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ABSTRACT

Causal world models are systems that can answer counterfactual questions about
an environment of interest, i.e., predict how it would have evolved if an arbitrary
subset of events had been realized differently. The ability to answer such questions
is crucial for models to reliably understand the world. However, this task currently
eludes large language models (LLMs), which do not have demonstrated causal
reasoning capabilities beyond the memorization of existing causal relationships.
Furthermore, evaluating counterfactuals in real-world applications is challenging
since only the factual world is observed, limiting evaluation to synthetic datasets.
We address these problems by proposing the Causal Cartographer, a twofold system
composed of two agents: the first extracts causal relationships from data and builds
a vast repository of causal knowledge, while the second uses them as constraints
to perform reliable step-by-step causal inference. We evaluate our approach on
real-world counterfactuals obtained by matching data from diverse news sources.
We show that our approach can extract accurate causal knowledge and enhance the
robustness of LLMs for causal reasoning tasks. In particular, the proposed causal
conditioning mitigates the impact of spurious correlations and greatly reduces
inference costs (by up to 70%) compared to chain-of-thought reasoning.

1 INTRODUCTION

Learning to infer causal relationships and making causal predictions about the world is an important
task for general reasoning systems (Goyal & Bengiol [2020; |Scholkopf et al.l 2021). In particular,
predicting how an environment would have evolved under a different policy (i.e. counterfactual ques-
tions) is a challenging and crucial question when evaluating how an artificial system understands the
world. While an agent with low causal knowledge can make predictions about observed distributions,
generalizing to arbitrary distributions and counterfactuals requires one to learn a causal world model
(Bareinboim et al.| 2022} Richens & Everitt, [2024). Studies on large language models (LLMs) have
shown that they do not perform robust causal discovery or causal inference (Zecevic et al., 2023} Jin
et al.||2023;2024; [Chen et al.,|2024; Jiralerspong et al., | 2024} Joshi et al.| [2024) and fail to generalize
to unseen distributions (Wu et al.l 2024; |Gendron et al.,|2024ab; Berglund et al.| 2024). This is a
challenging task as causal knowledge is notoriously hard to collect (Rubin, |1974; |Pearl, 2009)) and
counterfactual data is generally not available as only the factual world is observed (Holland, |1986).

We tackle these problems by explicitly modeling causal relationships and enhancing LLM agents with
a causal reasoning framework. We introduce the Causal Cartographerﬂ illustrated in Figure a
twofold system composed of a graph retrieval-augmented generation (Graph-RAG (Lewis et al.,|2020;
Edge et al.| 2024; Peng et al.| 2024)) agent tasked to retrieve causal relationships from real-world
news articles and a counterfactual reasoning agent performing reliable and efficient step-by-step
causal inference while respecting causal relationships. We take advantage of the first component
to build CausalWorld, a causal network that maps causal knowledge of the world, which we use
to provably access counterfactual knowledge and build real-world causal questions for our second
reasoning agent. We use the extracted knowledge to guide our causal reasoning agent on real-world
counterfactual reasoning tasks. At every reasoning step, the context of the agent is restricted to
information from the causal parents, reducing context length while eliminating spurious correlations.

'Our code is available as an anonymous repository at: https://anonymous.4open.science/r/
causal-world-modelling—-agent—-CECF


https://anonymous.4open.science/r/causal-world-modelling-agent-CECF
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We show that our proposed method accurately extracts causal knowledge from natural language data
and allows estimating real-world counterfactual situations. Our contributions are as follows:

* We introduce the Causal cartographer: a twofold system composed of (1) a causal extraction
method for unstructured natural language data with a graph retrieval-augmented genera-
tion (Graph-RAG) agent, and (2) a step-by-step causal inference agent that can perform
counterfactual reasoning while respecting causal constraints;

* We use our extraction method to build CausalWorld, a network of causal relationships
from real-world news events published in 2020, containing 975 variables and 1337 causal
relationships, and use this network as a repository of causal knowledge to evaluate large
language models on counterfactual reasoning with real-world natural language data;

* We introduce the theoretical notion of causal blankets and prove that, assuming identifiability
of the blanket, we can sample true counterfactuals from a causal network;

* We evaluate our causal inference agent and show that causal conditioning achieves competi-
tive performance for counterfactual reasoning while being more robust and greatly reducing
the LLM’s context window and output length, decreasing the inference cost up to 70%.

~
' Ay .
/—\ o - (
-~ 0
O
1) Causal World Model

@]

[cT6-Extract

Figure 1: Overview of the Causal Cartographer. The title, content and metadata of a news source are

provided to the extraction agent (CTG-Extract). It generates causal variables and their relationships

and adds them to the causal world model, making causal knowledge explicit. A Graph-RAG system

further guides the extraction process. Then, ground-truth counterfactuals are sampled from the

causal world model using matching: observations in the counterfactual world that match those in a

factual world are removed and replaced with the factual world for abduction. The reasoning agent
is evaluated on the generated real-world counterfactual queries.
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2 BACKGROUND

Structural Causal Models Recovering causal

relationships in the real world is a long-standing v U

problem of science (Pearl, 2009). Structural L LNy
Causal Models (SCMs) (Pearl, [2009; 2014a; Xial X’ 7 7

et al.l [2021) are graphical models that allow NV N
representing causal knowledge and performing Y’ Y

causal inference. SCMs can be represented as

Directed Acyclic Graphs (DAGs) where nodes
are causal variables and edges are causal rela-
tionships. Causal variables can be distinguished
between endogenous (observed) and exogenous
(unobserved) variables. Exogenous variables U
do not have parents and are represented by a
probability distribution. Endogenous variables
V are defined by functions that links them to
their causal parents, i.e. V; « fy,(pa(V;)).
SCMs are Markovian processes, which implies
that if the full set of exogenous variables is

Figure 2: Counterfactual twin graph for three en-
dogenous variables { X, V", 7} and two exogenous
variables {U, V'}, under an intervention .
Factual and counterfactual worlds are identical ex-
cept for the effect of the intervention. Exogenous
variables are shared by both worlds. Intervening
on X removes its in-edges. P(Y | , XY
is obtained by estimating the value of U from the
factual observations, then deducing Z from U (left
unchanged) and Y from Z and
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known, then the values of every endogenous variable can be deterministically computed by it-
eratively inferring children values from their parents. While very powerful tools to estimate causal
effects, SCMs typically cannot be fully retrieved as causal information is challenging to obtain.

Counterfactual Inference Even without an SCM, some causal questions can be answered. Causal
inference queries can typically be divided into three categories: observations, interventions and
counterfactuals, forming Pearl’s Causal Hierarchy (Bareinboim et al., [2022). Each category is
harder to answer than the previous one, as it typically requires a better understanding of the causal
relationships underlying the system of interest. While multiple Markov-equivalent causal graphs can
account for the same set of observations, answering interventions and counterfactuals requires one to
know the true local causal structure (Bareinboim et al., 2022} [Richens & Everitt,|2024). Moreover, the
result of a counterfactual is generally not accessible in real-world scenarios. This is the fundamental
problem of causal inference: only the factual world is observed (Holland, [1986).

Observational queries are represented as conditional probabilities P(Y | X). For simplicity, we
represent a single observation X but this description also applies to a set of observations X (e.g.
P(Y|X)). Interventions are represented as P(Y" | do(X)) (resp. P(Y |do(X))) using the do-operator
(Pearl, [2009;2012). An intervention alters the causal structure by forcing the value of the variable
X, regardless of its prior probability, effectively cutting the parents of X. An intuitive example is a
randomized control trial where the probability of obtaining treatment is randomized to ensure that it
cannot correlate with other factors. Counterfactuals correspond to “what if?” questions, asking how
would a world evolve under an intervention, given the outcome in the factual world. They can be
represented with the following equation:

P(Y | do(X),X",Y") = Y P(Y | do(X),U)P(U | X',Y") )
UeU

X’ and Y represent the factual observations. X and Y correspond to the variables in the counterfac-
tual world. U is the set of exogenous variables shared between the two worlds. Figure [2[shows a
graphical expression with twin graphs corresponding to the factual and counterfactual worlds.

3 GRAPH RETRIEVAL-AUGMENTED CAUSAL EXTRACTION

This work introduces a method for causal extraction and reasoning based on LLM agents. This
section focuses on the Causal Cartographer Extraction Agent (CTG-Extract). We use it to recover
existing causal knowledge about the world from news sources. The resulting causal network, insights
we gather from it, and its application to counterfactuals are discussed in Sections ] and [6]

3.1 CTG-EXTRACT

We extract causal variables and causal relation-

ships from news sources. Figure [I] (left) il- s India ONl Diversitication Srat 2
lustrates the causal extraction process. While neta b' I'Vir_s'T:ca ':"I rategy
causal structure discovery methods attempt to (boolean: [True, False]

infer the causal structure from data, causal ex- India’s strategic initiative to diversify its oil
traction tasks recover stated causal relationships slgfaly oL sy ficim U el

N reliance on the Middle East.

in text data (Gendron et al., [2023). Large lan-

guage models have shown limited performance (world_188) (world_226)
in discovering causal relationships beyond do- (world_363)
main knowledge (Joshi et al.,2024; Jiralerspong S 4

et al.}[2024; Zecevic et al.| 2023} Jin et al., 2024)).
Acknowledging this limitation, we rely on hu-
man sources and only use the LLM agent to
perform causal extraction. Causal information
can either be explicitly or implicitly stated in the
text, within a single sentence or across multiple sentences of paragraphs. Previous methods based on
pattern-matching or statistical modeling do not capture the latter well (Yang et al.,|2022). Attention
in LLMs allows them to aggregate information across an entire document, mitigating this problem.

Figure 3: Example of a node extracted with CTG-
Extract. Its name, description, type, possible val-
ues, and the worlds it appears in are shown.
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Agent Description We construct an LLM agent following the ReAct framework (Yao et al.| [2023)
and using the Smolagents library ﬂ The LLM reasons with chain-of-thought (Wei et al.,2022) and
provides its answer in code using a Python interpreter. A syntax check verifies if the output has the
correct format and is not missing elements. If errors are identified, they are returned to the LLM.
The agent can also call a retrieval-augmented generation tool called NxGraphRAG that we introduce
below. The agent then adapts its next step based on this feedback. It is tasked to execute the following
plan: (1) define the causal variables existing in the input text and the confounders, i.e. causal variables
that are not observed or mentioned in the text but have a direct effect on the observed variables; (2)
match the new variables with ones existing in the causal graph if possible (with NxGraphRAG);
and (3) define the causal relationships between the variables based on the text, without recreating
relationships already existing, and add the new causal variables and relationships to the graph.

Each variable contains the following attributes: name and description, type and
values describe the domain of the variable, current_value is the current instantiation
of the variable, contextual_information provides additional context to the variable in-
stantiation and supporting_text_snippets is the text extract justifying the response.
Each relationship contains cause and effect variables, and similar description and
contextual_information attributes. Prompts and variable implementations are provided
in Appendix [Kl An example is also provided in Figure[3]

Grounding in Worlds To later perform counterfactual matching (in Section [3)), we save multiple
worlds per node. Each document describes a world, i.e. an instantiation of the observed subgraph
of the world graph. For instance, two nodes A and B can be described in several documents. The
concept they represent (described by attributes name, description, type and values) is in-
variant to world changes. However, their instantiations (described by attributes current_value,
contextual_information, and supporting_text_snippets) can differ from one
world to the next. They are saved as coming from different worlds, as illustrated by Figure [3]
Note that confounders are by definition unobserved, so they do not have instantiations.

NxGraphRAG In addition to the Python interpreter, we introduce a novel graph retrieval-
augmented generation method that we equip the agent with. The system, NxGraphRAG, generates
an embedding of the input document and of each node of the causal graph using an auxiliary LLM
and keeps them in a vector database. Before providing the document to the agent, NxGraphRAG is
called and returns the top- K nodes with the highest cosine similarity to the input document. It also
traverses the graph through P steps from each retrieved node and adds each neighbor node and edge
to ensure that no relevant context is omitted. The embedding-based retrieval focuses on semantically
relevant nodes while the traversal takes advantage of structural knowledge. After this initial call,
the NxGaphRAG pipeline can be called again by the agent when creating new variables to verify that
they do not already exist in the graph. Additional details are provided in Appendix [D]

4 THE CAUSALWORLD NETWORK

We use CTG-Extract to construct a causal world model that we call CausalWorld. It contains 975
nodes and 1337 edges. In this section, we detail the data used and the findings obtained from the
network. Figure ] shows a visualization of CausalWorld.

4.1 DATA

We constructed a dataset of 500 news sources describing different media events by extracting them
from EventRegistry [Leban et al.|(2014), a platform sourcing, processing, and clustering media
news based on events reported over time. Each media event is described by a title, a summary and
information regarding the piece of news considered the most representative of the event, in json
format. We provide the title and summary to CTG-Extract as text. We focus on media events related
to economic news to avoid sensitive topics. We also focus on a restricted period of time, selecting
news from 2020, to limit the effect of temporal dependencies as they are out of the scope of this study.
A wide variety of economic topics are discussed in the various data samples, as illustrated in Figure 4]
We use them to build a large-scale repository of causal knowledge on diverse topics.

“https://huggingface.co/docs/smolagents/
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Figure 4: CausalWorld graph structure. Colors show the cluster in which the node belongs. Node
size is based on the number of worlds a node appears in: the more a node appears, the bigger it is on
the visualization. Labels correspond to the name of the most representative node of the cluster.

4.2 THE CAUSALWORLD NETWORK COMBINES MANY OVERLAPPING WORLDS

The resulting structure of CausalWorld is sparse, with a graph density of ~ 0.001. This is in accor-
dance with the Sparse Mechanisms Shift (SMS) hypothesis, which states that a causal mechanism only
sparsely affects other mechanisms (Scholkopf et all 2021). Figure [[T]in Appendix [E] further shows
the distribution of strongly and weakly connected components, highlighting that the majority of the
network is connected. Despite this structure, few feedback loops are observed. The network encom-
passes diverse knowledge and can be divided into 44 topic clusters like Gold PricesorUS 0il
Production, as shown in FigureEl Furthermore, 109 structural communities can be found, com-
municating with other communities with a small set of bridge nodes, e.g.: Crude 0il Prices,
Novel Coronavirus Outbreak, Global Economic Growth and US—-China Trade
Talks. These nodes are key elements of the graph that enable the propagation of information from
one community to the next. More details are provided in Appendix [E} The main difference between
CausalWorld and other repositories of causal relationships is the presence of worlds, as described in
Section 3] Each world instantiates a variable by providing it with a value and context. It is the key to
match worlds and perform counterfactuals (discussed in Section[5). However, worlds must not be
isolated and communicate via nodes shared by multiple worlds. 37% of the nodes in CausalWorld
share two worlds or more, allowing information to be propagated across worlds. Since the majority
of the nodes are linked by bridge nodes, most nodes can be used to compute counterfactuals.

4.3 CAUSAL INSIGHTS FROM STRUCTURE: “BIOFUEL DEMAND IMPACTS FOOD PRICES”

Causal paths established by the extraction process can be extracted from the network structure. We
provide an example of a causal chain in Figure[5] We can observe causal relationships between
nodes extracted from different documents, e.g. Palm oil Prices belongs to world 119 but
Food Prices connects it to worlds 58, 68, and 70. It illustrates a key property of CausalWorld: it
allows inference to be performed between long-range dependencies across multiple sources while
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maintaining information sparsity. CausalWorld also allows for cycles in the graph and can, thus,
represent feedback loops, as illustrated in Figure[6] More examples are provided in Appendix [F]
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Figure 5: Illustration of a direct causal path in the CausalWorld graph. Nodes are blue boxes. Arrows
represent causal dependencies. The description of the dependency is shown in dashed boxes.
Note that all nodes except for the root can have additional causal parents not shown in the chain and
that the strength and function related to the causal relationships are not shown.
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Figure 6: Illustration of a cycle in the CausalWorld graph. The legend is the same as in Figure

We perform additional experiments in Appendix [G]to verify that CTG-Extract accurately retrieves
the causal structure from the document and respects the causal relationships as stated in the data. On
a synthetic benchmark, we find that CTG-Extract respects the original causal structure and, while it
can miss a small fraction of causal relationships, it does not hallucinate variables or relationships.

5 COUNTERFACTUAL INFERENCE IN THE REAL WORLD
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(a) Overview of counterfactual matching. (b) Details of the step-by-step inference.

Figure 7: Overview of counterfactual matching and CTG-Reason. (a) A query is sampled from the
CausalWorld graph using counterfactual matching: values in the counterfactual world that match
those in a factual world are abducted and replaced with information from the factual world. (b) The
agent performs step-by-step reasoning by predicting the value of a child variable given its parents
(causal direction), resp. predicting the value of a parent given its children (anticausal).

We now investigate how to perform counterfactual reasoning in the real world. We introduce
counterfactual-matching to obtain ground-truth counterfactual data and the Causal Cartographer
Reasoning Agent (CTG-Reason) to perform counterfactual inference.

5.1 COUNTERFACTUAL MATCHING

We aim to infer the value of a target causal variable given observations or counterfactual evidence. To
build such queries from CausalWorld, we use counterfactual matching. We define this concept and
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show how it allows building real world counterfactuals. First, we must establish a causal blanket,
i.e. a set of variables that, if known, fully determines the target variable. The causal blanket differs
from a Markov blanket (Pearl, 2014b) because it only includes direct paths to the target variable and
does not necessarily require the nodes in the blanket to be the target’s parents. For example, in the
chain A — B — C — D, A forms a causal blanket for C'. We assume that we can construct causal
blankets from the CausalWorld graph. We formally define this concept in Definition [T}

Definition 1 (Causal Blanket). Let G be a directed graphical model over a set of random variables
V, and let T €V be a target variable. ancg(T) is the set of ancestors of T with respect to G. A set
of variables B C V \ {T'} is called a causal blanket for T in G iff, B C ancg(T) and conditioned on
B, the target variable T is fully determined; that is, there exists a deterministic function f such that

T = f(B).

Equivalently, knowing B renders T conditionally independent of all other variables in V \ (BU{T?}).
Unlike the Markov blanket, a causal blanket requires that B contains only variables with direct causal
paths to T, but these need not be limited to the parents of T. It follows that a variable can have
multiple causal blankets.

It is not generally possible to obtain the true value of a counterfactual in the real world. Therefore,
we focus on a subset of counterfactual queries accessible via K-Matching: finding two worlds within
our observations that can act as factual and counterfactual worlds. I.e. observing the factual world
and intervening on K observed variables of the counterfactual world is equivalent to observing the
counterfactual world. Figure[7a)illustrates the idea. We define this concept more formally below:

Definition 2 (K-Matching). Let O, and O, denote two sets of observations sampled from V. Suppose
that a target variable T is present in both sets and that there exists a subset of shared observed
observations O, = O, N O, with O, # 0. Let B. C O, denote a causal blanket for T, with
|B.| = N. We say that B, can be K-matched with O, over T if it is possible to build a new causal
blanket for T with K interventions from B. \ Oz and N — K observations from Oj.

Theorem 1 (K-Matching Equivalence). Suppose that a causal blanket B, is K-matched with O, over
a variable T and that O, \ O forms a causal blanket over each variable of Os. Then, observing B,
or observing O, \ Oy and intervening on B, \ O; yields the same distribution for T, that is,

P(T [ do(B.\ O5), 0, \ O5) = P(T' | Be).

The proof is given in Appendix [C| This theorem implies that, if we can find a causal blanket for the
counterfactual world and determine the value of N — K variables of the blanket from the factual
world, then we can build a counterfactual with K interventions over the remaining variables.

5.2 CTG-REASON

We build upon the methodology proposed by |Gendron et al.|(2024c]) to create a graph-enhanced causal
inference agent. The agent follows causal inference steps described in Section 2] It performs step-by-
step causal reasoning by computing the value of a variable from its direct causal parents only, or when
anticausal reasoning is needed, from its direct children. At each step, the LLM only accesses the
required parent/children variables. This approach, illustrated in Figure [7b] respects causal constraints
and ensures that the agent only uses causal information for its reasoning, increasing efficiency
and robustness by alleviating dependencies on non-causal and spurious correlations. Similarly to
CTG-Extract, the agent uses the ReAct framework (Yao et al., [2023). It executes the following plan:

1. Abduction: If a twin graph is provided (with factual and counterfactual worlds), the agent
performs abduction in an anticausal manner and computes the value of the exogenous
variables of the factual world from their children. If their children are not observed, they are
inferred from their own children recursively. The values for the exogenous variables are
transferred to the counterfactual world.

2. Intervention: The counterfactual world is intervened upon: the incoming edges to all
intervened variables are removed and the node values are fixed by the intervention value.

3. Prediction: The target value is inferred from its parents. If they are not observed, they
are inferred from their own parents recursively. Since the set of observed and intervened
variables forms a causal blanket, the target value is fully explained.
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6 REAL-WORLD COUNTERFACTUAL INFERENCE EXPERIMENTS

We now take advantage of the CausalWorld graph to perform real-world counterfactual reasoning.
We build a counterfactual reasoning evaluation dataset (CausalWorld-CR) from the extracted data
using counterfactual-matching and evaluate CTG-Reason on the generated causal inference tasks.

6.1 MATCHING WITH THE CAUSALWORLD-CR DATASET

The CausalWorld-CR dataset is divided into two query types: observations and counterfactuals. For
both subsets, the inference task to solve consists of inferring the value of a target causal variable
given causal ancestors. Observation queries are created by sampling target variables and their causal
blanket from a single world. The reasoning model is evaluated by inferring the value of the target
variable given the values of the blanket variables. Since the query is built from a single world, the
ground-truth is provided by the source document from which the world is built. The model must
answer a query of the type P(Target | B,). We use K-matching to build counterfactual queries.
The model must answer a query of the type P(T' | do(B. \ Os), O, \ Os). We focus on 1-matching
in our experiments. By default, the strategy defined above generates highly unbalanced datasets. The
nodes that have a high degree and are present in multiple worlds are over-represented. We balance
the dataset to reduce these effects and generate a dataset of 400 samples (see Appendix [H]for details).

6.2 EVALUATION

We perform experiments with widely used LLMs tailored for reasoning (03-mini (OpenAl, [2025a))
and general purpose tasks (GPT-4.1 (OpenAlL [2025b) and LLaMA-3.1-8B (Metal [2024)). We compare
our step-by-step strategy against CausalCoT (Jin et al.||2023)), a chain-of-thought prompting strategy
(Wei et al.l [2022)) for causal inference. Since the evaluation queries are built from automatically
scrapped real-world events, they express a diversity of types. The target variables to be predicted can
be boolean, numerical or qualitative assessments of a trend. Moreover, the LLM may not provide a
response corresponding to the same type. For instance, we find that LLMs tend to favor qualitative to
numerical assessments (see Appendix [J|for more details).

Performance We look at the accuracy for boolean and trend queries as they correspond to cate-
gorical variables (true/false and increasing/decreasing/stable, respectively). Figure 8a] shows that
both strategies yield similar results, although CTG-Reason achieves slightly better accuracy. We also
note that LLaMA-3.1 was not able to complete the queries with the CausalCoT strategy. We discuss
this aspect in the next paragraph. Figure|8b|shows the distribution of the relative error between the
ground truth and the prediction for numerical counterfactual queries (in % of the ground truth value),
for 03-mini and GPT-4.1. We look at the relative error instead of the absolute difference to take
into account the unit difference between queries. We also excluded outliers (~4% of the answers
were nonsensical numbers). We observe that CTG-Reason and CausalCoT strategies yield similar
distributions for GPT-4.1 but that CTG-Reason achieves much lower error with 03-mini (curiously,
for observation queries, CausalCoT achieves better performance, see Figure 23b] of Appendix [J).
Finally, we take a look at the semantic similarity between predicted and ground-truth answers in
Figure[8c| Since CTG-Reason does not have access to non-causal contextual information, its answer
wording greatly differs from the ground-truth, although this is not indicative of an incorrect answer.

Efficiency We study the efficiency of our proposed model in Figure [0} While CTG-Reason
decomposes the problem into multiple steps and requires several LLM calls to solve a problem, this
is balanced by a significantly lower quantity of retries. It can be explained by the restriction of the
context to causal components, which reduces the scope of the problem and the size of the context
window, making previously intractable problems become tractable. As seen in the previous paragraph,
it does not come at the cost of a reduced performance and can greatly help small models, as illustrated
with LLaMA-3.1-8B: its context size is reduced by 72% and output size is reduced by 91%.

7 LIMITATIONS

The iterative nature of the causal extraction implies that the processing order of the documents has an
impact on the final causal network. This is not a desired behavior as the causal relationships should
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Figure 8: (a) Results on the boolean and trend subsets of CausalWorld-CR. Results are shown
for 03-mini, GPT-40 and LLaMA-3.1-8B, using CTG-Reason (left bar/half) and CausalCoT (right
bar/half). (b) and (c) Violin plots of the relative error (in %) and semantic (cosine) similarity between
numerical/text ground truth and predicted answers on the counterfactual set. (*) The majority of
queries with LLaMA-3.1-8B-CausalCoT returned with a timeout.
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Figure 9: Statistics on the model answers with CTG-Reason and CausalCoT. (left) The average
number of steps (i.e. model calls) required to solve a query. (middle left) The average number of
retries after a failure to give a response (i.e. incorrect code formatting). (middle right) The average
number of input tokens for the model. (right) The average number of output tokens.

be order-agnostic, potentially leading to a suboptimal configuration of the network. Moreover, since
our counterfactual reasoning framework relies on causal blankets, we must assume knowledge of
the full causal graph. It is not possible to guarantee that this is the case in the real world. While
our method aims to reduce bias and improve robustness by retaining causal relationships instead of
(potentially spurious) correlations, we rely on the accuracy and honesty of the source data and are
sensitive to adversarial attacks, misinformation injections, or genuine errors. However, these issues
can be mitigated by using majority voting when merging conflicting documents: a causal relationship
mentioned in many documents is more trustworthy than one appearing in a single source. Other
potential research directions could include combining LLMs with standard causal structure discovery
methods to build the causal knowledge base. We further discuss related work and the broader impact
and ethical considerations of our work in Appendices[A]and

8 CONCLUSION

We introduce the Causal Cartographer, a twofold framework composed of causal extraction and
inference agents that learn causal knowledge from natural language. We use this framework to build
a network of causal knowledge and prove that it allows the estimation of real-world counterfactuals.
We show that our proposed step-by-step inference agent can outperform chain-of-thought baselines
on counterfactual reasoning and greatly reduce the inference cost by alleviating the impact of non-
causal information. We hope that our work will inspire the creation of more robust and efficient
reasoning agents based on causal principles. In particular, allowing agents to learn from counterfactual
information is a promising direction towards building systems of higher cognition.
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A RELATED WORK

Traditional causal extraction methods rely on knowledge-based or statistical methods which can be
brittle when causal relationships spread across multiple sentences or paragraphs (Yang et al., 2022).
More recent approaches rely on deep learning architectures and transformers, notably CausalBERT
(Khetan et al., |2021)) which relies on BERT (Devlin et al., 2019), but the use of larger LLMs remains
under-explored. CauseNet (Heindorf et al., [2020) is a database of causal relationships extracted
from the web by mining linguistic patterns, but it does not make the distinction between variable
and value that allows us to do counterfactual matching. Our NxGraphRAG method also differs from
existing graph-RAG systems (e.g. GraphRAG (Edge et al.| 2024)) as we do not use knowledge graphs
but causal graphs. Similarly to |Li et al.|(2024) and Buehler| (2025), we integrate the graph-RAG
approach to iteratively build a graph (Peng et al., 2024). Studies have evaluated the causal reasoning
abilities of LLMs, notably (Zecevic et al.l 2023)), (Jin et al., 2024) and Cladder (Jin et al.,[2023)): a
comprehensive benchmark for evaluating causal reasoning in language. Unlike in our work however,
Cladder is built synthetically. The term causal blanket has been previously introduced by |Rosas et al.
(2020) to characterize time-series representing dynamical systems in the domain of cognitive science.
By contrast, we introduce the concept of causal blankets for directed acyclic structural causal models.
The two definitions do not conflict with each other. In their work, causal blankets correspond to the
mediator processes that fully capture the causal effect of a first process on the second. Our definition
follows the same intuition for SCMs: a causal blanket is a set of ancestors of a variable that captures
all the dependencies required to fully determine the variable.

B BROADER IMPACT AND ETHICAL CONSIDERATIONS

This work presents a method for building a repository of causal knowledge from real-world data
in natural language, more specifically from news articles, and estimating counterfactual outcomes.
We expect that it can help build better reasoning systems able to perform causal inference in natural
language. The grounding in real-world data can particularly help improve the abilities of large
language models on many downstream real-world tasks. Causal inference has been argued as a
promising direction to reduce bias and increase fairness, trustworthiness and safety of Al systems
(Pearll 2009; |Goyal & Bengio| 2020; [Scholkopf et al., 2021} [Bareinboim et al., [2022; Mao et al.|
2022; \Gendron et al.|, 2023} |2024a3b; Richens & Everitt, |2024) and we hope that this work can foster
research in this direction and help bridge the gap with real-world applications.

However, we acknowledge that our work can also have negative impact. First, as mentioned in the
limitations (Section[7), we rely on the accuracy and honesty of the source data and are not robust
to adversarial attacks. Our method gives equal importance to all causal relationships, which means
that a small amount of adversarial data can have a significant impact on the extraction and inference,
exacerbating harmful trends and heavily affecting the downstream predictions. As a consequence,
we do not recommend using our method on potentially unreliable sources. Second, our work can be
used to make counterfactual predictions about real-world situations. While this work is only a first
step in this direction, we expect that it will lead to economical and societal prediction engines. For
instance, companies could make predictions about the economic impact of a businesses decision, or
government organizations could predict the future impact of a policy on a population. Such usage
can have very high impact over many areas and populations. It could provide guidance for enforcing
better policies improving the well-being of populations but can also be used by malicious actors for
harm. Even without the intervention of such actors, an over reliance on such prediction tools without
critical analysis could similarly lead to disastrous effects in case of errors or misinterpretation of the
prediction.

In its current stage, our work does not presents any such risks of misuse. However, we would like to
emphasize the ethical considerations and risks links to the pursuit of this research direction and argue
that future work should keep them into consideration.

C PROOF OF THEOREMI]

In this section, we prove the K-Matching theorem (Theorem stated in Section E}
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Proof. We suppose that a causal blanket B, is K-matched with O,, over a variable 7" and that O, \ O,
forms a causal blanket over each variable of O,. We aim to show that P(T" | do(B.\ Os), O,\ Os) =
P(T | B.), i.e. that a counterfactual query following this set of assumptions can be rewritten as an
observational query.

We first rewrite the counterfactual query as a probability distribution over the set of exogenous
variables U, following Equationﬂ] (Pearl, 2009):

P(T | do(B.\ Os),0, \ Os) = Z P(T | do(B.\ Os),U)P(U | O, \ Os)

Uueu

B. = (B.\ Os) U B, forms a causal blanket over T'. Therefore, T' L U | B,. The only paths from U
to 7" must go through the variables instantiating Os. We call them S. We infer that T 1L U\S | B\ S.
We can then rewrite the equation as follows:

P(T | do(Be \ 0s), 00\ Os) = Y P(T' | do(Be \ 0.), S)P(S | O\ Os)

Seu

We now show that O is the only possible instantiation of S. It is assumed that O, \ Oy forms a
causal blanket over S. Therefore, Oy can be deterministically computed from O, and the probability
P(S | O, \ Oy) will return zero probability except for the values Oy. the equation can then be
rewritten as follows:

P(T | do(B:\ Os),0,\ Og) = P(T | do(B. \ Os),Os)

Rule 2 of do-calculus (Pearll, [2009; 2012) states that an intervention can be reduced to an observation
if no backdoor path connects the intervened variable to the variable of interest. It can be written as
follows:

P(y|do(z), do(z), w) = P(y|do(z), z,w) if (Y L Z|X, Wog, 2)

Since do(B. \ Os), Oy forms a causal blanket over 7', rule 2 applies and the equation can be further
simplified into the desired quantity:

P(T | do(B.\ 0,),0,\ O5) = P(T | do(B. \ Os), Oy)
P(T'| (Be\ 05), Os)
P(T'|B)

O

As an illustrative example, let us imagine a graph X — Y <« V and the counterfactual P(Y =
1ldo(X =1),X =0,Y = 0). If we have two sets of observations O, = {X, =0,Y, =0,V, = 0}
and O, = {X. =1,Y. = 1,V, = 0}, we can form B, = {X. = 1, V. = 0} as these observations
determine the value of Y and O, = {V, = V. = 0}. We retrieve the above counterfactual
P(Yl|do(B.\ Os),0,\ Os) = P(Y =1]|do(X =1),X =0,Y =0).

D DETAILS ON THE NXGRAPHRAG ARCHITECTURE

This section provides additional details regarding the graph retrieval-augmented generation pipeline
introduced in Section [3] We introduce Networkx Graph Retrieval-Augmented Generation (Nx-
GraphRAGQG), jointly used with the proposed Causal Cartographer Extraction agent (CTG-Extract).
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Figure 10: Overview of the NxGraphRAG pipeline. The attributes of the graph database are embedded
and stored in a vector database. Depending on the use case, an input document or a candidate node
are embedded as a query vector. The query vector is compared against the graph node (key) vectors
using cosine similarity. The K closest embeddings are selected. For each node, its P-level neighbors
are also selected. The subgraph is returned and added to the agent context.

An overview of the method is shown in Figure We use Langchain E] to build the RAG pipeline. It
is provided to the agent as a callable tool.

NxGraphRAG generates embeddings for the world graph nodes, candidate nodes proposed by
the agent, and input documents, that can be compared using cosine similarity. We use OpenAl
Embeddings (Neelakantan et al., |2022)) to generate the embeddings. For the nodes, all the attributes
are provided as a list of key-value character chains. The embeddings of the world graph represents
the keys against which the queries, i.e. the candidate nodes and input documents, are compared with.
While query vectors are generated on the fly, key vectors are stored in an vector database. We use an
in-memory database because the generated world graph is small enough to fit in the memory (see
Section |4|for more details). NxGraphRAG returns the top- K most similar nodes with the query. It
also returns the neighbors of these nodes, up to a level P neighborhood. We use K = 3 and P = 2
to balance exhaustiveness and efficiency.

E DETAILS ON THE STRUCTURE OF CAUSALWORLD

Figure [TT]shows the distribution of strongly and weakly connected components in the CausalWorld
graph, highlighting that the majority of the network is connected and forms a single component.
Despite this structure, few feedback loops are observed.

We now investigate the topics extracted from the news sources and represented in CausalWorld.
We create clusters based on semantic embeddings. We only use the node attributes invariant to the
current world. Due to the large scale of the graph, we use a smaller embedding model than in the
NxGraphRAG pipeline. Since semantic clustering is only used for visualizing the graph content
and is not connected to a downstream task, a downgraded performance would have no effect on the
rest of our pipeline. We use all-mpnet-base-v2 (Transformers| 2024)) with the SentenceTransformers
library E] to generate the embeddings and K-Means to attribute clusters. We use the Silhouette score
(Rousseeuw, |1987)) to determine the optimal number of clusters and find that the network can be best
divided into 44 clusters. They can be observed in Figure 4] of the main paper.

We further use the Louvain method (Blondel et al., 2008) to detect communities within the
graph based on structural information only. We discover 109 communities within the network.
Eight nodes are bridge nodes separating four communities or more: Crude Oil Prices,
Crude 0il Prices, Novel Coronavirus Outbreak, Global Economic Growth,
US-China Trade Talks, Middle East Unrest, US Strike, US-Iran Flare-up
and US-Iran Tensions Easing. These nodes are key elements of the graph that enable the

3https://www.langchain.com/
*https://www.sbert.net/
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World. The majority of nodes (66%) belong to one connected component (highlighted in red) while
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strongly connected components and are part on feedback loops. The majority of nodes have less than
five neighbors, further highlighting the sparsity of the graph.
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Figure 13: CausalWorld graph structure divided by Louvain communities. Colors correspond to the
Louvain community in which belongs the node. Node size is based on the amount of worlds in which
the node appear: more often a node appears, the bigger it is on the visualization. A total of 109
communities exists in the graph, therefore colors can correspond to several communities. This figure
is for illustration purpose only.

propagation of information from one community to the next. Figure [I3]illustrates the division of the
network into communities.

Figure [T4]shows the distribution of nodes among the worlds extracted from the input documents. We
can observe that the majority of the nodes belong to a single world but that 37% of the nodes share
two worlds or more, allowing information to be propagated across worlds. Since the majority of the
nodes belong to the same component, most nodes can be used to compute counterfactuals.

F ADDITIONAL CAUSAL PATHS IN CAUSALWORLD

Figure [T5] shows the longest causal chain that can be extracted from CausalWorld. Additional
simplified chains are shown in Figure [T6]

G EVALUATION OF THE CAUSAL EXTRACTION CORRECTNESS

This section verifies the ability of CTG-Extract to build a correct causal network on a small dataset
for which ground truth is available. To this end, we build a small synthetic causal graph of twenty
variables. To allow generalization, we focus on a set of variables similar to the ones discovered in
CausalWorld, e.g. 011 prices, the most observed variable. From this causal graph, we generate
ten synthetic news articles describing in natural language a subset of the variables and relationships
from the ground-truth graph. The news articles are generated using 03-mini-2025-01-31 (OpenAl,
2025a) to make them realistic. We manually check that the text matches the ground-truth relationships
that CTG-Extract must recover from each of them.

Here an example of generated text snippet:
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Safe Haven Assets
Global Economic Growth
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e e

611
600 |- -
5}
k=1
z
o< 400 |
1
o}
E
5 Top ten nodes (see bar plot
Z 200 1| 143 above). |
82 —
0 361'_|71'_|3§ 553134412413321112 1[_1___1'_1_'_1'_1_'_1'_'1'_1_'_1'_'1_".
L L L A L L T
1234567891011 121314151618192223252829303132333436404347485394243

World Count

(b) Distribution of the nodes based on their number of appearances in worlds.

Figure 14: Distribution of the nodes among the worlds extracted from the source documents. The
higher the world count, the most document a node appears in. The top plot shows the amount of
worlds for the top ten nodes and the botom plot shows the distribution for the entire graph.
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Figure 15: Illustration of the longest direct causal path in the CausalWorld graph. It contains 18 nodes,
represented in blue boxes. Arrows represent causal dependencies. The description of the dependency
is shown in dashed boxes. Note that all nodes except for the root can have additional causal
parents not shown in the chain and that the strength and function related to the causal relationships
are not shown.
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Figure 16: Additional direct causal paths in CausalWorld graph.

Table 1: Precision, recall and F1-Score of CTG-Extract on graph extraction on a synthetic graph. The
metrics measure the differences between the retrieved grap hand the ground-truth synthetic graph.

Precision Recall F1-Score

Causal Variables 0.864 0.950 0.905
Causal Relationships 1.000 0.955 0.977

As storage capacities increase, they can mitigate short-term supply constraints and balance
market fluctuations, ultimately exerting a decisive impact on oil pricing dynamics. [...]

This example describes the relationships between oil storage capacity and oil prices without directly
revealing the variables and relationships that were in the ground-truth graph.

Standard Setting We evaluate the retrieved graph using precision, recall and F1-score. We use
these measures over causal variables and relationships. For causal relationships, precision measures
the proportion of true causal relationships over all retrieved relationships and recall measures the
proportion of true causal relationships over all true relationships. A similar interpretation can be
made for causal variables. Results are shown in Table[Il

Regarding the variables, the differences arise due to a division of one variable in the original graph
into three in the extracted graph: Investment in Exploration isdivided into Improved
Extraction Techniques, 0il Exploration Investments and Technological
Investments. Regarding the causal relationships, all retrieved relationships match the ground-
truth and do not present any contradictions. A single one is missing: OPEC Production Crude
0il Supply. While the resulting graph differs from the ground truth, it does not present contradic-
tions in the semantics, only some slight differences in the granularity used to describe the variables.
While this experiment is performed on a small set of variables due to the difficulty in accessing real-
world ground-truth causal relationships, it provides evidence that CTG-Extract accurately retrieves
the original causal structure when presented with descriptive samples in plain language.

Adversarial Setting To verify the robustness of our findings in adversarial scenarios, we conduct
the same experiments on a causal graph with randomized edges. We aim to verify if CTG-Extract can
recover the relationships from the documents if they contradict common sense. Results are shown in
Table 2

The model achieves a similar score on variable retrieval. The adversarial setting does not affect
its performance. This is expected as only the edges have been randomized. However, we observe
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Table 2: Precision, recall and F1-Score of CTG-Extract on graph extraction on an adversarial synthetic
graph with randomized edges.

Precision Recall F1-Score

Causal Variables 0.905 0.950 0.927
Causal Relationships 0.981 0.642 0.777

Indian Rupee Exchange Rate

Crude Oil Prices
Gold Prices

Crude Oil Prices

US Oil Production

[ Observations Asian Shares Performance
50% US Oil and Gas Rig Count

50% [ Counterfactuals

Other

(a) Distribution of observation and counterfac- (b) Distribution of target variables in the observation and coun-
tual queries. terfactual splits.

Figure 17: Distribution of the query types and target domains in the CausalWorld-CR dataset.
Counterfactual queries are more concentrated around specific domains than observations because
they require to match several worlds for building the query.

a drop in performance for the retrieval of causal relationships. Precision remains very high but
recall is significantly reduced: CTG-Extract has more trouble recovering some of the relationships.
Nonetheless, the model does not add causal relationships that would contradict the documents. It
remains accurate with respect to the original ground-truth graph. We also note that the lower recall
can be due to the quality of the data: as the relationships are random, it is harder to build a coherent
narrative that describes how these variables interact with each other. Here is an example of input text
as illustration:

Recent analysis shows that subsidy regulations significantly influence alternative energy
prices, a dynamic further complicated by refined oil product output, which in turn plays
a pivotal role in determining both alternative energy prices and oil prices.

Overall, these experiments show that our proposed causal extraction method can accurately reconstruct
a causal structure. The method can build a slightly different structure but does not introduce
contradictory information, even in adversarial settings.

H DETAILS ON THE CAUSALWORLD COUNTERFACTUAL REASONING
DATASET

The CausalWorld network allows matching counterfactuals and building samples for causal queries.
However, as shown in Figure the degree distribution in the graph is imbalanced, resulting in
an over-representation of some nodes over others. We balance the dataset to mitigate this issue. In
addition, in the case of long dependencies, some queries may present many causal paths between
the observations and the target variable. We remove queries with too many possible causal paths
(i.e. > 50) to allow the problem to remain tractable. Figure|l7|shows the distribution of query types
and target domains in the CausalWorld-CR dataset. Figure[I8|shows the number of nodes per query
graph.
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Figure 18: Distribution of the number of nodes in the query graphs of the CausalWorld-CR dataset.

I IMPLEMENTATION DETAILS

In this section, we detail the implementation details used for our experiments.

For the causal extraction pipeline, we use OpenAl 03-mini-2025-01-31 as our base
LLM. Specific details for NxGraphRAG are given in Section @ We use the Smolagents libraryﬂ
as the interface with the LLM agents. We perform calls to 03-mini-2025-01-31 and gpt-4.1-2025-
04-14 using the LiteLLM interface with default hyperparameters. The order of
magnitude for the total cost of the OpenAl API calls is ~ USD 100. We run meta-llama/Llama-
3.1-8B-Instruct locally using the Transformers interface. Local experiments are run
on eight NVIDIA A100-SXM4-80GB GPUs. The data analysis performed in Sections [4] and [3]
involves semantic embedding. We perform the embedding using the all-mpnet-base-v2
Transformer model. We use the SentenceTransformers library ﬂ Data analysis experiments
are performed on a single laptop with a 3.20 GHz AMD Ryzen 7 5800H CPU, 16GB RAM and a
NVIDIA GeForce RTX 3070 Laptop GPU.

J ADDITIONAL RESULTS ON CAUSALWORLD-CR

Figures 20| and 21] show the detailed results on the counterfactual and observation queries of
CausalWorld-CR. The main results can be found in Figure [§] Figure [24] further shows the con-
fusion matrices for the boolean and trend queries while Figures 22]and ajﬂ_srlhow the distributions of
the cosine similarity and relative error between the ground truth and the predictions, respectively.
Figure 23] shows the BLEU scores (Papineni et al., 2002) for 03-mini and GPT-4.1 on the counterfac-
tual and observational sets. Higher scores indicates that model responses contains n-grams similar to
the ones appearing in ground truth answers. While BLEU is suited for translation, in this settings, it
indicates how close the answer formulation is compared to the original. A low score does not indicate
that the answer is incorrect but that the grammatical elements that are used differ. As expected, score
are indeed low but observational answers obtain slightly higher scores.

K AGENT PROMPTS

This section describes the system and user prompts used for the LLM agents in the extraction and
inference systems, as well as the syntax for the causal variables and relationships in the causal
network.

K.1 CAUSAL INFORMATION SYNTAX

The syntax for the causal variables and relationships is provided in the LLMs’ prompts as shown in
the next sections. Additionally, it is also enforced using Pydantic.

Shttps://huggingface.co/docs/smolagents/
Shttps://www.sbert.net/
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Figure 19: Distribution of query types and answer types from CTG-Reason. Types correspond to
a category a sample can be evaluated in. Types are: number (answer is a number), fext (answer
is textual, matches all samples), boolean (true/false), trend (the qualitative assessment of a trend:
increasing, decreasing, stable). Observation and counterfactual correspond to thequery types as
defined i Section[5] A sample can cumulate multiple types and the model answer may not correspond
to the same type as the ground truth. For instance, while the ground-truth has a numerical value, the
model may provide a qualitative answer.
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Figure 20: Results on the counterfactual set for the boolean and trend queries of CausalWorld-CR.
Results are shown for 03-mini, GPT-40 and LLaMA-3.1-8B, using CTG-Reason and CausalCoT. (*)
The majority of queries with LLaMA-3.1-8B-CausalCoT returned with a timeout.
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Figure 21: Results on the observational set for the boolean and trend queries of CausalWorld-CR.
Results are shown for 03-mini, GPT-40 and LLaMA-3.1-8B, using CTG-Reason and CausalCoT. (*)
The majority of queries with LLaMA-3.1-8B-CausalCoT returned with a timeout.
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Figure 22: Violin plots of the semantic (cosine) similarity between ground truth and model answers.
Results are shown for 03-mini and GPT-4.1.
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Figure 23: Violin plots of the relative error numerical between ground truth and prediction. The

results are shown for 03-mini and GPT-4.1 for samples where both ground truth and predicted values
are numerical. The plots show the distribution of the error in % of the ground truth value.
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Figure 24: Confusion matrices for boolean and trend queries of CausalWorld-CR for 03-mini using
CTG-Reason.
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Figure 25: Violin plots of the BLEU score for 03-mini and GPT-4.1 using CTG-Reason on coun-
terfactual and observational query sets. A higher score indicates that the model prediction contains
n-grams similar to the ones appearing in the ground truth answer.
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K.1.1 CAUSAL VARIABLES

Causal variables are defined in the causal network as a dictionary of attributes. They are described to
the LLM agents as follows:

{
"name": <string>, # The name of the variable
"description": <string>, # The description of the variable
"type": <string>, # The type of the variable (boolean, integer, float, string, etc.)

"values": <List[str]>, # The set or range of possible values for the variable ([1, 2, 3], '
range (0,10)’, [’low’, 'medium’, ’'high’], ’'True/False’, ’'natural numbers’, etc.)
"causal_effect": <string>, # The inferred causal effect of the variable

"supporting_text_snippets": <Optional[List[str]]>, # The supporting text snippets in which
the variable is mentioned

"current_value": <Optional[string]>, # The observed current value of the variable

"contextual_ information": <Optional[string]>, # The contextual information associated with
the current value of the variable

See Section [3in the main paper for more details.

K.1.2 CAUSAL RELATIONSHIPS

Similarly to causal variables, causal relationships are defined in the causal network as a dictionary of
attributes. They are described to the LLM agents as follows:

{
"cause": <string>, # The name of the cause variable
"effect": <string>, # The name of the effect variable
"description": <string>, # The description of the causal relationship between the variables
"contextual_information": <Optional[string]>, # The contextual information associated with

the causal relationship for the specific observed values of the variables

"type": <string>, # The type of the causal relationship (direct, indirect, etc.)
"strength": <Optional[string]>, # The strength of the causal relationship

"confidence": <Optional[string]>, # The confidence level in the existence of the causal
relationship

"function": <Optional[Callable]>, # The function that describes the causal relationship, if
available.

K.2 CAUSAL EXTRACTION AGENT PROMPT

We show below the start of the causal extraction agent system prompt. It describes to the agent the
extraction task to be performed and how to solve it. It is built upon on the ReAct framework

2023) and the prompts provided by the Smolagents library D

You are an expert assistant who can solve any task using code blobs. You specialize into
causal extraction tasks.

You will be given a text snippet and an initial causal graph. Your task will consist of
finding the causal variables described in the text, the causal relationships that link
them and adding them to the causal graph.

You will solve the task as best you can. To do so, you have been given access to a Python
interpreter with the standard library and the networkx package.

You will also have access to an optional list of tools: these tools are basically Python
functions which you can call with code.

You will use your expert reading comprehension, commonsense reasoning and coding skills to
tolve the problem.

To solve the task, you must plan forward to proceed in a series of steps, in a cycle of ’
Thought:’, ’Code:’, and ’Observation:’ sequences.

At each step, in the ’'Thought:’ sequence, you should first explain your reasoning towards
solving the task and the tools that you want to use.

Then in the ’'Code:’ sequence, you should write the code in simple Python. The code sequence
must end with ’<end_code>’ sequence.

During each intermediate step, you can use ’print ()’ to save whatever important information
you will then need.

These print outputs will then appear in the ’‘Observation:’ field, which will be available as
input for the next step.

In the end, you have to return a final answer using the ‘final_answer' tool. The output
provided to the ‘final_ answer' tool should be the networkx causal graph.

Thttps://huggingface.co/docs/smolagents/
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Each node should have the following dictionary of attributes:

{{variable}}

Some variables will have a value provided in the text, while others will be confounders that
need to be estimated. Provide a current~value and contextual information whenever
possible.

The causal relationships should be represented as directed edges between the nodes. Each edge
should have the following dictionary of attributes:
{{causal_relationship}}

Your plan should be as follows:

1. Define the causal variables observed in the text. Use the variables provided when possible

or create new ones when no variable matches.

2. Define the confounders that are not observed in the text or for which a value is not given
, and that affect one or several of the causal variables defined in step 1.

3. Verify if the new variables have correspondance in the causal graph database. Use the “{{
retrieval_tool_name}} ' tool to assess if the variable is already in the database.

If it is, use it instead of creating a new one. It may have a different name in the database,

the tool returns the top-k matching variables.

THIS IS A MANDATORY STEP. The variables provided in the input are only a subset of the
variables in the database, you should always check if the variable already exist before
creating new ones.

For each variable, use the one matching the most or create a new one if none matches.

4. Define the causal relationships between the variables, based on the text and common sense
knowledge. Do not create causal relationships that already exist in the causal graph.

5. Build the full causal graph as a networkx DiGraph object.

Each step should be a separate ’Thought:’, ’'Code:’, and ’Observation:’ sequence.

The code MUST be executed in two code blocks minimum. After step 3, use <end_code> to
indicate the end of the code block and retrieve the output of the tool call.

Then, use the observation to execute steps 4 and 5 and complete the task. An empty list of
variables in the user input DOES NOT MEAN that there are no variables in the causal
graph database.

Always check if the variable exists in the database before creating a new one.

[oool

The variable and causal_relationship placeholders are replaced with the prompts de-
scribed in the previous section. Few-shots are also provided as part of the system prompt. Here is one
example:

fooold

Here are a few examples tasks to solve.

Task:

Increased Air Pollution Leads to Higher Respiratory Issues During Summer Months

A recent study has shown that cities experiencing high levels of air pollution are seeing a
rise in respiratory issues among their populations, particularly during the summer months.

Experts attribute the increase to a combination of higher temperatures and pollution from
industrial activities, which intensify during hotter months.

Dr. Laura Simpson, a pulmonologist, noted that individuals with pre-existing conditions, such
as asthma, are at a greater risk of suffering from exacerbated symptoms.

Retrieved nodes:
<empty>

Retrieved edges:
<empty>
nnn

Thought: I will first define the list of causal variables extracted from the text. These
include:

Air Pollution - representing high levels of air pollution in cities.

Temperature - higher temperatures during the summer months.

Industrial Pollution - arising from intensified industrial activities during hotter months.

Respiratory Issues - the rise in respiratory issues among the population.

Pre-existing Respiratory Conditions - representing vulnerable individuals (e.g., those with
asthma) at greater risk.

g w N

I will verify if these variables exist in our causal graph database using the tool
graph_retriever for each variable by calling it with a query that includes the variable
name. Then I will build the networkx DiGraph with these nodes and add the appropriate
directed edges based on cause-effect relationships:

— Air Pollution — Respiratory Issues ("Increased air pollution leads to higher respiratory
issues.")
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— Temperature — Industrial Pollution ("Hotter temperatures intensify industrial activities’
pollution.")

— Industrial Pollution — Respiratory Issues ("Pollution from industrial activities
contributes to respiratory issues.")

— Pre-existing Respiratory Conditions — Respiratory Issues ("Individuals with pre-existing
conditions are more vulnerable to respiratory issues.")

I will now call graph_retriever to check for each variable.

Code:

N py
import networkx as nx

# Define initial variables extracted from the text
causal_variables = [
{
"name": "Air Pollution",
"description": "The level of air pollutants present in the city environment.",
"type": "float",
"values": "range(0,100)",
"supporting_text_snippets": ["cities experiencing high levels of air pollution"],
"current_value": None,
"contextual_information": "High in some cities as noted in the study."

"name": "Temperature",
"description": "Ambient temperature, particularly during the summer months.",
"type": "float",
"values": "range (20,50)",
"supporting_text_snippets": ["higher temperatures", "summer months"],
"current_value": None,
"contextual_ information": "Elevated during summer."
by

(truncated)

]

# Query the causal graph database for each variable using graph_retriever
for variable in causal_variables:

query_text = f"{variable[’name’]}: {variable[’description’]}"

result = graph_retriever (query=query_text)

print (f"Query for variable ’ {variable[’name’]}’:", result, ’"\n’)

print ("End of variable verification.")

‘Y '<end_code>

Observation:

Query for variable ’'Air Pollution’: Retrieved nodes:
<empty>

Retrieved edges:
<empty>

Query for variable ’'Temperature’: Retrieved nodes:
<empty>

Retrieved edges:
<empty>

(truncated)

End of variable verification.

Thought: None of our causal variables exist in the database, so I will now build the full
networkx DiGraph using our defined variables (as nodes) and add the causal relationships
(as directed edges) .

I will add the following edges:

— Air Pollution --> Respiratory Issues: "Increased air pollution leads to higher respiratory
issues."
— Temperature --> Industrial Pollution: "Higher temperatures intensify industrial pollution

from industrial activities."

— Industrial Pollution -—> Respiratory Issues: "Pollution from industrial activities
contributes to respiratory issues."

— Pre-existing Respiratory Conditions -—-> Respiratory Issues: "Individuals with pre-existing
respiratory conditions are more vulnerable to respiratory issues."

I will now add these nodes and edges to the graph and return the final causal graph.
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Code:

N py

# Build the full causal graph as a networkx DiGraph
G = nx.DiGraph ()

# Add nodes for each variable and update their attributes separately
for variable in causal_variables:

var_name = variable["name"]

G.add_node (var_name)

G.nodes [var_name] .update (variable)

# Define causal relationships as edges with descriptive attributes
causal_relationships = [
{
"cause": "Air Pollution",
"effect": "Respiratory Issues",
"description": "Increased air pollution in cities leads to higher respiratory issues among
populations.",
"contextual_information": "Study shows a rise in respiratory issues in high pollution
cities during summer.",
"type": "direct",
"strength": "high",
"confidence": "high",
"function": None

"cause": "Temperature",

"effect": "Industrial Pollution",

"description": "Higher temperatures intensify industrial activities, leading to increased
industrial pollution.",

"contextual_information": "Pollution from industrial activities intensifies during hotter
months.",

"type": "direct",

"strength": "moderate",

"confidence": "high",

"function": None

I

(truncated)

]

# Add edges from the causal_relationships list

for edge in causal_relationships:

cause = edge["cause"]

effect = edge["effect"]

G.add_edge (cause, effect)

G[cause] [effect] .update (edge) # /!\ This is how edge attributes should be added. They must be
added after the edge is created.

# Output the final graph details for verification
print ("Causal Graph Nodes:")

print (list (G.nodes (data=True)))

print ("\nCausal Graph Edges:")

print (list (G.edges (data=True)))

final_answer (G)
‘' '<end_code>

foood

Three examples are provided to the LLM. The rest of the prompt is identical to the default system
prompt of Smolagents.

K.3 COUNTERFACTUAL INFERENCE AGENT PROMPT

We show below the start of the counterfactual inference agent system prompt, it is built similarly to
the causal extraction agent.

You are an expert assistant who can solve any task using code blobs. You specialize into
causal inference tasks.

You will be given causal variables and causal relationships. Your task will consist of
computing the causal effect of a target causal variable given the values of its direct
parents or children in the causal graph.
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You will solve the task as best you can. To do so, you have been given access to a Python
interpreter with the standard library.

You will also have access to an optional list of tools: these tools are basically Python
functions which you can call with code.

You will use your expert reading comprehension, commonsense reasoning and coding skills to
tolve the problem.

To solve the task, you must plan forward to proceed in a series of steps, in a cycle of ’
Thought:’, ’'Code:’, and ’Observation:’ sequences.

At each step, in the ’Thought:’ sequence, you should first explain your reasoning towards
solving the task and the tools that you want to use.

Then in the ’Code:’ sequence, you should write the code in simple Python. The code sequence
must end with ’<end_code>’ sequence.

During each intermediate step, you can use ’print ()’ to save whatever important information
you will then need.

These print outputs will then appear in the ’Observation:’ field, which will be available as
input for the next step.

In the end, you have to return a final answer using the ‘final_answer‘' tool. The output
provided to the ‘final_ answer' tool should be the networkx causal graph.

The attributes of the target variable are provided as arguments with the name ’target_variable
’

The parent variables attributes are provided as a list of dictionaries with the name '’
parent_variables’.

The children variables attributes are provided as a list of dictionaries with the name '
children_variables’.

The descriptions of the causal relationships between the target variable and its parents are
provided as a list of attribute dictionaries with the name ’causal_relationships’.

Return a dictionary with the updated attributes of the target variable. The fields to update
are 'current_value’, ’‘contextual_information’ and ’'causal_effect’

Use the information from the given target variable, parent variables, children variables and
causal relationships to compute the causal effect of the target variable.

When a function is provided in the causal relationship, execute it with the Python interpreter.

Each causal variable will be represented with the following dictionary of attributes:
{{variable}}

The causal relationships will be represented with the following dictionary of attributes:
{{causal_relationship}}

Five few-shots are also provided as part of the system prompt. Here is one example:

foood

Here are a few examples tasks to solve.

Task:

nun

Compute the causal effect of the variables in the context of the o0il price war

You have been provided with these additional arguments, that you can access using the keys as
variables in your python code:

{’children_variables’: [], 'target_variable’: {’name’: ’"o0il_prices’, ’'description’: ’Global
price per barrel of oil; recently slumped to its lowest level since 2009’, ’'type’: ’'float
", 'values’: ’'USD per barrel’}, ’causal_relationships’: []}.

Thought: We have a target variable "oil_prices" with description indicating that oil prices
have slumped to the lowest level since 2009.

There are no parent or children variables provided and no causal relationships specified.

In this context, we need to update the target_variable dictionary by setting its "
current_value", "contextual_information", and "causal_effect".

Since the variable is operating in an environment described as an "oil price war", we can
infer that the aggressive competition among oil producers is likely driving a strong
negative causal impact on oil_prices.

I’11 now update the target variable accordingly:

— current_value: "lowest level since 2009"

— contextual_information: "In the context of an oil price war, aggressive market competition
among oil-producing nations has driven global oil prices down significantly."

— causal_effect: "lowest level since 2009"

I’11 now write the code with these updates and then use final_answer to output the updated
target_variable.

Code:

N py

# Update target_variable with computed values
target_variable[’current_value’] = "lowest level since 2009"
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target_variable[’contextual_information’] = ("In the context of an oil price war, aggressive
market competition among oil-producing nations has driven global oil prices down
significantly.")

target_variable[’causal_effect’] = "lowest level since 2009"

final_answer (target_variable)
‘Y '<end_code>

foooll
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