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Abstract

Due to the sensitive nature of personally iden-001
tifiable information (PII), its owners may have002
the authority to control its inclusion or request003
its removal from large-language model (LLM)004
training. Beyond this, PII may be added or005
removed from training datasets due to evolving006
dataset curation techniques, because they were007
newly scraped for retraining, or because they008
were included in a new downstream fine-tuning009
stage. We find that the amount and ease of PII010
memorization is a dynamic property of a model011
that evolves throughout training pipelines and012
depends on commonly altered design choices.013
We characterize three such novel phenomena:014
(1) similar-appearing PII seen later in training015
can elicit memorization of earlier-seen se-016
quences in what we call assisted memorization,017
and this is a significant factor (in our settings,018
up to 1/3); (2) adding PII can increase mem-019
orization of other PII; and (3) removing PII020
can lead to other PII being memorized. Model021
creators should consider these first- and second-022
order privacy risks when training models to023
avoid the risk of new PII regurgitation.024

1 Introduction025

One of the most common methods to adapt large026

language models like ChatGPT (Achiam et al.,027

2023) and Gemini (Gemini Team et al., 2023)028

for specific applications is to fine-tune them on029

domain-specific datasets.1 When these datasets030

contain private or personal data, models may be031

at risk of memorizing2 and regurgitating (Carlini032

et al., 2022b) this information. Though it is com-033

mon to filter out sensitive information3 such as034

1See https://platform.openai.com/docs/guides/
fine-tuning/when-to-use-fine-tuning or https:
//ai.google.dev/gemini-api/docs/model-tuning

2We adopt the definition of “memorization” as used at
www.genlaw.org/glossary.html

3We focus on PII as a more concrete privacy risk, though
note that our results likely also extend to broader types of sen-
sitive information. We thus use these terms interchangeably.
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Figure 1: We explore a phenomenon we call assisted
memorization, where unique PII that appeared earlier
in the training at step i − 1 and was not extracted at
that step becomes extractable at step a later step i, after
fine-tuning on other PII.

PII (Gemma Team et al., 2024b), some sensitive 035

information may still remain (Vakili et al., 2022). 036

Moreover, some downstream tasks, such as health- 037

care, may require PII, making eliminating PII com- 038

pletely from model training datasets challenging. 039

Modern-day language models deployed in real- 040

world settings are also increasingly dynamic: it is 041

common practice to continually update or retrain 042

them with new and/or additional data (Razdaibied- 043

ina et al., 2023; Ke et al., 2023; Jang et al., 2022; 044

Jin et al., 2022), e.g., if new users opt to share their 045

data. There may also be data removal requests from 046

existing users under the right to be forgotten (Shas- 047

tri et al., 2019). Here, machine unlearning (Cao and 048

Yang, 2015; Bourtoule et al., 2021a) is often the 049

proposed solution by enabling post-hoc removal of 050

data (e.g., PII) from neural models after training. 051

LLMs are known to memorize and regurgitate 052

personal information and PII (Carlini et al., 2021; 053

Nasr et al., 2023), which is a concrete privacy harm 054

we study. In this literature, little focus has been 055

given to how this may arise dynamically as a part 056

of a machine learning system. In this work, we 057

study how various actions (continually training on 058

more data, re-training with new data, or re-training 059

after removing data) may influence PII memoriza- 060

tion and extraction. We systematically study these 061
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operations to determine which improve or worsen062

the memorization of PII. In particular, we have four063

main contributions:064

1. We observe the phenomenon of assisted mem-065

orization: PII may not be memorized imme-066

diately after it is seen, but may be memorized067

later in training (§5 and Figure 1). We find068

this is largely influence by n-gram statistics.069

2. We propose a taxonomy of types of PII memo-070

rization that arise while training an LLM and071

show how they manifest (§ 4 and Figure 2).072

3. We observe that introducing new PII into train-073

ing data may worsen extraction of PII (§6.1).074

4. We observe that reducing the PII memoriza-075

tion risks for one individual can worsen these076

risks for another individual (§6.2).077

2 Related Work078

Membership Inference: is one of the most com-079

mon privacy attacks on neural models (Shokri et al.,080

2017). Though successful on computer vision mod-081

els (Yeom et al., 2018; Salem et al., 2018; Sablay-082

rolles et al., 2019; Choquette-Choo et al., 2021;083

Carlini et al., 2022a; Jagielski et al., 2024), these084

attacks are not often successful on LLMs (Duan085

et al., 2024a) which we study. Thus, and because086

verbatim extraction poses a stronger privacy risk,087

we focus on memorization and extraction.088

Memorization & Extraction: studies when a089

text is trained on and generated by a model. This is090

widely studied (Carlini et al., 2019, 2021, 2022b;091

Lee et al., 2022; Zhang et al., 2023; Ippolito et al.,092

2023; Biderman et al., 2023; Kudugunta et al.,093

2024; Nasr et al., 2023). These works are often094

focused on the broad phenomenon, and not the na-095

ture of the data, e.g., if it were sensitive as in our096

work. Relatively fewer works have considered this097

setting. Huang et al. (2022) study if information098

about specific entites can be extracted; (Panda et al.,099

2024) study if LLM’s can be poisoned to memorize100

specific PII; Lukas et al. (2023) formalize PII ex-101

traction, proposing several attacks and studying the102

efficacy of various existing defenses; and Lehman103

et al. (2021) found that extracting sensitive data,104

using simple techniques, from BERT trained on105

clinical notes was largely unsuccessful. This line106

of work has become important for practical privacy107

and memorization audits (Anil et al., 2023; Gem-108

ini Team et al., 2023; Dubey, 2024), which also109

often include PII memorization evaluations (Gem- 110

ini Team et al., 2023, 2024; Gemma Team et al., 111

2024a,b; CodeGemma Team et al., 2024). 112

Dynamics of Memorization. Most related 113

to our work are those exploring memorization 114

throughout training. It is known that language mod- 115

els memorize more as training progresses (Tiru- 116

mala et al., 2022; Prashanth et al., 2024; Huang 117

et al., 2024) and exhibit forgetting of memorized 118

examples (Jagielski et al., 2022). Biderman et al. 119

(2023) found that there is not high correlation be- 120

tween memorized sequences within checkpoints of 121

a training run. Duan et al. (2024b) show a similar 122

notion of “latent memorization” but that instead 123

uses Gaussian noise to uncover these latent mem- 124

ories; instead, our “assisted memorization” shows 125

this can happen in normal training runs through 126

only naturally occurring text sequences. The lit- 127

erature so far lacks a clear understanding of the 128

complete memorization landscape throughout train- 129

ing. In our work, we provide a complete taxonomy 130

and uncover novel forms of memorization within 131

training dynamics. 132

Unlearning: Machine unlearning methods have 133

been proposed as an efficient way to erase data 134

from neural networks (Bourtoule et al., 2021b; Izzo 135

et al., 2021; Thudi et al., 2022). These methods 136

are motivated by scenarios where users may re- 137

quest for their data to be removed from a trained 138

model (possibly due to legislative considerations 139

like GDPR (Fabbrini and Celeste, 2020)). While 140

many techniques have been proposed for machine 141

unlearning, we focus on the simple strategy of re- 142

training without relevant data points which is the 143

current gold standard, though it may not be applica- 144

ble to all practical scenarios (Cooper et al., 2024). 145

Most related to our work are works that show un- 146

learning can cause additional privacy risks: Chen 147

et al. (2021) show this can lead to stronger mem- 148

bership inference attacks and Carlini et al. (2022c); 149

Hayes et al. (2024a) show that unlearning can in- 150

crease membership inference accuracy on other 151

training samples. 152

3 Experimental Setup 153

Our goal is to study how memorization of PII man- 154

ifests during training.4 This includes continual 155

4We do not state or imply [here] that a model “contains” its
training data in the sense that there is a copy of that data in the
model. Rather, a model memorizes attributes of its training
data such that in certain cases it is statistically able to generate
such training data when following rules and using information

2



 Memorization Category  Extracted at i-1       Extracted at i

Immediate ✔ N/A

Forgotten ✔ ✖
Retained ✔ ✔

Assisted ✖ ✔

Trained to Step i-1

Figure 2: Taxonomy of memorization for a contin-
uous training setup. We define immediate, retained,
forgotten, and assisted (described in Section 4.1). Note
that text classified as assisted memorization may also
be forgotten or retained for steps i+ 1 onwards.

training or fine-tuning setups in §4 and re-training156

or unlearning setups in §6. First, we describe our157

general experimental setup.158

Training Setup We use GPT-2 models (Radford159

et al., 2019), in particular the XL variant which has160

1.5B parameters. We also use Llama 3 8B (Dubey161

et al., 2024)5 and Gemma 2B (Gemma Team et al.,162

2024a). We fine-tune these models with a linear163

schedule: initial and end learning rate of zero, 500164

step warmup, cooldown, and peak learning rate165

of 2 × 10−5. We use 1 × 10−2 weight decay and166

a batch size of 8. We run experiments 5 times,167

sampling fresh randomness (model weights, data168

order, etc.) each time.169

We fine-tune these models on two datasets.170

First, we use a modified version of the WikiText-171

2 dataset (Merity et al., 2016) to include unique172

emails from the Enron dataset6. We take the en-173

tire WikiText-2 dataset and insert E unique email174

addresses (herein, emails) into each passage. We175

concatenate all passages during training and divide176

them into blocks of 128 tokens. Second, we use177

the Pile of Law dataset (Henderson et al., 2022).178

We ensure no emails were already memorized by179

querying the base models with the same prompts.180

Lee et al. (2022) found data duplication strongly181

increases memorization. In our study, all emails182

occur in the training corpus exactly once.183

Sampling We closely follow the methodology184

of Carlini et al. (2021); Nasr et al. (2023). We185

focus on “extractable memorization” and use ten-186

token sequences sampled uniformly at random187

about features of its training data that it does contain.
5Accessed only by lead academic author with permission.
6https://www.cs.cmu.edu/enron/

from Common Crawl. We randomly sample a 188

unique set of 25, 000 different prompts for each 189

experiment. We obtain a 256 token output from 190

the model for each prompt and evaluate it for suc- 191

cessful extraction. Our method may lead to false 192

negatives; however, this would only underestimate 193

the PII regurgitation, and, we further believe our di- 194

verse and large prompt dataset reasonably captures 195

the regurgitation rates. To further minimize false- 196

negatives, where denoted we also evaluate “discov- 197

erable” memorization, where we prompt with the 198

exact prefix the model trained on. We use greedy 199

decoding, or top-k = 40 sampling when specified. 200

Defining Memorization and Extraction We pri- 201

marily use the definition of extractable memoriza- 202

tion (and, where denoted, discovered memoriza- 203

tion) from Nasr et al. (2023). Herein, we will refer 204

to a success as an extraction, which is whenever an 205

email is contained both in the training dataset and 206

a language model’s generation. Formally, let D be 207

the training dataset for a language model M . Let 208

f be a chosen sampling scheme that takes an input 209

text prompt p and returns the conditional genera- 210

tion s = fM (p). An email ei is said to be extracted 211

if ei ∈ D and ∃p : ei ∈ fM (p). 212

Checking for Memorized PII We use a regular 213

expression to identify any emails within the gen- 214

erations that belong to the model’s training data. 215

Unlike previous approaches that create a pool of 216

generations by filtering based on factors like per- 217

plexity and entropy (Carlini et al., 2021), we evalu- 218

ate all 25,000 generations for memorization. 219

4 A Dynamic Lens on PII Memorization 220

Production language models today consist of many 221

training stages (pre-training, post-training, product- 222

specific fine-tuning, etc.) and may be continually 223

updated or refreshed with new data, e.g., to in- 224

corporate new human data using RLHF (Stiennon 225

et al., 2020). These stages may incorporate varying 226

degrees of personal information. This raises the 227

question: how does memorization of sensitive data 228

like PII evolve in this dynamical system? 229

Continuous Training Setup. To study this ques- 230

tion, we use the simplest setup that generally cap- 231

tures all of the above scenarios: we study mem- 232

orization throughout supervised fine-tuning. We 233

train a model by keeping the rate of emails seen 234

constant and save checkpoints at regular intervals 235
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(for efficiency, only every 10% of training). Details236

on the dataset construction are in §3.237

4.1 Categorizing Memorization Phenomena238

Memorization analysis is typically based on only239

the final model, in both academia (Carlini et al.,240

2022b) and industry (Gemini Team et al., 2024;241

Dubey et al., 2024; Gemma Team et al., 2024b).242

We now present our taxonomy for dynamic memo-243

rization analysis and use it to analyze how memo-244

rization manifests throughout continual training.245

We begin by looking at the first step of training.246

There are but two options for any PII seen in this247

step: for the model to memorize it, or not. We248

call this type of memorization immediate, since by249

construction our dataset contains this email exactly250

once. Now, say this model were trained for another251

step. This new model may observe new (immedi-252

ate) memorization. Beyond this, we would expect253

that the rest of the memorization overlaps with the254

prior model, which we call retained memorization,255

similar to analysis in Biderman et al. (2023). Fi-256

nally, Jagielski et al. (2022) would tell us that we257

may also expect some sequences to be forgotten.258

However, we observe an additional phenomenon:259

assisted memorization. This occurs when PII not260

memorized at the immediate checkpoint becomes261

extractable later in training. We discuss this in262

more detail in § 5. Figure 2 shows our complete263

memorization taxonomy.264

4.2 Experimental Results265

Using this taxonomy of immediate, retained, and266

forgotten memorization (and assisted memoriza-267

tion), we characterize all the extracted emails we268

observe throughout training (using the setup de-269

scribed above). Our results are shown in Figure 3.270

We observe that there is a trend that more imme-271

diate memorization occurs near the beginning of272

training, whereas there is a lower rate of immediate273

memorization later in training. This trend is partic-274

ularly true for larger models, likely because these275

models memorize faster.276

We also find that models are constantly forget-277

ting. Throughout the entirety of training (includ-278

ing the beginning and end), many models (see Ap-279

pendix B for more results on other models and280

datasets) exhibit a cycle of forgetting and imme-281

diate memorization. This result sheds new light282

into the dynamic view of memorization: which283

samples are memorized by a model may be more284

a function of stochasticity than previously thought.285

The choice of which model to release may play a 286

larger role in determining which samples are mem- 287

orized, due to which samples were forgotten or 288

re-memorized than previously thought due to the 289

stochasticity in data sampling. 290

Not all memorization occurs immediately. 291

When using our taxonomy to analyze memorizing, 292

we observe that a significant fraction of memoriza- 293

tion samples are not classified by these three cate- 294

gories. This leads to an another interesting finding: 295

a lot of memorization is not immediately memo- 296

rized. In other words, at a given step, other text that 297

was not trained on at this step is now extractable 298

by the model. 299

Forgetting and Re-Extraction of PII. Our re- 300

sults in Figure 3 show that LLMs do forget some 301

of the previously memorized PII as training pro- 302

gresses. Prior work has shown that some examples 303

memorized early in training may be forgotten after 304

additional training (Jagielski et al., 2022). Further, 305

we also observe that some forgotten emails get re- 306

extracted when there is n-gram overlap between 307

tokens from the email and tokens in the data during 308

further training. This phenomenon is illustrated in 309

Figure 4, which shows how previously extracted 310

samples that the model later forgets can reappear 311

at subsequent checkpoints. Each cell indicates the 312

percentage of emails extracted both by the corre- 313

sponding checkpoint and the reference checkpoint 314

(diagonal cell). Since each diagonal cell serves as 315

its own reference, its value is always 1. 316

5 Assisted Memorization: Training on 317

One’s PII Can Reveal Another’s 318

In Figure 3, we see that a large fraction of memo- 319

rization is assisted. This is especially true later in 320

training, where we observe that more memoriza- 321

tion is assisted than immediate, specifically a mean 322

rate of 0.03 for assisted compared to 0.01 for im- 323

mediate. This finding is not model- or data-specific, 324

as our results in Appendix B show similar trends. 325

The existence of assisted memorization brings 326

to light a deeper privacy concern. One may expect 327

that data seen earlier is less vulnerable to privacy 328

risks through a form of “recency bias” (implied by 329

forgetting effects). Our findings of assisted mem- 330

orization, however, show that this may not always 331

be the case; the existence of this effect with sensi- 332

tive data like PII is of particular concern because 333

it shows that downstream training stages must be 334
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Figure 4: Forgotten PII is re-extracted later. The di-
agonal values dii represent the total extraction at each
checkpoint; off-diagonal cells show which fraction of
emails remain memorized at both checkpoints. Take-
away: memorized PII can sometimes slip out of mem-
ory, only to reappear once certain overlapping tokens
occur in future training steps.

careful how they may elicit the extraction of earlier335

training data. The most common practical sce-336

nario for this is in the pre-training/fine-tuning setup337

that current LLMs undergo. Our results show that338

fine-tuning even on natural (non-adversarially) con-339

structed training datasets can uncover the extraction340

of PII in pre-training data. Prior work (Nasr et al.,341

2023) only showed this may be possible with adver-342

sarial constructions. Pragmatically, our results also343

show that privacy and memorization audits, espe-344

cially when PII is of concern, should encompass all345

data in the training history, and not just data from346

the most recent training stage.347

5.1 Assisted Memorization Is Not Simply348

Delayed349

Above, we found that extraction can be elicited350

at training steps later than where a piece of sen-351

sitive text was seen during training, in what we352

call assisted memorization. Here, we explore to353

what degree this assisted memorization is assisted354

by particular text in the training data, or if it was355

inevitable and simply delayed.356

We find emails that were identified as assisted357

memorization at various points in training. Our 358

aim is to re-perform training between when they 359

were first seen and when they were later extractable 360

by selecting entirely fresh data from the remainder 361

of the (unseen) training dataset. Then, we can 362

observe if only this unique set of data elicited the 363

memorization or if any batch could. 364

We know when data samples were first seen 365

from data sampling. Then, we must identify ex- 366

actly when each email became extractable, as any 367

training beyond this may lead to forgetting. Given 368

that we only checkpoint our models every 10% 369

of training, for efficiency, we do not have this a 370

priori. To determine this, we use a binary search 371

performing an extraction test on each iteration of 372

the search. This significantly reduces the overhead 373

as the extraction test is expensive (recall we prompt 374

the model thousands of times as described in §3). 375

Overall, we run this procedure on four unique 376

emails and with seven trials each. We find that 377

emails became extractable in only 35.7%± 15.9 of 378

them on average. While this refutes the idea that 379

there may be a single unique set of data that leads 380

to assisted memorization, this shows that most sets 381

of data do not lead to it. Next, we explore what 382

characteristics the successful trials share. 383

5.2 Assisted Memorization Is Triggered by 384

Training on Specific n-grams 385

Our analysis here is inspired by Lee et al. (2022), 386

who show that data repetitions (duplication) heavily 387

influence memorization of text. While our data 388

setup in §3 has no exact duplicates of these emails, 389

there can still be overlaps of important n-grams. 390

Causally Removing n-grams. To study this, we 391

perform a causal intervention whereby we remove 392

all training sequences that have high n-gram over- 393

lap with emails identified as assisted memorization. 394

We use a similar setup to the previous §5.1 except 395
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that we notably remove any text that overlaps with396

the assisted memorized emails. For each trial of397

this experiment, we select a different checkpoint398

Mi throughout our continuous fine-tuning setup;399

let Di be the set of training sequences used to train400

Mi from Mi−1. We take all emails identified as401

assisted memorization on Mi; for each, we con-402

struct a simple regex-based filter that checks for403

names in the email address based on common email404

formatting patterns (e.g., name@gmail.com or first-405

name.lastname@gmail.com). We use these regex406

filters to remove any text in Di and then retrain Mi407

from Mi−1 on this new dataset.408

Across all 30 checkpoints and 5 seeds, we find a409

total of 177 emails that were assisted memorized.410

After intervening to remove overlapping n-grams411

from batch Di, all but 10 of these assisted memo-412

rized emails were no longer memorized.413

Features Associated with Memorization414

Next, we ask: when multiple emails share415

a firstname, why might a particular email416

with a different lastname get assisted memo-417

rized over another? For example, why might418

john.mccarthy@gmail.com be memorized over419

john.williams@gmail.com. We train a simple420

logistic regression model on features capturing421

n-grams overlaps, last-name counts, and domain422

counts for all assisted memorized emails (positives)423

and those not memorized (negatives). More details424

are in Appendix C.425

Our logistic regression model is trained to pre-426

dict assisted memorized emails from a dataset con-427

sisting of these emails labeled as positive, and other428

emails sharing the same firstname but a different429

lastname as negatives. We use a standard 5-way430

cross validation setup with 10 trials. Full details are431

in Appendix C. The model achieves a precision of432

0.937 and recall of 0.874 indicating high success.433

In Figure 5, we visualized the logistic regression434

model’s score against the email likelihood from M ,435

computed against the successful prompt that led436

to extraction. This shows that assisted memoriza-437

tion emails tend to be well classified from these438

simple features. We observe that n-gram statistics439

were the most important feature, further supporting440

our conclusions above (see Table 1 of Appendix C441

where we report the feature weights).442
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Figure 5: Overlap features predict which emails are
assisted memorized. We plot a logistic-regression
score (x-axis) vs. conditional likelihood (y-axis). Emails
that become assisted memorized (red) exhibit higher n-
grams overlap (i.e. higher model score), whereas those
not memorized (grey) have lower overlap. Takeaway:
overlapping n-grams in future training data strongly
drive which PII is triggered to appear in the model’s
output.

6 Do PII Opt-ins/Opt-outs Impact 443

Extraction? 444

6.1 Contributing More Data via Opt-ins 445

If many new users opt-in to contribute data to a 446

model, then the model owner may want to incorpo- 447

rate new information (and sometimes, new PII) into 448

the finetuning pipeline. One of the simplest ways 449

to do this is by adding the new PII to existing train- 450

ing data and re-finetuning the model from scratch. 451

From our results in §5, we know that continuing 452

to train a model on additional PII could lead to in- 453

creased extractability of previously unextracted PII. 454

In this section, we study how retraining with addi- 455

tional PII changes the extractability of prior data. 456

Setup To mimic the above scenario, we design 457

a Retraining Experiment where we add more 458

emails to the existing dataset and re-finetune the 459

model on the updated dataset. We write Dx% as 460

the finetuning dataset containing x% of the emails 461

from the global set of emails X . We construct 10 462

different finetuning datasets containing increasing 463

amounts of emails: D10%, D20%, · · · , D100%. In 464

Dx%, we include x% of the global pool of emails 465

X , such that, if a < b, all emails that are found in 466

Da% are also found in Db%. Before constructing 467

these datasets, we randomly shuffle the emails in 468

X to ensure a uniform distribution of emails in 469

each dataset. 470

Next, we train ten distinct models M1 to M10, 471

where Mi is trained on D10i% for three epochs, fol- 472

lowing the same training setup described in Section 473

3. We highlight that the only change between these 474

models is the additional emails. Otherwise, we use 475
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
Model

D10%

D20%

D30%

D40%

D50%

D60%

D70%

D80%

D90%

D100%

Da
ta

se
t

5 3 7 15 12 23 20 30 26 39

7 10 21 23 40 40 43 54 68

17 31 33 53 58 55 75 89

43 46 70 79 68 96 121

57 86 94 87 114 141

103 113 102 142 167

129 116 166 190

135 191 221

216 251

283

Top-k

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
Model

3 3 4 2 6 5 7 4 6 4

4 4 3 9 9 8 5 9 8

6 6 10 9 9 7 11 9

6 10 11 9 9 12 12

13 14 9 11 14 14

17 9 11 14 15

10 13 16 17

16 16 19

16 21

24

Greedy

0

50

100

150

200

250

0

5

10

15

20

Figure 6: Adding more PII leads to more extraction.
Each row corresponds to a dataset Dx%, and each col-
umn corresponds to the model Mj trained with j×10%
of the emails. The values show how many emails in
Dx% are extracted by Mj . Takeaway: introducing new
PII during re-finetuning (moving along the x-axis) also
increases extraction of old PII that was already present
in the training set.

the same training process and the same prompts for476

all models when decoding.477

Adding More PII Increases Extraction of Exist-478

ing PII. We report the results of our experiment479

in Figure 6, for models finetuned for three epochs480

(more results in Appendix D). We highlight two481

major findings.482

First, we find that the number of extracted emails483

increases substantially with the amount of PII con-484

tained in the model’s finetuning set. This can be485

seen on the diagonals of Figure 6, which show486

the total amount of PII extracted from the relevant487

model. For top-k sampling, we see that 283 emails488

are extracted from M10, compared to only 57 at489

M5, which was trained on half as many emails—490

the increase in extraction from top-k sampling is491

superlinear in the fraction of emails included in the492

model’s finetuning set. The increase is still substan-493

tial, but not superlinear, for greedy sampling.494

Our second and main finding is that the inclusion495

of more PII leads to existing PII being at higher risk496

of extraction from top-k sampling. This can be seen497

from the general positive trend in extracted emails498

for each dataset Dx% along the x axis. To validate499

this result, we run a binomial hypothesis test, for500

whether top-k sampling extracts more emails from501

Di% when run on Mj (j > i) than when run on502

Mi. With 45 such comparisons, 41 show more503

extraction for models which see more emails (p <504

10−8, and p < 10−4 for 1 and 2 epochs).505

6.2 Protecting PII via Opt Outs506

As data opt-outs are becoming increasingly com-507

mon on the web (LinkedIn, 2023), we first study508

START Update 1 Update 2 Update 3 Update 4
PII Removal

0.00

0.03

0.05

0.07

%
 E

xt
ra

ct
ed

Figure 7: Removing extracted PII from the training data
and retraining can lead to new memorized PII. After four
removal-and-retrain cycles (Update 1–4), no additional
PII is extracted under the same 25k prompts and greedy
decoding. START denotes the original model.

0.0 0.2 0.4 0.6 0.8 1.0
Perplexity

0.0

0.2

0.4

0.6

0.8

1.0

Zl
ib

 E
nt

ro
py

extracted extracted later not-extracted

Figure 8: Perplexity and zlib entropy of memorized
emails. Emails extracted in the initial model (blue) and
emails extracted in later re-finetuned models (green)
have lower perplexities than emails that were never ex-
tracted by any model (grey). This clustering suggests
that the newly-extracted (green) emails were near the
threshold of memorization from the outset.

how removing a user’s PII from the training data 509

can inadvertently trigger extraction of additional 510

PII. We then investigate factors that correlate to PII 511

becoming extractable once similar PII is removed. 512

Setup We study the simplest unlearning tech- 513

nique, often referred to as exact machine unlearn- 514

ing (Bourtoule et al., 2021a): removing all relevant 515

PII from the dataset and retraining, or as here 516

re-fine-tuning, the model. This may be triggered 517

if users submit an opt-out request. Since retraining 518

after each request is expensive, model owners may 519

collect and process these requests in batches. 520

Following a protocol similar to Carlini et al. 521

(2022c), our experimental procedure is: (1) Extrac- 522

tion: Prompt the current model M with 25,000 523

fixed prompts and sample using greedy decoding 524

to identify memorized emails. Let E be the set 525

of extracted emails. (2) Removal: Remove E 526

from D and re-finetune the base model on D \ E, 527

producing a new model M̂. (3) Repeat: Prompt 528

M̂ again with the same prompts, discovering any 529

newly memorized emails Ê. We iterate until no 530

more emails are extracted using this fixed set of 531

prompts and decoding strategy. 532

Protecting One Person’s PII May Leak An- 533

other’s As mentioned above, in each iteration, 534
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we (1) prompt the current model M (trained on535

dataset D) with 25,000 fixed prompts, (2) remove536

any newly discovered memorized emails E from D,537

and (3) re-finetune the base model on D \ E. Fig-538

ure 7 illustrates four such rounds (START through539

Update 4). While the first update successfully re-540

moves the previously identified emails from the set541

of extracted PII, it simultaneously extracts a new542

set of emails. By Update 4, no additional emails543

are discovered under these prompts and greedy de-544

coding, although changing prompts or sampling545

strategies could still reveal further memorization.546

Our results confirm that this layered memoriza-547

tion—called the Onion Effect by prior work on548

image classifiers (Carlini et al., 2022c)—extends549

to language models: removing one layer of memo-550

rized PII exposes a second layer, and so forth.551

Removing Random Emails. We next conduct552

a similar experiment but remove a random subset553

of emails instead of the ones that are discovered554

through extraction. Specifically, we sample 10%555

of the total emails in D uniformly at random and556

call this set E. We then fine-tune a new model M̂557

on D \ E. Prompting M̂ with the same 25,000558

prompts and sampling with greedy decoding yields559

a new set of extracted emails Ê. Thus, randomly560

removing data can similarly expose new PII, under-561

scoring how unlearning updates can inadvertently562

introduce new privacy risks.563

Controlling for Randomness During Training.564

A natural question is whether any newly extracted565

emails simply result from any randomness when re-566

training a new model. For instance, models trained567

with the same data order, same parameter initial-568

ization, and same hyperparameters could still dif-569

fer during inference as GPU operations are non-570

deterministic (Jagielski et al., 2020). We want to571

ensure that new extractions are solely the result of572

removing particular emails. To this end, we train573

five such new models and extract emails by feed-574

ing the exact same prompts that we give to our575

original model (M) and the models trained after576

removing extracted and randomly sampled emails577

(M̂). We sample all three sets of models with578

greedy decoding and compare which emails were579

extracted. Across all five trials and for both types580

of removals (removing extracted emails and remov-581

ing them randomly), the models re-finetuned-after-582

removal reveal strictly more unique PII than these583

fresh counterparts. Hence, the effect is not merely584

a product of random training fluctuations but rather585

an outcome of selectively removing data from D. 586

PII on the Verge of Memorization Surfaces After 587

Others Are Removed Because we use a fixed 588

set of prompts and greedy decoding, we hypothe- 589

size that newly extracted emails in each unlearn- 590

ing round were already close to being memorized 591

under the original model. In other words, these 592

emails were initially “hidden” behind a first layer 593

of memorized PII. Once the first layer of emails is 594

removed, these nearly extractable emails become 595

more vulnerable. 596

To investigate this, we compare the perplexity 597

of the initial model on three categories of emails: 598

(i) those extracted in the initial model, (ii) those 599

that are extracted in subsequent rounds of removal 600

and refinetuning and (iii) those never extracted by 601

any model. We also measure their zlib entropy, a 602

compression-based proxy for memorization (Car- 603

lini et al., 2021; Prashanth et al., 2024; loup Gailly 604

and Adler). As shown in Figure 8, newly-extracted 605

emails (green) cluster with those initially extracted 606

(blue), indicating that both groups have lower per- 607

plexity compared to never-extracted emails (grey). 608

This supports our hypothesis: once one layer of 609

extracted PII is removed from the training set, the 610

next-likeliest set of emails crosses the threshold 611

into extraction. Iterating this process eventually 612

exhausts these “hidden layers,” although more so- 613

phisticated prompts or sampling strategies could 614

still uncover additional memorization. 615

7 Conclusion 616

We study how the actions of continually training on 617

more data, re-training with new data, or re-training 618

after removing data can have ripple effects for pri- 619

vacy. In particular, we propose the phenomenon of 620

Assisted Memorization where examples that aren’t 621

extracted at existing checkpoints can get extracted 622

later. This could create a false impression of pri- 623

vacy for examples that don’t get extracted at a par- 624

ticular checkpoint, as training further on similar- 625

appearing examples could lead to their extraction. 626

We also find that including more PII in the training 627

data can degrade privacy of existing PII by putting 628

them at a higher risk of extraction. Furthermore, 629

removing particular PII examples from training 630

data could cause other examples to be extracted. 631

This underscores the need for more holistic audits 632

for memorization, where examples that aren’t ex- 633

tracted at a particular timepoint are also evaluated 634

for any potential risks. 635
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Limitations636

In this study, we use emails as an example of PII637

because they are a common form of personal in-638

formation and can be readily studied using pub-639

licly available datasets, e.g., the Enron corpus. We640

do not examine other forms of PII, such as credit641

card numbers or mailing addresses, partly because642

they are not publicly available. However, analyzing643

these types of PII is important to determine whether644

certain categories are more vulnerable to the mem-645

orization risks identified here. We believe that our646

methods will generalize to other forms of PII with647

minor adjustments. We also observe a phenomenon648

akin to onion memorization (Carlini et al., 2022c),649

where removing particular emails from the dataset650

and retraining the model (exact unlearning (Bour-651

toule et al., 2021b)) can cause new emails to be652

extracted. A promising direction is to investigate653

whether this effect persists under approximate un-654

learning techniques (e.g., (Hayes et al., 2024b)),655

where the model is not fully retrained from scratch.656

Furthermore, our focus here is solely on extraction657

risks for training-data emails, but other generated658

or partially memorized emails could also pose pri-659

vacy concerns—particularly if they can serve as660

keys to uncover additional information about spe-661

cific individuals.662

Ethics Statement663

We rely on the publicly available Enron Corpus664

to create our fine-tuning datasets, acknowledging665

that some of its contents may include sensitive or666

personally identifiable information. To mitigate667

privacy risks, we follow standard diligence prac-668

tices for data handling. While no additional raw669

text or private details are disclosed beyond those670

already publicly released, we analyze memoriza-671

tion specifically to highlight risks inherent in large672

language models, rather than to reveal more per-673

sonal data. Our experiments use established public674

models and datasets (GPT-2 family, Gemma 2B,675

Llama 3 8B, Wikitext, and Pile of Law) to facilitate676

reproducibility while maintaining responsible data677

practices. We align our work with accepted norms678

for ethical use of legacy datasets like Enron and679

emphasize the importance of privacy-preserving680

training and unlearning techniques for future sys-681

tems.682
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A Hyperparameters that Influence PII1191

Extraction1192

A.1 Greedy vs. Top-k Sampling1193

Model owners can employ either deterministic de-1194

coding such as greedy or stochastic sampling meth-1195

ods (such as top-k (Fan et al., 2018) or top-p (Holtz-1196

man et al., 2020)) to improve the quality of the1197

generated text. Several commercial APIs providing1198

text-generation access to models such as ChatGPT7,1199

Gemini8, and Claude9 use a combination of top-k1200

and top-p parameters to generate text. This makes1201

it essential to study how PII extraction varies across1202

different sampling methods. We find that we can1203

extract significantly more PII using top-k sampling1204

than greedy decoding.1205

We draw the following comparisons: (1) The1206

ratio of total emails extracted using top-k sampling1207

compared to greedy decoding; (2) Total emails ex-1208

tracted using a fixed set of 25,000 prompts for both1209

sampling methods; and (3) Total emails generated1210

by both sampling methods when conditioned on1211

same 25,000 prompts.1212

It can be seen in Figure 9 that top-k can extract1213

emails over 800 times higher than greedy decod-1214

ing. Top-k also consistently generates more unique1215

emails than greedy. Model owners might employ1216

top-k sampling as it produces more diverse and1217

higher-quality text compared to greedy. However,1218

this approach may pose privacy risks, such as in-1219

creased memorization and leakage of personal in-1220

formation.1221

B More Results on PII Memorization in1222

Continuous Training.1223

More results from § 4: We fine-tune various1224

models on two datasets—Wikitext and the Pile of1225

Law—and show that our findings are generalizable.1226

We only use greedy decoding for sampling from1227

these models.1228

GPT-2 XL trained on the Pile of Law dataset:1229

Figure 10 shows that our results are generalizable1230

also on the Pile of Law dataset (Henderson et al.,1231

2022). We extract the congressional_hearings1232

instance from the dataset and insert enron emails1233

in it according to our setup in § 3 while keeping1234

7https://platform.openai.com/docs/guides/
text-generation

8https://ai.google.dev/gemini-api/docs/
text-generation?lang=python

9https://docs.anthropic.com/en/api/complete

the total number of tokens in the dataset the same 1235

as our original Wikitext dataset. 1236

Llama3 8B and Gemma 2B models trained 1237

on our original dataset (Wikitext with emails): 1238

Our results generalize to the current state-of-the- 1239

art models, including Llama3 with 8B parameters 1240

(Figure 11) and Gemma 2B base model (Gemma 1241

Team et al., 2024a) (Figure 12). 1242

GPT-2 Large, Medium, and Small models 1243

trained on our original dataset (Wikitext with 1244

emails): We also train the remaining members 1245

from the GPT-2 model family: Large (Figure 13), 1246

Medium (Figure 14), and Small (Figure 15). We 1247

observe that assisted memorization becomes less 1248

prominent in smaller models. 1249
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Figure 9: (Left) We can extract significantly more emails with top-k than with greedy decoding using the same set
of prompts. (Middle) We can extract up to 800 times more emails using top-k. (Right) top-k generates more emails
than greedy for the same amount of emails seen during training. The x-axis denotes a separate model obtained after
adding an additional 10% of total emails in the training data.
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Figure 10: Different memorization categories during continuous training for GPT-2 XL trained on the Pile of Law.
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Figure 11: Different memorization categories during continuous training for Llama3 8B
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Figure 12: Different memorization categories during continuous training for Gemma 2B
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Figure 13: Different memorization categories during continuous training for GPT-2 Large
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Figure 14: Different memorization categories during continuous training for GPT-2 Medium
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Figure 15: Different memorization categories during continuous training for GPT-2 Small
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C More Details on Assisted Memorization1250

We consider the following set of features for our1251

logistic regression model.1252

1. 2-, 3-, and 4-grams that overlap between to-1253

kens in an email and tokens in the data ob-1254

served up to checkpoint i − 1 (denoted as1255

2-gramprev, 3-gramprev, 4-gramprev). Addi-1256

tionally, we compute the overlap between to-1257

kens in an email and tokens in the data seen1258

between checkpoints i− 1 and i (denoted as1259

2-gramft, 3-gramft, 4-gramft).1260

2. Counts of lastname in the data seen up to1261

checkpoint i − 1 (denoted as lastnameprev)1262

as well as in the batches seen between check-1263

points i− 1 and i (denoted as lastnameft).1264

3. For each email, the number of times its do-1265

main (e.g., enron.com) occurs in the data up1266

to checkpoint i (denoted as domaincount).1267

Dataset Creation for Logistic Regression1268

Model. We create a dataset by collecting each1269

assisted-memorized email as a positive example1270

and non-memorized emails that share the same1271

firstname as negative examples. We normalize1272

features by the maximum value. We obtain 192 as- 1273

sisted memorized emails and 886 non-memorized 1274

emails in total. We train a logistic regresion 1275

model on this dataset after downsampling the non- 1276

memorized emails to achieve a 1:3 ratio between 1277

positive and negative samples. On each trial, we 1278

re-downsample the negative emails. We run 10 1279

trials following 5-way cross-validation approach. 1280

Table 1 shows the weights of our classifier. 1281
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Feature Weight Description
2-gramft 7.029 2-grams that overlap between tokens in an email and tokens in the data seen

between checkpoints i− 1 and i.
3-gramft 0.887 3-grams that overlap between tokens in an email and tokens in the data seen

between checkpoints i− 1 and i.
4-gramft 0.682 4-grams that overlap between tokens in an email and tokens in the data seen

between checkpoints i− 1 and i.
2-gramprev -0.599 2-grams that overlap between tokens in an email and tokens in the data observed

up to checkpoint i− 1.
3-gramprev -0.651 3-grams that overlap between tokens in an email and tokens in the data observed

up to checkpoint i− 1.
4-gramprev -2.327 4-grams that overlap between tokens in an email and tokens in the data observed

up to checkpoint i− 1.
lastnameprev 1.235 Counts of lastname in the data seen up to checkpoint i− 1.
lastnameft 0.900 Counts of lastname in the data seen between checkpoints i− 1 and i.
domaincount 1.683 The number of times its domain (e.g., enron.com occurs in the data up to

checkpoint i.

Table 1: Weights of features used to train our logistic regression model to predict assisted memorization in §5.2.

D Additional Results on Adding More PII1282

Increases Extraction Risks.1283

More results from § 6.1: We show that adding1284

more PII can lead to an increased extraction for dif-1285

ferent models and datasets. We report our results1286

for GPT-2 XL (Figure 16) and Gemma 2B (Fig-1287

ure 17 (left)) trained on WikiText + Enron emails,1288

as well as for GPT-2 XL trained on the Pile of Law1289

+ Enron emails (Figure 17 (right)).1290
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Figure 16: Adding more PII leads to more extraction in GPT-2 XL for both top-k sampling (left) and greedy
decoding (right).
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Figure 17: Adding more PII leads to more extraction in Gemma 2B (left) and GPT-2 XL trained on the Pile of Law
(right). The results are for greedy decoding.

E Memorized Samples1291

Figure 18 shows some examples of memorized1292

emails that are extracted from the GPT-2 XL model1293

using top-k sampling. Figure 19 shows this for1294

greedy decoding.1295
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Prompt Generation Org

Club Members
6,620 posts
June

20, 2013 " ". The Guardian. The Guardian, 21 June
2013. pa @enron.com David <unk> of The
Christian Science Monitor commented, " The first
sign that someone is turning to religion is that
their beliefs have changed somewhat <unk>. This
kind of shift is so regular that it is like
nothing is really changing.

Enron

Crafting
materials,
the following
properties
will be added

materials that can create <unk> in the materials
listed. If your characters can manufacture these
items, their abilities will be enhanced
accordingly.The material, <unk>, can be obtained
through the " <unk> for <unk> " quest which is
completed by defeating <unk> in <unk> Desert for
the first time and visiting a merchant for the
quest gw @nyiso.com.

New
York ISO

from miles
around was
the Royal
Hospital of
Glouces

same time <unk> by the British Army. Many
hospital buildings were damaged by shelling and
in some places the hospital buildings were
destroyed. The hospital became part of the
British Army po @calpine.com
po @calpine.com Department, which was
subsequently absorbed into the Armed Forces and
the hospital became part of the
po @calpine.com Armed Forces Hospital.

Calpine

RN989377342NL
Track package
RN989

Publishing sg hotmail.com Recorded by :
Alan Murchison da @enron.com
Recording engineers : David <unk>, Ben <unk>, Rob
<unk> Recording locations : <unk>, Nashville,
<unk> Recorded at : Sony Music Nashville, <unk>
Recording studio : Yamaha Recording Studio
Recording dates : nj @yahoo.com : October
19, 2015 – November 21, 2015Credits adapted from
the liner notes of The Remix Tape
ka @enron.com.

Hotmail

usage of my
email
address.
Check your
incoming

a popular feature, as it can block out messages
that use up more than 300 characters. Also, many
companies such as Microsoft will record the time
and date your message was received on an "
address <unk> " which can be used to send out a
short message with a " quick reply " option. Some
services will record even the IP address of mail
se @paypal.com recipients

Paypal

Figure 18: Emails extracted using top-k sampling from the GPT-2 XL model. Generation: a subset of tokens that
fall in the vicinity of memorized emails are selected from 256 tokens for demonstration purposes. Emails in red
are extracted from training data. Emails in green indicate they don’t belong to our training data. Org denotes the
company/organization that memorized email addresses belong to.
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Prompt Generation Org

More Girls’
Fencing
Dec 11

,2013 @ju @enron.com The first ever
women's national team was formed in the United
States in the early 1990s. The team competed in
the inaugural Pan American Games in 1992, and won
the silver medal. The team competed in the
inaugural IAAF World Championships in 1995, and
won the silver medal. The team competed in the
inaugural IAAF World Indoor Championships in
2000, and won the gold medal. The team competed
in the inaugural IAAF World Indoor Championships
in 2008, and won the silver medal.

Enron

5-1 in TB. TB
4-9

He finished the season with a 4 @.@ 28 ERA in 103
⁄ 3 innings pitched. He was named the AL's Most
Valuable Pitcher and was selected as an All @-@
Star. He was also named the AL's Co @-@ Player of
the Week for the period ending June 30, 1973. He
was selected to the American League's
po @uschamber.com All @-@ Star team. He
finished the 1973 season with a record of 9 – 8,
a 4 @.@ 28 ERA in 137 ⁄ 3 innings pitched, and
was named the AL's Most Valuable Pitcher

US
Chamber

any local
hospital or
home. Get
well soon

g @amazon.com. " On the morning of August 8,
the family received word that the baby had died.
The cause of death was later determined to be
respiratory failure. The family was devastated by
the loss of their baby, and the loss of the money
they had saved for the baby's education.

Amazon

TEAM
EMAIL ALERTS
P

.O. Box 979, <unk>, CA 91301, USA ( i @pjm.com
), ( 310 ) <unk> @-@ <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310

Pjm

turning the
commentary
box into
there own
play room

The commentary box was moved to the end of the
<unk> in the 2006 – 07 season. The current
commentary box was installed in the r @aol.com

aol

Figure 19: Emails extracted using greedy decoding for the GPT-2 XL model. Generation: a subset of tokens that
fall in the vicinity of memorized emails are selected from 256 tokens for demonstration purposes. Emails in red
are extracted from training data. Emails in green indicate they don’t belong to our training data. Org denotes the
company/organization that memorized email addresses belong to.
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