

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CHEMEVAL: A MULTI-LEVEL AND FINE-GRAINED CHEMICAL CAPABILITY EVALUATION FOR LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

The emergence of Large Language Models (LLMs) in chemistry marks a significant advancement in applying artificial intelligence to chemical sciences. While these models show promising potential, their effective application in chemistry demands sophisticated evaluation protocols that address the field's inherent complexities. To bridge this critical gap, we introduce ChemEval, an innovative hierarchical assessment framework specifically designed to evaluate LLMs' capabilities across chemical domains. Our methodology incorporates a distinctive four-tier progression system, spanning from basic chemical concepts to advanced theoretical principles. Sixty-two textual and multimodal tasks are designed to enable researchers to conduct fine-grained analysis of model capabilities and achieve **precise** evaluation via carefully crafted assessment protocols. The framework integrates carefully curated open-source datasets with expert-validated materials, ensuring both practical relevance and scientific rigor. In our experiments, we evaluated the performance of most main-stream LLMs using both zero-shot and few-shot approaches, with carefully designed examples and prompts. Results indicate that general-purpose LLMs, while proficient in understanding chemical literature and following instructions, struggle with tasks requiring deep chemical expertise. In contrast, chemical LLMs perform better in technical tasks but show limitations in general language processing. These findings highlight both the current limitations and future opportunities for LLMs in chemistry. Our research provides a systematic framework for advancing the application of artificial intelligence in chemical research, potentially facilitating new discoveries in the field.¹

1 INTRODUCTION

The advent of large language models has ushered in a transformative era in artificial intelligence, particularly within the domain of natural language processing. The expansive capabilities of these models have not only redefined the boundaries of text generation and understanding (Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023; Achiam et al., 2023) but have also opened new avenues for various domains, such as recommendation (Wu et al., 2024; Yin et al., 2024a; Shen et al., 2024; Han et al., 2024), social (Wang et al., 2019; 2021) and scientific exploration (Beltagy et al., 2019; Hong et al., 2022; Bhattacharjee et al., 2024). Researchers have adeptly employed LLMs to accelerate the pace of scientific research and instigate a transformative shift in scientific research paradigms. The field of chemistry has notably profited from the integration and advancement of LLMs (Yu et al., 2024; Chen et al., 2024; Zhang et al., 2021; Hao et al., 2020), becoming a key area where these sophisticated technologies have delivered substantial advantages. The intricate nature of chemical research, involving complex molecular interactions and reactions, presents unique challenges that LLMs can address through advanced pattern recognition and predictive analytics.

In order to systematically assess the capabilities of LLMs across various domains and identify areas for their potential enhancement, numerous benchmarking initiatives have been introduced. For instance, the MMLU (Hendrycks et al., 2020) covers 57 tasks spanning basic mathematics, American history, computer science, law, and other fields. The XieZhi (Gu et al., 2024) benchmark includes

¹The code and data are available at <https://anonymous.4open.science/r/ChemEval-A26B>.

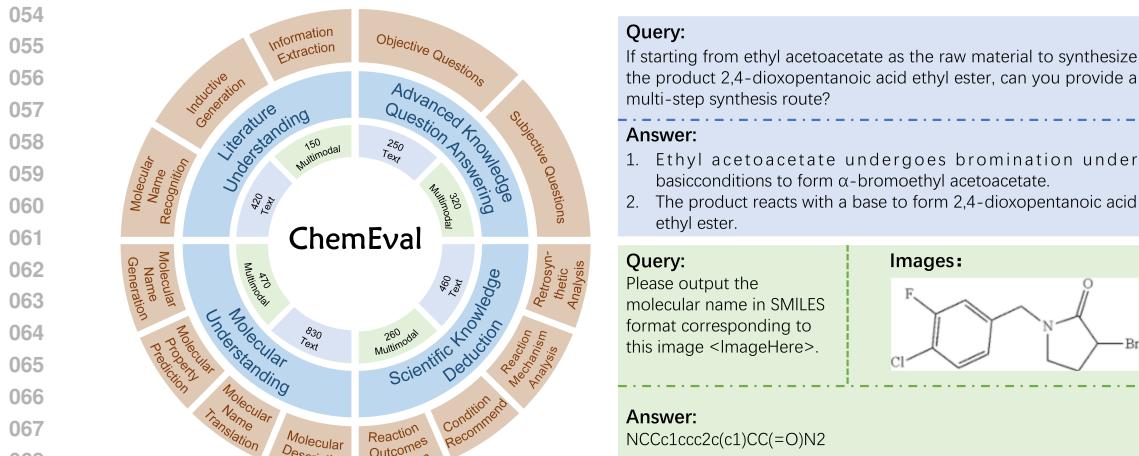


Figure 1: The overview of **ChemEval**. It includes 4 progressive levels, evaluating 13 dimensions of LLMs’ capabilities and featuring 62 distinct chemical tasks that cover a wide range of chemical knowledge, from foundational concepts to advanced topics suitable for graduate-level research.

three major academic categories with 516 specific subjects. However, general benchmarks (Zhong et al., 2023; Huang et al., 2024b) often overlook a detailed assessment of chemical knowledge. Although Sun et al. (2024) introduce SciEVAL as a framework for assessing the competencies of LLMs within the scientific domain, the chemistry-related tasks are overly simplistic and do not adequately capture the depth required. Regarding chemistry domain-specific benchmarks, Guo et al. (2023) propose 8 chemical tasks aimed at assessing understanding, reasoning, and explanation abilities, but the benchmark consists of tasks derived from existing public datasets, which may be insufficient to capture the full spectrum of competencies needed for thorough chemical research. Other studies like (White et al., 2023; Liu et al., 2023) have similar problems. Moreover, existing benchmarks fail to address the capability of LLMs to extract chemical information from text and tables. This limitation prevents them from tackling key issues of interest to chemistry researchers and has not fully met the specialized needs of chemistry.

In light of these considerations, we introduce **ChemEval**, a benchmark designed to address the gap in the [hierarchical](#) assessment framework for LLMs in chemistry by providing a multi-dimensional evaluation. **1). Extensive** tasks are included in ChemEval, which encompasses chemical tasks of interest to researchers that were not included in previous benchmarks. It has four levels, thirteen dimensions, and a total of 62 distinct tasks, covering a vast array of issues within the domain of chemical research. Notably, we innovatively introduce test sets related to information extraction and inductive generation in chemistry. **2). Multimodal** tasks are specifically designed to assess models’ capabilities in understanding and reasoning across diverse chemistry-related data types, including text, molecular structure diagrams, and spectral images. **3). Domain experts** in chemistry have meticulously crafted in-depth task datasets and prompts for ChemEval, partly addressing the previous lack of domain-specific data in chemistry benchmarks. Compared to previous work, our study encompasses a broader range of tasks that are of actual concern in chemical research. It assesses models on a graduated scale of capabilities, from general to domain-specific skills, to determine the model’s proficiency. Our aim is to construct specialized tasks from the perspective of chemical researchers, thereby providing valuable insights for AI researchers and chemists, and improving large language models’ effectiveness in chemical research.

For experiments, we conducted a highly detailed evaluation process, focusing on designing prompts that challenge LLMs, including 0-shot and few-shot settings. We evaluated currently widely used LLMs, including both general LLMs and specialized chemical LLMs, and gained many meaningful insights. This [fine-grained](#) evaluation has revealed that though general LLMs excel in Literature Understanding tasks and possess great instruction-following capability, they struggle with tasks that require a deeper understanding of molecular structures and scientific inference. On the other hand, specialized LLMs generally show improved chemical abilities even when their ability to understand literature and instruction-following capability is diminished. This finding underscores the need for significant improvements in the way LLMs are trained and evaluated for chemical tasks. In addition,

108 we explored the impact of few-shot learning and model size on the performance of large language
109 models and provided corresponding insights. We highlight the contributions of this paper as follows:
110

111 • We have established an open-source benchmark for LLMs in the field of chemistry, which provides
112 a [fine-grained](#) evaluation of their mastery of chemical knowledge as well as their multimodal
113 reasoning capabilities, filling the absence of a holistic benchmark that encompasses the diverse
114 range of tasks within the chemical domain.

115 • We set up 4 progressive levels and access 13 model capability dimensions through 62 tasks in
116 ChemEval, which is developed through extensive discussions and collaborative design with chem-
117 istry researchers, involves constructing novel tasks of interest to chemical researchers and encom-
118 passes the primary focal points of chemical research.

119 • We conducted a [fine-grained](#) evaluation of LLMs in chemical tasks, using various prompt settings
120 to assess both general and specialized LLMs. This revealed significant differences between dif-
121 ferent types of LLMs and identified challenging tasks with potential for optimization. This work
122 offers critical insights to guide researchers in the optimization and application of LLMs, thereby
123 enhancing their effectiveness in chemical research.

124 2 RELATED WORK

125 **126 Large Language Models for Chemistry.** The emergence of Large Language Models (LLMs)
127 has revolutionized Natural Language Processing, with cutting-edge proprietary models like GPT-4o
128 (Hurst et al., 2024) and open-source alternatives such as LLaMA (Touvron et al., 2023) and Qwen
129 (Yang et al., 2024) demonstrating exceptional capabilities across linguistic tasks. However, apply-
130 ing these general models to chemistry reveals significant limitations in domain-specific knowledge.
131 To bridge this gap, researchers have developed specialized approaches: Galactica (Taylor et al.,
132 2022) underwent pre-training on comprehensive scientific corpora, SciGLM (Zhang et al., 2024a)
133 employed strategic fine-tuning with scientific datasets, and ChemCrow (Bran et al., 2023) enhanced
134 performance by integrating expert-designed chemistry tools. Chemistry-focused models, including
135 ChemDFM (Zhao et al., 2024), LLaSMol (Yu et al., 2024), and ChemLLM (Zhang et al., 2024b),
136 incorporate tailored training methodologies, while specialized applications such as Drugchat (Liang
137 et al., 2023) and Drugassist (Ye et al., 2023) specifically address molecular structures and chemical
138 properties. Despite these advancements, achieving comprehensive chemical understanding through
139 LLMs remains a promising frontier for further research and innovation.

140 **141 Large Language Models Evaluations for Chemistry.** The progress made in the field of LLMs is
142 tightly linked to the establishment of robust evaluation frameworks. For general tasks, benchmarks
143 such as MMLU (Hendrycks et al., 2020) and GLUE (Wang et al., 2018) have become standard
144 tools for assessing model capabilities. In the scientific domain, recent initiatives like SciEval (Sun
145 et al., 2024), SceMQA (Liang et al., 2024), and SciAssess (Cai et al., 2024) have been introduced to
146 evaluate scientific reasoning and knowledge. In the chemistry domain, recent benchmarking initia-
147 tives such as ChemLLMbench (Guo et al., 2023), ChemBench (Mirza et al., 2024), and MaCBench
148 (Alampara et al., 2025) have emerged, yet each presents significant limitations: ChemLLMbench
149 covers only eight task categories with unreviewed datasets; ChemBench offers 7,000 samples, but is
150 limited by its reliance on multiple-choice questions, lack of open-ended tasks, and insufficient eval-
151 uation metrics for chemical experiment design tasks such as synthesis pathway recommendations;
152 while MaCBench introduces multimodal evaluation but exhibits similar constraints in task diversity
153 and assessment metrics. The absence of a [precise](#) benchmarking framework impedes LLM advance-
154 ment in chemistry, a field with complex conceptual knowledge and computational challenges. To
155 address this gap, we introduce **ChemEval**, a [precise](#) evaluation framework designed to rigorously
156 assess LLM capabilities across the multifaceted landscape of chemistry.

157 3 CHEMEVAL

158 To fill the absence of a holistic benchmark that encompasses the diverse range of tasks within the
159 chemical domain, we introduce a refined benchmark named **ChemEval** specifically designed to eval-
160 uate the comprehensive capabilities of LLMs within the chemical domain. It not only encompasses

162 text tasks such as literature comprehension and experimental planning, but also incorporates multi-
163 modal tasks, including molecular formula recognition and spectroscopic data analysis. As illustrated
164 in Figure 1, it contains four levels in the field of chemistry, each of which includes several different
165 chemical dimensions, ensuring a **fine-grained** evaluation of LLMs. This framework measures
166 the models’ ability to understand and infer chemical knowledge from a broad range of dimensions
167 through a series of meticulously designed tasks. In the following subsections, we will provide a
168 detailed introduction to the task content and data construction process of ChemEval.

169 3.1 TASK DESCRIPTION

170 3.1.1 ADVANCED KNOWLEDGE QUESTION ANSWERING

171 This segment is pivotal in assessing the models’ proficiency in understanding and applying fundamental
172 chemical concepts, which include *Objective Question* dimension and *Subjective Question* dimension, a total of 15 different tasks. Through a blend of objective and subjective tasks, the
173 Advanced Knowledge Question Answering challenges the models to demonstrate their integrated
174 capabilities in areas of chemical terminology, quantitative analysis and cross-modal reasoning. The
175 tasks within this section are designed to be both comprehensive and diagnostic, providing a clear
176 measure of the models’ readiness to tackle more advanced chemical inquiries.

177 3.1.2 LITERATURE UNDERSTANDING

178 Advanced Knowledge Question Answering is designed to assess the model’s comprehension and
179 mastery of chemical knowledge, while Literature Understanding evaluates the model’s capacity to
180 interpret and assimilate information from chemical literature, which is foundational for subsequent
181 inductive generation tasks. Literature Understanding, which includes the *Inductive Generation*, *In-*
182 *formation Extraction*, and *Molecular Name Recognition* dimensions, comprising a total of 19 tasks,
183 delves into tasks crucial for understanding and extracting meaningful information from the chemi-
184 cal literature. The primary focus is on assessing the LLMs’ ability to comprehend and extract key
185 information from both textual content and image data in chemical literature, enabling the execution
186 of more complex or information-intensive tasks.

187 3.1.3 MOLECULAR UNDERSTANDING

188 This section builds upon the previous foundation to assess the model’s understanding and gener-
189 ative capabilities at the molecular level. It includes 4 dimensions: *Molecular Name Generation*,
190 *Molecular Name Translation*, *Molecular Property Prediction*, and *Molecular Description*, a total
191 of 15 tasks. Molecular Understanding focuses on core tasks in molecular cognition, aiming
192 to evaluate LLMs in molecular formula conversion, structural diagram interpretation, and the
193 description/prediction of molecular properties based on structural and spectroscopic data. These tasks
194 assess the models’ proficiency in interpreting and generating chemical information accurately.

195 3.1.4 SCIENTIFIC KNOWLEDGE DEDUCTION

196 Having established a solid grasp of basic chemical knowledge, the skill to interpret scientific liter-
197 ature, and the capacity to understand molecular structures, we expect that the model will proceed
198 to conduct deeper chemical reasoning and deduction. The Scientific Knowledge Deduction level
199 covers *Retrosynthetic Analysis*, *Reaction Condition Recommendation*, *Reaction Outcome Prediction*
200 and *Reaction Mechanism Analysis*, a total of 13 tasks, which are essential for effective chemical
201 synthesis. This part evaluates the LLMs’ capabilities in retrosynthetic analysis, recommending re-
202 action conditions, predicting reaction outcomes, and analyzing reaction mechanisms. These tasks
203 are essential for efficient chemical synthesis, requiring the model to accurately recognize chemical
204 structures from images and perform complex reasoning and analysis using specific knowledge.

205 3.2 BENCHMARK GENERATION PIPELINE

206 3.2.1 DATA COLLECTION

207 The overall process of benchmark construction is illustrated in Figure 2. Data plays an indispensable
208 role in the realm of LLMs (Yin et al., 2024b). Our data collection is comprised of two components:
209 Open-source Data and Domain-Expert data.

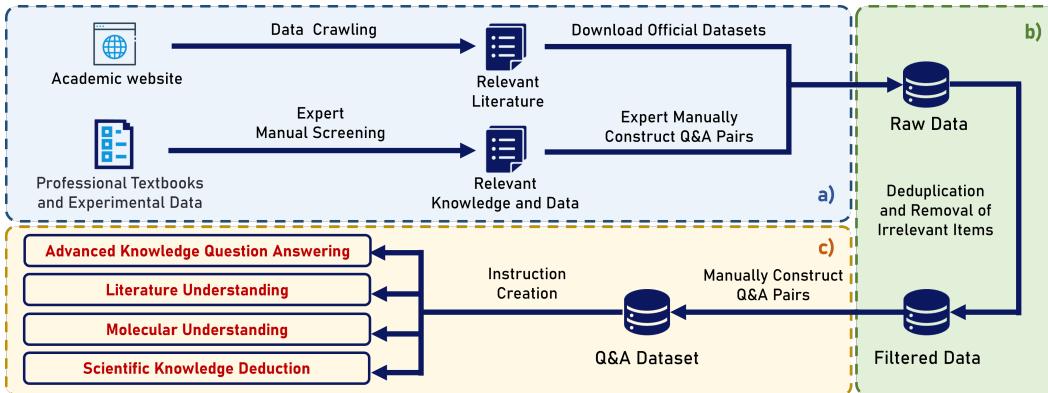


Figure 2: Data collection steps of **ChemEval**. The process is divided into three main steps: a). Data Collection: Raw data is collected from academic websites via web crawling, and experts manually gather data from professional textbooks and experimental data. b). Data Filtering: The raw data undergoes deduplication and removal of irrelevant items to produce filtered data. c). Q&A Pair Construction: Experts manually construct Q&A pairs related to chemistry and create prompt instructions, resulting in four instruction test sets.

For the open-source component, we utilized keywords such as "chemistry", "large language models", "knowledge question answering", and "information extraction" to retrieve relevant publications on chemical language models from academic repositories. We then systematically extracted and codified downstream tasks and their associated datasets from these papers to develop our chemical evaluation framework (Yu et al., 2024; Guo et al., 2023; Edwards et al., 2022; Chen et al., 2023; Guo et al., 2021; Zhou et al., 2023; Fang et al., 2023). Next, we download the official datasets for the downstream tasks, using the presence of an official test set as the main criterion for selection.

Nevertheless, the scope of open-source data is inadequate. To enhance the evaluation's rigor and breadth, we collected extensive domain-expert materials. These raw materials were sourced from: (1) a collection of approximately 500 university-level chemistry textbooks, exercise books, and examinations; and (2) around 9,000 real-world experimental records provided by collaborating laboratories. These resources were then used to manually construct question-answer pairs tailored to specific task types. Crucially, to prevent potential data leakage, materials such as textbook exercises were not directly copied but were used as references by chemistry experts to author new questions based on the target knowledge dimensions and task formats.

3.2.2 DATA PROCESSING

Through our data collection efforts, we obtained a large volume of raw data in the chemical domain. To convert this raw material into reliable benchmarking resources, we implemented a rigorous pipeline of selection, filtration, and task-specific processing.

First, all data underwent a manual filtering process conducted by domain experts. Raw samples were rejected if they were deemed "irrelevant," a category primarily including: (a) Task-irrelevant: data that did not align with our predefined chemical task definitions; (b) Ambiguous questions: items whose phrasing could lead to multiple valid interpretations; (c) Non-unique answers: tasks where multiple reasonable answers existed, but the source material provided only one incomplete or unclear standard; (d) Outdated knowledge: information involving chemical facts that have been subsequently revised; and (e) Duplicates: redundant or highly similar items identified through deduplication. After filtering, our data processing framework operated at three levels:

(1) *Advanced knowledge question answering*. We curated question-answer pairs from the collected undergraduate and postgraduate textbooks and supplementary resources. These pairs span seven major categories—organic chemistry, inorganic chemistry, materials chemistry, analytical chemistry, biochemistry, physical chemistry, and polymer chemistry—ensuring comprehensive coverage of chemical concepts and principles.

270 (2) *Literature understanding*. We extracted relevant passages from scientific publications and paired
 271 them with carefully designed questions and task-specific answers, producing test sets tailored to
 272 downstream applications.

273 (3) *Molecular understanding and scientific reasoning*. By integrating open-source datasets with our
 274 proprietary laboratory data from collaborating institutions, we constructed task sets that strictly align
 275 with the requirements of domain-specific evaluation scenarios.

277 **To ensure the quality and objectivity of the expert-generated data, we implemented a three-tier**
 278 **“Annotation-Review-Final Audit” process. First, a team of undergraduate chemistry students,**
 279 **trained via a standardized SOP manual, performed the initial annotation. Second, a graduate student**
 280 **team checked all annotations for consistency and correctness. Finally, chemistry faculty members**
 281 **conducted a final audit. Standard answers were strictly based on factual content, not subjective cre-**
 282 **ation. Our SOP mandated that any items identified with ambiguity or non-unique answers during**
 283 **this process were culled from the test set to ensure benchmark objectivity and reproducibility.**

284 3.2.3 DATA STATISTICS

286 Through our data processing efforts, we constructed a complete test dataset. As a result of our
 287 rigorous filtering process, approximately 200 items (around 2% of the initial dataset) were discarded
 288 due to ambiguity, non-unique answers, or outdated knowledge.

289 Notably, the test sets for different downstream tasks were cross-checked to remove duplicates with
 290 the training sets of corresponding tasks in open-source domain models, ensuring that there is no
 291 risk of data leakage in the evaluation of different downstream tasks. We also performed internal
 292 deduplication on all collected content. The data volumes are presented in Figure 1, we finally
 293 obtained 3120 evaluation data points.

294 While some of our tasks follow the same settings as existing datasets, we have incorporated nu-
 295 merous additional tasks to construct a more **curated** benchmark for evaluating LLMs’ chemical
 296 capabilities. Specifically, our benchmark comprises 25 tasks sourced from other open datasets and
 297 37 custom-designed tasks developed in-house. Detailed information on data distribution and task
 298 sources can be found in the appendix B.

300 3.2.4 INSTRUCTION CREATION

301 To evaluate the effectiveness of the model, we constructed task-specific prompts and 3-shot task-
 302 specific prompts for text downstream tasks (Wei et al., 2022). For downstream tasks with open-
 303 source datasets, to facilitate evaluation, the evaluation system in this paper strengthens the format
 304 of the output data based on its instructions. For the domain expert-built part, the evaluation system
 305 in this paper will design instructions for task introduction and formatted output according to the
 306 task type, and continuously adjust the instructions based on the return results of GPT-4o, thereby
 307 strengthening the instructions for different self-constructed downstream tasks.

308 3.2.5 METRICS

310 In this study, we utilize a range of evaluation metrics for a fine-grained assessment of LLMs’ per-
 311 formance across diverse tasks. For the majority of tasks, we utilize the F1 score and Accuracy. In
 312 addition, we utilize BLEU (Papineni et al., 2002), Exact Match, Normalized Root Mean Square
 313 Error, Valid Output Ratio, LLMs Score, L2 Score, and Overlap as evaluation metrics for different
 314 tasks to accommodate various task requirements. A detailed introduction to the metrics is provided
 315 in the appendix C.2.

316 4 EXPERIMENT

319 4.1 SETUP

321 To **conduct a fine-grained diagnostic evaluation of LLMs’ chemical capabilities**, our framework
 322 assesses both general and specialized models. For general LLMs, we include OpenAI-o1/o3-mini
 323 (Jaech et al., 2024), GPT-4o (Hurst et al., 2024), Claude-3.7-Sonnet (Anthropic, 2025), Gemini-2.5-
 pro (Team et al., 2023), Qwen2.5-7B/14B/32B/72B (Yang et al., 2024), LLaMA3.3-8B (Touvron

324
325
326
327

Table 1: Performance overview of representative multi-level 0-Shot text tasks on ChemEval. Claude3.7T denotes Claude 3.7-Sonnet-Thinking, whereas Claude3.7N denotes Claude 3.7-Sonnet. For the complete experimental results, please refer to the appendix D.1.

Dimension	Task	Metric	OpenAI-o1	GPT-4o	Claude3.7T	Deepseek-R1	Deepseek-V3	Qwen2.5-72B	LLama3.3-8B	Gemini-2.5-Pro	ChemDFM	ChemLLM	LlaSMol	ChemSpark	Chemcrow
<i>Advanced Knowledge Question Answering</i>															
ObsQA	MCTask	Accuracy	74.00	66.80	62.80	82.40	76.00	40.40	87.60	41.20	24.40	24.00	43.60	58.00	
ObsQA	FBTask	LLM Score	69.92	51.19	45.28	59.41	63.88	53.92	34.17	63.95	24.16	34.97	13.92	24.57	43.14
ObsQA	TFTask	Accuracy	46.00	57.60	58.80	75.20	67.20	58.40	46.00	77.60	46.00	19.20	58.00	50.00	74.00
ObsQA	LLMTask	LLM Score	44.50	52.20	56.70	68.00	71.00	58.50	38.00	72.30	32.20	13.20	14.50	45.50	45.50
SubjQA	CalcTask	LLM Score	78.00	61.80	55.74	76.10	79.20	61.90	82.40	14.70	15.90	7.50	18.50	43.50	
<i>Literature Understanding</i>															
InfoE	CNER	F1	64.56	65.76	60.21	64.14	60.85	61.61	55.34	68.30	41.17	0.16	11.62	71.44	57.46
InfoE	CERC	F1	22.37	25.66	25.19	27.18	24.94	26.05	17.31	25.43	8.74	0.24	1.24	39.27	22.03
InfoE	SubE	Accuracy	73.71	66.32	61.39	75.18	61.26	62.56	64.02	72.05	20.07	0.00	74.38	50.00	
InfoE	AdE	F1	64.67	67.00	79.23	62.67	80.87	84.00	55.81	45.80	0.00	0.00	43.33		
InfoE	SolvE	F1	86.50	85.00	87.60	90.20	88.50	85.00	75.47	83.17	80.50	1.67	0.00	83.79	87.50
InfoE	TempE	F1	70.00	67.00	72.00	65.00	72.00	65.00	62.00	69.00	74.33	3.23	0.00	83.00	65.00
InfoE	TimeE	F1	95.00	95.00	95.00	90.00	90.00	90.00	90.00	90.00	23.10	25.00	95.00	95.00	
InfoE	DecE	Accuracy	92.25	82.09	82.39	93.00	82.53	84.86	92.25	92.25	34.73	0.00	0.00	95.40	71.38
InfoE	CharME	F1	51.67	72.85	81.01	21.33	81.80	74.57	44.18	73.11	27.26	0.00	0.00	12.98	25.00
InfoE	CarTE	F1	95.00	94.00	99.00	100.00	100.00	65.00	96.00	49.00	0.00	5.00	31.00	85.00	
InfoE	YieldE	F1	85.00	79.00	61.00	77.70	63.00	65.00	46.00	74.00	45.00	0.00	5.00	61.00	50.00
InduGen	AIer	LLM Score	63.25	63.00	63.00	64.75	64.75	64.75	67.25	67.25	0.00	5.50	26.25	57.50	
InduGen	OLGen	LLM Score	25.00	35.50	26.50	37.00	27.00	24.25	22.75	39.50	0.00	3.75	31.25	30.50	32.50
InduGen	TopC	Accuracy	55.00	49.00	56.00	57.00	50.00	64.00	32.00	67.00	51.00	0.00	0.00	30.00	45.00
InduGen	ReactTR	F1	25.00	29.00	21.00	28.00	22.00	26.00	31.00	13.00	0.00	5.00	17.00	5.00	
<i>Molecular Understanding</i>															
MNGen	MaNG	Tanimoto (valid)	49.80 (72%)	39.30 (89%)	33.85 (70%)	56.05 (87%)	51.00 (95%)	20.10 (9%)	5.83 (40%)	71.11 (93%)	47.06 (69%)	0.00 (9%)	3.71 (7%)	74.81 (98%)	40.02 (96%)
MNTrans	IUPAC2MF	L2	0.7737	0.5304	0.3252	0.6026	0.6172	0.3407	0.2433	0.8382	0.6119	0.0454	0.0000	0.8807	0.1408
MNTrans	SMILES2MF	L2	0.6330	0.3627	0.3618	0.4446	0.3563	0.2448	0.1728	0.6574	0.6399	0.0375	0.0000	0.8133	0.3088
MNTrans	IUPAC2SMILES	Tanimoto (valid)	29.72 (50%)	34.71 (83%)	31.89 (68%)	30.70 (63%)	46.07 (88%)	15.90 (76%)	5.24 (30%)	61.35 (87%)	46.71 (88%)	0.00 (100%)	4.70 (56%)	87.84 (100%)	25.68 (64%)
MNTrans	Exact Match	F1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.00	0.00
MNTrans	SMILES2IUPAC	B1	3.24	1.96	3.27	4.17	1.67	0.33	0.44	13.55	0.56	0.00	0.00	0.25	0.38
MNTrans	Tanimoto (valid)	9.72 (42%)	13.41 (62%)	9.37 (40%)	16.04 (41%)	16.27 (62%)	11.47 (50%)	17.47 (12%)	13.13 (44%)	2.12 (25%)	0.00 (50%)	0.60 (48%)	87.36 (94%)	9.83 (38%)	
MNTrans	S2S	F1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	46.50	46.00
MOPC	MOPC	Accuracy	67.25	64.57	58.80	53.33	53.11	47.26	63.66	43.00	0.00	0.00	0.00	85.20	0.00
MOPC	MaNG	LLM Score	12.88 (99%)	9.93 (22%)	13.99 (92%)	15.88 (100%)	8.2675 (98%)	13.0756 (100%)	61.42 (62%)	11.7220 (100%)	394.9424 (83%)	179.30 (93%)	29.96 (62%)	1.21 (100%)	0.2400 (38%)
MOPC	MaNG	TimeRec	19.00	7.00	9.80	10.00	13.50	20.80	2.10	0.70	3.10	0.00	0.00	48.90	21.00
<i>Scientific Knowledge Deduction</i>															
ReSyn	SubRec	F1	1.00	0.00	1.46	1.63	2.27	1.06	0.27	0.00	3.99	0.00	0.00	12.37	0.00
ReSyn	PathRec	LLM Score	30.63	22.88	0.36	52.75	37.38	41.13	20.88	43.75	24.13	10.00	38.75	48.75	
ReSyn	SyDyE	NRMSE (valid)	-5.95%	-0.93%	-0.93%	-0.95%	-0.93%	-0.93%	-0.95%	-0.95%	33.00	0.00	0.00	12.70	-0.25%
RCRec	LRec	F1	0.00	13.20	2.00	6.89	2.60	4.40	2.03	0.00	26.00	0.00	0.00	37.60	18.00
RCRec	RRec	F1	25.64	15.80	27.43	21.93	8.35	37.75	8.78	0.73	13.13	0.00	0.50	63.72	36.65
RCRec	SolRec	F1	10.00	20.40	18.80	22.40	24.00	50.40	3.63	0.00	10.53	0.00	0.50	30.40	12.00
RCRec	CafeRec	F1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RCRec	TimeRec	NRMSE (valid)	0.3278 (100%)	0.0245 (100%)	0.2263 (100%)	0.2078 (100%)	0.0206 (100%)	0.0382 (100%)	(-0%)	0.1814 (100%)	0.3811 (99%)	1.1184 (98%)	0.3653 (100%)	0.2742 (100%)	0.2302 (85%)
RCRec	TimeRec	NRMSE (valid)	0.2746 (100%)	0.0248 (100%)	0.3662 (100%)	0.2291 (100%)	0.2579 (100%)	0.2022 (100%)	(-0%)	0.2425 (100%)	0.4732 (100%)	1.1793 (98%)	0.4351 (80%)	0.3937 (100%)	0.5209 (70%)
ROP	PPred	F1	21.33	1.67	12.27	11.97	0.93	1.73	0.00	29.20	18.80	0.00	15.00	56.40	0.00
ROP	VPred	Accuracy	1.10	1.50	1.00	1.00	2.00	2.60	35.50	17.50	7.20	0.00	20.00	1.00	20.00
ROP	Overlap	F1	21.08	13.81	9.06	17.12	17.71	10.71	0.92	27.01	3.79	0.00	3.68	2.90	0.00
RMA	IMDer	LLM Score	80.00	81.50	81.50	79.50	80.50	77.25	81.25	82.25	76.00	4.75	1.50	92.75	28.75

et al., 2023), Grok3 (xAI, 2025), and DeepSeek-V3/R1 (Liu et al., 2024). For chemistry-specific LLMs, we evaluate ChemDFM (Zhao et al., 2024), LlaSMol (Yu et al., 2024), ChemLLM (Zhang et al., 2024b) and ChemSpark². For multimodal chemical tasks, we evaluated mainstream MLLMs, including GPT-4o (Hurst et al., 2024), Claude-3.7-Sonnet (Anthropic, 2025), Qwen-VL Max (Bai et al., 2023), Phi-Vision-3.5 (Abdin et al., 2024), across four levels of multimodal chemistry tasks. We used the official APIs of general models for evaluation and ran the chemistry-specific models on two A40 48GB GPUs. We employed greedy decoding for all LLM inference in our experiments.

To illustrate the capability of LLMs in various chemical tasks, we present their average zero-shot performance across four levels, with detailed results shown in the table 1. To assess their adaptability and in-context learning abilities, we also report three-shot performance across the same levels. Some tasks, such as *Chemical Paper Abstract Generation*, are not included in our three-shot evaluation due to context length limitations.

4.2 PERFORMANCE RESULTS

We evaluate the models’ performance for each task across four assessment Levels. Evaluation results for text tasks are summarized in Table 1, and those for multimodal tasks are summarized in Table 9. Certain models are unable to address specific tasks entirely. For example, LLAMA3.3-8B demonstrates poor instruction-following capabilities in TempRec task in the 0-shot setting, which significantly impairs its ability to generate responses based on task prompts. Consequently, we are unable to provide numerical results for the tasks affected by this limitation. We further discuss the key findings of our benchmark and analyze how different LLM configurations influence performance, offering practical insights for the development of chemistry-specific benchmarks.

Basic Knowledge. Within the level of Advanced Knowledge Question Answering, the results reveal that OpenAI-o1 exhibits superior performance in objective questions, and Gemini outperforms other models in subjective questions, which indicates the importance of reasoning ability in Q&A questions. Additionally, general LLMs like GPT-4o and Qwen2.5-72B also perform well in literature understanding. However, chemistry-specialized models (except ChemSpark) struggle with

²<https://www.modelscope.cn/models/iflytek/Spark-Chemistry-X1-13B>

378
379
380
381
382

Table 2: 3-shot performance changes on text tasks relative to 0-shot in ChemEval. The symbols and accompanying values show performance changes compared to 0-shot, where '↑' indicates an increase, '↓' a decrease, and '-' no change. The three values in the last column (↑, ~, ↓) represent the number of tasks that show a significant increase, remain unchanged, and significantly decrease.

Task Metric	SATask LLM Score	CalcTask LLM Score	SubE Accuracy	TempE F1	ProdE Accuracy	ReactTR F1	MolPC Accuracy	LRec F1	PathRec LLM Score	RatePred Overlap	Change (↑, ~, ↓)
OpenAI-01	68.50 ↑4.00	78.50 ↑0.50	78.01 ↑4.30	75.00 ↑5.00	91.48 ↑1.23	60.00 ↑35.00	71.60 ↑4.10	18.00 ↑18.00	40.63 ↑10.01	14.41 ↑6.67	(9, 0, 1)
GPT-4o	61.00 ↓2.20	59.10 ↓2.70	65.93 ↓0.39	73.00 ↓6.00	86.88 ↑0.79	71.00 ↑39.00	68.55 ↓3.98	15.60 ↑2.40	25.00 ↑2.13	20.27 ↑6.47	(7, 0, 3)
Gemini-2.5-Pro	70.00 ↓2.00	81.60 ↓0.80	76.29 ↓4.24	77.00 ↑8.00	93.75 ↓0.93	59.00 ↑28.00	67.62 ↓3.99	0.00	43.00 ↓0.75	29.08 ↓2.06	(6, 1, 3)
Deepseek-v3	70.40 ↓1.30	77.40 ↓1.80	75.78 ↑14.51	80.00 ↑8.00	91.75 ↑4.23	46.00 ↑18.00	55.79 ↑7.06	11.60 ↑4.00	24.00 ↑13.38	13.45 ↑4.26	(6, 0, 4)
Qwen2.5-72B	60.80 ↓2.30	61.61 ↓0.29	70.10 ↑7.54	80.00 ↑15.00	84.05 ↓0.81	61.00 ↑39.00	56.87 ↓8.74	16.40 ↑12.00	33.38 ↓7.75	15.82 ↓5.10	(7, 0, 3)
Llama3.3-8B	29.00 ↓9.40	19.70 ↓8.30	57.71 ↓6.31	69.00 ↓7.00	73.26 ↓1.28	39.00 ↑13.00	53.20 ↓5.95	2.40 ↑0.27	17.88 ↓3.00	14.29 ↓7.38	(5, 0, 5)
ChemDFM	30.50 ↓1.70	16.40 ↓1.70	20.04 ↑0.03	41.00 ↓33.33	8.83 ↓25.90	26.00 ↑13.00	56.65 ↓4.70	12.49 ↓13.51	28.75 ↑4.63	17.46 ↓13.67	(4, 0, 6)
ChemLLM	11.50 ↓1.70	35.46 ↑19.56	0.00	1.53 ↓11.70	0.00	0.00	0.00	0.00	6.75 ↓4.13	0.00	(1, 6, 3)
LiaMol	23.50 ↓9.00	68.37 ↓160.87	0.00	0.00	0.00	0.00 ↓5.00	40.00 ↓6.50	0.00	17.50 ↑7.50	0.00 ↓3.68	(3, 4, 3)
ChemSpark	31.60 ↓2.00	15.80 ↓2.70	72.86 ↓1.52	80.00 ↓3.00	98.40 ↑4.00	32.00 ↑15.00	82.88 ↓2.68	16.80 ↓20.80	27.00 ↓11.75	11.03 ↓8.13	(3, 0, 7)

390
391
392
393general tasks, highlighting instruction fine-tuning challenges, which suggests that general LLMs succeed [stem from](#) superior document comprehension and reasoning abilities.394
395
396
397
398
399
400
401**Chemical Expertise.** As for Molecular Understanding, ChemSpark stands out in these tasks demanding an in-depth grasp of chemical molecules. Most models perform poorly in molecular name translation due to a lack of formatting constraints in their outputs, owing to the complexity of molecular expressions. ChemSpark’s advantage [be attributed to](#) training on diverse chemical literature with various molecular formula formats. Besides, we observed that when confronted with complex tasks requiring quantitative calculations, models tend to provide overly cautious responses, such as “quantification software (Gaussian, ORCA, etc.) is needed” or “cannot determine from a 2D structure,” which significantly reduces the practical value of their answers.402
403
404
405
406
407
408
409
410
411
412
413
414**Chemistry-specialized LLMs.** Compared to general LLMs, specialized chemistry models show distinct patterns: 1). *Drawbacks:* Chemical LLMs [notably lower](#) in advanced knowledge answering and literature comprehension, suggesting catastrophic forgetting during fine-tuning compromises their foundational language processing capabilities. 2). *Advantages:* Chemical models excel in tasks requiring specialized terminology and molecular properties. General models perform adequately on simpler tasks but struggle with complex chemical knowledge processing and inference. 3). *Instruction-following ability:* Chemistry-specific LLMs demonstrate significantly lower instruction-following capability than general LLMs, likely due to limited exposure to diverse tasks during training. Without output format restrictions, these models default to patterns matching their fine-tuning data, sometimes producing interpretable results where format-constrained prompts are removed, though with uncertain accuracy. This instruction-following deficiency [could significantly impact](#) the practical utility of these specialized models despite their domain expertise.415
416

4.2.2 FACTORS AFFECTING MODEL PERFORMANCE IN CHEMISTRY TASKS

417
418
419
420
421
422
423
424**The influence of few-shot.** Our experiment results of ICL are shown in Table 2. Few-shot prompting [influence](#) model performance across different tasks. General LLMs [tended to benefit](#) from few-shot examples, especially in subjective question answering and literature understanding. In contrast, specialized chemistry models often show performance decreases with few-shot prompting, which may be attributed to catastrophic forgetting of ICL capabilities during task-specific fine-tuning. For complex chemistry-specific tasks, performance variations remain minimal across all models, reflecting the inherent difficulty of these tasks and limitations in capturing expert-level chemical reasoning.425
426
427
428
429
430
431**The impact of model scaling.** We conducted experiments on Qwen2.5 models of different sizes. The results, as shown in Table 3, indicate a [trend](#) that increasing model size [correlates with](#) improves performance in most tasks, with notable gains in advanced knowledge Q&A and literature understanding. However, molecular understanding and scientific knowledge deduction tasks show minimal improvement as the model scales. Tasks requiring specialized chemical knowledge (e.g., IUPAC2SMILES, CatRec) remain challenging despite parameter increases, with some tasks like MolPC even showing performance declines. This suggests that model scaling alone is insufficient for complex chemical tasks without specialized training data.

432

433

434

Table 3: The impact of model scaling on task performance.

435

436

437

438

439

440

Task Metric	MCTask Accuracy	SATask LLM Score	CalcTask LLM Score	CharME F1	CatTE F1	MolPC Accuracy	CatRec F1	PPred F1	YPred Accuracy
Qwen2.5-7B	59.60	50.80	43.60	43.00	64.00	64.04	0.00	0.00	67.00
Qwen2.5-14B	64.80	57.20	50.80	67.92	75.00	64.22	0.00	0.00	33.50
Qwen2.5-32B	67.20	58.10	57.40	79.42	100.00	67.70	0.00	0.53	85.00
Qwen2.5-72B	67.20	58.50	61.90	74.57	100.00	48.13	0.00	1.73	26.00

441

442

443

444

445

446

447

448

449

450

The impact of thinking models. While intuitively it may seem that thinking models possess stronger reasoning capabilities and might benefit in complex chemical tasks, our experimental comparison of OpenAI-o1 versus GPT-4o and DeepSeek-R1 versus DeepSeek-V3 reveals a more nuanced reality. Although thinking models occasionally excel in specific tasks such as reaction product prediction, they demonstrate comparable performance to general models across most chemical tasks, with each architecture exhibiting distinct strengths in different tasks. Additionally, when prompted to employ chain-of-thought reasoning, some models declined to respond to certain tasks, citing insufficient information to formulate complete answers. **We consider that** the primary limitation in addressing sophisticated chemical challenges lies not in long reasoning ability but rather in insufficient domain-specific knowledge.

451

452

453

454

455

456

457

Stability analysis. As illustrated in the Table 12, we conducted robustness testing on multiple models and analyzed the stability of metrics across various tasks in the benchmark. The results demonstrate that the standard deviation for the vast majority of metrics does not exceed 5.0, indicating consistent performance across evaluations. These results collectively indicate that our evaluation framework is robust, providing consistent and reliable assessments of system performance.

458

4.2.3 MULTIMODAL CHEMISTRY TASKS

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

The Table 9 illustrates the performance of mainstream multimodal large language models on ChemEval’s multimodal tasks. Entries marked as '-' indicate instances where models failed to generate meaningful responses. Examining results across both Advanced Knowledge QA and Literature Understanding levels reveals that while most models demonstrate satisfactory performance on elementary tasks such as molecular formula identification, they exhibit **notable limitations** when confronted with more sophisticated challenges involving chemical reaction pathways or molecular properties, as evidenced in Pathway Parsing and Multiple Choice tasks. The performance degradation becomes even more pronounced in Molecular Understanding and Scientific Knowledge Deduction tasks, where models demonstrate considerable difficulty. These advanced tasks present a multifaceted challenge, requiring models to accurately recognize molecular structures and reaction equations from visual inputs while leveraging comprehensive chemical domain knowledge to formulate correct responses. **This combination presents a considerable challenge to the models’ integrated capabilities.** It is worth noting that our evaluation exclusively assessed general-purpose multimodal large language models, without including specialized multimodal models designed specifically for chemical applications. Given that multimodal capabilities are increasingly crucial in chemical research, we think of this as a critical area **that warrants further investigation** and development.

474

475

5 LIMITATIONS AND FUTURE WORKS

476

477

478

479

480

481

482

483

484

485

Although ChemEval addresses a critical gap in evaluating LLMs in the chemistry domain by covering a wide range of chemical tasks and providing a valuable reference for model capability assessment and research applications, several limitations remain in practice. First, due to limited integration with professional molecular simulation tools and other chemical software, LLMs still struggle with complex molecular structure computations and high-precision optimization tasks, restricting their applicability in advanced scientific research. Second, LLMs may generate toxic, harmful, or illegal content, posing safety and ethical concerns and underscoring the need for strict oversight of generated outputs. Addressing these issues will require deeper integration of LLMs with specialized chemical tools and the implementation of robust content safety mechanisms to further enhance the reliability and security of ChemEval and LLMs in chemistry. For future development of ChemEval, we plan to involve chemical experts in manually evaluating LLM outputs to improve reliability and

486 alignment with human judgment. Additionally, we aim to explore integrating end-to-end agents
 487 (Huang et al., 2024a) to enhance LLMs' domain understanding and reasoning capabilities for ad-
 488 vanced chemical research.

490 6 CONCLUSION

492 In this paper, we presented ChemEval, a [fine-grained](#) benchmark for evaluating LLMs on chemical
 493 tasks across four assessment levels. Our experiments show that while general-purpose LLMs ex-
 494 cel in literature understanding and benefit from scaling and few-shot prompting, they struggle with
 495 molecular understanding and scientific knowledge inference. Chemistry-specialized models exhibit
 496 advantages in terminology and molecular property tasks but face challenges such as catastrophic for-
 497 getting and weaker instruction-following ability. These findings highlight that improvements in pa-
 498 rameter scaling or reasoning depth alone are insufficient to address complex chemical tasks. Instead,
 499 progress requires tighter integration of LLMs with domain-specific knowledge, chemical simulation
 500 tools, and multimodal data. We hope ChemEval provides both a rigorous evaluation framework and
 501 a foundation to inspire the development of chemistry-aware LLMs, ultimately driving advances in
 502 chemical research and accelerating the integration of artificial intelligence into the natural sciences.

503 REFERENCES

504 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
 505 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
 506 Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dong-
 507 dong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang
 508 Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit
 509 Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao,
 510 Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin
 511 Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
 512 Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden,
 513 Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong
 514 Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro
 515 Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-
 516 Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo
 517 de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim,
 518 Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla,
 519 Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua
 520 Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp
 521 Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Ji-
 522 long Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan,
 523 Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan
 524 Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your
 525 phone, 2024. URL <https://arxiv.org/abs/2404.14219>.

526 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 527 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 528 report. *arXiv preprint arXiv:2303.08774*, 2023.

529 Nawaf Alampara, Mara Schilling-Wilhelmi, Martíño Ríos-García, Indrajeet Mandal, Pranav
 530 Khetarpal, Hargun Singh Grover, N. M. Anoop Krishnan, and Kevin Maik Jablonka. Probing
 531 the limitations of multimodal language models for chemistry and materials research, 2025. URL
 532 <https://arxiv.org/abs/2411.16955>.

533 Anthropic. Claude 3.7 sonnet. <https://www.anthropic.com/clause/sonnet>, 2025.

534 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
 535 Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
 536 ization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.

537 Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific text.
 538 *arXiv preprint arXiv:1903.10676*, 2019.

540 Bishwaranjan Bhattacharjee, Aashka Trivedi, Masayasu Muraoka, Muthukumaran Ramasubramanian, Takuma Udagawa, Iksha Gurung, Rong Zhang, Bharath Dandala, Rahul Ramachandran, Manil Maskey, et al. Indus: Effective and efficient language models for scientific applications. *arXiv preprint arXiv:2405.10725*, 2024.

544

545 Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. *arXiv preprint arXiv:2304.05376*, 2023.

546

548 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are 549 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

550

552 Hengxing Cai, Xiaochen Cai, Junhan Chang, Sihang Li, Lin Yao, Changxin Wang, Zhifeng Gao, Yongge Li, Mujie Lin, Shuwen Yang, et al. Sciassess: Benchmarking llm proficiency in scientific 553 literature analysis. *arXiv preprint arXiv:2403.01976*, 2024.

554

555 Linqing Chen, Weilei Wang, Zilong Bai, Peng Xu, Yan Fang, Jie Fang, Wentao Wu, Lizhi Zhou, Ruiji Zhang, Yubin Xia, et al. Pharmgpt: Domain-specific large language models for bio- 556 pharmaceutical and chemistry. *arXiv preprint arXiv:2406.18045*, 2024.

557

559 Ziqi Chen, Oluwatosin R Ayinde, James R Fuchs, Huan Sun, and Xia Ning. G 2 retro as a two- 560 step graph generative models for retrosynthesis prediction. *Communications Chemistry*, 6(1): 561 102, 2023.

562

563 Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation 564 between molecules and natural language. *arXiv preprint arXiv:2204.11817*, 2022.

565

566 Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and 567 Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language 568 models. *arXiv preprint arXiv:2306.08018*, 2023.

569

570 Zhouhong Gu, Xiaoxuan Zhu, Haoning Ye, Lin Zhang, Jianchen Wang, Yixin Zhu, Sihang Jiang, 571 Zhuozhi Xiong, Zihan Li, Weijie Wu, et al. Xiezhi: An ever-updating benchmark for holistic 572 domain knowledge evaluation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 18099–18107, 2024.

573

574 Jiang Guo, A Santiago Ibanez-Lopez, Hanyu Gao, Victor Quach, Connor W Coley, Klavs F Jensen, 575 and Regina Barzilay. Automated chemical reaction extraction from scientific literature. *Journal 576 of chemical information and modeling*, 62(9):2035–2045, 2021.

577

578 Taicheng Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh Chawla, Olaf Wiest, Xiangliang 579 Zhang, et al. What can large language models do in chemistry? a comprehensive benchmark on 580 eight tasks. *Advances in Neural Information Processing Systems*, 36:59662–59688, 2023.

581

582 Yongqiang Han, Hao Wang, Kefan Wang, Likang Wu, Zhi Li, Wei Guo, Yong Liu, Defu Lian, 583 and Enhong Chen. Efficient noise-decoupling for multi-behavior sequential recommendation. In *Proceedings of the ACM on Web Conference 2024*, pp. 3297–3306, 2024.

584

585 Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen, and 586 Cheekong Lee. Asgn: An active semi-supervised graph neural network for molecular property 587 prediction. In *Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 731–752, 2020.

588

589 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and 590 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.

591

592 Zhi Hong, Aswathy Ajith, Gregory Pauloski, Eamon Duede, Kyle Chard, and Ian Foster. The 593 diminishing returns of masked language models to science. *arXiv preprint arXiv:2205.11342*, 2022.

594 Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
 595 Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. *arXiv*
 596 *preprint arXiv:2402.02716*, 2024a.

597

598 Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
 599 Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese eval-
 600 uation suite for foundation models. *Advances in Neural Information Processing Systems*, 36,
 601 2024b.

602 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 603 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 604 *arXiv:2410.21276*, 2024.

605 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 606 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 607 *preprint arXiv:2412.16720*, 2024.

608

609 Youwei Liang, Ruiyi Zhang, Li Zhang, and Pengtao Xie. Drugchat: towards enabling chatgpt-like
 610 capabilities on drug molecule graphs. *arXiv preprint arXiv:2309.03907*, 2023.

611 Zhenwen Liang, Kehan Guo, Gang Liu, Taicheng Guo, Yujun Zhou, Tianyu Yang, Jiajun Jiao, Renjie
 612 Pi, Jipeng Zhang, and Xiangliang Zhang. Scemqa: A scientific college entrance level multimodal
 613 question answering benchmark. *arXiv preprint arXiv:2402.05138*, 2024.

614

615 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 616 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 617 *arXiv:2412.19437*, 2024.

618 Shengchao Liu, Jiongxiao Wang, Yijin Yang, Chengpeng Wang, Ling Liu, Hongyu Guo, and
 619 Chaowei Xiao. Chatgpt-powered conversational drug editing using retrieval and domain feed-
 620 back. *arXiv preprint arXiv:2305.18090*, 2023.

621

622 Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu, Martíño Ríos-García, Benedict Emoek-
 623 abu, Aswanth Krishnan, Tanya Gupta, Mara Schilling-Wilhelmi, Macjonathan Okereke, Anagha
 624 Aneesh, Amir Mohammad Elahi, Mehrdad Asgari, Juliane Eberhardt, Hani M. Elbeheiry,
 625 María Victoria Gil, Maximilian Greiner, Caroline T. Holick, Christina Glaubitz, Tim Hoffmann,
 626 Abdelrahman Ibrahim, Lea C. Klepsch, Yannik Köster, Fabian Alexander Kreth, Jakob Meyer,
 627 Santiago Miret, Jan Matthias Peschel, Michael Ringleb, Nicole Roesner, Johanna Schreiber,
 628 Ulrich S. Schubert, Leanne M. Stafast, Dinga Wonanke, Michael Pieler, Philippe Schwaller,
 629 and Kevin Maik Jablonka. Are large language models superhuman chemists?, 2024. URL
<https://arxiv.org/abs/2404.01475>.

630

631 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 632 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 633 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 27730–27744, 2022.

634

635 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 636 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association*
 637 *for Computational Linguistics*, pp. 311–318, 2002.

638

639 Tingjia Shen, Hao Wang, Jiaqing Zhang, Sirui Zhao, Liangyue Li, Zulong Chen, Defu Lian, and
 640 Enhong Chen. Exploring user retrieval integration towards large language models for cross-
 641 domain sequential recommendation. *arXiv preprint arXiv:2406.03085*, 2024.

642

643 Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan Shen, Baocai Chen, Lu Chen, and Kai
 644 Yu. Scieval: A multi-level large language model evaluation benchmark for scientific research.
 645 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 19053–19061,
 2024.

646

647 Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
 648 Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for
 649 science. *arXiv preprint arXiv:2211.09085*, 2022.

648 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 649 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 650 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

651

652 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 653 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 654 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

655

656 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
 657 Glue: A multi-task benchmark and analysis platform for natural language understanding. *arXiv*
 658 *preprint arXiv:1804.07461*, 2018.

659

660 Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu, and Wen Su.
 661 Mcne: An end-to-end framework for learning multiple conditional network representations of
 662 social network. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge*
 663 *discovery & data mining*, pp. 1064–1072, 2019.

664

665 Hao Wang, Defu Lian, Hanghang Tong, Qi Liu, Zhenya Huang, and Enhong Chen. Hypersorec:
 666 Exploiting hyperbolic user and item representations with multiple aspects for social-aware rec-
 667 ommendation. *ACM Transactions on Information Systems (TOIS)*, 40(2):1–28, 2021.

668

669 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 670 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 671 *neural information processing systems*, 35:24824–24837, 2022.

672

673 David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
 674 ology and encoding rules. *Journal of chemical information and computer sciences*, 28(1):31–36,
 675 1988.

676

677 Andrew D White, Glen M Hocky, Heta A Gandhi, Mehrad Ansari, Sam Cox, Geemi P Wellawatte,
 678 Subarna Sasmal, Ziyue Yang, Kangxin Liu, Yuvraj Singh, et al. Assessment of chemistry knowl-
 679 edge in large language models that generate code. *Digital Discovery*, 2(2):368–376, 2023.

680

681 Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
 682 Zhu, Hengshu Zhu, Qi Liu, et al. A survey on large language models for recommendation. *World*
 683 *Wide Web*, 27(5):60, 2024.

684

685 Team xAI. Grok. <https://x.ai/>, 2025.

686

687 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 688 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 689 *arXiv:2412.15115*, 2024.

690

691 Geyan Ye, Xibao Cai, Houtim Lai, Xing Wang, Junhong Huang, Longyue Wang, Wei Liu, and
 692 Xiangxiang Zeng. Drugassist: A large language model for molecule optimization. *arXiv preprint*
 693 *arXiv:2401.10334*, 2023.

694

695 Mingjia Yin, Hao Wang, Wei Guo, Yong Liu, Suojuan Zhang, Sirui Zhao, Defu Lian, and Enhong
 696 Chen. Dataset regeneration for sequential recommendation. In *Proceedings of the 30th ACM*
 697 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 3954–3965, 2024a.

698

699 Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong Liu, Ruiming
 700 Tang, Defu Lian, and Enhong Chen. Entropy law: The story behind data compression and llm
 701 performance. *arXiv preprint arXiv:2407.06645*, 2024b.

702

703 Botao Yu, Frazier N Baker, Ziqi Chen, Xia Ning, and Huan Sun. Llasmol: Advancing large language
 704 models for chemistry with a large-scale, comprehensive, high-quality instruction tuning dataset.
 705 *arXiv preprint arXiv:2402.09391*, 2024.

706

707 Dan Zhang, Ziniu Hu, Sining Zhoubian, Zhengxiao Du, Kaiyu Yang, Zihan Wang, Yisong Yue,
 708 Yuxiao Dong, and Jie Tang. Sciglm: Training scientific language models with self-reflective
 709 instruction annotation and tuning. *arXiv preprint arXiv:2401.07950*, 2024a.

702 Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang,
703 Xiangyu Yue, Dongzhan Zhou, et al. Chemllm: A chemical large language model. *arXiv preprint*
704 *arXiv:2402.06852*, 2024b.

706 Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph self-
707 supervised learning for molecular property prediction. *Advances in Neural Information Processing*
708 *Systems*, 34:15870–15882, 2021.

710 Zihan Zhao, Da Ma, Lu Chen, Liangtai Sun, Zihao Li, Hongshen Xu, Zichen Zhu, Su Zhu, Shuai
711 Fan, Guodong Shen, et al. Chemdfm: Dialogue foundation model for chemistry. *arXiv preprint*
712 *arXiv:2401.14818*, 2024.

714 Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
715 Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
716 models. *arXiv preprint arXiv:2304.06364*, 2023.

717 Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
718 Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
719 2023.

722 A CHEM EVAL TASKS

725 In order to systematically evaluate the multifaceted capabilities of large language models in the
726 domain of chemistry, we propose a multi-level and fine-grained evaluation framework that encom-
727 passes a broad spectrum of chemical knowledge and reasoning tasks. This framework is delineated
728 into four primary categories: Advanced Knowledge Question Answering, Literature Understanding,
729 Molecular Understanding, and Scientific Knowledge Deduction. Each of these categories represents
730 a progressively sophisticated level of chemical problem-solving, ranging from the assessment of
731 fundamental chemical concepts and literature comprehension to molecular-level reasoning and high-
732 level scientific deduction. The constituent tasks within each category are meticulously designed to
733 interrogate specific competencies, such as objective and subjective answering, information extrac-
734 tion, inductive generation, molecular property prediction, and retrosynthetic analysis. Collectively,
735 this comprehensive benchmark offers a granular and holistic evaluation of LLMs’ proficiency in
736 both the understanding and application of chemical knowledge, thereby illuminating their potential
737 utility and limitations in diverse chemical informatics applications.

738 A.1 ADVANCED KNOWLEDGE QUESTION ANSWERING

740 This segment is pivotal in assessing the models’ proficiency in understanding and applying funda-
741 mental chemical concepts, which include *Objective Question* dimension and *Subjective Question*
742 dimension, total 15 different tasks. Through a blend of objective and subjective tasks, the Advanced
743 Knowledge Question Answering component challenges the models to demonstrate their insight in
744 areas ranging from chemical terminology and quantitative analysis to the recognition and interpre-
745 tation of chemical structures and diagrams. The tasks within this section are designed to be both
746 comprehensive and diagnostic, providing a clear measure of the models’ readiness to tackle more
747 advanced chemical inquiries.

748 A.1.1 OBJECTIVE QUESTIONS (OBJQA)

750 The first dimension is objective question answering, which primarily assesses the model’s grasp
751 of fundamental chemical knowledge and its capability to apply this knowledge in straightforward
752 scenarios. Objective question answering encompasses the following tasks: *Multiple Choice Task*,
753 *Fill-in-the-Blank Task*, and *True/False Task*. By incorporating these tasks, ChemEval can more
754 effectively gauge the model’s overall proficiency in understanding and applying chemical knowledge
755 across various contexts and formats. It should be noted that the *True/False Task* is exclusive to the
text tasks and is not incorporated within the multimodal task set.

756 A.1.2 SUBJECTIVE QUESTIONS (SUBJQA)
757758 The second dimension is subjective question answering, which includes *Short Answer Task* and
759 *Calculation Task*, both aiming to evaluate the depth of the model’s comprehension and its ability
760 to apply chemical knowledge effectively. Because on the basis of the previous task, the model also
761 requires providing a detailed solution or reason, which involves the understanding of the chemical
762 principles and concepts in the question, and applying these principles and concepts to construct
763 logically clear and organized answers, which intuitively reflects the model’s understanding of basic
764 chemical knowledge.765 Multimodal tasks further build upon these foundations, covering *Statistical Chart QA*, *Statistical Ta-766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250*

810 A.3 MOLECULAR UNDERSTANDING
811812 This section builds upon the previous foundation to assess the model’s understanding and gener-
813 ative capabilities at the molecular level. It includes 4 dimensions: *Molecular Name Generation*,
814 *Molecular Name Translation*, *Molecular Property Prediction*, and *Molecular Description*, a total of
815 15 tasks. Molecular Understanding explores tasks essential for molecular understanding, evaluating
816 the LLMs’ ability to generate, translate, and describe molecular names and properties. These tasks
817 assess the models’ proficiency in interpreting and generating chemical information accurately. The
818 following subsections detail various specific tasks within this objective.819 A.3.1 MOLECULAR NAME GENERATION (MNGEN)
820821 Molecular Name Generation is the basis of Molecular Understanding and only contains one task,
822 *Molecular Name Generation from Text Description*. This task is purposed to evaluate the capacity
823 of LLMs to generate valid chemical structure representations. It necessitates that the models, based
824 on intricate textual descriptions encompassing molecular structures, properties, and classifications,
825 synthesize SMILES molecular formulas effectively.826 A.3.2 MOLECULAR NAME TRANSLATION (MNTRANS)
827828 Furthermore, Molecular Name Translation aims to enable a deep understanding of molecular struc-
829 tures and representations, which should serve as the fundamental knowledge for chemistry LLMs.
830 It focuses on converting molecular names between different formats, requiring LLMs to output a
831 specified alternative format based on a given molecular representation. It involves the conversion
832 between representations of molecules such as *IUPAC names* and *SMILES* (Weininger, 1988) molec-
833 ular formulas, encompassing a total of five tasks, each focusing on distinct aspects of molecular
834 notation conversion.835 A.3.3 MOLECULAR PROPERTY PREDICTION (MPP)
836837 Apart from molecular name understanding, the ability to predict molecular properties is also impor-
838 tant. Molecular Property Prediction targets the forecast of a wide range of physical, chemical, and
839 biological attributes of molecules, encapsulated in two core objectives: *Molecule Property Clas-
840 sification*, which predicts categories of properties such as ClinTox, HIV inhibition, and polarity;
841 and *Molecule Property Regression*, focusing on estimating numerical values such as Lipophilicity,
842 polarity, and boiling point.843 A.3.4 MOLECULAR DESCRIPTION (MOLDESC)
844845 To facilitate a deeper assessment of molecular understanding, the Molecular Description task has
846 been developed to comprehensively evaluate LLMs’ capabilities in interpreting and describing
847 molecular structures and their properties. This task consists of a series of subtasks, each requiring
848 the prediction of physicochemical properties of molecules based on diverse input modalities. Be-
849 sides the classic subtask of predicting physicochemical properties directly from molecular structures,
850 this multimodal extension incorporates additional challenges: *Physicochemical Property Predic-
851 tion from Infrared Spectrum*, *Physicochemical Property Prediction from Raman Spectrum*, *Physic-
852 ochemical Property Prediction from UV-Vis Spectrum*, *Physicochemical Property Prediction from
853 Diffraction Pattern*, *Physicochemical Property Prediction from Mass Spectrum*, and *Physicochemi-
854 cal Property Prediction from NMR Spectrum*. Collectively, these tasks aim to assess LLMs’ ability
855 to interpret various molecular representations—spanning textual, graphical, and spectral data—for
856 comprehensive property annotation and molecular understanding.857 A.4 SCIENTIFIC KNOWLEDGE DEDUCTION
858859 Having established a solid grasp of basic chemical knowledge, the skill to interpret scientific litera-
860 ture, and the capacity to understand molecular structures, we expect that the model will proceed to
861 conduct deeper chemical reasoning and deduction. So the part of Scientific Knowledge Deduction
862 encompasses four key dimensions: *Retrosynthetic Analysis*, *Reaction Condition Recommendation*,
863 *Reaction Outcome Prediction* and *Reaction Mechanism Analysis*, a total of 13 tasks, which are es-

864

865

866

Table 4: Overview of text tasks in ChemEval.

Tasks	Source	Number
Multiple Choice Task	Chemistry expert (Ours)	50
Fill-in-the-Blank Task	Chemistry expert (Ours)	50
True/False Task	Chemistry expert (Ours)	50
Short Answer Task	Chemistry expert (Ours)	50
Calculation Task	Chemistry expert (Ours)	50
Chemical Named Entity Recognition	Mol-Instructions	50
Chemical Entity Relationship Classification	Mol-Instructions	50
Synthetic Reaction Substrate Extraction	ChemRxnExtractor	50
Synthetic Reaction Additive Extraction	Chemistry expert (Ours)	20
Synthetic Reaction Solvent Extraction	Chemistry expert (Ours)	20
Reaction Temperature Extraction	Chemistry expert (Ours)	20
Reaction Time Extraction	Chemistry expert (Ours)	20
Reaction Product Extraction	ChemRxnExtractor	50
Characterization Method Extraction	Chemistry expert (Ours)	20
Catalysis Type Extraction	Chemistry expert (Ours)	20
Yield Extraction	Chemistry expert (Ours)	20
Chemical Paper Abstract Generation	Chemistry expert (Ours)	20
Research Outline Generation	Chemistry expert (Ours)	20
Chemical Literature Topic Classification	Chemistry expert (Ours)	20
Reaction Type Recognition and Induction	Chemistry expert (Ours)	20
Molecular Name Generation from Text Description	ChemLLMBench, Mol-Instructions, SMolInstruct	50
IUPAC to Molecular Formula	ChemLLMBench, SMolInstruct	50
SMILES to Molecular Formula	ChemLLMBench, SMolInstruct	50
IUPAC to SMILES Conversion	ChemLLMBench, SMolInstruct	50
SMILES to IUPAC Conversion	ChemLLMBench, SMolInstruct	50
SMILES to SELFIES and SELFIES to SMILES Translation	Chemistry expert (Ours)	50
Molecular Property Classification	Chemistry expert (Ours), ChemLLMBench, SMolInstruct	260
Molecular Property Regression	Chemistry expert (Ours), ChemLLMBench, Mol-Instructions, SMolInstruct	220
Physicochemical Property Prediction from Molecular Structure	ChemLLMBench, Mol-Instructions, SMolInstruct	50
Substrate Recommendation	ChemLLMBench, Mol-Instructions, SMolInstruct	50
Synthetic Pathway Recommendation	Chemistry expert (Ours)	40
Synthetic Difficulty Evaluation	Chemistry expert (Ours)	20
Ligand Recommendation	ChemLLMBench	50
Reagent Recommendation	ChemLLMBench	50
Solvent Recommendation	ChemLLMBench	50
Catalyst Recommendation	Chemistry expert (Ours)	20
Reaction Temperature Recommendation	Chemistry expert (Ours)	20
Reaction Time Recommendation	Chemistry expert (Ours)	20
Reaction Product Prediction	ChemLLMBench, Mol-Instructions, SMolInstruct	50
Product Yield Prediction	ChemLLMBench	50
Reaction Rate Prediction	Chemistry expert (Ours)	20
Intermediate Derivation	Chemistry expert (Ours)	20
Total	-	1960

893

894

895

896 sentential for effective chemical synthesis. This part evaluates the LLMs' capabilities in retrosynthetic
 897 analysis, recommending reaction conditions, predicting reaction outcomes, and analyzing reaction
 898 mechanisms. These tasks provide a comprehensive assessment of the models' performance in these
 899 critical areas of chemical synthesis.

900

901

902

A.4.1 RETROSYNTHETIC ANALYSIS (RESSYN)

903

904

905 Retrosynthetic Analysis is a crucial technique in the field of chemical synthesis, particularly in
 906 organic synthesis. The process begins with the target product and then examines potential synthesis
 907 pathways and reactant substrates. This approach highlights the reverse reasoning capabilities of
 908 LLMs in the field of chemical synthesis. It comprises *Substrate Recommendation*, *Synthetic Pathway*
Recommendation and *Synthetic Difficulty Evaluation*.

909

910

911

A.4.2 REACTION CONDITION RECOMMENDATION (RCREC)

912

913

914

915

916

917

918 Based on the results of the Retrosynthetic Analysis, LLMs can recommend suitable reaction conditions.
 919 Reaction condition recommendation is a key task in chemical synthesis, involving selecting
 920 the most suitable conditions for specific chemical reactions to ensure maximum efficiency, selec-
 921 tivity, and yield. This task integrates recommendations for conditions such as *ligands*, *reagents*,
 922 and *catalysts*, encompassing a total of six tasks, each targeting a specific component of the reaction
 923 condition optimization.

918

919

Table 5: Overview of multimodal tasks in ChemEval.

920 Tasks	921 Source	922 Number
923 Multiple Choice Task	924 Chemistry expert (Ours)	925 30
926 Fill-in-the-Blank Task	927 Chemistry expert (Ours)	928 20
929 Statistical Chart QA	930 Chemistry expert (Ours)	931 30
932 Statistical Table QA	933 Chemistry expert (Ours)	934 30
935 Reaction Profile Diagram QA	936 Chemistry expert (Ours)	937 30
938 Theoretical Potential Energy Surface QA	939 Chemistry expert (Ours)	940 20
941 Infrared Spectrum QA	942 Chemistry expert (Ours)	943 20
944 Raman Spectrum QA	945 Chemistry expert (Ours)	946 20
947 UV-Vis Spectrum QA	948 Chemistry expert (Ours)	949 20
950 Diffraction Pattern QA	951 Chemistry expert (Ours)	952 20
953 Kinetic Behavior Chart QA	954 Chemistry expert (Ours)	955 20
956 Mass Spectrum QA	957 Chemistry expert (Ours)	958 20
959 Short Answer Task	960 Chemistry expert (Ours)	961 20
962 Calculation Task	963 Chemistry expert (Ours)	964 30
965 Molecular Formula Recognition	966 Chemistry expert (Ours)	967 30
968 Chemical Reaction Equation Recognition	969 Chemistry expert (Ours)	970 30
971 2D Molecular Structure Recognition	972 Chemistry expert (Ours)	973 60
974 Synthetic Pathway Analysis	975 Chemistry expert (Ours)	976 30
977 IUPAC to Molecular Formula	978 ChemLLMBench, SMolInstruct	979 20
980 SMILES to Molecular Formula	981 ChemLLMBench, SMolInstruct	982 20
983 IUPAC to SMILES Conversion	984 ChemLLMBench, SMolInstruct	985 20
986 SMILES to IUPAC Conversion	987 ChemLLMBench, SMolInstruct	988 50
989 Molecular Property Classification	990 Chemistry expert (Ours), ChemLLMBench, SMolInstruct	991 100
992 Molecular Property Regression	993 Chemistry expert (Ours), ChemLLMBench, Mol-Instructions, SMolInstruct	994 140
995 Physicochemical Property Prediction from Infrared Spectrum	996 Chemistry expert (Ours)	997 20
998 Physicochemical Property Prediction from Raman Spectrum	999 Chemistry expert (Ours)	999 20
999 Physicochemical Property Prediction from UV-Vis Spectrum	999 Chemistry expert (Ours)	999 20
999 Physicochemical Property Prediction from Diffraction Pattern	999 Chemistry expert (Ours)	999 20
999 Physicochemical Property Prediction from Mass Spectrum	999 Chemistry expert (Ours)	999 20
999 Physicochemical Property Prediction from NMR Spectrum	999 Chemistry expert (Ours)	999 20
999 Substrate Recommendation	999 ChemLLMBench, Mol-Instructions, SMolInstruct	999 20
999 Synthetic Pathway Recommendation	999 Chemistry expert (Ours)	999 40
999 Synthetic Difficulty Evaluation	999 Chemistry expert (Ours)	999 20
999 Ligand Recommendation	999 ChemLLMBench	999 20
999 Reagent Recommendation	999 ChemLLMBench	999 20
999 Solvent Recommendation	999 ChemLLMBench	999 20
999 Catalyst Recommendation	999 Chemistry expert (Ours)	999 20
999 Reaction Temperature Recommendation	999 Chemistry expert (Ours)	999 20
999 Reaction Time Recommendation	999 Chemistry expert (Ours)	999 20
999 Reaction Product Prediction	999 ChemLLMBench, Mol-Instructions, SMolInstruct	999 20
999 Product Yield Prediction	999 ChemLLMBench	999 20
999 Intermediate Derivation	999 Chemistry expert (Ours)	999 20
999 Total	999 -	999 1200

A.4.3 REACTION OUTCOME PREDICTION (ROP)

After determining the reaction pathway and reaction conditions, the large model can predict possible reaction outcomes. Reaction outcome prediction is a core technology in chemical synthesis aimed at predicting possible results of a reaction before it is actually carried out. This encompasses *Reaction Product Prediction*, *Product Yield Prediction*, *Reaction Rate Prediction*.

A.4.4 REACTION MECHANISM ANALYSIS (RMA)

Reaction Mechanism Analysis is a critical area in the study of chemical reactions, aiming to explain the detailed steps involved in the transformation from reactants to products. This is the final step in the field of chemical synthesis, including identifying various intermediates, and transition states, as well as the kinetic and thermodynamic parameters of each step in the reaction. *Intermediate Derivation* is the sole subtask in this phase.

Table 6: Distribution of reaction types in ChemEval

965 Reaction Type	966 Counts	967 Percentage
968 Coupling reactions	969 321	970 62.4%
971 Substitution reactions	972 81	973 15.8%
974 Oxidation/reduction reactions	975 51	976 9.9%
977 Addition reactions	978 24	979 4.7%
980 Elimination reactions	981 13	982 2.5%
983 Other reactions	984 24	985 4.7%

972
973 Table 7: Performance overview of multi-level 0-shot text tasks on ChemEval (part 1). Claude3.7T
974 denotes Claude 3.7-Sonnet-Thinking, whereas Claude3.7N denotes Claude 3.7-Sonnet.

975 976 Dimension	976 Task	Metric	OpenAI-03-mini	OpenAI-01	GPT-4o	Claude3.7T	Claude3.7N	Deepseek-R1	Deepseek-V3	Qwen2.5-72B	Qwen2.5-32B
<i>Advanced Knowledge Question Answering</i>											
977 ObjQA	MCTask	Accuracy	72.00	74.00	66.80	62.80	60.80	82.40	76.00	67.20	67.20
978 ObjQA	FBTask	LLM Score	62.42	60.92	51.19	45.28	44.73	59.41	63.88	53.92	50.93
979 ObjQA	TFTask	Accuracy	68.00	46.00	57.60	58.80	58.00	75.20	67.20	58.40	49.20
980 SubjQA	SATask	LLM Score	68.00	64.50	61.20	56.70	55.10	68.50	71.70	58.50	58.10
981 SubjQA	CalcTask	LLM Score	75.50	78.00	61.80	55.74	53.60	76.10	79.20	61.90	57.40
<i>Literature Understanding</i>											
982 InfoE	CNER	F1	61.30	64.56	65.76	60.21	54.55	64.14	60.85	61.61	56.33
983 InfoE	CERC	F1	29.65	22.37	25.66	25.19	24.77	27.18	24.94	26.05	27.21
984 InfoE	SubE	Accuracy	66.91	73.71	66.33	61.59	65.76	75.18	61.26	62.56	58.05
985 InfoE	AddE	F1	76.67	81.67	85.00	79.33	81.10	82.67	80.67	84.00	80
986 InfoE	SolvE	F1	89.00	86.50	85.00	87.60	84.30	90.20	88.50	85.00	90.00
987 InfoE	TempE	F1	65.00	70.00	67.00	72.00	69.00	65.00	72.00	65.00	62.00
988 InfoE	TimeE	F1	95.00	95.00	95.00	95.00	95.00	95.00	95.00	90.00	95.00
989 InfoE	ProDE	Accuracy	87.62	90.25	86.09	82.39	85.04	91.20	87.52	84.86	76.38
990 InfoE	ChemME	F1	66.67	51.67	72.85	81.01	71.84	21.33	81.80	74.57	79.42
991 InfoE	CatTE	F1	65.00	95.00	94.00	82.00	77.00	99.00	100.00	100.00	100.00
992 InfoE	YieldE	F1	65.00	85.00	79.00	61.00	59.00	77.70	65.00	65.00	78.00
993 InducGen	AbcGen	LLM Score	68.75	63.75	63.00	63.00	66.75	65.00	64.75	64.75	60.00
994 InducGen	OLGen	LLM Score	35.00	25.00	35.50	26.50	28.50	37.00	27.00	24.25	29.75
995 InducGen	TopC	Accuracy	50.00	55.00	49.00	56.00	51.00	57.00	50.00	64.00	35.00
996 InducGen	ReactTR	F1	20.00	25.00	32.00	29.00	26.00	21.00	28.00	22.00	26.00
<i>Molecular Understanding</i>											
997 MNGen	MolING	Tanimoto (valid)	51.58 (78%)	49.80 (72%)	39.30 (89%)	33.85 (70%)	42.28 (78%)	56.05 (87%)	51.19 (96%)	20.58 (79%)	14.60 (64%)
998 MNTrans	IUPAC2MF	L2	0.6214	0.7737	0.5304	0.3252	0.3349	0.6026	0.6176	0.3407	0.3070
999 MNTrans	SMILES2MF	L2	0.6276	0.6330	0.3627	0.3618	0.3468	0.4402	0.3563	0.2448	0.2548
999 MNTrans	IUPAC2SMILES	Tanimoto (valid)	29.61 (42%)	29.72 (50%)	34.71 (83%)	31.89 (68%)	39.12 (72%)	30.70 (63%)	46.07 (88%)	15.90 (76%)	10.55 (59%)
999 MNTrans	SMILES2IUPAC	Exact Match	0.00	0.00	0.00	0.00	0.00	1.20	0.00	0.00	0.00
999 MNTrans	SMILES2IUPAC	BLEU	4.37	3.24	0.96	3.27	3.46	4.17	1.67	0.33	0.15
999 MNTrans	SMILES2IUPAC	Tanimoto	0.00	0.00	12.08	22.73	24.99	25.90	19.16	13.01	8.68
999 MNTrans	S2S	Tanimoto (valid)	9.76 (30%)	9.72 (42%)	13.41 (62%)	9.37 (40%)	10.58 (44%)	16.04 (71%)	16.27 (62%)	11.47 (50%)	6.93 (37%)
999 MPP	MolPC	Accuracy	72.88	67.50	64.57	58.90	54.37	53.54	48.73	48.13	67.70
999 MPP	MolPR	NRMSE (valid)	12.7593 (99%)	12.3852 (99%)	9.9322 (51%)	13.9702 (92%)	14.0966 (96%)	15.8881 (100%)	8.3675 (98%)	13.0756 (100%)	17.6710 (91%)
999 MolDesc	Mol2PC	LLM Score	19.50	19.00	7.00	9.80	15.70	11.90	13.50	20.80	5.90
<i>Scientific Knowledge Deduction</i>											
999 ReSyn	SubRec	F1	4.67	1.00	0.00	1.46	1.77	1.63	2.27	1.06	0.20
999 ReSyn	PathRec	LLM Score	49.38	30.63	22.88	0.36	41.88	52.75	37.38	41.13	36.88
999 ReSyn	SynDE	NRMSE (valid)	5.4045 (20%)	- (5%)	(0%)	(0%)	1.9854 (39%)	- (0%)	- (0%)	0.2670 (100%)	- (0%)
999 RCRRec	LRec	F1	4.00	0.00	13.20	2.00	4.40	5.80	7.60	4.40	8.00
999 RCRRec	RRec	F1	52.00	25.64	15.80	27.43	25.80	21.93	8.35	37.75	34.56
999 RCRRec	SolvRec	F1	16.00	16.00	20.40	18.80	17.60	22.40	24.00	50.40	51.60
999 RCRRec	CaRec	F1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
999 RCRRec	TempRec	NRMSE (valid)	0.2201 (100%)	0.3278 (100%)	0.2545 (100%)	0.2263 (100%)	0.5398 (100%)	0.2078 (100%)	0.2096 (100%)	0.3782 (100%)	0.2475 (100%)
999 RCRRec	TimeRec	NRMSE (valid)	0.2165 (100%)	0.2746 (100%)	0.2468 (100%)	0.3662 (100%)	0.4008 (100%)	0.2291 (100%)	0.2579 (100%)	0.2022 (100%)	0.2377 (100%)
999 ROP	PPred	F1	10.00	21.33	1.67	12.27	16.16	11.97	0.93	1.73	0.53
999 ROP	YPred	Accuracy	8.00	12.00	43.50	16.00	9.00	11.00	22.50	26.00	85.00
999 ROP	Overlap	Overlap	16.74	21.08	13.81	9.06	7.21	17.12	17.71	10.71	9.48
999 ROP	RatePred	LLM Score	80.00	80.00	81.50	81.00	79.50	80.50	77.25	79.00	
999 RMA	IMDer	LLM Score									

B DETAILED DATASET STATISTICS

To comprehensively evaluate the chemical reasoning and knowledge capabilities of large language models, we constructed the ChemEval benchmark by integrating tasks from multiple sources. For the advanced knowledge question-answering level, our chemistry experts curated datasets based on textbooks and supplementary educational resources. For other levels, some tasks were adapted from existing datasets, such as ChemRxnExtractor (Guo et al., 2021), Mol-Instructions (Fang et al., 2023), ChemLLMBench (Guo et al., 2023), and SMolInstruct (Yu et al., 2024), while additional tasks were independently developed by our chemistry experts.

Tables 4 and 5 provide an overview of the sources and sizes of text and multimodal tasks included in ChemEval. The text subset contains 1,960 test examples, comprising 18 tasks sourced from other open datasets and 24 tasks designed in-house. The multimodal subset contains 1,200 test examples, integrating 12 tasks from other open datasets and 30 tasks independently designed by our team. Some tasks exist in both text and multimodal versions.

Table 6 summarizes the distribution of reaction types in our dataset. Coupling reactions account for the largest proportion, followed by substitution, oxidation/reduction, addition, elimination, and other reaction types. The “other” category covers 9 reaction types, including rearrangement, hydrolysis, cyclization, and so on. This dataset encompasses most major reaction types, providing comprehensive coverage for evaluating chemical reactions.

Overall, ChemEval integrates 25 tasks sourced from other open datasets and 37 custom-designed tasks developed in-house, with duplicates removed to prevent double counting. This design ensures the benchmark’s diversity and comprehensiveness, allowing large language models to be evaluated across multiple dimensions of chemical knowledge and reasoning. By rigorously cross-checking against existing model training sets and leveraging previously unpublished laboratory data, we minimized potential risks of data leakage.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 8: Performance overview of multi-level 0-shot text tasks on ChemEval (Part 2).

Dimension	Task	Metric	Qwen2.5-14B	Qwen2.5-7B	Llama3.3-8B	Grok3	Gemini-2.5-Pro	ChemDFM	ChemLLM	LlaSMol	ChemSpark	Chemcrow
<i>Advanced Knowledge Question Answering</i>												
ObjQA	MCTask	Accuracy	64.80	59.60	40.40	68.80	87.60	41.20	24.40	24.00	43.60	58.00
ObjQA	FBTask	LLM Score	45.76	39.52	34.17	54.36	63.95	24.16	34.97	13.92	24.57	43.14
ObjQA	TFTask	Accuracy	52.00	55.20	46.00	64.40	77.60	46.00	19.20	58.00	50.00	74.00
SubjQA	SATask	LLM Score	57.20	50.80	38.40	73.59	72.00	32.20	13.20	14.50	33.60	43.50
SubjQA	CalcTask	LLM Score	50.80	43.60	28.00	81.20	82.40	14.70	15.90	7.50	18.50	43.50
<i>Literature Understanding</i>												
InfoE	CNER	F1	46.31	61.27	55.34	60.75	68.30	41.17	0.16	11.62	71.44	57.46
InfoE	CERC	F1	28.19	26.10	17.31	26.04	25.43	8.74	0.24	1.24	39.27	22.05
InfoE	SubE	Accuracy	59.61	58.43	64.02	72.87	72.05	20.07	0.00	0.00	74.38	50.91
InfoE	AddE	F1	83.00	61.67	45.81	95.00	45.00	0.00	0.00	65.00	43.33	
InfoE	SoVE	F1	86.50	82.50	75.47	85.00	83.17	80.50	1.67	0.00	87.79	87.50
InfoE	TempE	F1	70.00	65.00	62.00	70.00	69.00	47.33	3.23	0.00	83.00	65.00
InfoE	TimeE	F1	95.00	90.00	90.00	94.00	78.00	23.10	25.00	25.00	95.00	95.00
InfoE	PredE	Accuracy	82.44	77.00	74.54	91.04	92.82	34.73	0.00	0.00	94.40	71.38
InfoE	CharME	F1	67.92	43.00	44.18	79.26	73.11	27.26	0.00	0.00	12.98	25.00
InfoE	CaTE	F1	75.00	64.00	65.00	97.00	96.00	49.00	0.00	5.00	31.00	85.00
InfoE	YieldE	F1	80.00	67.00	46.00	61.00	74.00	45.00	0.00	5.00	61.00	50.00
InducGen	AbsGen	LLM Score	59.25	54.75	62.00	69.50	67.25	0.00	5.50	26.25	38.25	57.50
InducGen	OLGen	LLM Score	29.75	27.75	22.75	35.25	39.50	0.00	3.75	31.25	30.50	32.50
InducGen	TopC	Accuracy	45.00	41.00	32.00	47.00	67.00	51.00	0.00	0.00	30.00	45.00
InducGen	ReactTR	F1	26.00	31.00	26.00	28.00	31.00	13.00	0.00	5.00	17.00	5.00
<i>Molecular Understanding</i>												
MNGen	MoING	Tanimoto (valid)	11.03 (53%)	3.92 (32%)	5.83 (40%)	5.786 (94%)	71.11 (93%)	47.06 (69%)	0.00 (0%)	3.71 (76%)	74.81 (98%)	40.92 (90%)
MNTrans	IUPAC2MF	L2	0.3126	0.1856	0.2433	0.7110	0.8382	0.6119	0.0454	0.0000	0.8807	0.1408
MNTrans	SMILES2MF	L2	0.2114	0.0988	0.1728	0.3980	0.6574	0.6399	0.0375	0.0000	0.8133	0.3089
MNTrans	IUPAC2SMILES	L2	8.18 (52%)	3.46 (30%)	5.24 (30%)	65.81 (94%)	61.35 (87%)	46.71 (88%)	0.00 (100%)	4.70 (56%)	87.84 (100%)	25.68 (64%)
MNTrans	SMILES2IUPAC	Exact Match	0.00	0.00	0.00	1.20	1.20	0.00	0.00	0.00	14.00	0.00
MNTrans	SMILES2IUPAC	BLEU	0.22	0.00	0.44	4.69	13.55	0.56	0.00	0.00	48.25	0.38
MNTrans	SMILES2IUPAC	Tanimoto	5.76	3.78	3.71	30.47	56.82	2.06	0.00	2.22	66.26	0.00
MNTrans	S2S	Tanimoto (valid)	10.52 (60%)	2.28 (14%)	1.74 (12%)	17.56 (59%)	13.13 (44%)	2.12 (25%)	0.00 (50%)	0.60 (48%)	87.36 (94%)	9.83 (38%)
MPP	MoIPC	Accuracy	64.22	64.05	47.26	56.61	63.63	61.35	0.00	46.50	85.57	46.00
MPP	MoIPR	NRMSE (valid)	11.7005 (90%)	8.5890 (98%)	61.4736 (62%)	9.0283 (100%)	11.7270 (100%)	394.9424 (83%)	179.3606 (93%)	29.9686 (73%)	1.2142 (100%)	0.3408 (38%)
MolDesc	Mol2PC	LLM Score	7.20	14.50	2.10	28.00	0.70	3.10	0.30	0.00	48.90	21.00
<i>Scientific Knowledge Deduction</i>												
ReSyn	SubRec	F1	0.00	1.42	0.27	0.87	0.00	3.99	0.00	0.00	12.37	0.00
ReSyn	PathRec	LLM Score	32.63	27.13	20.88	32.13	43.75	24.13	10.88	10.00	38.75	48.75
ReSyn	SynDE	NRMSE (valid)	0.3551 (100%)	(- 0%)	(- 0%)	(- 0%)	(- 0%)	33.0049 (78%)	1.2374 (45%)	1.7992 (87%)	- (0%)	
RCRec	LRec	F1	6.80	2.80	2.13	36.00	0.00	26.00	0.00	0.00	37.60	18.00
RCRec	RRec	F1	37.65	16.93	8.78	44.60	0.73	13.13	0.00	0.50	63.72	36.65
RCRec	SolRec	F1	15.60	25.60	3.63	24.00	0.00	10.53	0.00	0.50	30.40	12.00
RCRec	CatRec	F1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00
RCRec	TempRec	NRMSE (valid)	0.1989 (100%)	0.3226 (100%)	(- 0%)	0.1974 (100%)	0.1815 (100%)	0.3874 (100%)	1.1104 (98%)	0.8656 (100%)	0.2292 (100%)	0.2325 (95%)
RCRec	TimeRec	NRMSE (valid)	0.2508 (100%)	0.3213 (100%)	(- 0%)	0.2164 (100%)	0.2425 (100%)	0.4732 (100%)	1.7937 (98%)	0.4351 (100%)	0.9327 (100%)	0.5226 (70%)
ROP	PredP	F1	0.00	0.00	0.00	11.33	29.25	18.80	0.00	16.00	56.20	0.00
ROP	YPred	Accuracy	33.50	67.00	35.50	8.00	17.50	7.20	0.00	28.00	72.00	-24.00
ROP	RatePred	Overlap	9.54	13.35	6.92	8.77	27.01	3.79	0.00	3.68	2.90	0.00
RMA	IMDer	LLM Score	67.75	78.75	81.25	82.25	76.00	4.75	1.50	92.75	28.75	

C DETAILED EXPERIMENTAL SETUPS

In this section, we introduce the details of our experimental setups, including the detailed description of the evaluated models and explanations of the metrics used in Section 3.2.5.

C.1 MODELS

In order to comprehensively assess the scientific capabilities of Large Language Models (LLMs), we evaluate several high-performing LLMs that are widely accessible, including general and specialized models. These models are selected to represent a diverse range of organizations and vary in size.

- **GPT-4o:** GPT-4o is OpenAI’s latest flagship multimodal large language model, capable of processing and generating text, audio, and images through a unified architecture for seamless cross-modal reasoning and interaction. It sets new benchmarks in multilingual, speech, and visual understanding, exhibiting advanced performance with significantly improved speed and efficiency compared to previous models.
- **OpenAI-o1/o3-mini:** OpenAI o1 and o3-mini are lightweight, cost-effective reasoning models that deliver strong performance in science, mathematics, and programming tasks while offering significantly improved response speed and reliability compared to their predecessors, making them well-suited for rapid, real-world applications.
- **Claude-3.7-Sonnet:** Claude 3.7 Sonnet is Anthropic’s most advanced hybrid reasoning language model to date, integrating rapid response with deep, stepwise analytical capabilities and offering flexible dual modes for both instant answers and complex multi-stage problem-solving across a range of scientific and coding tasks.
- **Gemini-2.5-pro:** Gemini 2.5 Pro is Google DeepMind’s latest multimodal large language model that integrates advanced “thinking” mechanisms and hybrid attention architectures, enabling state-of-the-art reasoning, code generation, and long-context understanding across text, image, audio, and video inputs, with support for up to one million tokens in a single context window.
- **Grok3:** Grok 3 is a new generation of large language model developed by xAI. It has achieved breakthroughs in key benchmark tests such as mathematical reasoning, scientific logical reason-

1080

1081

Table 9: Performance overview of multimodal tasks on ChemEval.

1082

1083

Dimension	Task	Metric	GLM-4V	GPT-4o	Claude3.7T	Qwen-vl-max	Phi-vision-3.5	Gemini-2.5-Pro
<i>Advanced Knowledge Question Answering</i>								
1084	ObjQA	MCTask	Accuracy	32.22	40.86	7.78	43.33	35.56
1085	ObjQA	FBTask	Accuracy	36.67	52.41	17.77	48.12	15.02
1086	SubjQA	SCQA	LLM Score	65.33	68.67	30.22	82.00	44.44
1087	SubjQA	STQA	LLM Score	64.22	54.22	32.67	72.22	32.67
1088	SubjQA	RPDQA	LLM Score	50.67	62.93	20.00	70.67	37.67
1089	SubjQA	TPESQA	LLM Score	62.33	69.33	21.67	76.33	45.67
1090	SubjQA	IRSQLA	LLM Score	53.33	59.00	35.33	62.33	42.00
1091	SubjQA	RSQA	LLM Score	64.33	70.00	35.67	71.33	51.33
1092	SubjQA	UVSQLA	LLM Score	62.67	62.67	33.33	66.00	48.00
1093	SubjQA	DPQQA	LLM Score	67.00	75.67	37.00	83.33	51.00
1094	SubjQA	KBCQA	LLM Score	68.33	77.00	48.67	81.67	51.00
1095	SubjQA	MSQQA	LLM Score	66.33	74.40	22.00	83.67	46.33
1096	SubjQA	SATask	LLM Score	46.67	55.28	46.33	57.67	35.00
1097	SubjQA	CalcTask	LLM Score	49.11	60.67	51.78	62.00	36.89
<i>Literature Understanding</i>								
1098	MNR	MFR	Accuracy	100.00	95.56	2.22	100.00	85.55
1099	MNR	CRER	Accuracy	95.56	93.34	3.33	93.33	15.56
1100	MNR	2DMolR	Tanimoto	3.73	20.92	0.00	16.26	-
1101	MNR	PathA	F1	0.00	0.00	0.00	0.00	-
<i>Molecular Understanding</i>								
1102	MNTrans	IUPAC2MF	L2	0.3048	0.5653	0.2106	0.1175	0.1690
1103	MNTrans	SMILES2MF	L2	0.1251	0.2144	0.0468	0.1367	0.1018
1104	MNTrans	IUPAC2SMILES	Tanimoto	8.40	44.43	11.90	24.63	4.37
1105	MNTrans	SMILES2IUPAC	Exact	0.00	0.00	0.00	0.00	2.00
1106	MNTrans	SMILES2IUPAC	BLEU	23.15	19.04	22.81	24.44	26.19
1107	MNTrans	SMILES2IUPAC	Tanimoto	1.73	2.09	8.88	0.74	1.22
1108	MPP	MolPC	Accuracy	50.51	49.70	54.67	58.32	53.75
1109	MPP	MolPR	NRMSE (valid)	2.3782 (57%)	1.0268 (71%)	0.3491 (29%)	21.8799 (100%)	3.0580 (43%)
1110	MolDesc	IRS2PC	LLM Score	54.00	58.00	66.33	60.67	45.00
1111	MolDesc	RS2PC	LLM Score	44.00	51.67	63.00	57.67	38.33
1112	MolDesc	UV2PC	LLM Score	54.67	59.67	65.67	63.00	40.67
1113	MolDesc	DP2PC	LLM Score	58.33	65.00	74.00	69.00	41.33
1114	MolDesc	MS2PC	LLM Score	54.33	61.67	75.33	67.00	38.67
1115	MolDesc	NMR2PC	LLM Score	54.33	65.00	71.67	68.33	37.67
<i>Scientific Knowledge Deduction</i>								
1116	ReSyn	SubRec	F1	0.00	0.00	0.00	1.48	0.00
1117	ReSyn	PathRec	LLM Score	45.00	57.00	67.00	54.67	31.67
1118	ReSyn	SynDE	NRMSE	0.4220	0.3199	0.5575	0.2234	-
1119	RCRec	LRec	F1	0.00	28.33	1.67	8.33	11.67
1120	RCRec	RRec	F1	0.00	5.00	5.00	6.67	5.00
1121	RCRec	SolvRec	F1	15.00	23.33	21.67	30.00	18.33
1122	RCRec	CatRec	F1	0.00	0.00	0.00	0.00	0.00
1123	RCRec	TempRec	NRMSE	0.1220	0.4845	0.3913	0.5346	-
1124	RCRec	TimeRec	NRMSE	-	-	0.4378	-	0.1777
1125	ROP	PRec	F1	0.00	0.00	0.00	3.33	0.00
1126	ROP	YPred	Accuracy	-	43.33	20.00	25.00	78.33
1127	RMA	IMPred	LLM Score	67.67	71.33	76.67	62.33	35.00
1128								77.67

1114

1115

ing, and code writing. In addition, it supports multimodal interaction and can also access real-time information through the X platform to enhance the timeliness and accuracy of its responses.

1116

1117

- **DeepSeek-V3:** DeepSeek-V3 is a powerful 671-billion-parameter Mixture-of-Experts (MoE) language model developed by DeepSeek, trained on 14.8 trillion tokens with innovations like Multi-head Latent Attention (MLA) and Multi-Token Prediction (MTP) to achieve state-of-the-art performance in mathematics, coding, and multilingual tasks. It features a 128K context window and efficient inference, with future versions expected to include multi-modal capabilities.

1118

1119

- **DeepSeek-R1:** DeepSeek-R1 is a reasoning-optimized model based on the DeepSeek-V3-Base architecture. It is trained with reinforcement learning and human feedback to enhance its performance in complex reasoning tasks such as logical deduction and mathematical problem-solving while maintaining high safety and reliability.

1120

1121

- **Qwen2.5-7B/14B/32B/72B:** Qwen 2.5 is a series of advanced large language models developed by Alibaba Cloud, featuring models with parameter sizes ranging from 0.5B to 72B. These models have significantly improved capabilities in areas such as coding, mathematics, and multilingual support, and they are trained on a large-scale dataset of up to 18 trillion tokens

1122

1123

- **LLaMA3.3-8B :** Meta Llama 3 8B is a powerful large language model with 8 billion parameters, optimized for dialogue and text generation. It is trained on over 15 trillion tokens and features a 128K token vocabulary and Grouped-Query Attention for enhanced performance.

1134

Table 10: Performance overview of multi-level 3-shot text tasks on ChemEval (part 1). Claude3.7T denotes Claude 3.7-Sonnet-Thinking, whereas Claude3.7N denotes Claude 3.7-Sonnet.

1137

Dimension	Task	Metric	OpenAI-03-mini	OpenAI-01	GPT-4o	Claude3.7T	Claude3.7N	Deepseek-R1	Deepseek-V3	Qwen2.5-72B	Qwen2.5-32B
<i>Advanced Knowledge Question Answering</i>											
ObjQA	MCTask	Accuracy	72.00	82.00	69.20	65.20	65.20	82.40	72.00	68.00	71.20
ObjQA	FBTask	LLM Score	51.46	62.65	45.59	42.56	42.28	59.96	57.89	53.53	45.99
ObjQA	TFTask	Accuracy	76.00	86.00	66.00	57.60	62.40	80.80	72.80	48.40	59.60
SubjQA	SATask	LLM Score	67.00	68.50	61.00	54.10	53.90	71.40	70.40	60.80	55.90
SubjQA	CalcTask	LLM Score	75.00	78.50	59.10	53.73	55.40	75.10	77.40	61.61	52.61
<i>Literature Understanding</i>											
InfoE	CNER	F1	66.33	70.59	71.14	64.62	62.18	70.85	63.28	65.92	59.45
InfoE	CERC	F1	29.30	32.69	25.72	23.11	25.39	29.11	25.65	25.63	26.18
InfoE	SubE	Accuracy	73.17	78.01	65.93	62.66	61.55	76.88	75.78	70.10	60.62
InfoE	AddE	F1	88.33	95.67	90.94	90.57	92.63	89.57	90.57	88.80	81.84
InfoE	SolvE	F1	84.00	85.00	80.00	81.50	84.63	85.00	81.60	75.00	84.00
InfoE	TempE	F1	70.00	75.00	73.00	80.00	80.00	83.00	80.00	80.00	75.00
InfoE	TimeE	F1	95.00	95.00	95.00	95.00	95.00	95.00	95.00	95.00	95.00
InfoE	ProE	Accuracy	88.06	91.48	86.88	82.35	87.34	92.33	91.75	84.05	71.38
InfoE	CharME	F1	76.02	79.60	78.97	77.88	75.02	77.86	77.34	73.63	72.18
InfoE	CatTE	F1	95.00	95.00	98.00	91.00	94.00	100.00	100.00	97.00	98.00
InducGen	YieldE	F1	60.00	60.00	62.00	57.00	56.00	60.00	60.00	56.00	79.00
InducGen	TopC	Accuracy	40.00	50.00	48.00	47.00	43.00	54.00	49.00	56.00	30.00
InducGen	ReactTR	F1	60.00	60.00	71.00	44.00	40.00	69.00	46.00	61.00	67.00
<i>Molecular Understanding</i>											
MNGen	MolING	Tanimoto (valid)	51.04 (78%)	54.56 (80%)	41.57 (90%)	31.43 (77%)	38.25 (80%)	53.15 (90%)	48.84 (96%)	25.18 (77%)	18.34 (75%)
MNTrans	IUPAC2MF	L2	0.6632	0.7636	0.4944	0.3563	0.3847	0.6303	0.5908	0.2795	0.1652
MNTrans	SMILES2MF	L2	0.5833	0.5942	0.2858	0.3233	0.3359	0.4569	0.3651	0.1953	0.2238
MNTrans	IUPAC2SMILES	Tanimoto (valid)	31.51 (52%)	33.63 (52%)	31.71 (83%)	29.33 (65%)	40.07 (75%)	33.49 (67%)	49.60 (88%)	16.73 (65%)	10.88 (60%)
MNTrans	SMILES2IUPAC	Exact Match	0.00	0.00	0.00	0.40	0.40	1.20	0.00	0.00	0.00
MNTrans	SMILES2IUPAC	BLEU	3.44	4.49	1.37	4.19	4.49	4.33	2.53	1.00	0.11
MNTrans	SMILES2IUPAC	Tanimoto	0.00	0.00	12.69	17.03	21.01	24.25	17.86	13.05	7.42
MNTrans	S2S	Tanimoto (valid)	15.17 (44%)	22.62 (80%)	18.24 (74%)	12.16 (72%)	15.70 (68%)	21.25 (85%)	21.76 (62%)	18.80 (72%)	14.37 (79%)
MPP	MolPC	Accuracy	73.08	71.60	68.55	63.23	58.49	66.72	55.79	56.87	58.71
MPP	MolPR	NRMSE (valid)	0.2574 (100%)	0.2536 (100%)	0.4128 (85%)	3.3664 (98%)	5.2053 (98%)	0.2697 (100%)	0.2934 (99%)	0.3779 (98%)	0.3860 (100%)
MolDesc	Mol2PC	LLM Score	18.50	24.50	8.30	21.60	21.30	8.70	14.10	0.40	0.20
<i>Scientific Knowledge Deduction</i>											
ReSyn	SubRec	F1	2.67	3.00	0.43	1.09	2.05	2.03	1.36	0.00	0.00
ReSyn	PathRec	LLM Score	52.50	40.63	25.00	29.25	28.75	33.13	24.00	33.38	41.13
ReSyn	SynDE	NRMSE (valid)	0.3806 (100%)	0.5517 (100%)	0.4856 (100%)	0.7561 (100%)	0.6454 (100%)	0.5380 (100%)	0.6527 (96%)	0.3208 (100%)	0.3251 (100%)
RCRec	LRec	F1	12.00	18.00	15.60	11.20	8.00	5.60	11.60	16.40	6.00
RCRec	RRec	F1	45.00	41.67	21.31	32.33	33.65	30.54	12.39	37.26	35.27
RCRec	SolvRec	F1	46.00	26.00	26.40	34.40	22.40	48.00	41.60	46.80	51.20
RCRec	CalRec	F1	32.50	25.83	5.00	5.08	3.33	34.67	2.00	17.04	0
RCRec	TempRec	NRMSE (valid)	0.4951 (100%)	0.4137 (100%)	0.4847 (100%)	0.3745 (100%)	0.4625 (100%)	0.4141 (100%)	0.3170 (100%)	0.4143 (100%)	0.2561 (100%)
RCRec	TimeRec	NRMSE	0.2071 (100%)	0.1970 (100%)	0.2164 (100%)	0.1918 (100%)	0.2614 (100%)	0.1980 (100%)	0.2085 (100%)	0.1870 (100%)	0.2080 (100%)
ROP	PPred	F1	12.00	20.00	1.07	11.87	16.19	14.30	0.63	0.40	0.96
ROP	YPred	Accuracy	54.00	34.00	48.50	75.00	52.50	40.50	40.50	61.00	88.00
ROP	RecPred	Overlap	16.74	14.41	20.27	17.17	15.82	19.24	13.45	15.82	15.40
RMA	IMDer	LLM Score	81.25	77.50	83.50	79.75	81.50	79.25	84.75	77.25	68.25

1160

- **Qwen-VL Max:** Qwen-VL-Max is the most capable large visual language model in the Qwen-VL series, offering optimal performance on a broad range of complex tasks. It has significantly enhanced visual reasoning and instruction-following abilities, and can handle high-definition images with resolutions above one million pixels.
- **Phi-Vision-3.5:** Phi-3.5-vision is a lightweight, state-of-the-art open multimodal model developed by Microsoft, with 4.2B parameters and a 128K context length. It excels in handling both text and visual inputs, offering capabilities in general image understanding, optical character recognition, chart interpretation, and video summarization.
- **ChemDFM:** ChemDFM is a pioneering large language model (LLM) specifically designed for chemistry, trained on 34 billion tokens from chemical literature and textbooks and fine-tuned using 2.7 million instructions. It demonstrates superior performance in various chemical tasks such as molecule recognition, molecular property prediction, and reaction analysis, significantly outperforming most representative open-source LLMs.
- **LlaSMol:** LlaSMol is a series of large language models fine-tuned on a large-scale, comprehensive, and high-quality instruction tuning dataset named SMolInstruct for chemistry tasks. These models, based on open-source LLMs like Galactica, Llama 2, Code Llama, and Mistral, demonstrate strong performance on various chemistry tasks, significantly outperforming previous LLMs and approaching the performance of state-of-the-art task-specific models. We select the Mistral-based version for experiments due to its superior performance.
- **ChemLLM:** ChemLLM is the first specialized large language model dedicated to chemistry, trained on a unique dataset ChemData, and evaluated on a comprehensive benchmark ChemBench. This model shows remarkable capabilities in handling various chemistry tasks and exhibits strong general language skills.
- **ChemSpark:** ChemSpark, formally known as Spark-Chemistry-X1-13B, is a LLM specialized for chemistry developed by iFLYTEK and released on the ModelScope platform. It was created by fine-tuning the iFLYTEK Spark-X1 base model on various chemical task datasets.

1188

1189

Table 11: Performance overview of multi-level 3-shot text tasks on ChemEval (part 2).

1190

1191

Dimension	Task	Metric	Qwen2.5-14B	Qwen2.5-7B	Llama3.3-8B	Grok3	Gemini-2.5-Pro	ChemDFM	ChemLLM	LlaSMol	ChemSpark
<i>Advanced Knowledge Question Answering</i>											
ObjQA	MCTask	Accuracy	64.80	55.60	38.40	70.40	90.80	44.80	13.60	4.00	32.00
ObjQA	FBTask	LLM Score	41.00	34.35	29.68	49.19	56.66	20.98	55.40	29.28	26.20
ObjQA	TFTask	Accuracy	61.60	63.60	46.80	74.40	72.00	65.20	0.80	38.00	57.20
SubjQA	SATask	LLM Score	52.20	48.70	29.00	73.00	70.00	30.50	11.50	23.50	31.60
SubjQA	CalcTask	LLM Score	51.10	40.80	19.70	79.30	81.60	16.40	35.46	68.37	15.80
<i>Literature Understanding</i>											
InfoE	CNER	F1	57.42	64.84	51.35	61.47	73.62	36.98	0.09	9.04	72.30
InfoE	CERC	F1	26.50	25.42	15.34	28.66	20.69	0.37	0.28	0.00	37.18
InfoE	SubE	Accuracy	62.69	68.17	57.71	79.42	76.29	20.04	0.00	0.00	72.86
InfoE	AddE	F1	92.33	52.24	41.71	92.66	95.00	47.13	0.29	0.00	67.00
InfoE	SolvE	F1	83.50	74.00	69.00	81.00	84.67	71.25	0.43	0.05	85.23
InfoE	TempE	F1	70.00	79.00	69.00	79.00	77.00	41.00	1.53	0.00	80.00
InfoE	TimeE	F1	95.00	89.00	89.00	95.00	95.00	78.00	0.98	0.00	95.00
InfoE	ProDE	Accuracy	84.55	83.14	73.26	90.62	93.75	8.83	0.00	0.00	98.40
InfoE	ChemME	F1	70.25	62.96	32.72	79.36	80.09	17.83	0.00	0.00	39.12
InfoE	CartTE	F1	82.00	78.00	71.00	100.00	99.00	44.00	0.00	0.00	26.00
InfoE	YieldE	F1	69.00	60.00	61.00	55.00	59.50	41.00	0.00	0.00	69.00
InducGen	TopC	Accuracy	49.00	47.00	28.00	46.00	73.00	27.00	0.00	0.00	25.00
InducGen	ReactTR	F1	48.00	40.00	39.00	79.00	59.00	26.00	0.00	0.00	32.00
<i>Molecular Understanding</i>											
MNGen	MolNG	Tanimoto (valid)	10.27 (55%)	4.71 (36%)	7.51 (34%)	49.26 (92%)	72.33 (92%)	34.29 (69%)	0.00 (0%)	0.00 (0%)	61.38 (95%)
MNTrans	IUPAC2MF	L2	0.1864	0.1719	0.2619	0.3393	0.8294	0.3225	0.0102	0.0000	0.8176
MNTrans	SMILES2MF	L2	0.1333	0.1360	0.1674	0.3781	0.6422	0.4025	0.0072	0.0054	0.7224
MNTrans	IUPAC2SMILES	Tanimoto (valid)	7.67 (48%)	3.51 (30%)	2.37 (14%)	65.15 (94%)	59.44 (87%)	38.66 (88%)	0.00 (0%)	0.00 (0%)	83.98 (99%)
MNTrans	SMILES2IUPAC	Exact Match	0.00	0.00	0.00	0.00	0.40	0.00	0.00	0.00	10.80
MNTrans	SMILES2IUPAC	BLEU	0.62	0.15	0.13	3.44	13.61	0.26	0.08	0.00	45.96
MNTrans	SMILES2IUPAC	Tanimoto	7.80	3.39	1.91	28.61	54.63	1.82	0.00	0.00	61.08
MNTrans	S2S	Tanimoto (valid)	12.19 (71%)	6.28 (56%)	3.51 (47%)	27.58 (87%)	20.11 (74%)	0.94 (25%)	0.00 (0%)	0.00 (2%)	79.68 (89%)
MPP	MolPC	Accuracy	66.84	59.77	53.20	61.71	67.62	56.65	0.00	40.00	82.88
MPP	MolPR	NRMSE (valid)	1.6757 (100%)	0.5915 (100%)	50.9659 (81%)	0.2886 (100%)	0.2213 (100%)	1.6438 (87%)	8.2422 (98%)	10.0340 (89%)	1.1634 (100%)
MolDesc	Mol2PC	LLM Score	2.40	1.90	0.40	24.40	2.30	0.00	0.00	9.50	66.20
<i>Scientific Knowledge Deduction</i>											
ReSyn	SubRec	F1	0.20	0.20	0.00	0.80	0.00	2.74	0.00	0.00	10.45
ReSyn	PathRec	LLM Score	28.75	23.50	17.88	25.25	43.00	28.75	6.75	17.50	27.00
ReSyn	SynDE	NRMSE (valid)	0.3223 (100%)	0.4794 (100%)	0.7969 (100%)	0.2716 (100%)	0.4284 (100%)	0.6243 (51%)	0.6246 (100%)	0.4367 (95%)	0.5968 (66%)
RCRec	LRec	F1	9.20	6.40	2.40	29.60	0.00	12.49	0.00	0.00	16.80
RCRec	RRec	F1	41.69	30.28	30.00	35.14	1.87	14.21	5.60	0.00	57.45
RCRec	SolvRec	F1	26.00	48.00	33.80	30.40	0.00	24.59	0.00	0.00	32.00
RCRec	CatRec	F1	18.67	8.13	0.25	2.89	1.80	3.90	3.43	0.00	1.97
RCRec	TempRec	NRMSE (valid)	0.5359 (100%)	0.4211 (100%)	0.7066 (89%)	0.1687 (100%)	0.1479 (100%)	0.6583 (99%)	1.0526 (100%)	0.9240 (90%)	0.2682 (100%)
RCRec	TimeRec	NRMSE	0.2053 (100%)	0.2053 (100%)	0.9478 (100%)	0.1944 (100%)	0.2090 (100%)	0.1970 (100%)	0.4404 (100%)	0.3085 (100%)	0.4021 (100%)
ROP	PPred	F1	0.00	0.40	0.00	10.87	30.00	11.93	0.00	0.00	53.60
ROP	YPred	Accuracy	92.00	92.00	22.00	9.50	33.00	36.80	0.00	0.00	88.50
ROP	RatePred	Overlap	16.71	12.29	14.29	22.83	29.08	17.46	0.00	0.00	11.03
RMA	IMDer	LLM Score	74.25	25.25	67.50	80.50	83.00	42.25	4.75	3.75	73.25

1213

1214

C.2 METRICS

1215

In this study, we employ a variety of evaluation metrics to [fine-grained](#) assess model performance across different tasks. The main metrics include:

1216

1217

- **F1 Score and Accuracy:** These are the primary metrics used for most tasks. The F1 score combines precision and recall to evaluate classification performance, while accuracy measures the proportion of correct predictions.
- **BLEU:** Calculated by comparing the n-gram overlap between the model-generated text and the reference answer, incorporating a brevity penalty to penalize overly short outputs. This metric is mainly used to assess the similarity between generated results and reference answers.
- **Exact Match:** This metric checks whether the model output exactly matches the ground truth.
- **Normalized Root Mean Square Error (NRMSE):** Used to evaluate the prediction error in numerical or regression tasks, and lower values indicate better model performance.
- **Valid Output Ratio:** The proportion of valid outputs provided by the model.
- **LLM Score:** Subjective evaluation by other large language models, focusing on the reasonableness and completeness of the answers.
- **L2 Score (L2):** An indicator for evaluating the similarity between molecular formulas. Specifically, L2 Score is calculated as $1/(1 + \text{L2 distance})$, where the L2 distance refers to the L2 norm between the predicted and reference molecular formulas. A higher value indicates greater similarity between formulas.
- **Overlap:** Used to assess the proximity between the predicted range and the reference range. It is calculated as the length of the intersection divided by the length of the union of the predicted and reference ranges.

1242

1243 Table 12: Standard deviation across five trials for different models on ChemEval. Claude3.7T de-
1244 notes Claude 3.7-Sonnet-Thinking, whereas Claude3.7N denotes Claude 3.7-Sonnet.

1245

Task Metric	SATask LLM Score	CalcTask LLM Score	CNER F1	CERC F1	ProdE Accuracy	S2S Tanimoto	MolPC Accuracy	LRec F1	PPred F1
GPT-4o	61.20 \pm 2.25	61.80 \pm 1.21	65.76 \pm 1.58	25.66 \pm 1.48	86.09 \pm 1.45	13.41 \pm 1.39	64.57 \pm 1.23	13.20 \pm 2.99	1.67 \pm 1.52
claude3.7T	56.70 \pm 1.81	55.74 \pm 2.82	60.21 \pm 2.02	25.19 \pm 1.91	82.39 \pm 2.53	9.37 \pm 0.78	58.90 \pm 1.96	2.00 \pm 1.26	12.27 \pm 4.71
claude3.7N	55.10 \pm 2.18	53.60 \pm 2.15	54.55 \pm 4.02	24.77 \pm 1.18	85.04 \pm 1.88	10.58 \pm 1.14	54.37 \pm 3.24	4.40 \pm 1.50	16.16 \pm 1.89
Deepseek-R1	68.50 \pm 2.21	76.10 \pm 2.40	64.14 \pm 1.72	27.18 \pm 0.44	91.20 \pm 0.35	16.04 \pm 1.12	53.55 \pm 0.63	6.80 \pm 2.04	11.97 \pm 1.73
Deepseek-V3	71.70 \pm 1.91	79.20 \pm 2.94	60.85 \pm 1.13	24.94 \pm 1.12	87.52 \pm 2.56	16.27 \pm 1.44	48.73 \pm 1.43	7.60 \pm 2.33	0.93 \pm 1.14
Qwen2.5-72B	58.50 \pm 2.24	61.90 \pm 2.08	61.61 \pm 0.81	26.05 \pm 0.84	84.86 \pm 1.15	11.47 \pm 1.17	48.13 \pm 0.65	4.40 \pm 1.50	1.73 \pm 1.50
LLama3.3-8B	38.40 \pm 1.93	28.00 \pm 0.95	55.34 \pm 3.85	17.31 \pm 2.31	74.54 \pm 1.56	1.74 \pm 0.65	47.26 \pm 1.86	2.13 \pm 1.29	0.00 \pm 0.00
Grok3	73.59 \pm 1.16	81.20 \pm 1.60	60.75 \pm 0.34	26.04 \pm 0.61	91.04 \pm 0.28	17.56 \pm 1.75	56.62 \pm 0.76	36.00 \pm 1.26	11.33 \pm 1.54
Gemini-2.5-Pro	72.00 \pm 1.41	82.40 \pm 0.97	68.30 \pm 0.99	25.43 \pm 1.63	92.82 \pm 1.92	13.13 \pm 1.01	63.63 \pm 1.10	0.00 \pm 0.00	29.20 \pm 6.01
ChemDFM	32.20 \pm 1.57	14.70 \pm 1.17	41.17 \pm 2.25	8.74 \pm 2.52	34.73 \pm 2.94	2.12 \pm 0.31	61.35 \pm 0.80	26.00 \pm 3.79	18.80 \pm 2.29
ChemLLM	13.20 \pm 1.03	15.90 \pm 2.91	0.16 \pm 0.32	0.24 \pm 0.12	0.00 \pm 0.00				
ChemSpark	33.60 \pm 0.97	18.50 \pm 2.02	71.44 \pm 1.13	39.27 \pm 2.59	94.40 \pm 0.23	87.36 \pm 1.46	85.57 \pm 2.19	37.60 \pm 0.80	56.40 \pm 3.44

1254

D FULL PERFORMANCE RESULTS

1255

D.1 PERFORMANCE RESULT OF 0-SHOT SETTINGS

1256

The table 7 and the table 8 show the complete experiment results of all models under the zero-shot setting. We tested all the aforementioned models under zero-shot settings on ChemEval, as analyzed in Section 4.2.1. The results demonstrate that general-purpose models perform relatively well on knowledge question answering and literature comprehension tasks, while specialized models excel in more complex chemical tasks such as molecular property prediction. For certain tasks like CatRec, most models struggled to generate valid outputs, resulting in scores of zero.

1257

D.2 PERFORMANCE RESULT OF MULTIMODAL TASKS

1258

The table 9 shows the performance of mainstream multimodal large language models on ChemEval’s multimodal tasks, with ‘-’ indicating meaningless responses. While most models handle basic tasks like molecular formula identification adequately, they struggle significantly with more complex challenges involving chemical reaction pathways and molecular properties. This performance gap widens further in Molecular Understanding and Scientific Reasoning tasks, which require both accurate molecular structure recognition from visual inputs and comprehensive chemical knowledge application. Our evaluation focused solely on general-purpose multimodal models, excluding chemistry-specific ones. As multimodal capabilities become increasingly essential in chemical research, this represents a critical area requiring urgent development.

1259

D.3 PERFORMANCE RESULT OF 3-SHOT SETTING

1260

As shown in the table 10 and the table 11, we evaluated all the aforementioned models under 3-shot settings on ChemEval. The results indicate that, similar to the zero-shot scenario, general-purpose models perform relatively well on advanced knowledge question answering and literature understanding tasks, while struggling with more complex molecular understanding and scientific knowledge deduction tasks. Specialized models such as ChemLLM and LlaSMol, due to their poor instruction-following capabilities, failed to return meaningful responses for most tasks, resulting in anomalous scores. These findings corroborate our previous analysis.

1261

E RESULTS OF ANALYSIS EXPERIMENTS

1262

We conducted experimental analyses in two key areas. First, to establish the reliability of ChemEval metrics and demonstrate our evaluation framework’s robustness, we conducted three repeated trials across identical task categories and calculated the standard deviation of results. Due to computational resource limitations, we were unable to conduct comprehensive experiments on all models and tasks. Therefore, we selected representative models and tasks for evaluation. Second, we investigated the differential impact of reasoning-oriented and format-constraint instructions in prompts, examining how reasoning capabilities and instruction-following ability influence model performance on complex chemical tasks.

1296

1297

1298

1299

Table 13: Experimental Results on CoT and Format Constraints.

Dimension	Task	Metric	ChemDFM-NoFormat	ChemDFM-CoT	ChemLLm-NoFormat	Llasmol-NoFormat	Qwen2.5-7B-CoT
<i>Advanced Knowledge Question Answering</i>							
ObjQA	MCTask	Accuracy	36.00 ↓5.20	32.00 ↓9.20	28.00 ↓3.60	24.00	50.00 ↓9.60
ObjQA	FBTask	LLM Score	24.00 ↓0.16	25.38 ↑1.22	31.58 ↓3.39	20.88 ↓6.96	27.64 ↓11.88
ObjQA	TFTask	Accuracy	46.00	32.00 ↓14.00	16.00 ↓3.20	56.00 ↓2.00	70.00 ↑14.80
SubjQA	SATask	LLM Score	44.80 ↑12.60	44.40 ↓12.20	32.40 ↓19.20	30.00 ↑15.50	57.60 ↓6.80
SubjQA	CalcTask	LLM Score	32.00 ↑17.30	32.40 ↑17.70	32.40 ↑16.50	22.00 ↓14.50	51.60 ↓8.00
<i>Literature Understanding</i>							
InfoE	CNER	F1	43.44 ↓2.27	37.98 ↓3.19	47.61 ↑47.45	1.00 ↓10.62	67.02 ↓5.75
InfoE	CERC	F1	11.53 ↓2.79	9.69 ↓0.95	16.81 ↓16.57	4.13 ↓2.89	22.89 ↓3.21
InfoE	SubE	Accuracy	0.00 ↓20.07	0.00 ↓20.07	0.00	0.00	0.00 ↓58.43
InfoE	AddE	F1	33.33 ↓11.67	46.67 ↑1.67	66.67 ↓66.67	36.67 ↓36.67	65.33 ↓3.66
InfoE	SolvE	F1	65.00 ↓15.50	60.00 ↓20.50	76.50 ↓74.83	0.00	78.33 ↓4.17
InfoE	TempE	F1	60.00 ↓14.33	70.00 ↓4.33	70.00 ↓66.77	40.00 ↑40.00	65.00
InfoE	TimeE	F1	80.00 ↓2.00	90.00 ↓12.00	95.00 ↓2.69	50.00 ↓25.00	95.00
InfoE	ProdE	Accuracy	0.00 ↓34.73	0.61 ↓34.12	0.00	4.13 ↓4.13	26.51 ↓50.49
InfoE	CharME	F1	74.96 ↓47.70	64.52 ↓37.26	65.00 ↓65.00	44.96 ↓44.96	65.38 ↓22.38
InfoE	CatTE	F1	35.00 ↓14.00	40.00 ↓9.00	45.00 ↓45.00	0.00 ↓5.00	55.00 ↓9.00
InfoE	YieldE	F1	60.00 ↓15.00	60.00 ↓15.00	55.00 ↓55.00	55.00 ↓50.00	50.00 ↓17.00
InducGen	AbsGen	LLM Score	20.00 ↓20.00	20.00 ↓20.00	20.00 ↓14.50	11.00 ↓15.25	73.00 ↓18.25
InducGen	OLGen	LLM Score	19.00 ↓19.00	18.00 ↓18.00	40.00 ↓36.25	25.00 ↓6.25	58.00 ↓30.25
InducGen	TopC	Accuracy	30.00 ↓21.00	45.00 ↓6.00	35.00 ↓35.00	20.00 ↓20.00	45.00 ↓4.00
InducGen	ReactTR	F1	25.00 ↓12.00	15.00 ↓2.00	30.00 ↓30.00	0.00 ↓5.00	20.00 ↓11.00
<i>Molecular Understanding</i>							
MNGen	MoING	Tanimoto (valid)	71.94 (94%) ↓24.88	61.03 (92%) ↓13.97	0.62 (2%) ↓0.62	0.0 (0%) ↓3.71	3.44 (26%) ↓0.48
MNTrans	IUPAC2MF	L2	68.15 ↓6.96	21.15 ↓40.04	6.99 ↓2.45	1.00 ↓1.00	9.93 ↓8.63
MNTrans	SMILES2MF	L2	61.27 ↓2.72	17.14 ↓46.85	4.23 ↓0.48	0.00	3.96 ↓5.84
MNTrans	IUPAC2SMILES	Tanimoto (valid)	50.37 (96%) ↓3.66	44.77 (84%) ↓1.94	0.0 (0%)	0.0 (0%) ↓4.70	3.23 (28%) ↓0.23
MNTrans	S2S	Tanimoto (valid)	0.14 (50%) ↓1.98	3.53 (46%) ↓1.41	2 (4%) ↓2.00	0.0 (0%) ↓0.60	2 (2%) ↓0.28
MPP	MolPC	Accuracy	63.68 ↓2.33	57.12 ↓4.23	45.36 ↓45.36	54.92 ↓8.42	45.60 ↓18.45
MPP	MolPR	NRMSE	11.88 ↓383.07	240.91 ↑154.03	0.56 ↓178.80	12.19 ↑17.78	46.98 ↓38.39
MolDesc	Mol2PC	LLM Score	28.40 ↓25.30	28.00 ↓24.90	20.40 ↓20.10	25.60 ↓25.60	30.40 ↓15.90
<i>Scientific Knowledge Deduction</i>							
ReSyn	SubRec	F1	0.00 ↓3.99	0.00 ↓3.99	0.00	1.33 ↑1.33	0.00 ↓1.42
ReSyn	PathRec	LLM Score	48.00 ↓23.88	40.50 ↓16.38	24.00 ↓13.13	30.50 ↓20.50	47.00 ↓19.88
RCRec	LRec	F1	4.00 ↓22.00	4.80 ↓21.20	0.00	0.00	6.00 ↓3.20
RCRec	RRRec	F1	8.00 ↓5.13	9.33 ↓3.80	22.00 ↓22.00	0.00	44.00 ↓27.07
RCRec	SolvRec	F1	6.00 ↓4.53	14.00 ↓3.47	8.00 ↓8.00	2.00 ↓1.50	20.00 ↓5.60
RCRec	TempRec	NRMSE (valid)	0.421 (85%) ↓0.04	0.2681 (85%) ↓0.11	0.9821 (45%) ↓0.14	7.9004 (15%) ↓7.03	0.3174 (55%)
RCRec	TimeRec	NRMSE (valid)	0.5337 (70%) ↓0.06	0.6024 (55%) ↓0.13	1.306 (25%) ↓0.49	- (0%)	0.4396 (100%) ↓0.12
ROP	PPred	F1	4.00 ↓14.80	14.00 ↓4.80	0.00	8.00 ↓8.00	0.00
ROP	YPred	Accuracy	52.00 (50%) ↓44.80	72.00 (50%) ↓64.80	70.00 (50%) ↓70.00	10.00 (50%) ↓18.00	80.00 (50%) ↓13.00
ROP	RatePred	Overlap	3.20 ↓0.59	9.86 ↓6.07	0.00	0.00 ↓3.68	2.70 ↓10.65
RMA	IMDer	LLM Score	57.00 ↓19.00	55.00 ↓21.00	37.00 ↓32.25	32.00 ↓30.50	56.00 ↓22.75

1324

E.1 BENCHMARK STABILITY ASSESSMENT

1325

The table 12 shows the result of our repeated experiments. The results reveal that standard deviations across most metrics remain below 5.0, demonstrating consistent performance across multiple evaluations. This statistical stability confirms the robustness of our evaluation framework, ensuring reliable and reproducible assessments of system performance.

1326

1327

E.2 ANALYSIS OF COT AND FORMAT CONSTRAINTS

1328

1329

As illustrated in Table 13, we evaluate four models: ChemDFM, ChemLLM, LlasMol, and Qwen2.5-7B under varied prompt configurations. When format restrictions were removed from the prompts, ChemDFM and LlasMol showed improved performance on simpler chemical tasks but declined on more complex ones. In contrast, ChemLLM achieved substantial performance gains across most tasks after the removal of format restrictions. This finding highlights that the loss of instruction-following ability can critically undermine the practical usability of domain-specific models. With respect to reasoning-oriented instructions, CoT prompting produced inconsistent outcomes for ChemDFM, enhancing performance in certain tasks while reducing it in others. Notably, Qwen2.5-7B consistently exhibited performance deterioration under CoT conditions, suggesting that explicit reasoning mechanisms contribute little to performance improvements on chemical tasks.

1343

1344

E.3 ANALYSIS OF CHEMISTRY-SPECIFIC LLMs AND GENERAL-PURPOSE LLMs

1345

1346

Chemistry-specific language models are typically developed by fine-tuning open-source foundation models with domain-specific corpora. For instance, ChemLLM is derived from InternLM2-Base-7B, while ChemDFM builds upon LLAMA-13B. Although these models incorporate extensive chemistry datasets and supplement them with general-domain data to mitigate catastrophic forgetting, their relatively small parameter scales impose fundamental limitations, particularly in instruction-following ability and task generalization. In contrast, closed-source state-of-the-art sys-

1350 tems such as Gemini-2.0 and GPT-4o benefit from both larger parameter counts and massive pre-
 1351 training corpora that include substantial amounts of open-source chemistry data, enabling them to
 1352 preserve general reasoning capacity while delivering strong performance on chemistry tasks.
 1353

1354 To further investigate the trade-offs between domain specialization and general-purpose robustness,
 1355 we conducted a comparative study on Llasmol and its base model Mistral-7B. As shown in Table 14,
 1356 the results reveal mixed outcomes: Llasmol achieves modest improvements on classification-based
 1357 tasks such as multiple choice and true/false questions, but performs poorly on information extrac-
 1358 tion and molecular representation tasks where the base model significantly outperforms it. A closer
 1359 analysis of the model outputs suggests that Llasmol suffers from weak instruction-following, of-
 1360 ten failing to generate answers in the specified format, as well as a tendency to produce irrelevant
 1361 responses that are misaligned with the posed questions. These findings highlight the limitations
 1362 of smaller domain-adapted models and underscore the advantages of large-scale general-purpose
 1363 LLMs in achieving both reliability and relevance in specialized scientific applications.
 1364
 1365

F CASE STUDY

1366 We conducted a detailed analysis of the models’ outputs, systematically categorizing the most com-
 1367 mon types of errors they make, and provided two illustrative examples to highlight typical fail-
 1368 ure cases. These examples demonstrate the models’ difficulties in accurately adhering to chemical
 1369 nomenclature rules, predicting reaction substrates, and correctly interpreting molecular structures,
 1370 thereby offering concrete insights into their limitations and areas for potential improvement.
 1371

1372 In the Advanced Knowledge Question Answering and Literature Understanding levels, the model
 1373 demonstrates strong proficiency in fundamental chemistry knowledge. Covering the four major
 1374 branches of chemistry, the model shows some minor inaccuracies in understanding basic conceptual
 1375 definitions in fill-in-the-blank tasks, resulting in occasional incorrect responses, though the overall
 1376 error rate remains low. In short-answer tasks, the model provides detailed and accurate responses,
 1377 reflecting its strengths in foundational chemistry question answering.
 1378

1379 In the Molecular Understanding level, which primarily involves organic chemistry, the model ex-
 1380 hibits errors related to unfamiliarity with nomenclature rules for natural products, heterocycles, and
 1381 macrocycles, leading to name confusion; insufficient knowledge of special functional groups and
 1382 substituents; and incomplete understanding of basic organic and stereochemical nomenclature rules,
 1383 resulting in incorrect compound naming and misattribution of physicochemical properties.
 1384

1385 In the Scientific Knowledge Deduction level, the model’s errors include a lack of organic synthesis
 1386 knowledge, insufficient understanding of organic reaction mechanisms, unfamiliarity with specific
 1387 named reactions, limited grasp of reaction selectivity and reaction rules in organic compounds, and
 1388 inaccurate prediction of target product structures.
 1389

1390 These findings indicate that while the model performs well on foundational knowledge and basic
 1391 molecular reasoning, it still has limitations in advanced organic synthesis reasoning, reaction condi-
 1392 tion recommendation, and product prediction, highlighting areas for further improvement.
 1393

1394 Table 14: Comparison of LlaSMol and Mistral-7B performance on partial chemistry tasks.
 1395

1396 Tasks	1397 Metric	1398 Llasmol	1399 Mistral-7B
1400 Multiple Choice Task	Accuracy	0.24	0.20
1401 True/False Task	Accuracy	0.58	0.34
1402 Reaction Time Extraction	F1	0.25	0.90
1403 Reaction Temperature Extraction	F1	0.00	0.60
IUPAC to Molecular Formula	L2	0.00	0.1142
SMILES to Molecular Formula	L2	0.00	0.1076
Intermediate Derivation	LLM score	0.02	0.26

1404
1405

Error case of Substrate Recommendation

1406
1407**Query:** Chemical reaction equations are typically expressed in the following form:1408
1409

reactant1.reactant2.reactant3...>>product .

1410
1411

In this form, each substance (reactant/product) is represented using the SMILES notation. Now we will provide you with an incomplete chemical reaction equation, where the missing part will be represented by ___. The missing parts could be one or more substances. Based on the remaining portions of the reaction equation, please infer what the missing part could be. Please only provide the missing part in your response, without any additional content. The Incomplete equation is as follows:

1412
1413___>>CCOC(=O)C1C2=C(CCN1C(=O)C1=CC=CC(C(F)(F)F)=C1C1)N(C1=CC=CC=N1)C=N2.1414
1415

You must output your prediction, i.e. valid SMILES, and follow the output format exactly as follows: “answer”:[“valid SMILES 1”, “valid SMILES 2”,...]. I don’t need any explanation, you just need to output your judgment in format.

1416
1417**Groundtruth answer:**1418
1419['CCOC(=O)C1NCCC2=C1N=CN2C1=CC=CC=N1', 'O=C(O)C1=CC=CC(C(F)(F)F)=C1C1']1420
1421**Model answer:**1422
1423{ "answer": ["CCOC(=O)C1C2=C(CCN1C(=O)C1=CC=CC=C1)N(C1=CC=CC=N1)C=N2", "C1C1=CC=C(C(F)(F)F)c=C1"] }1424
1425**Error Analysis:** The model-predicted reaction substrate lacks the requisite reactive sites, preventing the two reactants from undergoing the reaction to yield the target product. Additionally, the model demonstrates inaccurate understanding of the target product’s structural characteristics, and the reaction substrate contains extraneous functional groups.1426
1427

Error case of SMILES-to-IUPAC Translation

1428
1429**Query:** please give the IUPAC name of the molecule given by SMILES:1430
1431CC(C)OC1=CC=C(C=C1)/C(=C\2/[C@H](N(C(=O)C2=O)CCN3CCNCC3)C4=CC=C(C=C4)C1)/O1432
1433

You must output your prediction, i.e. a valid IUPAC, and follow the output format exactly as follows: “answer”: “The answer you judge”. I don’t need any explanation, you just need to output your judgment information.

1434
1435**Groundtruth answer:**1436
1437(4E,5S)-5-(4-chlorophenyl)-4-[hydroxy-(4-propan-2-yloxyphenyl)methylidene]-1-(2-piperazin-1-ylethyl)pyrrolidine-2,3-dione1438
1439**Model answer:**1440
1441{ "answer": ["CCOC(=O)C1C2=C(CCN1C(=O)C1=CC=CC=C1)N(C1=CC=CC=N1)C=N2", "C1C1=CC=C(C(F)(F)F)c=C1"] }1442
1443**Error analysis:** The molecular structure does not contain 4-hydroxypiperidinyl or 2-propenyl moieties, and the designation as a 1-one is also erroneous. The model exhibits an inadequate understanding of IUPAC nomenclature rules for heterocyclic compounds; the heterocycles actually present in this structure are pyrrole and piperazine rings. Furthermore, additional nomenclature errors include: incorrect enumeration of principal functional groups (the structure contains two ketone carbonyls), improper substituent naming, and incomplete stereochemical specification—while the structure possesses two stereocenters, the nomenclature designates only one of them.

1458 **G LLM USAGE**
14591460 In this work, large language models were employed as a general assistive tool to improve the clarity
1461 and readability of the paper. Specifically, the models were used to polish grammar, punctuation, and
1462 phrasing in the text. No LLMs were used to generate original scientific ideas, analyze data, or draw
1463 conclusions; all scientific content, experimental design, analysis, and interpretation were entirely
1464 performed by the authors.

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511