address these limitations, we propose CARE (Collision Avoidance via Repulsive Estimation),
a plug-and-play safety module that enhances vision-based navigation without additional sensors or
fine-tuning. CARE combines monocular depth estimation with reactive local planning to adjust
trajectories from pretrained policies. It uses a pretrained monocular depth model (in this work,
UniDepthV2 [13]) to infer a top-down obstacle map from RGB input, and applies Artificial Po-
tential Fields (APF) [14] to compute repulsive forces that steer trajectories away from obstacles.
CARE can be integrated with any RGB-based navigation policy, improving safety while minimally
deviating from the original path. We validate CARE on three distinct robot platforms (LoCoBot,
TurtleBot4, and RoboMaster), demonstrating consistent collision reduction in unseen environments
and improved collision-free distance, without compromising navigation performance.

Our contributions are summarized as follows. (i) We introduce CARE, a plug-and-play module that
improves collision avoidance by integrating vision-based navigation model with reactive planning
based on monocular RGB input, without requiring additional sensors or retraining. (ii) CARE gen-
eralizes across diverse vision-based navigation models, robot platforms, and camera configurations,
while preserving navigation performance. (iii) We extensively validate CARE in real-world exper-
iments across three robot platforms, achieving up to 100% collision reduction in goal-conditioned
navigation and up to 10.7× improvement in collision-free travel distance during exploration.

2 Related Work
Recent advances in vision-language and vision-based navigation have enabled robots to perform
complex tasks using only RGB inputs. However, ensuring safe operation in dynamic and unfamiliar
environments remains a key challenge. We review prior work on vision-based navigation and recent
efforts to improve safety in learning-based navigation.

VLM-based navigation approaches such as LM-Nav [5], LFG [15], and NavGPT [3] leverage pre-
trained VLMs to interpret natural language commands and perform high-level planning without
task-specific supervision. VLMaps [4] integrates vision-language features into 3D spatial maps,
while Obstructed VLN [16] and Knowledge-Enhanced Scene Understanding [17] aim to improve
robustness to domain shifts. However, these methods mainly focus on high-level semantic reason-
ing and rely on discrete or graph-based action spaces, leaving safety-critical aspects such as collision
avoidance largely unaddressed.

To bridge the gap between abstract high-level commands and low-level control, recent efforts
have developed vision-based foundation models for navigation that directly map RGB observa-
tions to robot actions. ViKiNG [9] combined learned visual traversability with geographic hints
for kilometer-scale navigation, while ViNG [6] introduced topological navigation without requiring
spatial maps. GNM [7] and ViNT [8] further advanced by enabling generalization across hetero-
geneous robot platforms through minimal fine-tuning, leveraging embodiment-agnostic policies or
Transformer [18] architectures. NoMaD [10] explored diffusion-based multimodal action genera-
tion, and Navigation World Models (NWM) [19] proposed leveraging video prediction for policy
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Figure 2: Overview of CARE. The system takes RGB observations and optionally a goal image
as input. A vision-based model (e.g., NoMaD [10], ViNT [8]) generates waypoints or trajectories,
while a top-down local map is generated from depth map. A repulsive module then adjusts the
trajectory to avoid obstacles, with the adjustment angle θrep clipped to θrot for stable navigation.

planning without explicit mapping. Despite impressive generalization, these models primarily rely
on vision-only reasoning without explicit geometric understanding. This makes it difficult to guar-
antee safety or reactive obstacle avoidance, especially when encountering unseen obstacles or when
precise spatial reasoning is required. Moreover, although they are designed for minimal fine-tuning,
adapting them to new robot platforms, camera intrinsics, or dynamic environments often demands
nontrivial data collection and retraining [12], limiting their practical applicability.

Ensuring reliable collision avoidance has therefore emerged as a key concern in vision-based nav-
igation. Safe-VLN [20] introduces waypoint filtering and fallback strategies using simulated 2D-
LiDAR. Failure Prediction [21] estimates risk from visual input, while PwC [22] calibrates per-
ception models for robustness under domain shift. Adaptive methods such as online constraint
updates [23], control barrier functions [24], and velocity-obstacle-based shielding [25] have also
been explored. MonoNav [11] reconstructs local 3D metric maps from monocular depth to enable
safer planning. However, its conservative obstacle avoidance strategy often sacrifices task success,
leading to lower completion rates compared to other vision-based models. Moreover, it assumes
static environments, limiting performance in dynamic scenarios. Similarly, NavRL [25] integrates a
velocity-obstacle-based safety shield on top of reinforcement learning policies, but still depends on
retraining and policy adaptation for different robot platforms.

In contrast, we propose CARE, an attachable module that integrates the outputs of vision-based
navigation models and monocular depth estimation with a reactive planning method based on APF,
a widely used approach for collision avoidance using local observations with low computational
cost [26, 27, 28, 29]. CARE dynamically adjusts planned trajectories using the repulsive force
formulation of APF, enabling safer, reactive trajectory adaptation across diverse robotic platforms
without additional sensors, explicit 3D reconstruction, or fine-tuning of the navigation model.

3 Collision Avoidance via Repulsive Estimation (CARE)
CARE is a plug-and-play module that augments the output of any vision-based navigation policy
producing waypoints or trajectories. It uses the same RGB observation as the navigation model to
estimate depth and adjust the predicted path accordingly. CARE operates in three stages (see Fig-
ure 2 and Algorithm 1), enabling real-time correction of unsafe paths when encountering previously
unseen obstacles.

3.1 Top-Down Range Estimation

CARE first constructs a top-down local map (see Figure 3a) by predicting the scene geometry from
a depth image predicted from an RGB observation through the function ConstructTopDownObsta-
cleMap(I,D) (see Algorithm 1, Line 1).

Given an RGB observation I ∈ RH×W×3 captured by a calibrated monocular camera, a pretrained
metric depth model predicts a dense depth map. This depth map can be projected into a set of
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Algorithm 1 CARE: Collision Avoidance via Repulsive Estimation

Input: RGB observation I , trajectory T , depth estimation model D
Output: Control command (v, ω)

1: O ← ConstructTopDownObstacleMap(I,D) // Stage 1: Top-down range estimation
2: θrep ← EstimateRepulsiveDirection(T ,O) // Stage 2: Repulsive force estimation
3: T ′ ← RotateTrajectory(T , θrep)
4: θdes ← ComputeDesiredHeading(T ′) // Stage 3: Safety-enhancing mechanism
5: if |θdes| > θthres then
6: (v, ω)← RotateInPlace(θdes)
7: else
8: (v, ω)← MoveForwardAndTurn(θdes)
9: end if

10: return (v, ω)

three-dimensional points (Xi, Yi, Zi) ∈ R3 by applying the inverse intrinsic matrix to each pixel
location [30, 31, 32]. In our implementation, we employ UniDepthV2 [13], which directly outputs
3D point clouds without requiring explicit back-projection, though CARE can be replaced with any
absolute depth estimation model capable of producing similar output formats.

The predicted point cloud P = {(Xi, Yi, Zi) | i = 1, . . . , N} is filtered to retain only points
satisfying (Z > 0)∧ (Z ≤ τz)∧ (Y ≥ −ϵ), where τz ∈ R denotes the maximum sensing range and
ϵ ∈ R defines a vertical margin to exclude ceiling points. The resulting set of valid projected points
is defined as Pvalid = {(Xi, Zi) | (Xi, Yi, Zi) ∈ P, Mask(Xi, Yi, Zi) = True}.

The x-axis is discretized into M uniform bins, and for each bin, the closest point along the Z-axis
is selected:

(x⋆, z⋆) = argmin
(x,z)∈Pvalid

z,

forming the obstacle set O = {(x⋆
j , z

⋆
j ) | j = 1, . . . ,M}. All coordinates are represented in the

local robot frame where the positive x-axis points forward and the positive y-axis points to the left.

3.2 Repulsive Force Estimation and Trajectory Adjustment

To adjust trajectories in response to nearby obstacles, CARE estimates repulsive forces using the
APF method. This repulsive vector provides a reactive adjustment direction to steer the robot away
from collisions.

Given the obstacle setO derived from monocular depth estimation, CARE computes repulsive forces
applied to a generated trajectory T = {p1, . . . ,pK} or a single waypoint pk ∈ R2, depending on
the output format of the vision policy. We describe the method assuming a trajectory-based policy
such as ViNT or NoMaD, which outputs a sequence of K waypoints T = {p1, . . . ,pK} at each
step, though the procedure naturally extends to single-waypoint outputs.

The repulsive force at each waypoint is computed via EstimateRepulsiveDirection(T ,O) (Algo-
rithm 1, Line 2), following the same formulation used in a recent work on APF with limited sensing
range [26]:

Frep(pk,O) =
M∑

m=1

−1
∥pk − om∥32

· pk − om

∥pk − om∥2
, (1)

where om ∈ R2 denotes the m-th obstacle in O and ∥ · ∥2 is the Euclidean norm.

To determine the adjustment amount and direction, CARE selects the waypoint experiencing the
maximum repulsive magnitude:

k⋆ = argmaxk∈{1,...,K}∥Frep(pk,O)∥2. (2)

For waypoint-only policies, the single predicted point is directly used in place of pk⋆ . The repulsive
vector at pk⋆ is converted to a heading adjustment angle θrep = arctan 2(Frep,y(pk⋆), Frep,x(pk⋆)),
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Figure 3: (a) Top-down projection of estimated depth. Obstacle points are sampled every 10 pixels
from the depth map (Left: input RGB, Right: top-down view), with colored dots indicating sampled
points and the black circle denoting the robot. (b) Trajectory adjustment using repulsive force Frep.
The original trajectory T (yellow) is rotated by θrep, clipped to θclip, resulting in the adjusted trajec-
tory T ′ (purple).

which determines the direction of deviation from the current trajectory. To avoid excessive deviation
from the goal, the adjustment angle is clipped as θrot = clip(θrep,−θclip, θclip), where clip(·, a, b)
limits the value between a and b.

Finally, RotateTrajectory(T , θrot) (Algorithm 1, Line 3) applies a 2D rotation matrix R ∈ R2×2

to each waypoint, yielding the adjusted trajectory T ′ = {p′
1, . . . ,p

′
K}, where each waypoint is

updated as p′
k = R(θrot) · pk. This rotation steers the trajectory away from nearby obstacles while

preserving its overall direction toward the goal (see Figure 3b).

3.3 Safety-Enhancing Mechanism
Since vision-based models are limited to the field of view (FOV) of the camera, they cannot account
for obstacles outside it. Sharp turns during forward motion can cause nearby obstacles to enter
the view suddenly, giving the robot little time to react. To mitigate this risk, CARE introduces a
Safe-FOV mechanism that suppresses forward motion when large heading changes are required.

First, we select p′
k⋆ = (p′k⋆,x, p

′
k⋆,y) ∈ T ′, the adjusted waypoint with the strongest repulsive re-

sponse (as defined in Section 3.2), as the basis for computing the desired heading. The desired head-
ing θdes is then computed using the function ComputeDesiredHeading(T ′) (Algorithm 1, Line 4).
Since waypoints are generated relative to the local frame of the robot, θdes can be directly calcu-
lated using the two-argument arctan 2 function θdes = arctan 2(p′k⋆,y, p

′
k⋆,x). We define a rotation

threshold θthres ∈ R, above which forward motion is suppressed to prioritize in-place safe turns
by RotateInPlace(θdes). Otherwise, MoveForwardAndTurn(θdes) is performed to move forward and
turn simultaneously. In other words, the safety-enhancing mechanism (Lines 5–9 of Algorithm 1)
follows

(v, ω) =

{
(0, ωrot), if |θdes| > θthres

(vfwd, ωrot), otherwise
(3)

where vfwd denotes the forward linear velocity, and ωrot is the angular velocity constrained by the
maximum linear and angular velocity (vmax, ωmax) . If the heading deviation |θdes| exceeds the thresh-
old, CARE commands in-place rotation until the deviation falls within |θdes| ≤ θthres, thereby reduc-
ing the risk of collisions incurred by the limited FOV of cameras, especially in dense environments.

In summary, CARE selectively adjusts trajectories based on obstacle presence. When nearby ob-
stacles are detected via monocular depth estimation (i.e., within sensing range τz), repulsive forces
modify the trajectory. If no obstacles are found (O = ∅), the original trajectory from the vision-based
model is preserved. This design allows CARE to enhance safety while maintaining the generaliza-
tion of pretrained models without fine-tuning or additional hardware.

4 Experiments
We comprehensively evaluate CARE across unseen real environments and different robot platforms
to validate our primary claim: CARE enhances collision avoidance capabilities of pretrained vision-
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Figure 4: Real-world experiments with CARE. (a) The unidirected exploration task in a confined
environment (3.5m × 2.8m) tests the ability to explore among unseen obstacles (boxes) as much
as possible. (b) The image goal-conditioned navigation task in a corridor (24m) tests the ability to
reach the goal while avoiding seen obstacles (walls and doors) and unseen obstacles (boxes). The
topological graph shows nodes with only image data.

based navigation models without fine-tuning, while preserving original navigation performance.
To validate the generalizability of CARE, we deploy our method on three mobile robot platforms
with different camera configurations: (i) LoCoBot with a 170◦ FOV fisheye camera1, (ii) Clearpath
TurtleBot4 equipped with an 89.5◦ FOV OAK-D Pro camera, and (iii) DJI RoboMaster S1 with a
120◦ FOV camera. All robots operate under consistent velocity constraints (maximum linear veloc-
ity vmax of 0.2m/s and angular velocity wmax of 0.8 rad/s) for comparable evaluation. We optimize
CARE parameters experimentally for each platform while maintaining consistent evaluation across
all platforms. Detailed robot-specific parameters are provided in the Appendix.

Undirected exploration: This task evaluates the ability of the robot to explore safely in an envi-
ronment with unseen objects. We place 10 OOD obstacles (plastic boxes) in a 3.5m × 2.8m area
as shown in the left of Figure 4a. Since the robot explores without a destination, we measure the
distance traveled until the first collision. To avoid indefinitely long trials, we stop if the robot travels
above 30m. We compare NoMaD and CARE-integrated NoMaD.2 For each combination of robot
platform and navigation method, we conduct 20 trials and report the average distance traveled.

Image goal-conditioned navigation: This task tests the image goal-conditioned navigation ca-
pability of the robot in environments with random unseen obstacles (a 24m corridor). Initially, a
topological graph of corridors (see Figure 4b) is constructed, and we place OOD obstacles at random
locations along the corridor. We conducted 10 distinct setups, testing all robot and method combi-
nations. The robot must navigate to the goal using the topological graph while avoiding obstacles
as much as possible. Evaluation metrics include average path length (shorter is more efficient),
completion time (faster is more efficient), and collision count (lower is safer). We also measure the
arrival rate (higher is better), which is defined as the proportion of successful goal reaches, even if
collisions occur. We compare NoMaD and ViNT and CARE-integrated NoMaD and ViNT.

4.1 Undirected Exploration task in Unseen Environments

Figure 5 and Table 1 present our exploration experiment results. Across all settings, CARE en-
ables robots to travel 2.9× to 10.7× longer before the first collision compared to NoMaD and ViNT
without CARE. These performance variations correlated with the camera specifications of each con-
figuration and the resulting depth estimation quality.

1The camera setup is consistent with that used in the baseline models NoMaD and ViNT.
2We excluded ViNT from exploration experiments because, as a goal-conditioned model, it requires a goal

image to generate trajectories and cannot operate without one. Supporting exploration would require a subgoal
generator, typically implemented as a diffusion model trained in the target environment, which conflicts with
our zero-shot assumption that prohibits additional training.
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Figure 5: Comparison of distance traveled be-
fore first collision between CARE-NoMaD and
baseline NoMaD across different robots.

Robot Method Distance (m)

Locobot
CARE 21.67 ± 10.20
NoMaD 2.02± 1.06

Turtlebot4
CARE 4.55 ± 4.47
NoMaD 1.39± 0.67

RoboMaster
CARE 8.52 ± 7.04
NoMaD 2.91± 1.63

Table 1: Mean distance traveled with stan-
dard deviation before collision for each
robot platform and navigation method.

Table 2: The comparison of the navigation performance between baseline vision-based models and
their CARE-integrated counterparts across three robot platforms. Metrics include path length (m),
completion time (s), collision counts, and goal arrival rate (%).

Robot Model Vision-based Model CARE-integrated Vision-based Model

Length Time # Collision Arrival Length Time # Collision Arrival
(m) (s) Rate (m) (s) Rate

Locobot NoMaD 26.39± 1.02 132.98± 5.02 0.7 50% 26.06± 0.30 136.06± 3.90 0.0 90%
ViNT 25.79± 0.19 129.98± 0.85 0.4 50% 25.88± 0.18 134.87± 2.40 0.0 80%

Turtlebot4 NoMaD 25.27± 0.18 127.28± 0.55 0.7 20% 26.35± 1.10 149.13± 9.03 0.3 50%
ViNT 26.42± 0.75 133.73± 3.82 0.2 70% 26.55± 0.98 145.91± 14.47 0.1 100%

RoboMaster NoMaD 25.24± 0.61 126.33± 3.05 0.8 30% 25.89± 0.96 146.76± 10.34 0.1 80%
ViNT 24.79± 0.48 125.60± 2.28 1.0 50% 25.75± 1.10 155.60± 11.35 0.2 80%

LoCoBot with CARE exhibits both the longest distance traveled and the most significant improve-
ment (10.7×). This performance increase can be attributed to two main factors: the wide-angle
fisheye camera enables extensive environmental perception, effectively detecting peripheral obsta-
cles; and NoMaD, which has been predominantly trained on fisheye camera data, performs better
with the camera setup of LoCoBot, which CARE further enhances.

TurtleBot4 with CARE exhibits moderate improvement (3.3×) despite having the lowest distance
traveled. This enhancement is partly due to its camera mounting position. When navigating corners,
the rear-mounted camera maintains visibility of obstacles throughout the turn, allowing CARE to
make safer adjustments. However, its narrow FOV still limits overall performance, particularly
when approaching walls head-on.

RoboMaster without CARE achieves higher distance traveled due to its wider FOV, but shows the
smallest improvement (2.9×) with CARE. This limited gain stems from its front-mounted camera.
During turning, the camera moves past obstacles before the body of the robot completes the turn, cre-
ating blind spots where side collisions can occur without detection. While the wider FOV achieves
relatively higher distance traveled, it cannot fully compensate for these cornering blind spots.

4.2 Image Goal-Conditioned Navigation with Unseen Obstacles
We evaluate NoMaD and ViNT and their CARE-integrated variants in image goal-conditioned nav-
igation scenarios involving unseen obstacles with the three robot platforms. We first establish a
topological graph in a corridor environment to enable global planning. During testing, we place
several OOD obstacles not represented in the topological map, creating scenarios that would typ-
ically require model fine-tuning to handle appropriately. Table 2 presents comprehensive results
comparing the baseline navigation models (NoMaD and ViNT) against the same models integrated
with CARE. All experiments are conducted across 10 distinct obstacle settings, with randomized
positions for each trial.3

3Detailed information about obstacle placements for each trial is available in Appendix B.1.
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Path length and time: The integration of CARE results in slightly longer paths (up to 4.27%
increase) and completion times (up to 23.89% increase). This can be attributed to the adjusted
trajectories around detected obstacles for safer navigation. Despite these inefficiencies, the overall
navigation performance remained reasonable.

Collisions: CARE consistently reduces collisions throughout all platforms. Most notably, LoCoBot
achieves complete collision elimination with both NoMaD and ViNT models. For RoboMaster,
CARE integration yields notable improvements (80–88% reduction), while TurtleBot4 demonstrates
modest but meaningful reductions (50–57%). Despite these improvements, CARE does not com-
pletely eliminate all collisions in the cases of TurtleBot4 and RoboMaster. One reason is that
monocular depth estimation occasionally produces inaccurate results, particularly on obstacle sur-
faces without patterns or in challenging lighting conditions. Another reason is the limited FOV or
mounting position of the camera, which causes obstacles outside the view to lead to side collisions
with the robot body.

Arrival rate: The integration of CARE significantly enhances arrival rates across all platforms.
On LoCoBot and RoboMaster, both NoMaD and ViNT models with CARE show substantial im-
provements. For TurtleBot4, ViNT already performs well (70% baseline) and reaches perfect goal-
reaching (100%) with CARE, while NoMaD struggles even with safety enhancements, improving
from only 20% to 50%. This shows that while CARE consistently adjusts trajectories to avoid col-
lisions, the quality of trajectories generated by the base navigation model significantly influences
results. Nevertheless, even with NoMaD on TurtleBot4, CARE still provides considerable improve-
ment over the baseline model. Overall, CARE improves goal arrival reliability across different
robots and camera configurations without requiring additional fine-tuning or sensor hardware.

Navigation with dynamic obstacles. We conducted additional tests in the same environment as
the goal-conditioned experiments (see Figure 4b), where up to three people abruptly crossed the
robot path during navigation. A trial was considered successful if the robot reached the goal without
collision. Unlike prior works, we introduced dynamic obstacles that appeared suddenly from outside
the camera field of view. NoMaD often failed to react, while CARE-integrated robots consistently
exhibited reactive stopping and safe avoidance, demonstrating the ability to handle unpredictable
dynamic obstacles where vision-only models without fine-tuning often fail to generalize. Further
details are provided in Appendix A.1.

These results demonstrate the consistent ability of CARE to enhance navigation safety across var-
ious robot platforms without additional training. While performance varies based on camera con-
figuration, CARE considerably improves collision avoidance in all tested scenarios, augmenting the
capabilities of baseline models to handle complex environments with OOD objects. Supplementary
videos of these experiments are available on our project page: https://airlab-sogang.github.io/CARE/

5 Conclusion
We presented CARE, an attachable module that enhances the safety of vision-based navigation mod-
els without requiring fine-tuning or additional range sensors. By combining monocular depth es-
timation with repulsive force-based trajectory adjustment, CARE significantly improves collision
avoidance in out-of-distribution environments and across diverse robot platforms with varying cam-
era configurations. CARE enables zero-shot deployment of vision-based models in unseen environ-
ments where fine-tuning would otherwise be necessary, overcoming their limited collision avoidance
capabilities. Extensive real-world experiments demonstrate that CARE substantially reduces colli-
sion rates and improves task success, while preserving the strong generalization performance and
efficiency of the underlying navigation models. Our results highlight CARE as a simple and effective
solution for safer real-world deployment of visual navigation systems.
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6 Limitations

Although CARE does not require fine-tuning of the navigation policy or additional range sensors,
it has several limitations arising from its reliance on monocular depth estimation and vision-based
navigation models.

First, CARE is sensitive to errors in monocular depth prediction. Reflective or transparent surfaces
often lead to inaccurate depth values, which may cause the system to underestimate obstacle prox-
imity or miss obstacles entirely. Additionally, depth estimation models may misclassify ground or
low-texture areas, resulting in false avoidance maneuvers that deviate unnecessarily from the desired
path.

Second, CARE only reacts to obstacles within a limited sensing range τz derived from the estimated
depth. Distant obstacles beyond this range are ignored, and the system cannot anticipate them.
Furthermore, as with most vision-based systems, perception range of robot is restricted to the FOV
of attached camera, making it unable to respond to dynamic obstacles approaching from behind or
from occluded regions.

Third, being entirely vision-based, CARE inherits the limitations of RGB-only systems. Its perfor-
mance may degrade under poor lighting conditions or in environments where camera orientation
fails to capture critical obstacles. These constraints reduce the effectiveness of the repulsive adjust-
ment in unpredictable or low-visibility scenarios.

Fourth, CARE adjusts but does not generate trajectories. Its effectiveness depends on the quality of
the underlying navigation model. If the base policy predicts unsafe paths (such as directly toward an
obstacle) CARE may be unable to fully correct them, even with strong repulsive forces. This limits
its performance in densely cluttered or highly dynamic environments.

Finally, CARE introduces computational overhead from the depth estimation step. However, the
model we employed (UniDepthV2) is lightweight and uses only 100MB of GPU memory, which
does not impact real-time performance.
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A Additional Experiments

A.1 Dynamic Obstacles in Goal-Conditioned Navigation

To assess the robustness of CARE under dynamic conditions, we evaluate the system in an image
goal-conditioned navigation setting with abrupt human intervention. Unlike the evaluations in the
paper, this setup contains no static out-of-distribution (OOD) obstacles. All tests are conducted
using the LoCoBot platform.

Dynamic Obstacle Scenarios. We introduce up to three humans acting as dynamic, unexpected
obstacles, designed to test reactive collision avoidance. Each test trial includes one of the following
scenarios4.

(i) A person appears from a side outside the field of view.

(ii) A person appears from behind and overtakes the robot, stopping in front.

(iii) A person walks toward the robot from the front and stops directly in its path.

Metrics and setup. For each of the three human intervention types, we run 10 trials with four
methods: NoMaD, NoMaD+CARE, ViNT, and ViNT+CARE. We record the number trials where
collisions occur.

Table 3: Number trials where collisions occur (out of 10 trials) for each dynamic obstacle type
Model (i) Corner-appear (ii) Behind-to-front (iii) Front-approach
NoMaD 8/10 10/10 10/10
NoMaD + CARE 0/10 0/10 0/10
ViNT 7/10 10/10 10/10
ViNT + CARE 0/10 0/10 0/10

Results and Analysis. Table 3 shows the number of collisions in each dynamic obstacle scenario.
Without CARE, both NoMaD and ViNT fail to react effectively to abrupt human interventions,
resulting in 7 to 10 collisions. In contrast, CARE-integrated policies complete all trials without
a single collision, where this improvement is attributed to the repulsive force estimation based on
predicted depth, enabling reliable detection of human legs even under sudden appearances.

In scenario (i), where a person enters from the side, both NoMaD and ViNT occasionally succeed in
generating avoidance waypoints in the opposite direction, thereby avoiding some collisions. How-
ever, in scenarios (ii) and (iii), where the human appears directly in front of the robot, both models

4Please refer to the supplementary video for better understanding.
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fail in all trials. The key reason is the lack of geometric awareness in NoMaD and ViNT: although
the models sometimes attempt avoidance by turning slightly, the generated waypoints do not ensure
sufficient clearance. As a result, the robots consistently collide after small heading changes, or fail
to respond to sudden frontal appearances.

In contrast, CARE-enabled policies successfully avoid all collisions in these scenarios. The esti-
mated depth information allows CARE to compute repulsive directions with adequate lateral dis-
placement, while the Safe-FOV mechanism suppresses forward motion until the robot achieves a
sufficiently safe heading. This combination enables reliable and robust collision avoidance even
under abrupt dynamic disturbances.

A.2 Performance in Seen Environments

We evaluate NoMaD and ViNT in a fully seen environment without added OOD obstacles as a
sanity check to verify that our implementations reproduce the original models. All experiments are
conducted using the LoCoBot platform.

Setup. The test environment and overall procedure follow the same setup as in the goal-conditioned
navigation experiments in our paper. A topological graph is predefined using a sequence of image
goals. For fair comparison, the subgoal image sequences fed to both NoMaD and ViNT are fixed
and reused across all trials. This sequence is also identical to those used in the OOD experiments
presented in the main paper.

Metric. We measure the success rate, defined as the percentage of trials in which the robot reaches
the image goal without any collisions. Each configuration is tested for 10 trials.

Table 4: Success rate in seen environments without OOD obstacles
Model Success Rate (10 trials)
NoMaD 100%
ViNT 100%

Results and Analysis. Both NoMaD and ViNT achieve a 100% success rate in the seen environ-
ment, completing all 10 trials without collision or failure. These results confirm that both the pre-
trained vision-based models and the constructed topological navigation pipeline function reliably
under seen conditions.

The experiments are conducted on the LoCoBot platform (see Sec. B.2), which closely matches
the setup used in the original NoMaD and ViNT papers and is also employed to train and tune the
released pretrained weights5. The consistent performance thus validates the correct integration and
implementation of the models. This outcome supports the analysis that the performance degradation
observed in other experiments (e.g., with OOD obstacles or dynamic human interventions) is not
due to flaws in the experimental setup or execution, but rather reveals the inherent limitations of
vision-only navigation models when deployed in unfamiliar environments without fine-tuning.

B Experimental Details

B.1 Test Instances for Goal-Conditioned Navigation

Figure 6 presents the 10 test instances used in the goal-conditioned navigation experiment described
in the main paper. Each instance includes 15 OOD obstacles, shown as brown boxes, grouped
into four to six clusters of varying shapes and placed randomly throughout the environment. These
settings are designed to evaluate the robustness of navigation policies under unseen and cluttered
conditions.

5https://github.com/robodhruv/visualnav-transformer
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Figure 6: Test instances for goal-conditioned navigation

B.2 Robot Platforms and Specifications

We run experiments on three mobile platforms: LoCoBot, TurtleBot4, and RoboMaster S1. Figure 7
shows the actual hardware used in our experiments.

(a) LoCoBot (b) TurtleBot4 (c) RoboMaster S1

Figure 7: Mobile robot platforms used for evaluation. Each robot was equipped with a monocular
RGB camera.

A note for LoCoBot. Although the original LoCoBot is built on a TurtleBot2 base, we implement
our LoCoBot using a TurtleBot4 as TurtleBot2 has been discontinued. Nevertheless, two models are
both differential drive type with very similar wheelbase width, wheel diameter, and etc. A custom
3D-printed camera mount is designed to match the fisheye camera position used in prior NoMaD
and ViNT implementations.

Notes for parameters in Table 5.
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Table 5: Robot specifications and camera configuration. All resolutions are in pixels, and dimensions
are in millimeters (mm).
Specification LoCoBot TurtleBot4 RoboMaster S1
Max Depth Range τz (m) 1.0 1.2 1.0
Depth Offset (m) 0.05 0.2 −0.1
Published Image Resolution (pixels) 320× 240 320× 200 640× 360
Robot Size (L × W × H, mm) 341× 339× 350 341× 339× 351 320× 240× 270
Camera Height (mm) 340 245 240
Camera X-offset (mm) 10 -60 70

• Max Depth Range τz (m): The maximum range (in meters) for depth sensing used during obstacle
detection. This value is empirically tuned to prevent false positives caused by distant walls or floor
misclassification.

• Depth Offset (m): An offset subtracted from the estimated depth to make obstacles appear closer
(or further) than predicted. This compensates for the physical body radius of robots and camera
mounting position, and is further tuned empirically to improve depth estimation.

• Published Image Resolution: The resolution of the RGB images published by each camera over
ROS 2.

• Robot size (L × W × H): Physical dimensions of each robot, measured in millimeters (mm).

• Camera Height: The vertical distance from the ground to the optical center of the camera.

• Camera X-offset: The horizontal distance (in mm) between the geometric center of robots and
the camera. A positive value indicates a forward-facing offset (camera mounted ahead of center),
while a negative value indicates a rear-facing offset.

B.3 Common Parameters for CARE

CARE uses a small set of task-agnostic parameters that are experimentally tuned for effective and
safe navigation across all platforms. Table 6 summarizes the key scalar parameters used in the
CARE module.

Table 6: CARE module parameters used across all experiments.

Parameter Value Description

θclip (rad) π/4 Maximum heading adjustment angle induced by
repulsive force

θthres (rad) π/6 Threshold for triggering in-place rotation when
the desired heading change exceeds this value

ϵ (m) −0.05 Vertical offset for filtering out ceiling points dur-
ing top-down projection. A negative value indi-
cates upward exclusion

The value of θclip is set to allow sufficient rotation in response to repulsive forces while preventing
excessive deviation or backward-pointing waypoints. The value of θthres is chosen to be smaller than
θclip to trigger in-place rotation only in high-risk situations with large heading changes. Finally, the
vertical offset ϵ is used to exclude points located above the robot (e.g., ceilings or high shelves)
during depth-based top-down projection, improving the relevance of obstacle detection.
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B.4 Depth Estimation Model: UniDepthV2

For monocular metric depth estimation, we employ UniDepthV2 with the ViT-S backbone (the
smallest variant)6, enabling real-time inference. The model is used without any fine-tuning or adap-
tation. Top-down projections are computed using platform-specific parameters for maximum sens-
ing range τz and vertical offset ϵ, as summarized in Table 5 and 6.

B.5 Trajectory Selection in NoMaD and ViNT

For NoMaD, we use the default diffusion-based sampling setup to generate 8 trajectories, each
consisting of 8 waypoints in the robot’s local frame. In our experiments, we consistently select the
second waypoint p2 from the first generated trajectory for control (as implemented in the open-
source codes). ViNT, on the other hand, produces a single predicted trajectory using a Transformer
decoder. Similarly, we select the second waypoint from this predicted trajectory as the control target
(also the same with the original implementation of the open-source codes).

This fixed selection strategy is to isolate and evaluate the contribution of our proposed collision
avoidance mechanism at the level of local planning. Since our focus is not on high-level trajectory
selection or adaptive replanning, we maintain the same trajectory and waypoint index to control
for variation across trials. All experiments are conducted under this consistent setting, using fixed
random seeds and sampling strategies to ensure fair comparison.

6https://github.com/lpiccinelli-eth/UniDepth
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