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ABSTRACT

The emergence of Large Language Models (LLMs) in chemistry marks a signif-
icant advancement in applying artificial intelligence to chemical sciences. While
these models show promising potential, their effective application in chemistry
demands sophisticated evaluation protocols that address the field’s inherent com-
plexities. To bridge this critical gap, we introduce ChemEval, an innovative hierar-
chical assessment framework specifically designed to evaluate LLMs’ capabilities
across chemical domains. Our methodology incorporates a distinctive four-tier
progression system, spanning from basic chemical concepts to advanced theoret-
ical principles. Sixty-two textual and multimodal tasks are designed to enable
researchers to conduct fine-grained analysis of model capabilities and achieve
precise evaluation via carefully crafted assessment protocols. The framework
integrates carefully curated open-source datasets with expert-validated materials,
ensuring both practical relevance and scientific rigor. In our experiments, we eval-
uated the performance of most main-stream LLMs using both zero-shot and few-
shot approaches, with carefully designed examples and prompts. Results indicate
that general-purpose LLMs, while proficient in understanding chemical literature
and following instructions, struggle with tasks requiring deep chemical expertise.
In contrast, chemical LLMs perform better in technical tasks but show limitations
in general language processing. These findings highlight both the current limi-
tations and future opportunities for LLMs in chemistry. Our research provides
a systematic framework for advancing the application of artificial intelligence in
chemical research, potentially facilitating new discoveries in the field.1

1 INTRODUCTION

The advent of large language models has ushered in a transformative era in artificial intelligence,
particularly within the domain of natural language processing. The expansive capabilities of these
models have not only redefined the boundaries of text generation and understanding (Brown et al.,
2020; Ouyang et al., 2022; Touvron et al., 2023; Achiam et al., 2023) but have also opened new av-
enues for various domains, such as recommendation (Wu et al., 2024; Yin et al., 2024a; Shen et al.,
2024; Han et al., 2024), social (Wang et al., 2019; 2021) and scientific exploration (Beltagy et al.,
2019; Hong et al., 2022; Bhattacharjee et al., 2024). Researchers have adeptly employed LLMs to
accelerate the pace of scientific research and instigate a transformative shift in scientific research
paradigms. The field of chemistry has notably profited from the integration and advancement of
LLMs (Yu et al., 2024; Chen et al., 2024; Zhang et al., 2021; Hao et al., 2020), becoming a key
area where these sophisticated technologies have delivered substantial advantages. The intricate na-
ture of chemical research, involving complex molecular interactions and reactions, presents unique
challenges that LLMs can address through advanced pattern recognition and predictive analytics.

In order to systematically assess the capabilities of LLMs across various domains and identify areas
for their potential enhancement, numerous benchmarking initiatives have been introduced. For in-
stance, the MMLU (Hendrycks et al., 2020) covers 57 tasks spanning basic mathematics, American
history, computer science, law, and other fields. The XieZhi (Gu et al., 2024) benchmark includes

1The code and data are available at https://anonymous.4open.science/r/ChemEval-A26B.
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Figure 1: The overview of ChemEval. It includes 4 progressive levels, evaluating 13 dimensions
of LLMs’ capabilities and featuring 62 distinct chemical tasks that cover a wide range of chemical
knowledge, from foundational concepts to advanced topics suitable for graduate-level research.

three major academic categories with 516 specific subjects. However, general benchmarks (Zhong
et al., 2023; Huang et al., 2024b) often overlook a detailed assessment of chemical knowledge. Al-
though Sun et al. (2024) introduce SciEVAL as a framework for assessing the competencies of LLMs
within the scientific domain, the chemistry-related tasks are overly simplistic and do not adequately
capture the depth required. Regarding chemistry domain-specific benchmarks, Guo et al. (2023)
propose 8 chemical tasks aimed at assessing understanding, reasoning, and explanation abilities, but
the benchmark consists of tasks derived from existing public datasets, which may be insufficient to
capture the full spectrum of competencies needed for thorough chemical research. Other studies like
(White et al., 2023; Liu et al., 2023) have similar problems. Moreover, existing benchmarks fail to
address the capability of LLMs to extract chemical information from text and tables. This limitation
prevents them from tackling key issues of interest to chemistry researchers and has not fully met the
specialized needs of chemistry.

In light of these considerations, we introduce ChemEval, a benchmark designed to address the gap
in the hierarchical assessment framework for LLMs in chemistry by providing a multi-dimensional
evaluation. 1). Extensive tasks are included in ChemEval, which encompasses chemical tasks of
interest to researchers that were not included in previous benchmarks. It has four levels, thirteen
dimensions, and a total of 62 distinct tasks, covering a vast array of issues within the domain of
chemical research. Notably, we innovatively introduce test sets related to information extraction and
inductive generation in chemistry. 2). Multimodal tasks are specifically designed to assess models’
capabilities in understanding and reasoning across diverse chemistry-related data types, including
text, molecular structure diagrams, and spectral images. 3). Domain experts in chemistry have
meticulously crafted in-depth task datasets and prompts for ChemEval, partly addressing the previ-
ous lack of domain-specific data in chemistry benchmarks. Compared to previous work, our study
encompasses a broader range of tasks that are of actual concern in chemical research. It assesses
models on a graduated scale of capabilities, from general to domain-specific skills, to determine the
model’s proficiency. Our aim is to construct specialized tasks from the perspective of chemical re-
searchers, thereby providing valuable insights for AI researchers and chemists, and improving large
language models’ effectiveness in chemical research.

For experiments, we conducted a highly detailed evaluation process, focusing on designing prompts
that challenge LLMs, including 0-shot and few-shot settings. We evaluated currently widely used
LLMs, including both general LLMs and specialized chemical LLMs, and gained many meaningful
insights. This fine-grained evaluation has revealed that though general LLMs excel in Literature
Understanding tasks and possess great instruction-following capability, they struggle with tasks that
require a deeper understanding of molecular structures and scientific inference. On the other hand,
specialized LLMs generally show improved chemical abilities even when their ability to understand
literature and instruction-following capability is diminished. This finding underscores the need for
significant improvements in the way LLMs are trained and evaluated for chemical tasks. In addition,
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we explored the impact of few-shot learning and model size on the performance of large language
models and provided corresponding insights. We highlight the contributions of this paper as follows:

• We have established an open-source benchmark for LLMs in the field of chemistry, which provides
a fine-grained evaluation of their mastery of chemical knowledge as well as their multimodal
reasoning capabilities, filling the absence of a holistic benchmark that encompasses the diverse
range of tasks within the chemical domain.

• We set up 4 progressive levels and access 13 model capability dimensions through 62 tasks in
ChemEval, which is developed through extensive discussions and collaborative design with chem-
istry researchers, involves constructing novel tasks of interest to chemical researchers and encom-
passes the primary focal points of chemical research.

• We conducted a fine-grained evaluation of LLMs in chemical tasks, using various prompt settings
to assess both general and specialized LLMs. This revealed significant differences between dif-
ferent types of LLMs and identified challenging tasks with potential for optimization. This work
offers critical insights to guide researchers in the optimization and application of LLMs, thereby
enhancing their effectiveness in chemical research.

2 RELATED WORK

Large Language Models for Chemistry. The emergence of Large Language Models (LLMs)
has revolutionized Natural Language Processing, with cutting-edge proprietary models like GPT-4o
(Hurst et al., 2024) and open-source alternatives such as LlaMA (Touvron et al., 2023) and Qwen
(Yang et al., 2024) demonstrating exceptional capabilities across linguistic tasks. However, apply-
ing these general models to chemistry reveals significant limitations in domain-specific knowledge.
To bridge this gap, researchers have developed specialized approaches: Galactica (Taylor et al.,
2022) underwent pre-training on comprehensive scientific corpora, SciGLM (Zhang et al., 2024a)
employed strategic fine-tuning with scientific datasets, and ChemCrow (Bran et al., 2023) enhanced
performance by integrating expert-designed chemistry tools. Chemistry-focused models, including
ChemDFM (Zhao et al., 2024), LlaSMol (Yu et al., 2024), and ChemLLM (Zhang et al., 2024b),
incorporate tailored training methodologies, while specialized applications such as Drugchat (Liang
et al., 2023) and Drugassist (Ye et al., 2023) specifically address molecular structures and chemical
properties. Despite these advancements, achieving comprehensive chemical understanding through
LLMs remains a promising frontier for further research and innovation.

Large Language Models Evaluations for Chemistry. The progress made in the field of LLMs is
tightly linked to the establishment of robust evaluation frameworks. For general tasks, benchmarks
such as MMLU (Hendrycks et al., 2020) and GLUE (Wang et al., 2018) have become standard
tools for assessing model capabilities. In the scientific domain, recent initiatives like SciEval (Sun
et al., 2024), SceMQA (Liang et al., 2024), and SciAssess (Cai et al., 2024) have been introduced to
evaluate scientific reasoning and knowledge. In the chemistry domain, recent benchmarking initia-
tives such as ChemLLMbench (Guo et al., 2023), ChemBench (Mirza et al., 2024), and MaCBench
(Alampara et al., 2025) have emerged, yet each presents significant limitations: ChemLLMbench
covers only eight task categories with unreviewed datasets; ChemBench offers 7,000 samples, but is
limited by its reliance on multiple-choice questions, lack of open-ended tasks, and insufficient eval-
uation metrics for chemical experiment design tasks such as synthesis pathway recommendations;
while MaCBench introduces multimodal evaluation but exhibits similar constraints in task diversity
and assessment metrics. The absence of a precise benchmarking framework impedes LLM advance-
ment in chemistry, a field with complex conceptual knowledge and computational challenges. To
address this gap, we introduce ChemEval, a precise evaluation framework designed to rigorously
assess LLM capabilities across the multifaceted landscape of chemistry.

3 CHEMEVAL

To fill the absence of a holistic benchmark that encompasses the diverse range of tasks within the
chemical domain, we introduce a refined benchmark named ChemEval specifically designed to eval-
uate the comprehensive capabilities of LLMs within the chemical domain. It not only encompasses
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text tasks such as literature comprehension and experimental planning, but also incorporates multi-
modal tasks, including molecular formula recognition and spectroscopic data analysis. As illustrated
in Figure 1, it contains four levels in the field of chemistry, each of which includes several differ-
ent chemical dimensions, ensuring a fine-grained evaluation of LLMs. This framework measures
the models’ ability to understand and infer chemical knowledge from a broad range of dimensions
through a series of meticulously designed tasks. In the following subsections, we will provide a
detailed introduction to the task content and data construction process of ChemEval.

3.1 TASK DESCRIPTION

3.1.1 ADVANCED KNOWLEDGE QUESTION ANSWERING

This segment is pivotal in assessing the models’ proficiency in understanding and applying funda-
mental chemical concepts, which include Objective Question dimension and Subjective Question
dimension, a total of 15 different tasks. Through a blend of objective and subjective tasks, the
Advanced Knowledge Question Answering challenges the models to demonstrate their integrated
capabilities in areas of chemical terminology, quantitative analysis and cross-modal reasoning. The
tasks within this section are designed to be both comprehensive and diagnostic, providing a clear
measure of the models’ readiness to tackle more advanced chemical inquiries.

3.1.2 LITERATURE UNDERSTANDING

Advanced Knowledge Question Answering is designed to assess the model’s comprehension and
mastery of chemical knowledge, while Literature Understanding evaluates the model’s capacity to
interpret and assimilate information from chemical literature, which is foundational for subsequent
inductive generation tasks. Literature Understanding, which includes the Inductive Generation, In-
formation Extraction, and Molecular Name Recognition dimensions, comprising a total of 19 tasks,
delves into tasks crucial for understanding and extracting meaningful information from the chemi-
cal literature. The primary focus is on assessing the LLMs’ ability to comprehend and extract key
information from both textual content and image data in chemical literature, enabling the execution
of more complex or information-intensive tasks.

3.1.3 MOLECULAR UNDERSTANDING

This section builds upon the previous foundation to assess the model’s understanding and gener-
ative capabilities at the molecular level. It includes 4 dimensions: Molecular Name Generation,
Molecular Name Translation, Molecular Property Prediction, and Molecular Description, a to-
tal of 15 tasks. Molecular Understanding focuses on core tasks in molecular cognition, aiming
to evaluate LLMs in molecular formula conversion, structural diagram interpretation, and the de-
scription/prediction of molecular properties based on structural and spectroscopic data. These tasks
assess the models’ proficiency in interpreting and generating chemical information accurately.

3.1.4 SCIENTIFIC KNOWLEDGE DEDUCTION

Having established a solid grasp of basic chemical knowledge, the skill to interpret scientific liter-
ature, and the capacity to understand molecular structures, we expect that the model will proceed
to conduct deeper chemical reasoning and deduction. The Scientific Knowledge Deduction level
covers Retrosynthetic Analysis, Reaction Condition Recommendation, Reaction Outcome Predic-
tion and Reaction Mechanism Analysis, a total of 13 tasks, which are essential for effective chemical
synthesis. This part evaluates the LLMs’ capabilities in retrosynthetic analysis, recommending re-
action conditions, predicting reaction outcomes, and analyzing reaction mechanisms. These tasks
are essential for efficient chemical synthesis, requiring the model to accurately recognize chemical
structures from images and perform complex reasoning and analysis using specific knowledge.

3.2 BENCHMARK GENERATION PIPELINE

3.2.1 DATA COLLECTION

The overall process of benchmark construction is illustrated in Figure 2. Data plays an indispensable
role in the realm of LLMs (Yin et al., 2024b). Our data collection is comprised of two components:
Open-source Data and Domain-Expert data.
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Figure 2: Data collection steps of ChemEval. The process is divided into three main steps: a). Data
Collection: Raw data is collected from academic websites via web crawling, and experts manually
gather data from professional textbooks and experimental data. b). Data Filtering: The raw data
undergoes deduplication and removal of irrelevant items to produce filtered data. c). Q&A Pair
Construction: Experts manually construct Q&A pairs related to chemistry and create prompt in-
structions, resulting in four instruction test sets.

For the open-source component, we utilized keywords such as ”chemistry”, ”large language mod-
els”, ”knowledge question answering”, and ”information extraction” to retrieve relevant publications
on chemical language models from academic repositories. We then systematically extracted and
codified downstream tasks and their associated datasets from these papers to develop our chemical
evaluation framework (Yu et al., 2024; Guo et al., 2023; Edwards et al., 2022; Chen et al., 2023;
Guo et al., 2021; Zhou et al., 2023; Fang et al., 2023). Next, we download the official datasets for
the downstream tasks, using the presence of an official test set as the main criterion for selection.

Nevertheless, the scope of open-source data is inadequate. To enhance the evaluation’s rigor and
breadth, we collected extensive domain-expert materials. These raw materials were sourced from:
(1) a collection of approximately 500 university-level chemistry textbooks, exercise books, and ex-
aminations; and (2) around 9,000 real-world experimental records provided by collaborating lab-
oratories. These resources were then used to manually construct question-answer pairs tailored to
specific task types. Crucially, to prevent potential data leakage, materials such as textbook exercises
were not directly copied but were used as references by chemistry experts to author new questions
based on the target knowledge dimensions and task formats.

3.2.2 DATA PROCESSING

Through our data collection efforts, we obtained a large volume of raw data in the chemical do-
main. To convert this raw material into reliable benchmarking resources, we implemented a rigorous
pipeline of selection, filtration, and task-specific processing.

First, all data underwent a manual filtering process conducted by domain experts. Raw samples
were rejected if they were deemed ”irrelevant,” a category primarily including: (a) Task-irrelevant:
data that did not align with our predefined chemical task definitions; (b) Ambiguous questions:
items whose phrasing could lead to multiple valid interpretations; (c) Non-unique answers: tasks
where multiple reasonable answers existed, but the source material provided only one incomplete
or unclear standard; (d) Outdated knowledge: information involving chemical facts that have been
subsequently revised; and (e) Duplicates: redundant or highly similar items identified through dedu-
plication. After filtering, our data processing framework operated at three levels:

(1) Advanced knowledge question answering. We curated question–answer pairs from the collected
undergraduate and postgraduate textbooks and supplementary resources. These pairs span seven
major categories—organic chemistry, inorganic chemistry, materials chemistry, analytical chem-
istry, biochemistry, physical chemistry, and polymer chemistry—ensuring comprehensive coverage
of chemical concepts and principles.
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(2) Literature understanding. We extracted relevant passages from scientific publications and paired
them with carefully designed questions and task-specific answers, producing test sets tailored to
downstream applications.

(3) Molecular understanding and scientific reasoning. By integrating open-source datasets with our
proprietary laboratory data from collaborating institutions, we constructed task sets that strictly align
with the requirements of domain-specific evaluation scenarios.

To ensure the quality and objectivity of the expert-generated data, we implemented a three-tier
”Annotation-Review-Final Audit” process. First, a team of undergraduate chemistry students,
trained via a standardized SOP manual, performed the initial annotation. Second, a graduate student
team checked all annotations for consistency and correctness. Finally, chemistry faculty members
conducted a final audit. Standard answers were strictly based on factual content, not subjective cre-
ation. Our SOP mandated that any items identified with ambiguity or non-unique answers during
this process were culled from the test set to ensure benchmark objectivity and reproducibility.

3.2.3 DATA STATISTICS

Through our data processing efforts, we constructed a complete test dataset. As a result of our
rigorous filtering process, approximately 200 items (around 2% of the initial dataset) were discarded
due to ambiguity, non-unique answers, or outdated knowledge.

Notably, the test sets for different downstream tasks were cross-checked to remove duplicates with
the training sets of corresponding tasks in open-source domain models, ensuring that there is no
risk of data leakage in the evaluation of different downstream tasks. We also performed internal
deduplication on all collected content. The data volumes are presented in Figure 1, we finally
obtained 3120 evaluation data points.

While some of our tasks follow the same settings as existing datasets, we have incorporated nu-
merous additional tasks to construct a more curated benchmark for evaluating LLMs’ chemical
capabilities. Specifically, our benchmark comprises 25 tasks sourced from other open datasets and
37 custom-designed tasks developed in-house. Detailed information on data distribution and task
sources can be found in the appendix B.

3.2.4 INSTRUCTION CREATION

To evaluate the effectiveness of the model, we constructed task-specific prompts and 3-shot task-
specific prompts for text downstream tasks (Wei et al., 2022). For downstream tasks with open-
source datasets, to facilitate evaluation, the evaluation system in this paper strengthens the format
of the output data based on its instructions. For the domain expert-built part, the evaluation system
in this paper will design instructions for task introduction and formatted output according to the
task type, and continuously adjust the instructions based on the return results of GPT-4o, thereby
strengthening the instructions for different self-constructed downstream tasks.

3.2.5 METRICS

In this study, we utilize a range of evaluation metrics for a fine-grained assessment of LLMs’ per-
formance across diverse tasks. For the majority of tasks, we utilize the F1 score and Accuracy. In
addition, we utilize BLEU (Papineni et al., 2002), Exact Match, Normalized Root Mean Square
Error, Valid Output Ratio, LLMs Score, L2 Score, and Overlap as evaluation metrics for different
tasks to accommodate various task requirements. A detailed introduction to the metrics is provided
in the appendix C.2.

4 EXPERIMENT

4.1 SETUP

To conduct a fine-grained diagnostic evaluation of LLMs’ chemical capabilities, our framework
assesses both general and specialized models. For general LLMs, we include OpenAI-o1/o3-mini
(Jaech et al., 2024), GPT-4o (Hurst et al., 2024), Claude-3.7-Sonnet (Anthropic, 2025), Gemini-2.5-
pro (Team et al., 2023), Qwen2.5-7B/14B/32B/72B (Yang et al., 2024), LLaMA3.3-8B (Touvron

6
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Table 1: Performance overview of representative multi-level 0-Shot text tasks on ChemEval.
Claude3.7T denotes Claude 3.7-Sonnet-Thinking, whereas Claude3.7N denotes Claude 3.7-Sonnet.
For the complete experimental results, please refer to the appendix D.1.
Dimension Task Metric OpenAI-o1 GPT-4o Claude3.7T Deepseek-R1 Deepseek-V3 Qwen2.5-72B Llama3.3-8B Gemini-2.5-Pro ChemDFM ChemLLM LlaSMol ChemSpark Chemcrow

Advanced Knowledge Question Answering
ObjQA MCTask Accuracy 74.00 66.80 62.80 82.40 76.00 67.20 40.40 87.60 41.20 24.40 24.00 43.60 58.00
ObjQA FBTask LLM Score 60.92 51.19 45.28 59.41 63.88 53.92 34.17 63.95 24.16 34.97 13.92 24.57 43.14
ObjQA TFTask Accuracy 46.00 57.60 58.80 75.20 67.20 58.40 46.00 77.60 46.00 19.20 58.00 50.00 74.00
SubjQA SATask LLM Score 64.50 61.20 56.70 68.50 71.70 58.50 38.40 72.00 32.20 13.20 14.50 33.60 43.50
SubjQA CalcTask LLM Score 78.00 61.80 55.74 76.10 79.20 61.90 28.00 82.40 14.70 15.90 7.50 18.50 43.50

Literature Understanding
InfoE CNER F1 64.56 65.76 60.21 64.14 60.85 61.61 55.34 68.30 41.17 0.16 11.62 71.44 57.46
InfoE CERC F1 22.37 25.66 25.19 27.18 24.94 26.05 17.31 25.43 8.74 0.24 1.24 39.27 22.05
InfoE SubE Accuracy 73.71 66.32 61.59 75.18 61.26 62.56 64.02 72.05 20.07 0.00 0.00 74.38 50.91
InfoE AddE F1 81.67 85.00 79.33 82.67 80.67 84.00 45.81 95.00 45.00 0.00 0.00 65.00 43.33
InfoE SolvE F1 86.50 85.00 87.60 90.20 88.50 85.00 75.47 83.17 80.50 1.67 0.00 83.79 87.50
InfoE TempE F1 70.00 67.00 72.00 65.00 72.00 65.00 62.00 69.00 74.33 3.23 0.00 83.00 65.00
InfoE TimeE F1 95.00 95.00 95.00 95.00 95.00 90.00 90.00 94.00 78.00 23.10 25.00 95.00 95.00
InfoE ProdE Accuracy 90.25 86.09 82.39 91.20 87.52 84.86 74.54 92.82 34.73 0.00 0.00 94.40 71.38
InfoE CharME F1 51.67 72.85 81.01 21.33 81.80 74.57 44.18 73.11 27.26 0.00 0.00 12.98 25.00
InfoE CatTE F1 95.00 94.00 82.00 99.00 100.00 100.00 65.00 96.00 49.00 0.00 5.00 31.00 85.00
InfoE YieldE F1 85.00 79.00 61.00 77.70 65.00 65.00 46.00 74.00 45.00 0.00 5.00 61.00 50.00

InducGen AbsGen LLM Score 63.75 63.00 63.00 65.00 64.75 64.75 62.00 67.25 0.00 5.50 26.25 38.25 57.50
InducGen OLGen LLM Score 25.00 35.50 26.50 37.00 27.00 24.25 22.75 39.50 0.00 3.75 31.25 30.50 32.50
InducGen TopC Accuracy 55.00 49.00 56.00 57.00 50.00 64.00 32.00 67.00 51.00 0.00 0.00 30.00 45.00
InducGen ReactTR F1 25.00 32.00 29.00 21.00 28.00 22.00 26.00 31.00 13.00 0.00 5.00 17.00 5.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 49.80 (72%) 39.30 (89%) 33.85 (70%) 56.05 (87%) 51.19 (96%) 20.58 (79%) 5.83 (40%) 71.11 (93%) 47.06 (69%) 0.00 (0%) 3.71 (76%) 74.81 (98%) 40.92 (90%)

MNTrans IUPAC2MF L2 0.7737 0.5304 0.3252 0.6026 0.6176 0.3407 0.2433 0.8382 0.6119 0.0454 0.0000 0.8807 0.1408
MNTrans SMILES2MF L2 0.6330 0.3627 0.3618 0.4402 0.3563 0.2448 0.1728 0.6574 0.6399 0.0375 0.0000 0.8133 0.3089
MNTrans IUPAC2SMILES Tanimoto (valid) 29.72 (50%) 34.71 (83%) 31.89 (68%) 30.70 (63%) 46.07 (88%) 15.90 (76%) 5.24 (30%) 61.35 (87%) 46.71 (88%) 0.00 (100%) 4.70 (56%) 87.84 (100%) 25.68 (64%)
MNTrans SMILES2IUPAC Exact Match 0.00 0.00 0.00 1.20 0.00 0.00 0.00 1.20 0.00 0.00 0.00 14.00 0.00
MNTrans SMILES2IUPAC BLEU 3.24 0.96 3.27 4.17 1.67 0.33 0.44 13.55 0.56 0.00 0.00 48.25 0.38
MNTrans SMILES2IUPAC Tanimoto 0.00 12.08 22.73 25.90 19.16 13.01 3.71 56.82 2.06 0.00 2.22 66.26 0.00
MNTrans S2S Tanimoto (valid) 9.72 (42%) 13.41 (62%) 9.37 (40%) 16.04 (71%) 16.27 (62%) 11.47 (50%) 1.74 (12%) 13.13 (44%) 2.12 (25%) 0.00 (50%) 0.60 (48%) 87.36 (94%) 9.83 (38%)

MPP MolPC Accuracy 67.50 64.57 58.90 53.54 48.73 48.13 47.26 63.63 61.35 0.00 46.50 85.57 46.00
MPP MolPR NRMSE (valid) 12.3852 (99%) 9.9322 (51%) 13.9702 (92%) 15.8881 (100%) 8.3675 (98) 13.0756 (100%) 61.4736 (62%) 11.7270 (100%) 394.9424 (83%) 179.3606 (93%) 29.9686 (73%) 1.2142 (100%) 0.3408 (38%)

MolDesc Mol2PC LLM Score 19.00 7.00 9.80 11.90 13.50 20.80 2.10 0.70 3.10 0.30 0.00 48.90 21.00
Scientific Knowledge Deduction

ReSyn SubRec F1 1.00 0.00 1.46 1.63 2.27 1.06 0.27 0.00 3.99 0.00 0.00 12.37 0.00
ReSyn PathRec LLM Score 30.63 22.88 0.36 52.75 37.38 41.13 20.88 43.75 24.13 10.88 10.00 38.75 48.75
ReSyn SynDE NRMSE (valid) - (5%) - (0%) - (0%) - (0%) - (0%) 0.2670 (100%) - (0%) - (0%) - (0%) 33.0049 (78%) 1.2374 (45%) 1.7992 (87%) - (0%)
RCRec LRec F1 0.00 13.20 2.00 6.80 7.60 4.40 2.13 0.00 26.00 0.00 0.00 37.60 18.00
RCRec RRec F1 25.64 15.80 27.43 21.93 8.35 37.75 8.78 0.73 13.13 0.00 0.50 63.72 36.65
RCRec SolvRec F1 10.00 20.40 18.80 22.40 24.00 50.40 3.63 0.00 10.53 0.00 0.50 30.40 12.00
RCRec CatRec F1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
RCRec TempRec NRMSE (valid) 0.3278 (100%) 0.2545 (100%) 0.2263 (100%) 0.2078 (100%) 0.2096 (100%) 0.3782 (100%) - (0%) 0.1814 (100%) 0.3811 (99%) 1.1184 (98%) 0.8658 (100%) 0.2742 (100%) 0.2392 (85%)
RCRec TimeRec NRMSE (valid) 0.2746 (100%) 0.2468 (100%) 0.3662 (100%) 0.2291 (100%) 0.2579 (100%) 0.2022 (100%) - (0%) 0.2425 (100%) 0.4732 (100%) 1.7937 (98%) 0.4351 (80%) 0.3937 (100%) 0.5209 (70%)
ROP PPred F1 21.33 1.67 12.27 11.97 0.93 1.73 0.00 29.20 18.80 0.00 16.00 56.40 0.00
ROP YPred Accuracy 12.00 43.50 16.00 11.00 22.50 26.00 35.50 17.50 7.20 0.00 28.00 72.00 24.00
ROP RatePred Overlap 21.08 13.81 9.06 17.12 17.71 10.71 6.92 27.01 3.79 0.00 3.68 2.90 0.00
RMA IMDer LLM Score 80.00 81.50 81.50 79.50 80.50 77.25 81.25 82.25 76.00 4.75 1.50 92.75 28.75

et al., 2023), Grok3 (xAI, 2025), and DeepSeek-V3/R1 (Liu et al., 2024). For chemistry-specific
LLMs, we evaluate ChemDFM (Zhao et al., 2024), LlaSMol (Yu et al., 2024), ChemLLM (Zhang
et al., 2024b) and ChemSpark2. For multimodal chemical tasks, we evaluated mainstream MLLMs,
including GPT-4o (Hurst et al., 2024), Claude-3.7-Sonnet (Anthropic, 2025), Qwen-VL Max (Bai
et al., 2023), Phi-Vision-3.5 (Abdin et al., 2024), across four levels of multimodal chemistry tasks.
We used the official APIs of general models for evaluation and ran the chemistry-specific models on
two A40 48GB GPUs. We employed greedy decoding for all LLM inference in our experiments.

To illustrate the capability of LLMs in various chemical tasks, we present their average zero-shot
performance across four levels, with detailed results shown in the table 1. To assess their adaptability
and in-context learning abilities, we also report three-shot performance across the same levels. Some
tasks, such as Chemical Paper Abstract Generation, are not included in our three-shot evaluation due
to context length limitations.

4.2 PERFORMANCE RESULTS

We evaluate the models’ performance for each task across four assessment Levels. Evaluation re-
sults for text tasks are summarized in Table 1, and those for multimodal tasks are summarized in
Table 9. Certain models are unable to address specific tasks entirely. For example, LLaMA3.3-8B
demonstrates poor instruction-following capabilities in TempRec task in the 0-shot setting, which
significantly impairs its ability to generate responses based on task prompts. Consequently, we are
unable to provide numerical results for the tasks affected by this limitation. We further discuss
the key findings of our benchmark and analyze how different LLM configurations influence perfor-
mance, offering practical insights for the development of chemistry-specific benchmarks.

4.2.1 THE MODELS’ PERFORMANCE ACROSS FOUR LEVELS.

The performance comparison of LLMs across four levels reveals distinct strengths and weaknesses:

Basic Knowledge. Within the level of Advanced Knowledge Question Answering, the results re-
veal that OpenAI-o1 exhibits superior performance in objective questions, and Gemini outperforms
other models in subjective questions, which indicates the importance of reasoning ability in Q&A
questions. Additionally, general LLMs like GPT-4o and Qwen2.5-72B also perform well in lit-
erature understanding. However, chemistry-specialized models (except ChemSpark) struggle with

2https://www.modelscope.cn/models/iflytek/Spark-Chemistry-X1-13B
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Table 2: 3-shot performance changes on text tasks relative to 0-shot in ChemEval. The symbols
and accompanying values show performance changes compared to 0-shot, where ’↑’ indicates an
increase, ’↓’ a decrease, and ’-’ no change. The three values in the last column (↑, ˜, ↓) represent the
number of tasks that show a significant increase, remain unchanged, and significantly decrease.

Task SATask CalcTask SubE TempE ProdE ReactTR MolPC LRec PathRec RatePred Change
Metric LLM Score LLM Score Accuracy F1 Accuracy F1 Accuracy F1 LLM Score Overlap (↑, ˜, ↓)

OpenAI-o1 68.50 ↑4.00 78.50 ↑0.50 78.01 ↑4.30 75.00 ↑5.00 91.48 ↑1.23 60.00 ↑35.00 71.60 ↑4.10 18.00 ↑18.00 40.63 ↑10.01 14.41 ↓6.67 (9, 0, 1)
GPT-4o 61.00 ↓0.20 59.10 ↓2.70 65.93 ↓0.39 73.00 ↑6.00 86.88 ↑0.79 71.00 ↑39.00 68.55 ↑3.98 15.60 ↑2.40 25.00 ↑2.13 20.27 ↑6.47 (7, 0, 3)

Gemini-2.5-Pro 70.00 ↓2.00 81.60 ↓0.80 76.29 ↑4.24 77.00 ↑8.00 93.75 ↑0.93 59.00 ↑28.00 67.62 ↑3.99 0.00 43.00 ↓0.75 29.08 ↑2.06 (6, 1, 3)
Deepseek-v3 70.40 ↓1.30 77.40 ↓1.80 75.78 ↑14.51 80.00 ↑8.00 91.75 ↑4.23 46.00 ↑18.00 55.79 ↑7.06 11.60 ↑4.00 24.00 ↓13.38 13.45 ↓4.26 (6, 0, 4)
Qwen2.5-72B 60.80 ↑2.30 61.61 ↓0.29 70.10 ↑7.54 80.00 ↑15.00 84.05 ↓0.81 61.00 ↑39.00 56.87 ↑8.74 16.40 ↑12.00 33.38 ↓7.75 15.82 ↑5.10 (7, 0, 3)
Llama3.3-8B 29.00 ↓9.40 19.70 ↓8.30 57.71 ↓6.31 69.00 ↑7.00 73.26 ↓1.28 39.00 ↑13.00 53.20 ↑5.95 2.40 ↑0.27 17.88 ↓3.00 14.29 ↑7.38 (5, 0, 5)
ChemDFM 30.50 ↓1.70 16.40 ↑1.70 20.04 ↓0.03 41.00 ↓33.33 8.83 ↓25.90 26.00 ↑13.00 56.65 ↓4.70 12.49 ↓13.51 28.75 ↑4.63 17.46 ↑13.67 (4, 0, 6)
ChemLLM 11.50 ↓1.70 35.46 ↑19.56 0.00 1.53 ↓1.70 0.00 0.00 0.00 0.00 6.75 ↓4.13 0.00 (1, 6, 3)
LlaSMol 23.50 ↑9.00 68.37 ↑60.87 0.00 0.00 0.00 0.00 ↓5.00 40.00 ↓6.50 0.00 17.50 ↑7.50 0.00 ↓3.68 (3, 4, 3)

ChemSpark 31.60 ↓2.00 15.80 ↓2.70 72.86 ↓1.52 80.00 ↓3.00 98.40 ↑4.00 32.00 ↑15.00 82.88 ↓2.68 16.80 ↓20.80 27.00 ↓11.75 11.03 ↑8.13 (3, 0, 7)

general tasks, highlighting instruction fine-tuning challenges, which suggests that general LLMs
succeed stem from superior document comprehension and reasoning abilities.

Chemical Expertise. As for Molecular Understanding, ChemSpark stands out in these tasks de-
manding an in-depth grasp of chemical molecules. Most models perform poorly in molecular name
translation due to a lack of formatting constraints in their outputs, owing to the complexity of molec-
ular expressions. ChemSpark’s advantage be attributed to training on diverse chemical literature with
various molecular formula formats. Besides, we observed that when confronted with complex tasks
requiring quantitative calculations, models tend to provide overly cautious responses, such as “quan-
tification software (Gaussian, ORCA, etc.) is needed” or “cannot determine from a 2D structure,”
which significantly reduces the practical value of their answers.

Chemistry-specialized LLMs. Compared to general LLMs, specialized chemistry models show
distinct patterns: 1). Drawbacks: Chemical LLMs notably lower in advanced knowledge answer-
ing and literature comprehension, suggesting catastrophic forgetting during fine-tuning compro-
mises their foundational language processing capabilities. 2). Advantages: Chemical models ex-
cel in tasks requiring specialized terminology and molecular properties. General models perform
adequately on simpler tasks but struggle with complex chemical knowledge processing and infer-
ence. 3). Instruction-following ability: Chemistry-specific LLMs demonstrate significantly lower
instruction-following capability than general LLMs, likely due to limited exposure to diverse tasks
during training. Without output format restrictions, these models default to patterns matching their
fine-tuning data, sometimes producing interpretable results where format-constrained prompts are
removed, though with uncertain accuracy. This instruction-following deficiency could significantly
impact the practical utility of these specialized models despite their domain expertise.

4.2.2 FACTORS AFFECTING MODEL PERFORMANCE IN CHEMISTRY TASKS

The influence of few-shot. Our experiment results of ICL are shown in Table 2. Few-shot prompt-
ing influence model performance across different tasks. General LLMs tended to benefit from few-
shot examples, especially in subjective question answering and literature understanding. In contrast,
specialized chemistry models often show performance decreases with few-shot prompting, which
may be attributed to catastrophic forgetting of ICL capabilities during task-specific fine-tuning. For
complex chemistry-specific tasks, performance variations remain minimal across all models, reflect-
ing the inherent difficulty of these tasks and limitations in capturing expert-level chemical reasoning.

The impact of model scaling. We conducted experiments on Qwen2.5 models of different sizes.
The results, as shown in Table 3, indicate a trend that increasing model size correlates with im-
proves performance in most tasks, with notable gains in advanced knowledge Q&A and literature
understanding. However, molecular understanding and scientific knowledge deduction tasks show
minimal improvement as the model scales. Tasks requiring specialized chemical knowledge (e.g.,
IUPAC2SMILES, CatRec) remain challenging despite parameter increases, with some tasks like
MolPC even showing performance declines. This suggests that model scaling alone is insufficient
for complex chemical tasks without specialized training data.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: The impact of model scaling on task performance.

Task MCTask SATask CalcTask CharME CatTE MolPC CatRec PPred YPred
Metric Accuracy LLM Score LLM Score F1 F1 Accuracy F1 F1 Accuracy

Qwen2.5-7B 59.60 50.80 43.60 43.00 64.00 64.04 0.00 0.00 67.00
Qwen2.5-14B 64.80 57.20 50.80 67.92 75.00 64.22 0.00 0.00 33.50
Qwen2.5-32B 67.20 58.10 57.40 79.42 100.00 67.70 0.00 0.53 85.00
Qwen2.5-72B 67.20 58.50 61.90 74.57 100.00 48.13 0.00 1.73 26.00

The impact of thinking models. While intuitively it may seem that thinking models possess
stronger reasoning capabilities and might benefit in complex chemical tasks, our experimental com-
parison of OpenAI-o1 versus GPT-4o and DeepSeek-R1 versus DeepSeek-V3 reveals a more nu-
anced reality. Although thinking models occasionally excel in specific tasks such as reaction prod-
uct prediction, they demonstrate comparable performance to general models across most chemical
tasks, with each architecture exhibiting distinct strengths in different tasks. Additionally, when
prompted to employ chain-of-thought reasoning, some models declined to respond to certain tasks,
citing insufficient information to formulate complete answers. We consider that the primary limita-
tion in addressing sophisticated chemical challenges lies not in long reasoning ability but rather in
insufficient domain-specific knowledge.

Stability analysis. As illustrated in the Table 12, we conducted robustness testing on multiple
models and analyzed the stability of metrics across various tasks in the benchmark. The results
demonstrate that the standard deviation for the vast majority of metrics does not exceed 5.0, indicat-
ing consistent performance across evaluations. These results collectively indicate that our evaluation
framework is robust, providing consistent and reliable assessments of system performance.

4.2.3 MULTIMODAL CHEMISTRY TASKS

The Table 9 illustrates the performance of mainstream multimodal large language models on
ChemEval’s multimodal tasks. Entries marked as ’-’ indicate instances where models failed to
generate meaningful responses. Examining results across both Advanced Knowledge QA and Lit-
erature Understanding levels reveals that while most models demonstrate satisfactory performance
on elementary tasks such as molecular formula identification, they exhibit notable limitations when
confronted with more sophisticated challenges involving chemical reaction pathways or molecular
properties, as evidenced in Pathway Parsing and Multiple Choice tasks. The performance degra-
dation becomes even more pronounced in Molecular Understanding and Scientific Knowledge De-
duction tasks, where models demonstrate considerable difficulty. These advanced tasks present a
multifaceted challenge, requiring models to accurately recognize molecular structures and reaction
equations from visual inputs while leveraging comprehensive chemical domain knowledge to formu-
late correct responses. This combination presents a considerable challenge to the models’ integrated
capabilities. It is worth noting that our evaluation exclusively assessed general-purpose multimodal
large language models, without including specialized multimodal models designed specifically for
chemical applications. Given that multimodal capabilities are increasingly crucial in chemical re-
search, we think of this as a critical area that warrants further investigation and development.

5 LIMITATIONS AND FUTURE WORKS

Although ChemEval addresses a critical gap in evaluating LLMs in the chemistry domain by cover-
ing a wide range of chemical tasks and providing a valuable reference for model capability assess-
ment and research applications, several limitations remain in practice. First, due to limited integra-
tion with professional molecular simulation tools and other chemical software, LLMs still struggle
with complex molecular structure computations and high-precision optimization tasks, restricting
their applicability in advanced scientific research. Second, LLMs may generate toxic, harmful, or
illegal content, posing safety and ethical concerns and underscoring the need for strict oversight of
generated outputs. Addressing these issues will require deeper integration of LLMs with specialized
chemical tools and the implementation of robust content safety mechanisms to further enhance the
reliability and security of ChemEval and LLMs in chemistry. For future development of ChemEval,
we plan to involve chemical experts in manually evaluating LLM outputs to improve reliability and
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alignment with human judgment. Additionally, we aim to explore integrating end-to-end agents
(Huang et al., 2024a) to enhance LLMs’ domain understanding and reasoning capabilities for ad-
vanced chemical research.

6 CONCLUSION

In this paper, we presented ChemEval, a fine-grained benchmark for evaluating LLMs on chemical
tasks across four assessment levels. Our experiments show that while general-purpose LLMs ex-
cel in literature understanding and benefit from scaling and few-shot prompting, they struggle with
molecular understanding and scientific knowledge inference. Chemistry-specialized models exhibit
advantages in terminology and molecular property tasks but face challenges such as catastrophic for-
getting and weaker instruction-following ability. These findings highlight that improvements in pa-
rameter scaling or reasoning depth alone are insufficient to address complex chemical tasks. Instead,
progress requires tighter integration of LLMs with domain-specific knowledge, chemical simulation
tools, and multimodal data. We hope ChemEval provides both a rigorous evaluation framework and
a foundation to inspire the development of chemistry-aware LLMs, ultimately driving advances in
chemical research and accelerating the integration of artificial intelligence into the natural sciences.
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A CHEMEVAL TASKS

In order to systematically evaluate the multifaceted capabilities of large language models in the
domain of chemistry, we propose a multi-level and fine-grained evaluation framework that encom-
passes a broad spectrum of chemical knowledge and reasoning tasks. This framework is delineated
into four primary categories: Advanced Knowledge Question Answering, Literature Understanding,
Molecular Understanding, and Scientific Knowledge Deduction. Each of these categories represents
a progressively sophisticated level of chemical problem-solving, ranging from the assessment of
fundamental chemical concepts and literature comprehension to molecular-level reasoning and high-
level scientific deduction. The constituent tasks within each category are meticulously designed to
interrogate specific competencies, such as objective and subjective answering, information extrac-
tion, inductive generation, molecular property prediction, and retrosynthetic analysis. Collectively,
this comprehensive benchmark offers a granular and holistic evaluation of LLMs’ proficiency in
both the understanding and application of chemical knowledge, thereby illuminating their potential
utility and limitations in diverse chemical informatics applications.

A.1 ADVANCED KNOWLEDGE QUESTION ANSWERING

This segment is pivotal in assessing the models’ proficiency in understanding and applying funda-
mental chemical concepts, which include Objective Question dimension and Subjective Question
dimension, total 15 different tasks. Through a blend of objective and subjective tasks, the Advanced
Knowledge Question Answering component challenges the models to demonstrate their insight in
areas ranging from chemical terminology and quantitative analysis to the recognition and interpre-
tation of chemical structures and diagrams. The tasks within this section are designed to be both
comprehensive and diagnostic, providing a clear measure of the models’ readiness to tackle more
advanced chemical inquiries.

A.1.1 OBJECTIVE QUESTIONS (OBJQA)

The first dimension is objective question answering, which primarily assesses the model’s grasp
of fundamental chemical knowledge and its capability to apply this knowledge in straightforward
scenarios. Objective question answering encompasses the following tasks: Multiple Choice Task,
Fill-in-the-Blank Task, and True/False Task. By incorporating these tasks, ChemEval can more
effectively gauge the model’s overall proficiency in understanding and applying chemical knowledge
across various contexts and formats.It should be noted that the True/False Task is exclusive to the
text tasks and is not incorporated within the multimodal task set.
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A.1.2 SUBJECTIVE QUESTIONS (SUBJQA)

The second dimension is subjective question answering, which includes Short Answer Task and
Calculation Task, both aiming to evaluate the depth of the model’s comprehension and its ability
to apply chemical knowledge effectively. Because on the basis of the previous task, the model also
requires providing a detailed solution or reason, which involves the understanding of the chemical
principles and concepts in the question, and applying these principles and concepts to construct
logically clear and organized answers, which intuitively reflects the model’s understanding of basic
chemical knowledge.

Multimodal tasks further build upon these foundations, covering Statistical Chart QA, Statistical Ta-
ble QA , Reaction Profile Diagram QA, Theoretical Potential Energy Surface QA, Infrared Spectrum
QA, Raman Spectrum QA, UV-Vis Spectrum QA, Diffraction Pattern QA , Kinetic Behavior Chart
QA and Mass Spectrum QA.These tasks comprehensively evaluate the model’s ability to interpret
and reason using chemical graphics and experimental data.

A.2 LITERATURE UNDERSTANDING

Advanced Knowledge Question Answering is designed to assess the model’s comprehension and
mastery of chemical knowledge. In contrast, Literature Understanding evaluates the model’s abil-
ity to interpret and assimilate information from chemical literature, which forms the foundation for
downstream inductive generation tasks. Literature Understanding includes three dimensions: In-
ductive Generation, Information Extraction, and Molecular Name Recognition, comprising a total
of 19 tasks. These tasks are crucial for understanding and extracting meaningful information from
chemical literature. The primary focus is on assessing LLMs’ ability to accurately extract and in-
terpret chemical data from text, and to subsequently generate new, contextually relevant content.
Importantly, such tasks are not covered by other chemical benchmarks. The following subsections
detail the specific tasks.

A.2.1 INFORMATION EXTRACTION (INFOE)

This is the first step to read a paper and also the foundation for the next inductive generation task.
It involves the extraction of various elements related to chemistry, such as named entities, reaction
substrates, and catalyst types, encompassing a total of 11 tasks. These tasks aim to decompose and
organize chemical information found in text, covering entities, relationships, and various aspects of
chemical reactions.

A.2.2 INDUCTIVE GENERATION (INDUCGEN)

Based on Information Extraction, Inductive Generation involves creating new, coherent, and contex-
tually relevant content based on existing data and knowledge. This process incorporates Chemical
Paper Abstract Generation, Research Outline Generation, Chemical Literature Topic Classification,
and Reaction Type Recognition and Induction, all focused on synthesizing and organizing chemical
information in a coherent and meaningful manner.

A.2.3 MOLECULAR NAME RECOGNITION(MNR)

Molecular Name Recognition is a foundational step in the extraction and organization of chemical
information, focusing on the accurate identification of molecular names and related entities from
scientific literature and data sources. This task goes beyond simple text extraction and leverages
multimodal techniques to integrate information from textual, structural, and graphical data alike.
Its subtasks encompass Molecular Formula Recognition, Chemical Reaction Equation Recognition,
2D Molecular Structure Recognition, and Synthetic Pathway Analysis. Collectively, these subtasks
enable comprehensive understanding and representation of chemical compounds and their trans-
formations, serving as a crucial underpinning for downstream knowledge discovery and advanced
reasoning in chemical informatics.
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A.3 MOLECULAR UNDERSTANDING

This section builds upon the previous foundation to assess the model’s understanding and gener-
ative capabilities at the molecular level. It includes 4 dimensions: Molecular Name Generation,
Molecular Name Translation, Molecular Property Prediction, and Molecular Description, a total of
15 tasks. Molecular Understanding explores tasks essential for molecular understanding, evaluating
the LLMs’ ability to generate, translate, and describe molecular names and properties. These tasks
assess the models’ proficiency in interpreting and generating chemical information accurately. The
following subsections detail various specific tasks within this objective.

A.3.1 MOLECULAR NAME GENERATION (MNGEN)

Molecular Name Generation is the basis of Molecular Understanding and only contains one task,
Molecular Name Generation from Text Description. This task is purposed to evaluate the capacity
of LLMs to generate valid chemical structure representations. It necessitates that the models, based
on intricate textual descriptions encompassing molecular structures, properties, and classifications,
synthesize SMILES molecular formulas effectively.

A.3.2 MOLECULAR NAME TRANSLATION (MNTRANS)

Furthermore, Molecular Name Translation aims to enable a deep understanding of molecular struc-
tures and representations, which should serve as the fundamental knowledge for chemistry LLMs.
It focuses on converting molecular names between different formats, requiring LLMs to output a
specified alternative format based on a given molecular representation. It involves the conversion
between representations of molecules such as IUPAC names and SMILES (Weininger, 1988) molec-
ular formulas, encompassing a total of five tasks, each focusing on distinct aspects of molecular
notation conversion.

A.3.3 MOLECULAR PROPERTY PREDICTION (MPP)

Apart from molecular name understanding, the ability to predict molecular properties is also impor-
tant. Molecular Property Prediction targets the forecast of a wide range of physical, chemical, and
biological attributes of molecules, encapsulated in two core objectives: Molecule Property Clas-
sification, which predicts categories of properties such as ClinTox, HIV inhibition, and polarity;
and Molecule Property Regression, focusing on estimating numerical values such as Lipophilicity,
polarity, and boiling point.

A.3.4 MOLECULAR DESCRIPTION (MOLDESC)

To facilitate a deeper assessment of molecular understanding, the Molecular Description task has
been developed to comprehensively evaluate LLMs’ capabilities in interpreting and describing
molecular structures and their properties. This task consists of a series of subtasks, each requiring
the prediction of physicochemical properties of molecules based on diverse input modalities. Be-
sides the classic subtask of predicting physicochemical properties directly from molecular structures,
this multimodal extension incorporates additional challenges: Physicochemical Property Predic-
tion from Infrared Spectrum, Physicochemical Property Prediction from Raman Spectrum, Physic-
ochemical Property Prediction from UV-Vis Spectrum, Physicochemical Property Prediction from
Diffraction Pattern, Physicochemical Property Prediction from Mass Spectrum, and Physicochemi-
cal Property Prediction from NMR Spectrum. Collectively, these tasks aim to assess LLMs’ ability
to interpret various molecular representations—spanning textual, graphical, and spectral data—for
comprehensive property annotation and molecular understanding.

A.4 SCIENTIFIC KNOWLEDGE DEDUCTION

Having established a solid grasp of basic chemical knowledge, the skill to interpret scientific litera-
ture, and the capacity to understand molecular structures, we expect that the model will proceed to
conduct deeper chemical reasoning and deduction. So the part of Scientific Knowledge Deduction
encompasses four key dimensions: Retrosynthetic Analysis, Reaction Condition Recommendation,
Reaction Outcome Prediction and Reaction Mechanism Analysis, a total of 13 tasks, which are es-
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Table 4: Overview of text tasks in ChemEval.

Tasks Source Number
Multiple Choice Task Chemistry expert (Ours) 50
Fill-in-the-Blank Task Chemistry expert (Ours) 50
True/False Task Chemistry expert (Ours) 50
Short Answer Task Chemistry expert (Ours) 50
Calculation Task Chemistry expert (Ours) 50

Chemical Named Entity Recognition Mol-Instructions 50
Chemical Entity Relationship Classification Mol-Instructions 50
Synthetic Reaction Substrate Extraction ChemRxnExtractor 50
Synthetic Reaction Additive Extraction Chemistry expert (Ours) 20
Synthetic Reaction Solvent Extraction Chemistry expert (Ours) 20
Reaction Temperature Extraction Chemistry expert (Ours) 20
Reaction Time Extraction Chemistry expert (Ours) 20
Reaction Product Extraction ChemRxnExtractor 50
Characterization Method Extraction Chemistry expert (Ours) 20
Catalysis Type Extraction Chemistry expert (Ours) 20
Yield Extraction Chemistry expert (Ours) 20
Chemical Paper Abstract Generation Chemistry expert (Ours) 20
Research Outline Generation Chemistry expert (Ours) 20
Chemical Literature Topic Classification Chemistry expert (Ours) 20
Reaction Type Recognition and Induction Chemistry expert (Ours) 20

Molecular Name Generation from Text Description ChemLLMBench, Mol-Instructions, SMolInstruct 50
IUPAC to Molecular Formula ChemLLMBench, SMolInstruct 50
SMILES to Molecular Formula ChemLLMBench, SMolInstruct 50
IUPAC to SMILES Conversion ChemLLMBench, SMolInstruct 50
SMILES to IUPAC Conversion ChemLLMBench, SMolInstruct 50
SMILES to SELFIES and SELFIES to SMILES Translation Chemistry expert (Ours) 50
Molecular Property Classification Chemistry expert (Ours), ChemLLMBench, SMolInstruct 260
Molecular Property Regression Chemistry expert (Ours), ChemLLMBench, Mol-Instructions, SMolInstruct 220
Physicochemical Property Prediction from Molecular Structure ChemLLMBench, Mol-Instructions, SMolInstruct 50

Substrate Recommendation ChemLLMBench, Mol-Instructions, SMolInstruct 50
Synthetic Pathway Recommendation Chemistry expert (Ours) 40
Synthetic Difficulty Evaluation Chemistry expert (Ours) 20
Ligand Recommendation ChemLLMBench 50
Reagent Recommendation ChemLLMBench 50
Solvent Recommendation ChemLLMBench 50
Catalyst Recommendation Chemistry expert (Ours) 20
Reaction Temperature Recommendation Chemistry expert (Ours) 20
Reaction Time Recommendation Chemistry expert (Ours) 20
Reaction Product Prediction ChemLLMBench, Mol-Instructions, SMolInstruct 50
Product Yield Prediction ChemLLMBench 50
Reaction Rate Prediction Chemistry expert (Ours) 20
Intermediate Derivation Chemistry expert (Ours) 20

Total - 1960

sential for effective chemical synthesis. This part evaluates the LLMs’ capabilities in retrosynthetic
analysis, recommending reaction conditions, predicting reaction outcomes, and analyzing reaction
mechanisms. These tasks provide a comprehensive assessment of the models’ performance in these
critical areas of chemical synthesis.

A.4.1 RETROSYNTHETIC ANALYSIS (RESSYN)

Retrosynthetic Analysis is a crucial technique in the field of chemical synthesis, particularly in
organic synthesis. The process begins with the target product and then examines potential synthesis
pathways and reactant substrates. This approach highlights the reverse reasoning capabilities of
LLMs in the field of chemical synthesis. It comprises Substrate Recommendation, Synthetic Pathway
Recommendation and Synthetic Difficulty Evaluation.

A.4.2 REACTION CONDITION RECOMMENDATION (RCREC)

Based on the results of the Retrosynthetic Analysis, LLMs can recommend suitable reaction condi-
tions. Reaction condition recommendation is a key task in chemical synthesis, involving selecting
the most suitable conditions for specific chemical reactions to ensure maximum efficiency, selec-
tivity, and yield. This task integrates recommendations for conditions such as ligands, reagents,
and catalysts, encompassing a total of six tasks, each targeting a specific component of the reaction
condition optimization.
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Table 5: Overview of multimodal tasks in ChemEval.

Tasks Source Number
Multiple Choice Task Chemistry expert (Ours) 30
Fill-in-the-Blank Task Chemistry expert (Ours) 20
Statistical Chart QA Chemistry expert (Ours) 30
Statistical Table QA Chemistry expert (Ours) 30
Reaction Profile Diagram QA Chemistry expert (Ours) 20
Theoretical Potential Energy Surface QA Chemistry expert (Ours) 20
Infrared Spectrum QA Chemistry expert (Ours) 20
Raman Spectrum QA Chemistry expert (Ours) 20
UV-Vis Spectrum QA Chemistry expert (Ours) 20
Diffraction Pattern QA Chemistry expert (Ours) 20
Kinetic Behavior Chart QA Chemistry expert (Ours) 20
Mass Spectrum QA Chemistry expert (Ours) 20
Short Answer Task Chemistry expert (Ours) 20
Calculation Task Chemistry expert (Ours) 30

Molecular Formula Recognition Chemistry expert (Ours) 30
Chemical Reaction Equation Recognition Chemistry expert (Ours) 30
2D Molecular Structure Recognition Chemistry expert (Ours) 60
Synthetic Pathway Analysis Chemistry expert (Ours) 30

IUPAC to Molecular Formula ChemLLMBench, SMolInstruct 20
SMILES to Molecular Formula ChemLLMBench, SMolInstruct 20
IUPAC to SMILES Conversion ChemLLMBench, SMolInstruct 20
SMILES to IUPAC Conversion ChemLLMBench, SMolInstruct 50
Molecular Property Classification Chemistry expert (Ours), ChemLLMBench, SMolInstruct 100
Molecular Property Regression Chemistry expert (Ours), ChemLLMBench, Mol-Instructions, SMolInstruct 140
Physicochemical Property Prediction from Infrared Spectrum Chemistry expert (Ours) 20
Physicochemical Property Prediction from Raman Spectrum Chemistry expert (Ours) 20
Physicochemical Property Prediction from UV-Vis Spectrum Chemistry expert (Ours) 20
Physicochemical Property Prediction from Diffraction Pattern Chemistry expert (Ours) 20
Physicochemical Property Prediction from Mass Spectrum Chemistry expert (Ours) 20
Physicochemical Property Prediction from NMR Spectrum Chemistry expert (Ours) 20

Substrate Recommendation ChemLLMBench, Mol-Instructions, SMolInstruct 20
Synthetic Pathway Recommendation Chemistry expert (Ours) 40
Synthetic Difficulty Evaluation Chemistry expert (Ours) 20
Ligand Recommendation ChemLLMBench 20
Reagent Recommendation ChemLLMBench 20
Solvent Recommendation ChemLLMBench 20
Catalyst Recommendation Chemistry expert (Ours) 20
Reaction Temperature Recommendation Chemistry expert (Ours) 20
Reaction Time Recommendation Chemistry expert (Ours) 20
Reaction Product Prediction ChemLLMBench, Mol-Instructions, SMolInstruct 20
Product Yield Prediction ChemLLMBench 20
Intermediate Derivation Chemistry expert (Ours) 20

Total - 1200

A.4.3 REACTION OUTCOME PREDICTION (ROP)

After determining the reaction pathway and reaction conditions, the large model can predict possible
reaction outcomes. Reaction outcome prediction is a core technology in chemical synthesis aimed at
predicting possible results of a reaction before it is actually carried out. This encompasses Reaction
Product Prediction, Product Yield Prediction, Reaction Rate Prediction.

A.4.4 REACTION MECHANISM ANALYSIS (RMA)

Reaction Mechanism Analysis is a critical area in the study of chemical reactions, aiming to explain
the detailed steps involved in the transformation from reactants to products. This is the final step
in the field of chemical synthesis, including identifying various intermediates, and transition states,
as well as the kinetic and thermodynamic parameters of each step in the reaction. Intermediate
Derivation is the sole subtask in this phase.

Table 6: Distribution of reaction types in ChemEval

Reaction Type Counts Percentage
Coupling reactions 321 62.4%
Substitution reactions 81 15.8%
Oxidation/reduction reactions 51 9.9%
Addition reactions 24 4.7%
Elimination reactions 13 2.5%
Other reactions 24 4.7%
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Table 7: Performance overview of multi-level 0-shot text tasks on ChemEval (part 1). Claude3.7T
denotes Claude 3.7-Sonnet-Thinking, whereas Claude3.7N denotes Claude 3.7-Sonnet.

Dimension Task Metric OpenAI-o3-mini OpenAI-o1 GPT-4o Claude3.7T Claude3.7N Deepseek-R1 Deepseek-V3 Qwen2.5-72B Qwen2.5-32B
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 72.00 74.00 66.80 62.80 60.80 82.40 76.00 67.20 67.20
ObjQA FBTask LLM Score 62.42 60.92 51.19 45.28 44.73 59.41 63.88 53.92 50.93
ObjQA TFTask Accuracy 68.00 46.00 57.60 58.80 58.00 75.20 67.20 58.40 49.20
SubjQA SATask LLM Score 68.00 64.50 61.20 56.70 55.10 68.50 71.70 58.50 58.10
SubjQA CalcTask LLM Score 75.50 78.00 61.80 55.74 53.60 76.10 79.20 61.90 57.40

Literature Understanding
InfoE CNER F1 61.30 64.56 65.76 60.21 54.55 64.14 60.85 61.61 56.33
InfoE CERC F1 29.65 22.37 25.66 25.19 24.77 27.18 24.94 26.05 27.21
InfoE SubE Accuracy 66.91 73.71 66.32 61.59 65.76 75.18 61.26 62.56 58.05
InfoE AddE F1 76.67 81.67 85.00 79.33 81.10 82.67 80.67 84.00 80
InfoE SolvE F1 89.00 86.50 85.00 87.60 84.30 90.20 88.50 85.00 90.00
InfoE TempE F1 65.00 70.00 67.00 72.00 69.00 65.00 72.00 65.00 62.00
InfoE TimeE F1 95.00 95.00 95.00 95.00 95.00 95.00 95.00 90.00 95.00
InfoE ProdE Accuracy 87.62 90.25 86.09 82.39 85.04 91.20 87.52 84.86 76.38
InfoE CharME F1 66.67 51.67 72.85 81.01 71.84 21.33 81.80 74.57 79.42
InfoE CatTE F1 65.00 95.00 94.00 82.00 77.00 99.00 100.00 100.00 100.00
InfoE YieldE F1 65.00 85.00 79.00 61.00 59.00 77.70 65.00 65.00 78.00

InducGen AbsGen LLM Score 68.75 63.75 63.00 63.00 66.75 65.00 64.75 64.75 60.00
InducGen OLGen LLM Score 35.00 25.00 35.50 26.50 28.50 37.00 27.00 24.25 29.75
InducGen TopC Accuracy 50.00 55.00 49.00 56.00 51.00 57.00 50.00 64.00 35.00
InducGen ReactTR F1 20.00 25.00 32.00 29.00 26.00 21.00 28.00 22.00 26.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 51.58 (78%) 49.80 (72%) 39.30 (89%) 33.85 (70%) 42.28 (78%) 56.05 (87%) 51.19 (96%) 20.58 (79%) 14.60 (64%)

MNTrans IUPAC2MF L2 0.6214 0.7737 0.5304 0.3252 0.3349 0.6026 0.6176 0.3407 0.3070
MNTrans SMILES2MF L2 0.6276 0.6330 0.3627 0.3618 0.3468 0.4402 0.3563 0.2448 0.2548
MNTrans IUPAC2SMILES Tanimoto (valid) 29.61 (42%) 29.72 (50%) 34.71 (83%) 31.89 (68%) 39.12 (72%) 30.70 (63%) 46.07 (88%) 15.90 (76%) 10.55 (59%)
MNTrans SMILES2IUPAC Exact Match 0.00 0.00 0.00 0.00 0.00 1.20 0.00 0.00 0.00
MNTrans SMILES2IUPAC BLEU 4.37 3.24 0.96 3.27 3.46 4.17 1.67 0.33 0.15
MNTrans SMILES2IUPAC Tanimoto 0.00 0.00 12.08 22.73 24.99 25.90 19.16 13.01 8.68
MNTrans S2S Tanimoto (valid) 9.76 (30%) 9.72 (42%) 13.41 (62%) 9.37 (40%) 10.58 (44%) 16.04 (71%) 16.27 (62%) 11.47 (50%) 6.93 (37%)

MPP MolPC Accuracy 72.88 67.50 64.57 58.90 54.37 53.54 48.73 48.13 67.70
MPP MolPR NRMSE (valid) 12.7593 (99%) 12.3852 (99%) 9.9322 (51%) 13.9702 (92%) 14.0966 (96%) 15.8881 (100%) 8.3675 (98%) 13.0756 (100%) 17.6710 (91%)

MolDesc Mol2PC LLM Score 19.50 19.00 7.00 9.80 15.70 11.90 13.50 20.80 5.90
Scientific Knowledge Deduction

ReSyn SubRec F1 4.67 1.00 0.00 1.46 1.77 1.63 2.27 1.06 0.20
ReSyn PathRec LLM Score 49.38 30.63 22.88 0.36 41.88 52.75 37.38 41.13 36.88
ReSyn SynDE NRMSE (valid) 5.4045 (20%) - (5%) - (0%) - (0%) 1.9854 (39%) - (0%) - (0%) 0.2670 (100%) - (0%)
RCRec LRec F1 4.00 0.00 13.20 2.00 4.40 6.80 7.60 4.40 8.00
RCRec RRec F1 32.00 25.64 15.80 27.43 25.80 21.93 8.35 37.75 34.56
RCRec SolvRec F1 16.00 10.00 20.40 18.80 17.60 22.40 24.00 50.40 51.60
RCRec CatRec F1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RCRec TempRec NRMSE (valid) 0.2201 (100%) 0.3278 (100%) 0.2545 (100%) 0.2263 (100%) 0.5398 (100%) 0.2078 (100%) 0.2096 (100%) 0.3782 (100%) 0.2475 (100%)
RCRec TimeRec NRMSE (valid) 0.2165 (100%) 0.2746 (100%) 0.2468 (100%) 0.3662 (100%) 0.4008 (100%) 0.2291 (100%) 0.2579 (100%) 0.2022 (100%) 0.2377 (100%)
ROP PPred F1 10.00 21.33 1.67 12.27 16.16 11.97 0.93 1.73 0.53
ROP YPred Accuracy 8.00 12.00 43.50 16.00 9.00 11.00 22.50 26.00 85.00
ROP RatePred Overlap 16.74 21.08 13.81 9.06 7.21 17.12 17.71 10.71 9.48
RMA IMDer LLM Score 80.00 80.00 81.50 81.50 81.00 79.50 80.50 77.25 79.00

B DETAILED DATASET STATISTICS

To comprehensively evaluate the chemical reasoning and knowledge capabilities of large language
models, we constructed the ChemEval benchmark by integrating tasks from multiple sources. For
the advanced knowledge question-answering level, our chemistry experts curated datasets based on
textbooks and supplementary educational resources. For other levels, some tasks were adapted from
existing datasets, such as ChemRxnExtractor (Guo et al., 2021), Mol-Instructions (Fang et al., 2023),
ChemLLMBench (Guo et al., 2023), and SMolInstruct (Yu et al., 2024), while additional tasks were
independently developed by our chemistry experts.

Tables 4 and 5 provide an overview of the sources and sizes of text and multimodal tasks included
in ChemEval. The text subset contains 1,960 test examples, comprising 18 tasks sourced from other
open datasets and 24 tasks designed in-house. The multimodal subset contains 1,200 test examples,
integrating 12 tasks from other open datasets and 30 tasks independently designed by our team.
Some tasks exist in both text and multimodal versions.

Table 6 summarizes the distribution of reaction types in our dataset. Coupling reactions account
for the largest proportion, followed by substitution, oxidation/reduction, addition, elimination, and
other reaction types. The “other” category covers 9 reaction types, including rearrangement, hy-
drolysis, cyclization, and so on. This dataset encompasses most major reaction types, providing
comprehensive coverage for evaluating chemical reactions.

Overall, ChemEval integrates 25 tasks sourced from other open datasets and 37 custom-designed
tasks developed in-house, with duplicates removed to prevent double counting. This design ensures
the benchmark’s diversity and comprehensiveness, allowing large language models to be evaluated
across multiple dimensions of chemical knowledge and reasoning. By rigorously cross-checking
against existing model training sets and leveraging previously unpublished laboratory data, we min-
imized potential risks of data leakage.
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Table 8: Performance overview of multi-level 0-shot text tasks on ChemEval (Part 2).

Dimension Task Metric Qwen2.5-14B Qwen2.5-7B Llama3.3-8B Grok3 Gemini-2.5-Pro ChemDFM ChemLLM LlaSMol ChemSpark Chemcrow
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 64.80 59.60 40.40 68.80 87.60 41.20 24.40 24.00 43.60 58.00
ObjQA FBTask LLM Score 45.76 39.52 34.17 54.36 63.95 24.16 34.97 13.92 24.57 43.14
ObjQA TFTask Accuracy 52.00 55.20 46.00 64.40 77.60 46.00 19.20 58.00 50.00 74.00
SubjQA SATask LLM Score 57.20 50.80 38.40 73.59 72.00 32.20 13.20 14.50 33.60 43.50
SubjQA CalcTask LLM Score 50.80 43.60 28.00 81.20 82.40 14.70 15.90 7.50 18.50 43.50

Literature Understanding
InfoE CNER F1 46.31 61.27 55.34 60.75 68.30 41.17 0.16 11.62 71.44 57.46
InfoE CERC F1 28.19 26.10 17.31 26.04 25.43 8.74 0.24 1.24 39.27 22.05
InfoE SubE Accuracy 59.61 58.43 64.02 72.87 72.05 20.07 0.00 0.00 74.38 50.91
InfoE AddE F1 83.00 61.67 45.81 85.00 95.00 45.00 0.00 0.00 65.00 43.33
InfoE SolvE F1 86.50 82.50 75.47 85.00 83.17 80.50 1.67 0.00 83.79 87.50
InfoE TempE F1 70.00 65.00 62.00 70.00 69.00 74.33 3.23 0.00 83.00 65.00
InfoE TimeE F1 95.00 95.00 90.00 95.00 94.00 78.00 23.10 25.00 95.00 95.00
InfoE ProdE Accuracy 82.44 77.00 74.54 91.04 92.82 34.73 0.00 0.00 94.40 71.38
InfoE CharME F1 67.92 43.00 44.18 79.36 73.11 27.26 0.00 0.00 12.98 25.00
InfoE CatTE F1 75.00 64.00 65.00 97.00 96.00 49.00 0.00 5.00 31.00 85.00
InfoE YieldE F1 80.00 67.00 46.00 61.00 74.00 45.00 0.00 5.00 61.00 50.00

InducGen AbsGen LLM Score 59.25 54.75 62.00 69.50 67.25 0.00 5.50 26.25 38.25 57.50
InducGen OLGen LLM Score 29.75 27.75 22.75 35.25 39.50 0.00 3.75 31.25 30.50 32.50
InducGen TopC Accuracy 45.00 41.00 32.00 47.00 67.00 51.00 0.00 0.00 30.00 45.00
InducGen ReactTR F1 26.00 31.00 26.00 28.00 31.00 13.00 0.00 5.00 17.00 5.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 11.03 (53%) 3.92 (32%) 5.83 (40%) 57.86 (94%) 71.11 (93%) 47.06 (69%) 0.00 (0%) 3.71 (76%) 74.81 (98%) 40.92 (90%)

MNTrans IUPAC2MF L2 0.3126 0.1856 0.2433 0.7110 0.8382 0.6119 0.0454 0.0000 0.8807 0.1408
MNTrans SMILES2MF L2 0.2114 0.0980 0.1728 0.3980 0.6574 0.6399 0.0375 0.0000 0.8133 0.3089
MNTrans IUPAC2SMILES Tanimoto (valid) 8.18 (52%) 3.46 (30%) 5.24 (30%) 65.81 (94%) 61.35 (87%) 46.71 (88%) 0.00 (100%) 4.70 (56%) 87.84 (100%) 25.68 (64%)
MNTrans SMILES2IUPAC Exact Match 0.00 0.00 0.00 1.20 1.20 0.00 0.00 0.00 14.00 0.00
MNTrans SMILES2IUPAC BLEU 0.22 0.00 0.44 4.69 13.55 0.56 0.00 0.00 48.25 0.38
MNTrans SMILES2IUPAC Tanimoto 5.76 3.78 3.71 30.47 56.82 2.06 0.00 2.22 66.26 0.00
MNTrans S2S Tanimoto (valid) 10.52 (60%) 2.28 (14%) 1.74 (12%) 17.56 (59%) 13.13 (44%) 2.12 (25%) 0.00 (50%) 0.60 (48%) 87.36 (94%) 9.83 (38%)

MPP MolPC Accuracy 64.22 64.05 47.26 56.61 63.63 61.35 0.00 46.50 85.57 46.00
MPP MolPR NRMSE (valid) 11.7005 (90%) 8.5890 (98%) 61.4736 (62%) 9.0283 (100%) 11.7270 (100%) 394.9424 (83%) 179.3606 (93%) 29.9686 (73%) 1.2142 (100%) 0.3408 (38%)

MolDesc Mol2PC LLM Score 7.20 14.50 2.10 28.00 0.70 3.10 0.30 0.00 48.90 21.00
Scientific Knowledge Deduction

ReSyn SubRec F1 0.00 1.42 0.27 0.87 0.00 3.99 0.00 0.00 12.37 0.00
ReSyn PathRec LLM Score 32.63 27.13 20.88 32.13 43.75 24.13 10.88 10.00 38.75 48.75
ReSyn SynDE NRMSE (valid) 0.3551 (100%) - (0%) - (0%) - (0%) - (0%) - (0%) 33.0049 (78%) 1.2374 (45%) 1.7992 (87%) - (0%)
RCRec LRec F1 6.80 2.80 2.13 36.00 0.00 26.00 0.00 0.00 37.60 18.00
RCRec RRec F1 37.65 16.93 8.78 44.60 0.73 13.13 0.00 0.50 63.72 36.65
RCRec SolvRec F1 15.60 25.60 3.63 24.00 0.00 10.53 0.00 0.50 30.40 12.00
RCRec CatRec F1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
RCRec TempRec NRMSE (valid) 0.1989 (100%) 0.3223 (100%) - (0%) 0.1972 (100%) 0.1814 (100%) 0.3811 (99%) 1.1184 (98%) 0.8658 (100%) 0.2742 (100%) 0.2392 (85%)
RCRec TimeRec NRMSE (valid) 0.2505 (100%) 0.3213 (100%) - (0%) 0.2164 (100%) 0.2425 (100%) 0.4732 (100%) 1.7937 (98%) 0.4351 (80%) 0.3937 (100%) 0.5209 (70%)
ROP PPred F1 0.00 0.00 0.00 11.33 29.20 18.80 0.00 16.00 56.40 0.00
ROP YPred Accuracy 33.50 67.00 35.50 8.00 17.50 7.20 0.00 28.00 72.00 24.00
ROP RatePred Overlap 9.54 13.35 6.92 8.77 27.01 3.79 0.00 3.68 2.90 0.00
RMA IMDer LLM Score 67.75 78.75 81.25 81.25 82.25 76.00 4.75 1.50 92.75 28.75

C DETAILED EXPERIMENTAL SETUPS

In this section, we introduce the details of our experimental setups, including the detailed description
of the evaluated models and explanations of the metrics used in Section 3.2.5.

C.1 MODELS

In order to comprehensively assess the scientific capabilities of Large Language Models (LLMs), we
evaluate several high-performing LLMs that are widely accessible, including general and specialized
models. These models are selected to represent a diverse range of organizations and vary in size.

• GPT-4o: GPT-4o is OpenAI’s latest flagship multimodal large language model, capable of pro-
cessing and generating text, audio, and images through a unified architecture for seamless cross-
modal reasoning and interaction. It sets new benchmarks in multilingual, speech, and visual
understanding, exhibiting advanced performance with significantly improved speed and efficiency
compared to previous models.

• OpenAI-o1/o3-mini: OpenAI o1 and o3-mini are lightweight, cost-effective reasoning models
that deliver strong performance in science, mathematics, and programming tasks while offering
significantly improved response speed and reliability compared to their predecessors, making them
well-suited for rapid, real-world applications.

• Claude-3.7-Sonnet: Claude 3.7 Sonnet is Anthropic’s most advanced hybrid reasoning language
model to date, integrating rapid response with deep, stepwise analytical capabilities and offering
flexible dual modes for both instant answers and complex multi-stage problem-solving across a
range of scientific and coding tasks.

• Gemini-2.5-pro: Gemini 2.5 Pro is Google DeepMind’s latest multimodal large language model
that integrates advanced “thinking” mechanisms and hybrid attention architectures, enabling state-
of-the-art reasoning, code generation, and long-context understanding across text, image, audio,
and video inputs, with support for up to one million tokens in a single context window.

• Grok3: Grok 3 is a new generation of large language model developed by xAI. It has achieved
breakthroughs in key benchmark tests such as mathematical reasoning, scientific logical reason-
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Table 9: Performance overview of multimodal tasks on ChemEval.

Dimension Task Metric GLM-4V GPT-4o Claude3.7T Qwen-vl-max Phi-vision-3.5 Gemini-2.5-Pro
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 32.22 40.86 7.78 43.33 35.56 45.55
ObjQA FBTask Accuracy 36.67 52.41 17.77 48.12 15.02 58.80
SubjQA SCQA LLM Score 65.33 68.67 30.22 82.00 44.44 80.89
SubjQA STQA LLM Score 64.22 54.22 32.67 72.22 32.67 76.22
SubjQA RPDQA LLM Score 50.67 62.93 20.00 70.67 37.67 70.00
SubjQA TPESQA LLM Score 62.33 69.33 21.67 76.33 45.67 70.67
SubjQA IRSQA LLM Score 53.33 59.00 35.33 62.33 42.00 66.33
SubjQA RSQA LLM Score 64.33 70.00 35.67 71.33 51.33 76.00
SubjQA UVSQA LLM Score 62.67 62.67 33.33 66.00 48.00 69.33
SubjQA DPQA LLM Score 67.00 75.67 37.00 83.33 51.00 76.00
SubjQA KBCQA LLM Score 68.33 77.00 48.67 81.67 51.00 79.33
SubjQA MSQA LLM Score 66.33 74.40 22.00 83.67 46.33 72.00
SubjQA SATask LLM Score 46.67 55.28 46.33 57.67 35.00 71.00
SubjQA CalcTask LLM Score 49.11 60.67 51.78 62.00 36.89 79.78

Literature Understanding
MNR MFR Accuracy 100.00 95.56 2.22 100.00 85.55 84.45
MNR CRER Accuracy 95.56 93.34 3.33 93.33 15.56 42.22
MNR 2DMolR Tanimoto 3.73 20.92 0.00 16.26 1.98 -
MNR PathA F1 0.00 0.00 0.00 0.00 0.00 -

Molecular Understanding
MNTrans IUPAC2MF L2 0.3048 0.5653 0.2106 0.1175 0.1690 0.5892
MNTrans SMILES2MF L2 0.1251 0.2144 0.0468 0.1367 0.1018 0.4951
MNTrans IUPAC2SMILES Tanimoto 8.40 44.43 11.90 24.63 4.37 77.19
MNTrans SMILES2IUPAC Exact 0.00 0.00 0.00 0.00 0.00 2.00
MNTrans SMILES2IUPAC BLEU 23.15 19.04 22.81 24.44 26.19 18.47
MNTrans SMILES2IUPAC Tanimoto 1.73 2.09 8.88 0.74 1.22 4.16

MPP MolPC Accuracy 50.51 49.70 54.67 58.32 53.75 62.08
MPP MolPR NRMSE (valid) 2.3782 (57%) 1.0268 (71%) 0.3491 (29%) 21.8799 (100%) 3.0580 (43%) 16.1085 (100%)

MolDesc IRS2PC LLM Score 54.00 58.00 66.33 60.67 45.00 60.67
MolDesc RS2PC LLM Score 44.00 51.67 63.00 57.67 38.33 55.33
MolDesc UV2PC LLM Score 54.67 59.67 65.67 63.00 40.67 67.00
MolDesc DP2PC LLM Score 58.33 65.00 74.00 69.00 41.33 69.33
MolDesc MS2PC LLM Score 54.33 61.67 75.33 67.00 38.67 69.00
MolDesc NMR2PC LLM Score 54.33 65.00 71.67 68.33 37.67 66.67

Scientific Knowledge Deduction
ReSyn SubRec F1 0.00 0.00 0.00 1.48 0.00 1.48
ReSyn PathRec LLM Score 45.00 57.00 67.00 54.67 31.67 61.67
ReSyn SynDE NRMSE 0.4220 0.3199 0.5575 0.2234 - 0.5437
RCRec LRec F1 0.00 28.33 1.67 8.33 11.67 5.00
RCRec RRec F1 0.00 5.00 5.00 6.67 6.67 8.33
RCRec SolvRec F1 15.00 23.33 21.67 30.00 18.33 28.33
RCRec CatRec F1 0.00 0.00 0.00 0.00 0.00 0.00
RCRec TempRec NRMSE 0.1220 0.4845 0.3913 0.5346 - 0.1777
RCRec TimeRec NRMSE - - 0.4378 - - -
ROP PRec F1 0.00 0.00 0.00 3.33 0.00 1.67
ROP YPred Accuracy - 43.33 20.00 25.00 78.33 31.67
RMA IMPred LLM Score 67.67 71.33 76.67 62.33 35.00 77.67

ing, and code writing. In addition, it supports multimodal interaction and can also access real-time
information through the X platform to enhance the timeliness and accuracy of its responses.

• DeepSeek-V3: DeepSeek-V3 is a powerful 671-billion-parameter Mixture-of-Experts (MoE) lan-
guage model developed by DeepSeek, trained on 14.8 trillion tokens with innovations like Multi-
head Latent Attention (MLA) and Multi-Token Prediction (MTP) to achieve state-of-the-art per-
formance in mathematics, coding, and multilingual tasks. It features a 128K context window and
efficient inference, with future versions expected to include multi-modal capabilities.

• DeepSeek-R1: DeepSeek-R1 is a reasoning-optimized model based on the DeepSeek-V3-Base
architecture. It is trained with reinforcement learning and human feedback to enhance its perfor-
mance in complex reasoning tasks such as logical deduction and mathematical problem-solving
while maintaining high safety and reliability.

• Qwen2.5-7B/14B/32B/72B: Qwen 2.5 is a series of advanced large language models developed by
Alibaba Cloud, featuring models with parameter sizes ranging from 0.5B to 72B. These models
have significantly improved capabilities in areas such as coding, mathematics, and multilingual
support, and they are trained on a large-scale dataset of up to 18 trillion tokens

• LLaMA3.3-8B : Meta Llama 3 8B is a powerful large language model with 8 billion parameters,
optimized for dialogue and text generation. It is trained on over 15 trillion tokens and features a
128K token vocabulary and Grouped-Query Attention for enhanced performance.
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Table 10: Performance overview of multi-level 3-shot text tasks on ChemEval (part 1). Claude3.7T
denotes Claude 3.7-Sonnet-Thinking, whereas Claude3.7N denotes Claude 3.7-Sonnet.

Dimension Task Metric OpenAI-o3-mini OpenAI-o1 GPT-4o Claude3.7T Claude3.7N Deepseek-R1 Deepseek-V3 Qwen2.5-72B Qwen2.5-32B
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 72.00 82.00 69.20 65.20 65.20 82.40 72.00 68.00 71.20
ObjQA FBTask LLM Score 51.46 62.65 45.59 42.56 42.28 59.96 57.89 53.53 45.99
ObjQA TFTask Accuracy 76.00 86.00 66.00 57.60 62.40 80.80 72.80 48.40 59.60
SubjQA SATask LLM Score 67.00 68.50 61.00 54.10 53.90 71.40 70.40 60.80 55.90
SubjQA CalcTask LLM Score 75.00 78.50 59.10 53.73 55.40 75.10 77.40 61.61 52.61

Literature Understanding
InfoE CNER F1 66.33 70.59 71.14 64.62 62.18 70.85 63.28 65.92 59.45
InfoE CERC F1 29.30 32.69 25.72 23.11 25.39 29.11 25.65 25.63 26.18
InfoE SubE Accuracy 73.17 78.01 65.93 62.66 61.55 76.88 75.78 70.10 60.62
InfoE AddE F1 88.33 95.67 90.94 90.57 92.63 89.57 90.87 88.80 81.84
InfoE SolvE F1 84.00 85.00 80.00 81.50 84.63 85.00 81.60 75.00 84.00
InfoE TempE F1 70.00 75.00 73.00 80.00 80.00 83.00 80.00 80.00 75.00
InfoE TimeE F1 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00
InfoE ProdE Accuracy 88.06 91.48 86.88 82.35 87.34 92.33 91.75 84.05 71.38
InfoE CharME F1 76.02 79.60 78.97 77.88 75.02 77.86 77.34 73.63 72.18
InfoE CatTE F1 95.00 95.00 98.00 91.00 94.00 100.00 100.00 97.00 98.00
InfoE YieldE F1 60.00 60.00 62.00 57.00 56.00 60.00 60.00 56.00 79.00

InducGen TopC Accuracy 40.00 50.00 48.00 47.00 43.00 54.00 49.00 56.00 30.00
InducGen ReactTR F1 60.00 60.00 71.00 44.00 40.00 69.00 46.00 61.00 67.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 51.04 (78%) 54.56 (80%) 41.57 (90%) 31.43 (77%) 38.25 (80%) 53.15 (90%) 48.84 (96%) 25.18 (77%) 18.34 (75%)

MNTrans IUPAC2MF L2 0.6632 0.7636 0.4944 0.3563 0.3847 0.6303 0.5908 0.2795 0.1652
MNTrans SMILES2MF L2 0.5833 0.5942 0.2858 0.3233 0.3359 0.4569 0.3651 0.1953 0.2238
MNTrans IUPAC2SMILES Tanimoto (valid) 31.51 (52%) 33.63 (52%) 31.71 (83%) 29.33 (65%) 40.07 (75%) 33.49 (67%) 49.60 (88%) 16.73 (65%) 10.88 (60%)
MNTrans SMILES2IUPAC Exact Match 0.00 0.00 0.00 0.40 0.40 1.20 0.00 0.00 0.00
MNTrans SMILES2IUPAC BLEU 3.44 4.49 1.37 4.19 4.49 4.33 2.53 1.00 0.11
MNTrans SMILES2IUPAC Tanimoto 0.00 0.00 12.69 17.03 21.01 24.25 17.86 13.05 7.42
MNTrans S2S Tanimoto (valid) 15.17 (44%) 22.62 (80%) 18.24 (74%) 12.16 (72%) 15.70 (68%) 21.25 (85%) 21.76 (62%) 18.80 (72%) 14.37 (79%)

MPP MolPC Accuracy 73.08 71.60 68.55 63.23 58.49 66.72 55.79 56.87 58.71
MPP MolPR NRMSE (valid) 0.2574 (100%) 0.2536 (100%) 0.4128 (85%) 3.3664 (98%) 5.2053 (98%) 0.2697 (100%) 0.2934 (99%) 0.3779 (98%) 0.3860 (100%)

MolDesc Mol2PC LLM Score 18.50 24.50 8.30 21.60 21.30 8.70 14.10 0.40 0.20
Scientific Knowledge Deduction

ReSyn SubRec F1 2.67 3.00 0.43 1.09 2.05 2.03 1.36 0.00 0.00
ReSyn PathRec LLM Score 52.50 40.63 25.00 29.25 28.75 33.13 24.00 33.38 41.13
ReSyn SynDE NRMSE (valid) 0.3806 (100%) 0.5517 (100%) 0.4856 (100%) 0.7561 (100%) 0.6454 (100%) 0.5380 (100%) 0.6527 (96%) 0.3208 (100%) 0.3251 (100%)
RCRec LRec F1 12.00 18.00 15.60 11.20 8.00 5.60 11.60 16.40 6.00
RCRec RRec F1 45.00 41.67 21.31 32.33 33.65 30.54 12.39 37.26 35.27
RCRec SolvRec F1 46.00 26.00 26.40 34.40 22.40 48.00 41.60 46.80 51.20
RCRec CatRec F1 32.50 25.83 5.00 5.08 3.33 34.67 2.00 17.04 0
RCRec TempRec NRMSE (valid) 0.4951 (100%) 0.4137 (100%) 0.4841 (100%) 0.3745 (100%) 0.4625 (100%) 0.4141 (100%) 0.3170 (100%) 0.4143 (100%) 0.2561 (100%)
RCRec TimeRec NRMSE 0.2071 (100%) 0.1970 (100%) 0.2164 (100%) 0.1918 (100%) 0.2614 (100%) 0.1980 (100%) 0.2085 (100%) 0.1870 (100%) 0.2080 (100%)
ROP PPred F1 12.00 20.00 1.07 11.87 16.19 14.10 0.63 0.40 0.96
ROP YPred Accuracy 54.00 34.00 48.50 75.00 32.50 40.50 40.50 61.00 88.00
ROP RatePred Overlap 16.74 14.41 20.27 17.17 15.82 19.24 13.45 15.82 15.40
RMA IMDer LLM Score 81.25 77.50 83.50 79.75 81.50 79.25 84.75 77.25 68.25

• Qwen-VL Max: Qwen-VL-Max is the most capable large visual language model in the Qwen-VL
series, offering optimal performance on a broad range of complex tasks. It has significantly en-
hanced visual reasoning and instruction-following abilities, and can handle high-definition images
with resolutions above one million pixels.

• Phi-Vision-3.5: Phi-3.5-vision is a lightweight, state-of-the-art open multimodal model developed
by Microsoft, with 4.2B parameters and a 128K context length. It excels in handling both text and
visual inputs, offering capabilities in general image understanding, optical character recognition,
chart interpretation, and video summarization.

• ChemDFM: ChemDFM is a pioneering large language model (LLM) specifically designed for
chemistry, trained on 34 billion tokens from chemical literature and textbooks and fine-tuned
using 2.7 million instructions. It demonstrates superior performance in various chemical tasks
such as molecule recognition, molecular property prediction, and reaction analysis, significantly
outperforming most representative open-source LLMs.

• LlaSMol: LlaSMol is a series of large language models fine-tuned on a large-scale, comprehen-
sive, and high-quality instruction tuning dataset named SMolInstruct for chemistry tasks. These
models, based on open-source LLMs like Galactica, Llama 2, Code Llama, and Mistral, demon-
strate strong performance on various chemistry tasks, significantly outperforming previous LLMs
and approaching the performance of state-of-the-art task-specific models. We select the Mistral-
based version for experiments due to its superior performance.

• ChemLLM: ChemLLM is the first specialized large language model dedicated to chemistry,
trained on a unique dataset ChemData, and evaluated on a comprehensive benchmark ChemBench.
This model shows remarkable capabilities in handling various chemistry tasks and exhibits strong
general language skills.

• ChemSpark: ChemSpark, formally known as Spark-Chemistry-X1-13B, is a LLM specialized
for chemistry developed by iFLYTEK and released on the ModelScope platform. It was created
by fine-tuning the iFLYTEK Spark-X1 base model on various chemical task datasets.
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Table 11: Performance overview of multi-level 3-shot text tasks on ChemEval (part 2).

Dimension Task Metric Qwen2.5-14B Qwen2.5-7B Llama3.3-8B Grok3 Gemini-2.5-Pro ChemDFM ChemLLM LlaSMol ChemSpark
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 64.80 55.60 38.40 70.40 90.80 44.80 13.60 4.00 32.00
ObjQA FBTask LLM Score 41.00 34.35 29.68 49.19 56.66 20.98 55.40 29.28 26.20
ObjQA TFTask Accuracy 61.60 63.60 46.80 74.40 72.00 65.20 0.80 38.00 57.20
SubjQA SATask LLM Score 52.20 48.70 29.00 73.00 70.00 30.50 11.50 23.50 31.60
SubjQA CalcTask LLM Score 51.10 40.80 19.70 79.30 81.60 16.40 35.46 68.37 15.80

Literature Understanding
InfoE CNER F1 57.42 64.84 51.35 61.47 73.62 36.98 0.09 9.04 72.30
InfoE CERC F1 26.59 25.42 15.34 28.66 29.69 0.37 0.28 0.00 37.18
InfoE SubE Accuracy 62.69 68.17 57.71 79.42 76.29 20.04 0.00 0.00 72.86
InfoE AddE F1 92.33 53.24 41.71 92.66 95.00 47.13 0.29 0.00 67.00
InfoE SolvE F1 83.50 74.00 69.00 81.00 84.67 71.25 0.43 0.05 85.23
InfoE TempE F1 70.00 79.00 69.00 79.00 77.00 41.00 1.53 0.00 80.00
InfoE TimeE F1 95.00 89.00 89.00 95.00 95.00 78.00 0.98 0.00 95.00
InfoE ProdE Accuracy 84.55 83.14 73.26 90.62 93.75 8.83 0.00 0.00 98.40
InfoE CharME F1 70.25 62.96 32.72 79.36 80.09 17.83 0.00 0.00 39.12
InfoE CatTE F1 82.00 78.00 71.00 100.00 99.00 44.00 0.00 0.00 26.00
InfoE YieldE F1 69.00 60.00 61.00 55.00 59.50 41.00 0.00 0.00 69.00

InducGen TopC Accuracy 49.00 47.00 28.00 46.00 73.00 27.00 0.00 0.00 25.00
InducGen ReactTR F1 48.00 40.00 39.00 79.00 59.00 26.00 0.00 0.00 32.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 10.27 (55%) 4.71 (36%) 7.51 (34%) 49.26 (92%) 72.33 (92%) 34.29 (69%) 0.00 (0%) 0.00 (0%) 61.38 (95%)

MNTrans IUPAC2MF L2 0.1864 0.1719 0.2619 0.3393 0.8294 0.3225 0.0102 0.0000 0.8176
MNTrans SMILES2MF L2 0.1333 0.1360 0.1674 0.3781 0.6422 0.4025 0.0072 0.0054 0.7224
MNTrans IUPAC2SMILES Tanimoto (valid) 7.67 (48%) 3.51 (30%) 2.37 (14%) 65.15 (94%) 59.44 (87%) 38.66 (88%) 0.00 (0%) 0.00 (0%) 83.98 (99%)
MNTrans SMILES2IUPAC Exact Match 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 10.80
MNTrans SMILES2IUPAC BLEU 0.62 0.15 0.13 3.44 13.61 0.26 0.08 0.00 45.96
MNTrans SMILES2IUPAC Tanimoto 7.80 3.39 1.91 28.61 54.63 1.82 0.00 0.00 61.08
MNTrans S2S Tanimoto (valid) 12.19 (71%) 6.28 (56%) 3.51 (47%) 27.58 (87%) 20.11 (74%) 0.94 (25%) 0.00 (0%) 0.00 (2%) 79.68 (89%)

MPP MolPC Accuracy 66.84 59.77 53.20 61.71 67.62 56.65 0.00 40.00 82.88
MPP MolPR NRMSE (valid) 1.6757 (100%) 0.5915 (100%) 50.9659 (81%) 0.2886 (100%) 0.2213 (100%) 1.6438 (87%) 8.2422 (98%) 10.0340 (89%) 1.1634 (100%)

MolDesc Mol2PC LLM Score 2.40 1.90 0.40 24.40 2.30 0.00 0.00 9.50 66.20
Scientific Knowledge Deduction

ReSyn SubRec F1 0.20 0.20 0.00 0.80 0.00 2.74 0.00 0.00 10.45
ReSyn PathRec LLM Score 28.75 23.50 17.88 25.25 43.00 28.75 6.75 17.50 27.00
ReSyn SynDE NRMSE (valid) 0.3223 (100%) 0.4794 (100%) 0.7969 (100%) 0.2716 (100%) 0.4284 (100%) 0.6243 (51%) 0.6246 (100%) 0.4367 (95%) 0.5968 (66%)
RCRec LRec F1 9.20 6.40 2.40 29.60 0.00 12.49 0.00 0.00 16.80
RCRec RRec F1 41.69 30.28 30.00 35.14 1.87 14.21 5.60 0.00 57.45
RCRec SolvRec F1 26.00 48.00 33.80 30.40 0.00 24.59 0.00 0.00 32.00
RCRec CatRec F1 18.67 8.13 0.25 2.89 1.80 3.90 3.43 0.00 1.97
RCRec TempRec NRMSE (valid) 0.5359 (100%) 0.4211 (100%) 0.7066 (89%) 0.1687 (100%) 0.1479 (100%) 0.6583 (99%) 1.0526 (100%) 0.9240 (90%) 0.2682 (100%)
RCRec TimeRec NRMSE 0.2053 (100%) 0.2053 (100%) 0.9478 (100%) 0.1944 (100%) 0.2090 (100%) 0.1970 (100%) 0.4404 (100%) 0.3085 (100%) 0.4021 (100%)
ROP PPred F1 0.00 0.40 0.00 10.87 30.00 11.93 0.00 0.00 53.60
ROP YPred Accuracy 92.00 92.00 22.00 9.50 33.00 36.80 0.00 0.00 88.50
ROP RatePred Overlap 16.71 12.29 14.29 22.83 29.08 17.46 0.00 0.00 11.03
RMA IMDer LLM Score 74.25 25.25 67.50 80.50 83.00 42.25 4.75 3.75 73.25

C.2 METRICS

In this study, we employ a variety of evaluation metrics to fine-grained assess model performance
across different tasks. The main metrics include:

• F1 Score and Accuracy: These are the primary metrics used for most tasks. The F1 score
combines precision and recall to evaluate classification performance, while accuracy measures the
proportion of correct predictions.

• BLEU: Calculated by comparing the n-gram overlap between the model-generated text and the
reference answer, incorporating a brevity penalty to penalize overly short outputs. This metric is
mainly used to assess the similarity between generated results and reference answers.

• Exact Match: This metric checks whether the model output exactly matches the ground truth.

• Normalized Root Mean Square Error (NRMSE): Used to evaluate the prediction error in nu-
merical or regression tasks, and lower values indicate better model performance.

• Valid Output Ratio: The proportion of valid outputs provided by the model.

• LLM Score: Subjective evaluation by other large language models, focusing on the reasonable-
ness and completeness of the answers.

• L2 Score (L2): An indicator for evaluating the similarity between molecular formulas. Specifi-
cally, L2 Score is calculated as 1/(1 + L2 distance), where the L2 distance refers to the L2 norm
between the predicted and reference molecular formulas. A higher value indicates greater similar-
ity between formulas.

• Overlap: Used to assess the proximity between the predicted range and the reference range. It is
calculated as the length of the intersection divided by the length of the union of the predicted and
reference ranges.
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Table 12: Standard deviation across five trials for different models on ChemEval. Claude3.7T de-
notes Claude 3.7-Sonnet-Thinking, whereas Claude3.7N denotes Claude 3.7-Sonnet.

Task SATask CalcTask CNER CERC ProdE S2S MolPC LRec PPred
Metric LLM Score LLM Score F1 F1 Accuracy Tanimoto Accuracy F1 F1
GPT-4o 61.20 ± 2.25 61.80 ± 1.21 65.76 ± 1.58 25.66 ± 1.48 86.09 ± 1.45 13.41 ± 1.39 64.57 ± 1.23 13.20 ± 2.99 1.67 ± 1.52

claude3.7T 56.70 ± 1.81 55.74 ± 2.82 60.21 ± 2.02 25.19 ± 1.91 82.39 ± 2.53 9.37 ± 0.78 58.90 ± 1.96 2.00 ± 1.26 12.27 ± 4.71
claude3.7N 55.10 ± 2.18 53.60 ± 2.15 54.55 ± 4.02 24.77 ± 1.18 85.04 ± 1.88 10.58 ± 1.14 54.37 ± 3.24 4.40 ± 1.50 16.16 ± 1.89

Deepseek-R1 68.50 ± 2.21 76.10 ± 2.40 64.14 ± 1.72 27.18 ± 0.44 91.20 ± 0.35 16.04 ± 1.12 53.55 ± 0.63 6.80 ± 2.04 11.97 ± 1.73
Deepseek-V3 71.70 ± 1.91 79.20 ± 2.94 60.85 ± 1.13 24.94 ± 1.12 87.52 ± 2.56 16.27 ± 1.44 48.73 ± 1.43 7.60 ± 2.33 0.93 ± 1.14
Qwen2.5-72B 58.50 ± 2.24 61.90 ± 2.08 61.61 ± 0.81 26.05 ± 0.84 84.86 ± 1.15 11.47 ± 1.17 48.13 ± 0.65 4.40 ± 1.50 1.73 ± 1.50
LLama3.3-8B 38.40 ± 1.93 28.00 ± 0.95 55.34 ± 3.85 17.31 ± 2.31 74.54 ± 1.56 1.74 ± 0.65 47.26 ± 1.86 2.13 ± 1.29 0.00 ± 0.00

Grok3 73.59 ± 1.16 81.20 ± 1.60 60.75 ± 0.34 26.04 ± 0.61 91.04 ± 0.28 17.56 ± 1.75 56.62 ± 0.76 36.00 ± 1.26 11.33 ± 1.54
Gemini-2.5-Pro 72.00 ± 1.41 82.40 ± 0.97 68.30 ± 0.99 25.43 ± 1.63 92.82 ± 1.92 13.13 ± 1.01 63.63 ± 1.10 0.00 ± 0.00 29.20 ± 6.01

ChemDFM 32.20 ± 1.57 14.70 ± 1.17 41.17 ± 2.25 8.74 ± 2.52 34.73 ± 2.94 2.12 ± 0.31 61.35 ± 0.80 26.00 ± 3.79 18.80 ± 2.29
ChemLLM 13.20 ± 1.03 15.90 ± 2.91 0.16 ± 0.32 0.24 ± 0.12 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
ChemSpark 33.60 ± 0.97 18.50 ± 2.02 71.44 ± 1.13 39.27 ± 2.59 94.40 ± 0.23 87.36 ± 1.46 85.57 ± 2.19 37.60 ± 0.80 56.40 ± 3.44

D FULL PERFORMANCE RESULTS

D.1 PERFORMANCE RESULT OF 0-SHOT SETTINGS

The table 7 and the table 8 show the complete experiment results of all models under the zero-
shot setting. We tested all the aforementioned models under zero-shot settings on ChemEval, as
analyzed in Section 4.2.1. The results demonstrate that general-purpose models perform relatively
well on knowledge question answering and literature comprehension tasks, while specialized models
excel in more complex chemical tasks such as molecular property prediction. For certain tasks like
CatRec, most models struggled to generate valid outputs, resulting in scores of zero.

D.2 PERFORMANCE RESULT OF MULTIMODAL TASKS

The table 9 shows the performance of mainstream multimodal large language models on ChemEval’s
multimodal tasks, with ’-’ indicating meaningless responses. While most models handle basic
tasks like molecular formula identification adequately, they struggle significantly with more com-
plex challenges involving chemical reaction pathways and molecular properties. This performance
gap widens further in Molecular Understanding and Scientific Reasoning tasks, which require both
accurate molecular structure recognition from visual inputs and comprehensive chemical knowl-
edge application. Our evaluation focused solely on general-purpose multimodal models, excluding
chemistry-specific ones. As multimodal capabilities become increasingly essential in chemical re-
search, this represents a critical area requiring urgent development.

D.3 PERFORMANCE RESULT OF 3-SHOT SETTING

As shown in the table 10 and the table 11, we evaluated all the aforementioned models under 3-
shot settings on ChemEval. The results indicate that, similar to the zero-shot scenario, general-
purpose models perform relatively well on advanced knowledge question answering and literature
understanding tasks, while struggling with more complex molecular understanding and scientific
knowledge deduction tasks. Specialized models such as ChemLLM and LlaSMol, due to their poor
instruction-following capabilities, failed to return meaningful responses for most tasks, resulting in
anomalous scores. These findings corroborate our previous analysis.

E RESULTS OF ANALYSIS EXPERIMENTS

We conducted experimental analyses in two key areas. First, to establish the reliability of ChemEval
metrics and demonstrate our evaluation framework’s robustness, we conducted three repeated trials
across identical task categories and calculated the standard deviation of results. Due to computa-
tional resource limitations, we were unable to conduct comprehensive experiments on all models and
tasks. Therefore, we selected representative models and tasks for evaluation. Second, we investi-
gated the differential impact of reasoning-oriented and format-constraint instructions in prompts, ex-
amining how reasoning capabilities and instruction-following ability influence model performance
on complex chemical tasks.
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Table 13: Experimental Results on CoT and Format Constraints.

Dimension Task Metric ChemDFM-NoFormat ChemDFM-CoT ChemLLm-NoFormat Llasmol-NoFormat Qwen2.5-7B-CoT
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 36.00 ↓5.20 32.00 ↓9.20 28.00 ↑3.60 24.00 50.00 ↓9.60
ObjQA FBTask LLM Score 24.00 ↓0.16 25.38 ↑1.22 31.58 ↓3.39 20.88 ↑6.96 27.64 ↓11.88
ObjQA TFTask Accuracy 46.00 32.00 ↓14.00 16.00 ↓3.20 56.00 ↓2.00 70.00 ↑14.80
SubjQA SATask LLM Score 44.80 ↑12.60 44.40 ↑12.20 32.40 ↑19.20 30.00 ↑15.50 57.60 ↑6.80
SubjQA CalcTask LLM Score 32.00 ↑17.30 32.40 ↑17.70 32.40 ↑16.50 22.00 ↑14.50 51.60 ↑8.00

Literature Understanding
InfoE CNER F1 43.44 ↑2.27 37.98 ↓3.19 47.61 ↑47.45 1.00 ↓10.62 67.02 ↑5.75
InfoE CERC F1 11.53 ↑2.79 9.69 ↑0.95 16.81 ↑16.57 4.13 ↑2.89 22.89 ↓3.21
InfoE SubE Accuracy 0.00 ↓20.07 0.00 ↓20.07 0.00 0.00 0.00 ↓58.43
InfoE AddE F1 33.33 ↓11.67 46.67 ↑1.67 66.67 ↑66.67 36.67 ↑36.67 65.33 ↑3.66
InfoE SolvE F1 65.00 ↓15.50 60.00 ↓20.50 76.50 ↑74.83 0.00 78.33 ↓4.17
InfoE TempE F1 60.00 ↓14.33 70.00 ↓4.33 70.00 ↑66.77 40.00 ↑40.00 65.00
InfoE TimeE F1 80.00 ↑2.00 90.00 ↑12.00 95.00 ↑92.69 50.00 ↑25.00 95.00
InfoE ProdE Accuracy 0.00 ↓34.73 0.61 ↓34.12 0.00 4.13 ↑4.13 26.51 ↓50.49
InfoE CharME F1 74.96 ↑47.70 64.52 ↑37.26 65.00 ↑65.00 44.96 ↑44.96 65.38 ↑22.38
InfoE CatTE F1 35.00 ↓14.00 40.00 ↓9.00 45.00 ↑45.00 0.00 ↓5.00 55.00 ↓9.00
InfoE YieldE F1 60.00 ↑15.00 60.00 ↑15.00 55.00 ↑55.00 55.00 ↑50.00 50.00 ↓17.00

InducGen AbsGen LLM Score 20.00 ↑20.00 20.00 ↑20.00 20.00 ↑14.50 11.00 ↓15.25 73.00 ↑18.25
InducGen OLGen LLM Score 19.00 ↑19.00 18.00 ↑18.00 40.00 ↑36.25 25.00 ↓6.25 58.00 ↑30.25
InducGen TopC Accuracy 30.00 ↓21.00 45.00 ↓6.00 35.00 ↑35.00 20.00 ↑20.00 45.00 ↑4.00
InducGen ReactTR F1 25.00 ↑12.00 15.00 ↑2.00 30.00 ↑30.00 0.00 ↓5.00 20.00 ↓11.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 71.94 (94%) ↑24.88 61.03 (92%) ↑13.97 0.62 (2%) ↑0.62 0.0 (0%) ↓3.71 3.44 (26%) ↓0.48

MNTrans IUPAC2MF L2 68.15 ↑6.96 21.15 ↓40.04 6.99 ↑2.45 1.00 ↑1.00 9.93 ↓8.63
MNTrans SMILES2MF L2 61.27 ↓2.72 17.14 ↓46.85 4.23 ↑0.48 0.00 3.96 ↓5.84
MNTrans IUPAC2SMILES Tanimoto (valid) 50.37 (96%) ↑3.66 44.77 (84%) ↓1.94 0.0 (0%) 0.0 (0%) ↓4.70 3.23 (28%) ↓0.23
MNTrans S2S Tanimoto (valid) 0.14 (50%) ↓1.98 3.53 (46%) ↑1.41 2 (4%) ↑2.00 0.0 (0%) ↓0.60 2 (2%) ↓0.28

MPP MolPC Accuracy 63.68 ↑2.33 57.12 ↓4.23 45.36 ↑45.36 54.92 ↑8.42 45.60 ↓18.45
MPP MolPR NRMSE 11.88 ↑383.07 240.91 ↑154.03 0.56 ↑178.80 12.19 ↑17.78 46.98 ↓38.39

MolDesc Mol2PC LLM Score 28.40 ↑25.30 28.00 ↑24.90 20.40 ↑20.10 25.60 ↑25.60 30.40 ↑15.90
Scientific Knowledge Deduction

ReSyn SubRec F1 0.00 ↓3.99 0.00 ↓3.99 0.00 1.33 ↑1.33 0.00 ↓1.42
ReSyn PathRec LLM Score 48.00 ↑23.88 40.50 ↑16.38 24.00 ↑13.13 30.50 ↑20.50 47.00 ↑19.88
RCRec LRec F1 4.00 ↓22.00 4.80 ↓21.20 0.00 0.00 6.00 ↑3.20
RCRec RRec F1 8.00 ↓5.13 9.33 ↓3.80 22.00 ↑22.00 0.00 44.00 ↑27.07
RCRec SolvRec F1 6.00 ↓4.53 14.00 ↑3.47 8.00 ↑8.00 2.00 ↑1.50 20.00 ↓5.60
RCRec TempRec NRMSE (valid) 0.421 (85%) ↓0.04 0.2681 (85%) ↑0.11 0.9821 (45%) ↑0.14 7.9004 (15%) ↓7.03 0.3174 (55%)
RCRec TimeRec NRMSE (valid) 0.5337 (70%) ↓0.06 0.6024 (55%) ↓0.13 1.306 (25%) ↑0.49 - (0%) 0.4396 (100%) ↓0.12
ROP PPred F1 4.00 ↓14.80 14.00 ↓4.80 0.00 8.00 ↓8.00 0.00
ROP YPred Accuracy 52.00 (50%) ↑44.80 72.00 (50%) ↑64.80 70.00 (50%) ↑70.00 10.00 (50%) ↓18.00 80.00 (50%) ↑13.00
ROP RatePred Overlap 3.20 ↓0.59 9.86 ↑6.07 0.00 0.00 ↓3.68 2.70 ↓10.65
RMA IMDer LLM Score 57.00 ↓19.00 55.00 ↓21.00 37.00 ↑32.25 32.00 ↑30.50 56.00 ↓22.75

E.1 BENCHMARK STABILITY ASSESSMENT

The table 12 shows the result of our repeated experiments. The results reveal that standard devia-
tions across most metrics remain below 5.0, demonstrating consistent performance across multiple
evaluations. This statistical stability confirms the robustness of our evaluation framework, ensuring
reliable and reproducible assessments of system performance.

E.2 ANALYSIS OF COT AND FORMAT CONSTRAINTS

As illustrated in Table 13, we evaluate four models: ChemDFM, ChemLLM, LlasMol, and
Qwen2.5-7B under varied prompt configurations. When format restrictions were removed from
the prompts, ChemDFM and LlasMol showed improved performance on simpler chemical tasks but
declined on more complex ones. In contrast, ChemLLM achieved substantial performance gains
across most tasks after the removal of format restrictions. This finding highlights that the loss
of instruction-following ability can critically undermine the practical usability of domain-specific
models. With respect to reasoning-oriented instructions, CoT prompting produced inconsistent out-
comes for ChemDFM, enhancing performance in certain tasks while reducing it in others. Notably,
Qwen2.5-7B consistently exhibited performance deterioration under CoT conditions, suggesting
that explicit reasoning mechanisms contribute little to performance improvements on chemical tasks.

E.3 ANALYSIS OF CHEMISTRY-SPECIFIC LLMS AND GENERAL-PURPOSE LLMS

Chemistry-specific language models are typically developed by fine-tuning open-source founda-
tion models with domain-specific corpora. For instance, ChemLLM is derived from InternLM2-
Base-7B, while ChemDFM builds upon LLAMA-13B. Although these models incorporate exten-
sive chemistry datasets and supplement them with general-domain data to mitigate catastrophic
forgetting, their relatively small parameter scales impose fundamental limitations, particularly in
instruction-following ability and task generalization. In contrast, closed-source state-of-the-art sys-
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tems such as Gemini-2.0 and GPT-4o benefit from both larger parameter counts and massive pre-
training corpora that include substantial amounts of open-source chemistry data, enabling them to
preserve general reasoning capacity while delivering strong performance on chemistry tasks.

To further investigate the trade-offs between domain specialization and general-purpose robustness,
we conducted a comparative study on Llasmol and its base model Mistral-7B. As shown in Table 14,
the results reveal mixed outcomes: Llasmol achieves modest improvements on classification-based
tasks such as multiple choice and true/false questions, but performs poorly on information extrac-
tion and molecular representation tasks where the base model significantly outperforms it. A closer
analysis of the model outputs suggests that Llasmol suffers from weak instruction-following, of-
ten failing to generate answers in the specified format, as well as a tendency to produce irrelevant
responses that are misaligned with the posed questions. These findings highlight the limitations
of smaller domain-adapted models and underscore the advantages of large-scale general-purpose
LLMs in achieving both reliability and relevance in specialized scientific applications.

F CASE STUDY

We conducted a detailed analysis of the models’ outputs, systematically categorizing the most com-
mon types of errors they make, and provided two illustrative examples to highlight typical fail-
ure cases. These examples demonstrate the models’ difficulties in accurately adhering to chemical
nomenclature rules, predicting reaction substrates, and correctly interpreting molecular structures,
thereby offering concrete insights into their limitations and areas for potential improvement.

In the Advanced Knowledge Question Answering and Literature Understanding levels, the model
demonstrates strong proficiency in fundamental chemistry knowledge. Covering the four major
branches of chemistry, the model shows some minor inaccuracies in understanding basic conceptual
definitions in fill-in-the-blank tasks, resulting in occasional incorrect responses, though the overall
error rate remains low. In short-answer tasks, the model provides detailed and accurate responses,
reflecting its strengths in foundational chemistry question answering.

In the Molecular Understanding level, which primarily involves organic chemistry, the model ex-
hibits errors related to unfamiliarity with nomenclature rules for natural products, heterocycles, and
macrocycles, leading to name confusion; insufficient knowledge of special functional groups and
substituents; and incomplete understanding of basic organic and stereochemical nomenclature rules,
resulting in incorrect compound naming and misattribution of physicochemical properties.

In the Scientific Knowledge Deduction level, the model’s errors include a lack of organic synthesis
knowledge, insufficient understanding of organic reaction mechanisms, unfamiliarity with specific
named reactions, limited grasp of reaction selectivity and reaction rules in organic compounds, and
inaccurate prediction of target product structures.

These findings indicate that while the model performs well on foundational knowledge and basic
molecular reasoning, it still has limitations in advanced organic synthesis reasoning, reaction condi-
tion recommendation, and product prediction, highlighting areas for further improvement.

Table 14: Comparison of LlaSMol and Mistral-7B performance on partial chemistry tasks.

Tasks Metric Llasmol Mistral-7B
Multiple Choice Task Accuracy 0.24 0.20
True/False Task Accuracy 0.58 0.34
Reaction Time Extraction F1 0.25 0.90
Reaction Temperature Extraction F1 0.00 0.60
IUPAC to Molecular Formula L2 0.00 0.1142
SMILES to Molecular Formula L2 0.00 0.1076
Intermediate Derivation LLM score 0.02 0.26
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Error case of Substrate Recommendation

Query: Chemical reaction equations are typically expressed in the following form:
reactant1.reactant2.reactant3...>>product.

In this form, each substance (reactant/product) is represented using the SMILES notation.
Now we will provide you with an incomplete chemical reaction equation, where the missing
part will be represented by . The missing parts could be one or more substances. Based
on the remaining portions of the reaction equation, please infer what the missing part could
be. Please only provide the missing part in your response, without any additional content.
The Incomplete equation is as follows:
___>>CCOC(=O)C1C2=C(CCN1C(=O)C1=CC=CC(C(F)(F)F)=C1C1)N(C1=CC
=CC=N1)C=N2.

You must output your prediction, i.e. valid SMILES, and follow the output format exactly as
follows: “answer”:[“valid SMILES 1”, “valid SMILES 2”,...]. I don’t need any explanation,
you just need to output your judgment in format.

Groundtruth answer:
[’CCOC(=O)C1NCCC2=C1N=CN2C1=CC=CC=N1’, ’O=C(O)C1=CC=CC(C(F)
(F)F)=C1C1’]

Model answer:
{"answer":["CCOC(=O)C1C2=C(CCN1C(=O)C1=CC=CC=C1)N(C1=CC=CC
=N1)C=N2", "C1C1=CC=C(C(F)(F)F)c=C1"]}

Error Analysis: The model-predicted reaction substrate lacks the requisite reactive sites,
preventing the two reactants from undergoing the reaction to yield the target product. Addi-
tionally, the model demonstrates inaccurate understanding of the target product’s structural
characteristics, and the reaction substrate contains extraneous functional groups.

Error case of SMILES-to-IUPAC Translation

Query: please give the IUPAC name of the molecule given by SMILES:
CC(C)OC1=CC=C(C=C1)/C(=C\2/[C@@H](N(C(=0)C2=0)CCN3CCNCC3)C4=
CC=C(C=C4)C1)/0

You must output your prediction, i.e. a valid IUPAC, and follow the output format exactly
as follows: “answer”: “The answer you judge”. I don’t need any explanation, you just need
to output your judgment information.

Groundtruth answer:
(4E,5S)-5-(4-chlorophenyl)-4-[hydroxy-(4-propan-2-yloxyphenyl)
methylidene]-1-(2-piperazin-1-ylethyl)pyrrolidine-2,3-dione

Model answer:
{"answer":["CCOC(=O)C1C2=C(CCN1C(=O)C1=CC=CC=C1)N(C1=CC=CC
=N1)C=N2", "C1C1=CC=C(C(F)(F)F)c=C1"]}

Error analysis: The molecular structure does not contain 4-hydroxypiperidinyl or 2-
propenyl moieties, and the designation as a 1-one is also erroneous. The model exhibits
an inadequate understanding of IUPAC nomenclature rules for heterocyclic compounds; the
heterocycles actually present in this structure are pyrrole and piperazine rings. Furthermore,
additional nomenclature errors include: incorrect enumeration of principal functional groups
(the structure contains two ketone carbonyls), improper substituent naming, and incomplete
stereochemical specification—while the structure possesses two stereocenters, the nomen-
clature designates only one of them.
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G LLM USAGE

In this work, large language models were employed as a general assistive tool to improve the clarity
and readability of the paper. Specifically, the models were used to polish grammar, punctuation, and
phrasing in the text. No LLMs were used to generate original scientific ideas, analyze data, or draw
conclusions; all scientific content, experimental design, analysis, and interpretation were entirely
performed by the authors.
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