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Abstract

While diffusion models have demonstrated impressive performance, there is a
growing need for generating samples tailored to specific user-defined concepts.
The customized requirements promote the development of few-shot diffusion
models, which use limited nta target samples to fine-tune a pre-trained diffusion
model trained on ns source samples. Despite the empirical success, no theoretical
work specifically analyzes few-shot diffusion models. Moreover, the existing
results for diffusion models without a fine-tuning phase can not explain why few-
shot models generate great samples due to the curse of dimensionality. In this
work, we analyze few-shot diffusion models under a linear structure distribution
with a latent dimension d. From the approximation perspective, we prove that
few-shot models have a Õ(n

−2/d
s + n

−1/2
ta ) bound to approximate the target score

function, which is better than n
−2/d
ta results. From the optimization perspective, we

consider a latent Gaussian special case and prove that the optimization problem
has a closed-form minimizer. This means few-shot models can directly obtain an
approximated minimizer without a complex optimization process. Furthermore,
we also provide the accuracy bound Õ(1/nta + 1/

√
ns) for the empirical solution,

which still has better dependence on nta compared to ns. The results of the real-
world experiments also show that the models obtained by only fine-tuning the
encoder and decoder specific to the target distribution can produce novel images
with the target feature, which supports our theoretical results.

1 Introduction

In recent years, diffusion models have shown an excellent ability to generate diverse, high-quality
samples and show state-of-the-art performance in many areas with large-scale, standard datasets
(Rombach et al., 2022; Ho et al., 2022; Li et al., 2024a; Blattmann et al., 2023; Li et al., 2023b;
Liu et al., 2024; Li et al., 2024b). However, users often desire to generate samples that resemble
the ones they provide, such as images related to their families, daily lives, or specific items. These
user-provided samples are typically limited in number and do not appear frequently in large-scale
datasets. Consequently, training a diffusion model from scratch using such limited, personalized
samples often results in poor performance. To cater the customized requirements of users, few-shot
diffusion models attract much attention. Few-shot diffusion models aim to fine-tune a pre-trained
diffusion model using a limited amount of data (5 ∼ 10 samples), and they have recently delivered
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impressive results in various domains, including image generation (Ruiz et al., 2023; Han et al., 2023;
Zhu et al., 2023), video generation (Chen et al., 2023b), and the medical domain (Dutt et al., 2023).

Before the fine-tuning phase, we first need to train a diffusion model on the large source dataset
{Xs,i}ns

i=1 as the pre-trained model. A diffusion model consists of a forward process and a reverse
process (Song et al., 2020). The forward process gradually converts the data distribution into Gaussian
noise. The reverse process sequentially removes the noise in the data to generate samples, which
relies on the gradient of logarithmic forward process density (a.k.a. score function). To run the
reverse process, diffusion models use a neural network to approximate the unknown score function.

With a pre-trained diffusion model, the paradigm to obtain a few-shot diffusion model is to fine-tune
the model using a limited target dataset {Xta,i}nta

i=1. In earlier times, fully fine-tuned methods,
such as DreamBooth (Ruiz et al., 2023), provided an important boost for developing few-shot
models. However, they also show that the diffusion models suffer from the overfitting and memory
phenomenon when fine-tuning all parameters. Furthermore, a fully fine-tuned method is both memory
and time inefficient (Xiang et al., 2023). To avoid the above problems, many works freeze most
parameters and fine-tune some key parameters, such as cross-attention layers (Kumari et al., 2023;
Moon et al., 2022), some concept neurons (Liu et al., 2023) or text-embedding (Gal et al., 2022),
to approximate the ground-truth target score function. These works not only preserve the prior
information but also have a lower requirement for the target dataset size, which is more practical for
applications. Hence, we aim to explain the great performance of these models in this work.

Despite the empirical success, no existing theoretical work specifically analyzes the approximation
bound for few-shot diffusion models, and the following question remains open:

Do few-shot diffusion models with a fine-tuning phase enjoy a small approximation error with a
limited target dataset?

For the approximation error bound, some works currently analyze diffusion models without a fine-
tuning phase (Oko et al., 2023; Chen et al., 2023c; Yuan et al., 2023; Li et al., 2023c). Importantly,
when analyzing general, bounded data, these works suffer from the curse of dimensionality. More
specifically, Oko et al. (2023) analyze bounded distribution and show the n

−s′/D
s approximation

bound, where D is the data dimension of Xs. Chen et al. (2023c) analyze linear structure distribution
Xs = AsZ with subgaussian latent variable Z ∈ Rd and achieve n

−2/d
s results. Since the source

dataset size is large enough, the influence of dimension is tolerable. However, for the limited target
dataset, if trivially using the above technique, the bound is n−1/Dta or n−2/dta , which is large and can
not explain why few-shot diffusion models efficiently approximate the target score function.

In this work, for the first time, we propose the approximation bound specifically to few-shot diffusion
models with a fine-tuning phase and prove that the few-shot diffusion model can escape the curse of
dimensionality. More specifically, we show that when assuming (1) linear structure data and (2) the
source and the target data share latent distribution, the few-shot diffusion models with a fine-tuning
phase achieve Õ(n

−2/d
s + n

−1/2
ta ) approximation error bound, which makes the first step to explain

why few-shot diffusion models have great performance in the application. Generally speaking, due to
the component n−1/2ta , the few-shot diffusion only needs a few target samples to achieve the same
bound compared to n

−2/d
s . To support our augmentation, we calculate the requirement of nta to

obtain an accurate enough approximated target score function in popular datasets. Table 1 shows
that the requirement of nta is about 5 ∼ 10 samples, matching the customized diffusion model
requirement. We also do experiments on the real-world datasets and show that 10 target images are
enough for few-shot models to generate novel images with the target feature (see Section 6).

After directly using the property of the minimizer to obtain an approximation bound, we analyze how
to optimize the few-shot diffusion models to obtain a minimizer. Since the score-matching objective
function is highly non-convex, only a few works analyze the optimization problem of diffusion
models (Shah et al., 2023; Bruno et al., 2023; Cui et al., 2023; Li et al., 2023c). Furthermore, these
works either require (1) an exponential size neural network (Li et al., 2023c) or (2) a distribution
determined by one variable (Shah et al., 2023; Bruno et al., 2023; Cui et al., 2023) to simplify the
optimization problem. This work proves that few-shot diffusion models can simplify the optimization
problem without these requirements. When analyzing the optimization problem, we focus on a
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Gaussian latent variable special case 2. Then, we prove that the expected few-shot objective function
has a closed-form minimizer, which means the empirical solution can be directly obtained without a
complex optimization process. We also prove the accuracy bound Õ(1/nta + 1/

√
ns) of empirical

closed-form solution, which still has better dependence on the target dataset. In conclusion, we
accomplish the following results for few-shot diffusion models under linear structure distribution:

• For the approximation bound, we consider a subgaussian latent variable and prove Õ(n
−2/d
s +

n
−1/2
ta ) bound for few-shot models, which is better than n

−2/d
ta result without fine-tuning.

• For the optimization problem, we consider a latent Gaussian special case and prove that the
expected few-shot objective function has a closed-form minimizer. Furthermore, we prove
the accuracy bound Õ(1/nta + 1/

√
ns) for the empirical closed-form solution.

• To support our theoretical results, we do real-world experiments and show that the models
obtained by only fine-tuning specific encoder and decoder can use only 10 target images to
generate novel images with the target feature.

2 Related Work

The approximation error bound. Recently, some works analyze the approximation error bound
of diffusion models without a fine-tuning phase. Oko et al. (2023) analyze s′-order bounded deriva-
tives distribution and show the approximation error bound is n−s

′/D
s . Chen et al. (2023c) analyze

distribution with linear structure and subgaussian latent variable and show that the n
−2/d
s result.

The approximation error bound of the above works suffers the curse of (latent) dimensionality. To
avoid this phenomenon, some works analyze special data distributions. Shah et al. (2023) and Cui
et al. (2023) analyze the mixture of Gaussian (MOG) with known variance and achieve a 1/ns

approximation bound. Yuan et al. (2023) analyze linear structure distribution with Gaussian latent
variable and achieve 1/

√
ns result. Mei & Wu (2023) analyze Ising models and prove that the term

corresponds to ns is 1/
√
ns. However, the remaining terms do not converge to 0 when ns goes to

+∞. For general bounded data distribution, Li et al. (2023c) provide a n
−2/5
s approximation error

bound. However, they use a 2-layer random feature network and only allow the second linear layer to
be trainable. Hence, the network size is exp (ns) compared to Poly(ns) size of all previous works.

The optimization of diffusion models. Since the score matching objective function is highly
non-convex, only a few works analyze how to optimize it to obtain a minimizer (Shah et al., 2023;
Cui et al., 2023; Bruno et al., 2023; Li et al., 2023c). These works either make assumptions about
data distribution or network size to guarantee only one optimization variable, leading to a simpler
optimization problem. For special data distributions, Bruno et al. (2023) and Cui et al. (2023) analyze
a Gaussian with fixed variance and a 2-mode mixture of Gaussian (MOG) with equal, trainable mean
and fixed variance, respectively. Shah et al. (2023) analyze a multi-mode MOG with a fixed variance
and prove a local convergence guarantee. Since they assume the distance between any two modes is
large enough and a good enough initialization, the optimization problem is similar to optimizing a
Gaussian distribution. For the large neural network size, Li et al. (2023c) analyze a general, bounded
distribution with a 2-layer NN. Note that they require exp (ns) hidden neurons and only allow the
linear layer to be trainable, which also leads the optimization problem to a convex optimization.

3 The Introduction of Few-shot Diffusion Models

With pre-trained models, the paradigm to obtain a few-shot diffusion model is to freeze most
parameters and fine-tune some key parameters corresponding to the target data distribution. Since
the analysis of few-shot diffusion models relies heavily on the pre-trained model, this section first
provides a concise overview of the fundamental concepts and notations associated with diffusion
models. Then, we introduce the paradigm of few-shot diffusion models in Section 3.2.

2Though it is a special case, the previous analysis can not be used since it is determined by two components.
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3.1 The Forward and Reverse Process

Let q0 be the data distribution. Given X0 ∼ q0 ∈ RD, non-decreasing function f(Xt, t) and g(t),
the forward process is defined by:

dXt = f(Xt, t)dt+ g(t)dBt ,

where {Bt}t∈[0,T ] is a D-dimensional Brownian motion. In this work, we choose f(Xt, t) =
−1/2Xt and g(t) = 1, which corresponds to variance preserving (VP) forward process and is widely
used in practice 3(Shah et al., 2023; Song et al., 2020). Let qt be the density function of Xt. Once a
forward process is chosen, the conditional distribution of Xt|X0 is qt(Xt|X0) = N (mtX0, σ

2
t ID),

where mt = e−t/2, σ2
t = 1− e−t. Note that when t goes to +∞, qt converges to N (0, ID), which

is helpful in choosing the initial distribution for the sampling process.

To generate samples, diffusion models reverse the forward SDE and run the reverse process. Since the
reverse process contains the gradient of forward logarithmic density ∇ log qt(·) (a.k.a. score function),
the model approximates it by using a neural network s(·, t) and the score matching objective function
(see Section 3.2). After that, diffusion models discretize the continuous reverse process to obtain
an implementable algorithm. Let t0 ≤ t1 ≤ · · · ≤ tK = T be the discretization points in the
forward time and hk = tk − tk−1 be the k-th stepsize. When considering the reverse time, we define
t′k = T − tK−k. In this work, we choose the exponential integrator (EI) discretization scheme, which
has great performance (Zhang & Chen, 2022). The EI discretization freezes the approximated score
at t′k and runs the following process in the reverse time:

dŶt =
[
f(Ŷt, T − t) + g(T − t)2s(Ŷt′k

, T − t′k)
]
dt+ g(T − t)dBt , t ∈ [t′k, t

′
k+1] ,

where Ŷ0 ∼ N (0, ID) due to the stationary distribution of the forward process.

While the discretization complexity K has been well-studied with an accurate enough score function
(Benton et al., 2023; Li et al., 2023a), there is a lack of analysis for the score-matching process.
Therefore, this work focuses on the score approximation and the optimization problem of the few-shot
score-matching objective function.

3.2 The Score Matching Objective Function

In this work, we specifically analyze few-shot diffusion models, which involve two datasets: (1) the
source dataset {Xs,i}ns

i=1; (2) the target dataset {Xta,i}nta
i=1. The approach involves first training a

pre-trained diffusion model on the source dataset and then freezing the backbone network to fine-tune
the diffusion models on the target dataset.

For data distributions, we assume that the source distribution qs and the target distribution qta are
both supported on a low-dimensional linear subspace. The low-dimensional structures have been
discovered on many popular image datasets (Pope et al., 2021; Gong et al., 2019; Tenenbaum et al.,
2000) due to the locally connected and symmetrical property, and it is crucial for diffusion models.
For image generation, current popular diffusion models, such as Stable Diffusion (Rombach et al.,
2022), transform images to a latent space and run diffusion models in the latent space. Except for the
image generation, Chen et al. (2024) recently show the latent dimension plays an important role in
diffusion models to work well in self-supervised learning, and linear subspace is enough.

We further assume that the source and target data share the same latent distribution. Note that this is a
common assumption in few-shot learning. In particular, previous theoretical works in the context of
supervised few-shot learning often assume that the source and target distributions have a common
latent representation (Du et al., 2020; Chua et al., 2021; Meunier et al., 2023).

Assumption 3.1. The source datapoints Xs and target datapoint Xta admit a low dimensional linear
structure and share the same latent distribution Xs = AsZ and Xta = AtaZ where As, Ata ∈ RD×d

with orthonormal columns and Z ∼ qz ∈ Rd.

3Our analysis can be extended to f(Xt, t) = −1/2βtXt and g(t) =
√
βt, where {βt}t≥0 is non-decreasing

and bounded sequence.
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As mentioned in Chen et al. (2023c), when assuming linear distribution, the ground-truth score
function is decomposed into the latent score function ∇ log qLDt (Z ′) and linear encoder and decoder:

∇ log qst (X) = As∇ log qLDt

(
A⊤s X

)
− 1

σ2
t

(
ID −AsA

⊤
s

)
X ,

where qLDt (Z ′) =
∫
qt (Z

′|Z) qz(Z)dZ and qt(·|Z) = N (mtZ, σ
2
t Id). This form indicates that the

diffusion process happens in the latent subspace. A conceptual way to approximate the score function
is to minimize the following loss on a function class SNN :

min
s∈SNN

∫ T

0

w(t)EXt∼qst ∥∇ log qst (Xt)− s (Xt, t)∥22 dt ,

where w(t) is a weight function. However, the above objective function is intractable since ∇ log qt(·)
is unknown. Vincent (2011) propose the following implementable loss:

Ls(s) =

∫ T

0

w(t)EX0

[
EXt|X0

∥∇ log qst (Xt|X0)− s (Xt, t)∥22
]
dt .

Due to the forward process, ∇ log qst (Xt|X0) has an analytical form and is equal to −(Xt −
mtX0)/σ

2
t . Vincent (2011) also prove that this objective function only has a constant difference

compared to the above one. The empirical loss with the source datasets {Xs,i}ns
i=1 is defined by:

min
sV,θ∈SNN

L̂s(sV,θ) =
1

ns(T − δ)

ns∑
i=1

∫ T

δ

ℓst (Xs,i; sV,θ) dt , (1)

where

ℓst (Xs,i; s) = EXt|X0=Xs,i

[
∥∇ log qst (Xt|X0)− s (Xt, t)∥22

]
,

and

SNN = {sV,θ(X, t) =
1

σ2
t

V fθ
(
V ⊤X, t

)
− 1

σ2
t

X :V ∈ RD×d with orthonormal columns,

fθ : Rd × [δ, T ] → Rd a ReLU network } .
Note that we take w(t) = 1/(T − δ) for simplicity, where δ is the early stopping parameter to avoid
the blow-up phenomenon of score functions at the end of reverse process. Furthermore, we take the
integral over the forward time instead of discretizing the timeline since Xt is easy to generate.

The linear encoder and decoder structure and the shortcut connection in SNN is due to the form of
the ground-truth score function. The specific parameters for fθ, such as its length and width, are
identical to those used in Chen et al. (2023c). Generally, with a given network accuracy parameters ϵ,
the network size is Poly(1/ϵ). We show the parameter of neural network in Appendix A.

The diffusion models minimize the empirical loss to obtain a pre-trained approximated score function.
Let the minimizer of Equation (1) be (V̂s, θ̂). Chen et al. (2023c) show that (V̂s, θ̂) leads a n

−2/d
s

approximation error bound. If trivially replacing ns with nta, we obtain a n−2/dta bound for the target
dataset without the fine-tuning phase. Note that this bound suffers from the influence of the latent
dimension d, which is still large in popular datasets (Table 1). In the next paragraph, we introduce the
few-shot diffusion models with a fine-tuning phase and show that the dependence on nta is n−1/2ta in
the error bound (Theorem 4.3).

The Few shot Diffusion Models with a Fine-tuning Phase. Since the source and target distribution
share the same latent data distribution, we freeze θ̂ and only fine-tune the low-rank linear encoder and
decoder layer Vta. This method can significantly reduce the fine-tuning parameters and is similar to
LoRA (Hu et al., 2021), which also fine-tunes two low-rank matrices and is widely used in fine-tuning
the stable diffusion (Rombach et al., 2022).

Let ℓtat be the loss function of the target dataset at time t, which has similar definition compared to ℓst .
The optimization problem for the target dataset is

min
sVta,θ̂∈QNN (θ̂)

L̂ta(sVta,θ̂
) =

1

nta(T − δ)

nta∑
i=1

∫ T

δ

ℓtat

(
Xta,i; sVta,θ̂

)
dt ,
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Table 1: The requirement of nta in popular datasets. We use latent dimension in Pope et al. (2021).

Dataset CIFAR-10 CIFAR-100 CelebA MS-COCO ImageNet
Dataset Size 6× 104 6× 104 2× 105 3.3× 105 1.2× 106

Latent Dimension 25 22 24 37 43
The Requirement of nta 6 8 8 5 5

where

QNN(θ) = {sV,θ(X, t) =
1

σ2
t

V fθ
(
V ⊤X, t

)
− 1

σ2
t

X : V ∈ RD×d with orthonormal columns.} ,

Similarly, we define the minimizer of the few-shot objective function as (V̂ta, θ̂).

Notations. We denote by ID the D-dimensional identity matrix. For X ∈ RD and A ∈ RD×d, we
denote by ∥X∥2 the Euclidean norm for vector and ∥A∥F the Frobenius norm for matrix. We denote
by ∥X∥2L2(q) the expectation of X in L2 norm EX∼q[∥X∥22].

4 Few-shot Diffusion Models Enjoy Better Approximation Error Bound

In this section, we show that few-shot diffusion models with a fine-tuning phase escape the curse of
latent dimensionality and have a Õ(n

−2/d
s + n

−1/2
ta ) approximation bound 4. This result makes the

first step to explain why few-shot models have great performance with a limited target dataset.

Before showing our results, we first introduce standard assumptions on the latent distribution and
the on-support ground-truth score function. We first assume that Z has a subgaussian tail and the
minimum eigenvalue of Z is lower bound by c0, also used in Chen et al. (2023c).
Assumption 4.1. qz > 0 is twice continuously differentiable, λmin(E

[
ZZ⊤

]
) ≥ c0 and E∥Z∥22 ≤

CZ . Moreover, there exist positive constants B,C1, C2 such that when ∥Z∥2 ≥ B, qz(Z) ≤
(2π)−d/2C1 exp

(
−C2∥Z∥22/2

)
.

Assumption 4.2. The on-support ground truth score As∇ log qLDt (Z) and Ata∇ log qLDt (Z) is
β-Lipschitz in Z ∈ Rd for any t ∈ [0, T ].

Note that different from previous works directly assume ∇ log qt(·) is Lipschitz (Chen et al., 2022,
2023d), the β-Lipschitz on-support score function assumption does not conflict with the blow-up
phenomenon when t goes to 0 due to the existence of (ID −AA⊤)X/σ2

t . With these assumptions,
we prove the approximation bound for few-shot models with a fine-tuning phase.

Theorem 4.3. Let α(n) = d log logn
logn , F = (d+CZ)d2β2

δ2c0
and network parameter ϵ = n

−1/2
ta . Assume

Assumption 3.1, 4.1, 4.2 and n
d+5

4(1−α(ns))

ta ≥ ns. Then, with probability 1− δ1, the following inequality
holds (hiding logarithmic factors)

1

T − δ

∫ T

δ

∥∥∥sV̂ta,θ̂
(·, t)−∇ log qtat (·)

∥∥∥2
L2(qtat )

dt ≤ Õ

((
(1 + β)2Dd3

δ (T − δ)
√
nta

+ Fn
− 2−2α(ns)

d+5
s

)
log

(
1

δ1

))
.

The dependence of δ is due to the blow-up property of the score function. Note that when ns is
sufficiently large, α(ns) is negligible. Then, the approximation error bound for few-shot diffusion
models is Õ(n

−2/d
s +n

−1/2
ta ). Compared to the approximation error bound n

−2/d
ta without a few-shot

phase, it is clear that few-shot diffusion models escape the curse of the (latent) dimensionality.
Remark 4.4 (The discussion on the coefficient in Theorem 4.3). The goal of the fine-tuning phase
is to achieve the same order error bound compared with the pre-trained models, which means that
we consider the relative relationship between nta and ns. Hence, if the coefficient of nta and ns has
the same order, we can only consider 1/

√
nta and n

−2/d
s . To support the above augmentation, we

calculate the coefficient of ns and nta in detail. The dominated term of coefficient for nta and ns

are Dd3/δ and d3/(δ2c0), respectively. The classic choice for the early stopping parameter δ and

4Here, the approximation error means the score matching error with finite source and target datasets.
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forward time T are 10−3 and 10, respectively (Karras et al., 2022). Then, with D = 256× 256× 3
as an example 5, Dd3/δ = d3 × 20× 106 and d3/(δ2c0) = d3 × 106/c0, which has the same order.
Hence, we consider the relative relationship between 1/

√
nta and n

−2/d
s .

4.1 Discussion on the Approximation Bound

The relationship to empirical phenomenon. In applications, current few-shot diffusion models
only require 5 ∼ 10 target images to achieve great performance. Theorem 4.3 makes the first step to
explain why the few-shot diffusion models have great performance with a limited target nta. More
specifically, with known source dataset size ns and the corresponding latent dimension d, we can

calculate the inequality n
d+5

4(1−α(ns))

ta ≥ ns
6 to obtain the requirement of nta to achieve the same

accuracy compared to the pre-trained diffusion models. Combined with the latent dimension of
popular datasets (Pope et al., 2021), Table 1 shows the requirement of nta. It is clear that we only
need less than 10 target images to obtain an accurate enough few-shot diffusion model that matches
the performance in reality. The real-world experiments also support our discussion (Section 6).

Table 1 shows that the requirement of nta is heavily influenced by the latent dimension d. When
d is large (e.g. ImageNet), the approximation bound of pre-trained models is influenced by latent
dimension and has a large approximation error even with large-size source data. We only need a few
target data to achieve the same error in this setting. When d is small (e.g. CIFAR-10), pre-trained
models have a small approximation error. We need a slightly larger target data size.

The approximation error of the fully fine-tuned method. As shown in our real experiment
Section 6 and DreamBooth (Ruiz et al., 2023), when fine-tuning all parameters with a small target
dataset, models tend to overfit and lose the prior information from the pre-trained model. In our
theorem, this phenomenon means that in the fine-tuning phase, the model does not use θ̂ learned
by the pre-trained model and achieves a n

−2/d
ta approximation error bound, which suffers from the

curse of dimensionality. From an intuitive perspective, the probability density function (PDF) of a
distribution learned by an overfitting model is only positive at the interval around the target dataset,
which is far away from the PDF of true distribution and leads to a large error term. We also note
that it is possible to avoid this phenomenon by using a specific loss (Ruiz et al., 2023) or carefully
choosing the optimization epochs (Li et al., 2023c). We leave them as interesting future works.

Proof sketch. The first step is to prove that in QNN (θ̂), there exists a solution (V̄ta, θ̂) has the
following inequality (only focusing on ns and nta)

1

T − δ

∫ T

δ

∥∥∥sV̄ta,θ̂
(X, t)−∇ log qtat (X)

∥∥∥2
L2(qtat )

dt ≤ O

(
ϵ2 + n

− 2−2α(ns)
d+5

s log

(
1

δ1

))
.

To prove the above inequality, we first do the following decomposition:∥∥sV̄ta,θ̄(·, t)−∇ log qtat (·)
∥∥2
2
+
∥∥∥sV̄ta,θ̂

(·, t)− sV̄ta,θ̄(·, t)
∥∥∥2
2
,

where (V̄ta, θ̄) ∈ SNN is a constructed solution. The first term is due to the accuracy of the
constructive neural network with network accuracy parameter ϵ. For the second term, since the
latent score function is shared and few-shot diffusion models directly use θ̂, it is control by the
approximation bound of the pre-trained diffusion models. Then, by using the inequality

inf
s
Vta,θ̂

∈Q(θ̂)
L̂ta

(
sVta,θ̂

)
≤ L̂ta

(
sV̄ta,θ̂

)
,

we build the bridge between sV̂ta,θ̂
and sV̄ta,θ̂

.

The second step is using the concentration to control the error between empirical L̂ta and expected
Lta. Roughly speaking, we have that

Lta

(
sV̂ta,θ̂

)
− L̂ta

(
sV̂ta,θ̂

)
≤ 1

ntaϵ2
log
(
N
(
1/nta,QNN(θ̂), ∥ · ∥2

)
/δ1

)
,

5Since smaller D is more friendly to nta, our discussion holds for all datasets in Table 1.
6This also indicates the requirement of nta in Theorem 4.3 is easy to satisfy.
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where N (1/nta,QNN (θ̂), ∥ · ∥2) is the covering number of QNN (θ̂) in L2 norm. Since only
V ∈ RD×d can be optimized and θ̂ is fixed in QNN (θ̂),

log
(
N
(
1/nta,QNN(θ̂), ∥ · ∥2

))
= Õ(Dd log(1/nta)) .

Then, we balance different terms and achieve the final bound by choosing ϵ2 = 1/
√
nta.

5 The Few-shot Diffusion Model Have a Closed-form Minimizer

This section focuses on how to optimize the few-shot diffusion model. When considering the opti-
mization problem, we assume the shared latent distribution admits an isotropic Gaussian distribution
qz = N (0, λ2Id) with λ2 > 0, which indicates the score function has the following formulation:

∇ log qtat (X) = − 1

λ2
AtaA

⊤
taX − 1

σ2
t

(
ID −AtaA

⊤
ta

)
X .

Note that though qz = N (0, λ2Id) is a special case of Assumption 4.1, we still need to know λ2 and
Ata to generate samples, which indicates the previous optimization analysis for diffusion models
without a fine-tuning phase can not be used.

We fix a t ∈ [δ, T ] for the few-shot objective function since the matrix Ata is independent of time
t. More specifically, with an approximated latent distribution q̂z = N (0, Σ̂), where Σ̂ = λ̂2Id, the
expected few-shot objective function at a fixed time t is

min
sVta,Σ̂∈Q̃NN (Σ̂)

Lta,t(sVta,Σ̂
) = EXta∼qta

[
ℓtat

(
Xta; sVta,Σ̂

)]
.

where

Q̃NN(Σ) = {sV,θ(X, t) =
1

σ2
t

V fΣ
(
V ⊤X, t

)
− 1

σ2
t

X : V ∈ RD×d with rank(V ) = d.} ,

In this case, fΣ̂(Z, t) = (Id − σ2
t Σ̂
−1
t )Z, where Σ̂t = m2

t Σ̂ + σ2
t Id. The constraint rank(V ) = d

is used to guarantee that the few-shot diffusion models learn meaningful subspace instead of 0D×d.
Note that rank(V ) = d is a weaker constraint than V ⊤V = Id since the pre-trained diffusion
model has already learned the length information. This weaker constraint means we need less prior
knowledge compared to Q(θ), which is more user-friendly. Let Ṽta be a minimizer of the above
expected few-shot objective function. We show that Ṽta has a closed form and good property.
Lemma 5.1. Assume Assumption 3.1 and qz = N (0, λ2Id). Let C = EXta∼qta

[
XtaX

⊤
ta

]
be the

expected data covariance matrix. Then, Ṽta has a closed form:

ṼtaṼ
⊤
ta =

m2
t λ̂

2 + σ2
t

λ̂2

(
C + σ2

t ID
)−1

C .

Lemma 5.1 indicates that few-shot diffusion models can directly obtain an approximation of the
minimizer without a complex optimization process. Furthermore, this minimizer has good properties
and exactly recovers the subspace spanned by Ata. More specifically, the expected minimizer
indicates ∥ṼtaṼ

⊤
ta −AtaA

⊤
ta∥2F = 0 when ns and nta are infinite. However, the source datasets ns

and target datasets nta are finite, we analyze the empirical closed-form solution

¯̃
V ta

¯̃
V
⊤
ta =

m2
t λ̂

2 + σ2
t

λ̂2
(m2

t C̄ + σ2
t ID)−1C̄ ,

where C̄ = 1
nta

∑nta

i=1 Xta,iX
⊤
ta,i is the empirical covariance matrix.

Theorem 5.2. Assume Assumption 3.1 and qz = N (0, λ2Id). Let q̂z be the latent distribution

generated by the pre-trained models with (V̂ta, Σ̂) and M =
d2β2(d+λ2)

λ

√
Dd log (Ddns) (d2 ∨D).

Then, with probability 1− δ1, we have that for any t ∈ [δ, T ]∥∥∥∥ ¯̃V ta
¯̃
V
⊤
ta −AtaA

⊤
ta

∥∥∥∥2
F

≤ Õ

(
d log( 1

δ1
)

m2
tλ

2 + σ2
t

(
M

dδ
√
ns

+
d

nta
(m2

tλ
2 + σ2

t )
2

))
.
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Figure 1: The experiments on CelebA64 dataset
The above result indicates that the few-shot diffusion models can still recover the true subspace with
finite ns and nta. Note that when the latent distribution is Gaussian distribution, the approximation
error bound for the source dataset is n

−1/2
s instead of n−2/ds (Yuan et al., 2023). Hence, ns in

Theorem 5.2 do not depend on latent dimension d.
Remark 5.3. The bound of ∥V V T − AAT ∥2F only guarantees the subspace spanned by V and A
is close, which still holds after an orthogonal transformation on V . Hence, this bound does not
indicate ∥V −A∥2F is small. Since all previous works (Chen et al., 2023c; Yuan et al., 2023) consider
∥V V T −AAT ∥2F , we also use this metric to measure the subspace recovery. However, our results are
stronger due to the closed-form solution, where previous works do not consider how to obtain V V T .

5.1 Discussion on the Closed-form Minimizer

Better dependence on nta, δ and d. Note that Theorem 5.2 has better 1/nta dependence on the
target dataset compared to 1/

√
ns dependence on the source dataset. Furthermore, the coefficient of

ns term is dependent on the early stopping parameter δ and D. This is due to the δ and D dependence
of the approximation bound, which is used in generating q̂z . However, the nta term only has d
dependence. Hence, even in the latent Gaussian setting, we still need a larger source dataset than the
target dataset to obtain a sufficiently accurate closed-form solution.

The relationship with principal component analysis (PCA). The expected few-shot score matching
objective can be simplified to

min
Vta∈Q̃NN (Σ̂)

1/σ4
tEXt|X0=Xta,i

[
∥VtaĜtV

⊤
taXt −mtX0∥22

]
,

where Ĝt = Id−σ2
t Σ̂
−1
t . Note that when ignoring 1/σ4

t and choosing t = 0, the above minimization
problem is similar to PCA. This suggests that few-shot models implicitly optimize an objective
function akin to PCA. However, few-shot models extend beyond traditional PCA. More specifically,
when λ2 is large, classical PCA suffers from the influence of λ2. In contrast, due to (m2

tλ
2+σ2

t )/nta

term, few-shot models can select a large t to mitigate the impact of λ2 and achieve a 1/nta.

6 Experiments

To corroborate our theoretical findings, we conducted experiments utilizing real-world datasets.
These experiments show that the new model obtained by only fine-tuning appropriate encoder and
decoder layers on target datasets can produce novel images with the target feature, which shows the
effectiveness of the methods and supports our theoretical results.

Datasets and benchmark. Note that human face images tend to exhibit similarity in their latent
space, primarily due to shared facial features, while differing in specific features. Hence, we initially
pre-train a model using the CelebA64 dataset, focusing on distinct hairstyle features as the goal for
the fine-tuning phase. For the source data, we construct a large dataset (6400 images) with different
hairstyles (without the bald feature). For the target data, we choose the bald feature as the target
feature and select 10 images with this feature to constitute the target dataset, which are much smaller
than the size of target dataset (Figure 1 (a)). To show the effectiveness of our methods, we also
fine-tune all parameters of the pre-trained models as the benchmark.

Discussion. As shown in Figure 1, the results obtained by only fine-tuning the encoder and decoder
layers can generate novel face images with the bald feature. Conversely, when fine-tuning all
parameters, the models suffer from memory phenomenon and can only generate images that slightly
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modify the brightness and angle of the target dataset. This phenomenon indicates that only fine-tuning
the appropriate encoder and decoder will result in a model with a generalization property.

We note that these experiments aim to verify the effectiveness of the methods instead of achieving
state-of-the-art performance since previous works carefully select specific parameters, such as specific
cross-attention layers (Kumari et al., 2023) or special neurons (Liu et al., 2023), to fine-tune pre-
trained models. However, we simply fine-tune all encoder and decoder layers simultaneously. There
are more experiments on cat faces and more discussion on why Assumption 3.1 is satisfied in our
experiments. We refer to Appendix E for more details.

7 Conclusion

This work aims to provide a deeper understanding of few-shot diffusion models from a theoretical
perspective. Our analysis is conducted from two key perspectives: the approximation and optimization
aspects, all under linear structure distribution and shared latent space assumptions.

From the approximation error bound, we consider general subgaussian latent variable and prove
that few-shot models have a Õ

(
n
−2/d
s + n

−1/2
ta

)
approximation bound, which is better than n

−2/d
ta

results of diffusion models without a fine-tuning phase and escape the curse of dimensionality. This
result also makes the first step to explain why few-shot diffusion models only require 5 ∼ 10 images
to generate great samples. The experiments on the real-world dataset also show that the fine-tuning
phase only requires 10 images to generate novel images with the target feature.

When analyzing the optimization process, we consider a more special, shared Gaussian latent variable
and prove that the expected score matching has a closed-form minimizer, which indicates that the
few-shot diffusion models can simplify the optimization problem. Furthermore, we prove that the
empirical closed-form solution has a Õ

(
1/nta + 1/

(
δ
√
ns

))
accuracy bound, which still has better

1/nta target data dependence compared to 1/
(
δ
√
ns

)
dependence on the source data.

Future work and limitation. When considering the approximation bound, we assume a distribution
with a linear structure. Though it has been supported by much empirical evidence, it is not as general
as bounded distribution. After that, we plan to consider a general, bounded distribution and show
the advantage of few-shot diffusion models. One possible way is to analyze the mixture of low-rank
Gaussian (Wang et al., 2024), which is more general than the linear subspace assumption.

We focus on a special Gaussian latent distribution when considering the optimization problem. As a
next step, we plan to consider a more general latent distribution, such as a log-concave distribution.
In this setting, we can not directly obtain the closed-form solution. However, due to the shared
information and simplified landscape, it is still possible to use some optimization algorithms, such as
gradient descent, to optimize the few-shot objective function to achieve the convergence guarantee.

Broader Impact. This paper presents work whose goal is to understand few-shot diffusion models
from the theoretical perspective. A noteworthy societal impact is that few-shot diffusion models may
be used to imitate the style of artists and generate fake images, thereby infringing on the rights of
artists (Mirsky & Lee, 2021). We recommend adding watermarks to images to determine whether the
image was generated by a generative model (Fernandez et al., 2023). The other societal impact is the
same as general generative models (Mishkin et al., 2022).
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Appendix

A The Neural Network Structure

In this section, we introduce the multi-layer ReLU network fθ ∈ NN(L,M ′, J,K1, κ, γ, γt) in SNN.
We note that the following setting is exactly the same as the one in Chen et al. (2023c), and we
show the structure for completeness. We denote by NN(L,M ′, J,K1, κ, γ, γt) the following neural
network:

NN(L,M ′, J,K1, κ, γ, γt) = {f(Z, t) = WLσ
(
. . . σ

(
W1

[
Z⊤, t

]⊤
+ b1

)
. . .
)
+ bL :

network width bounded by M ′, sup
z,t

∥f(z, t)∥2 ≤ K1,

max {∥bi∥∞ , ∥Wi∥∞} ≤ κ for i = 1, . . . , L,

L∑
i=1

(∥Wi∥0 + ∥bi∥0) ≤ J,

∥f (Z1, t)− f (Z2, t)∥2 ≤ γ ∥Z1 − Z2∥2 for any t ∈ [0, T ],

∥f (Z, t1)− f (Z, t2)∥2 ≤ γt |t1 − t2| for any Z} ,

where σ is the ReLU activation function. Given an network accuracy ϵ > 0, the parameters is defined
by

L = O
(
log

1

ϵ
+ d

)
,K1 = O

(
2d2 log

(
d

δϵ

))
,

M ′ = O
(
(1 + β)dTτdd/2+1ϵ−(d+1) logd/2

(
d

δϵ

))
,

J = O
(
(1 + β)dTτdd/2+1ϵ−(d+1) logd/2

(
d

δϵ

)(
log

1

ϵ
+ d

))
,

κ = O

(
max

{
2(1 + β)

√
d log

(
d

δϵ

)
, T τ

})
,

γ = 10d(1 + β), γt = 10τ ,

where τ = supA∈{As,Ata} supt∈[δ,T ] sup∥z∥∞≤
√

d log d
δϵ

∥∥ ∂
∂t

[
σtA∇ log qLDt (z)

]∥∥
2
.

B The Proof of the Approximation Error Bound

Let (V̂s, θ̂) be the minimizer of the pre-trained objective function. The few-shot diffusion model
freezes the bottleneck network and fine-tunes Vta ∈ RD×d to obtain the minimizer (V̂ta, θ̂) of the
few-shot objective function. As the first step, we show that with the bottleneck parameterized by θ̂,
there also exists a solution (V̄ta, θ̂) ∈ QNN (θ̂) achieve the ϵ2 + n

−2/d
s error bound.

Lemma B.1. If ϵ ≤ n
− 1−α(ns)

d+5
s , where α(n) = d log logn

logn , then with probability 1− δ1, there exists a

solution (V̄ta, θ̂) ∈ QNN (θ̂) such that∫ T

δ

EX∼qtat

[∥∥∥sV̄ta,θ̂
(X, t)−∇ log qtat (X)

∥∥∥2
2

]
dt ≤ O

(
d

δ
ϵ2 +

(T − δ)(d+ CZ)d
2β2

δ2c0
n
− 2−2α(ns)

d+5
s log(

1

δ1
)

)
.

Proof. As shown in Theorem 1 of Chen et al. (2023c), there exists a solution (V̄s, θ̄) in SNN such
that ∥∥sV̄s,θ̄(·, t)−∇ log qst (·)

∥∥
2
≤

√
d+ 1

σ2
t

ϵ ,∀t ∈ [δ, T ] .
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Hence, we do the following decomposition:∥∥∥sV̄ta,θ̂
(·, t)−∇ log qtat (·)

∥∥∥2
2
≲
∥∥sV̄ta,θ̄(·, t)−∇ log qtat (·)

∥∥2
2
+
∥∥∥sV̄ta,θ̂

(·, t)− sV̄ta,θ̄(·, t)
∥∥∥2
2

For the encoder and decoder layer, we choose V̄ta = Ata. The first term is bounded due to the
construction of the neural network. We first show that sV̄ta,θ̄ is ϵ-close to the true score function
∇ log qtat . Since the encoder and decoder have been chosen, we only need to focus on the latent
bottleneck. For the latent bottleneck, we need to use fθ(Z, t) to approximate ground-truth function
h(Z, t) = σ2

t∇ log qLDt (Z) + Z for Z ∈ Rd. Chen et al. (2023c) show that for any latent variable
Z ′ ∈ Rd with subgaussian tail, we have that

∥h (Z ′, t)− fθ̄ (Z
′, t)∥L2(qLD

t ) ≤ (
√
d+ 1)ϵ .

Then, we have that ∥∥sV̄ta,θ̄(·, t)−∇ log qtat (·)
∥∥2
2
≤ d

σ4
t

ϵ2 .

For the second term, we know that with probability 1− δ1:∫ T

δ

EX∼qt

[∥∥∥sV̄ta,θ̄(·, t)− sV̄ta,θ̂
(·, t)

∥∥∥2
2

]
≤
∫ T

δ

1

σ4
t

EZ∼qLD
t

[
∥fθ̂(Z)− fθ̄(Z)∥22

]
dt

≤ O

(
T − δ

δ2
(
δ

c0

(
(T − log δ) d · γ2 + dβ

)
+

γ2 · CZ

c0
)n
− 2−2α(ns)

d+5
s

)
log

(
1

δ1

)
,

where α(n) = d log logn
logn . The first inequality follows Ata is a matrix with orthonormal columns.

Since we assume ϵ ≤ n
− 1−α(ns)

d+5
s , the network has good enough ability to obtain an accurate enough

θ̂. Hence, we can use Appendix C.4 of Chen et al. (2023c) to obtain the second inequality. Since we
directly use the true matrix V̄ta = Ata instead of the approximate V̂ta, we do not need orthogonal
transformation and can choose U = Id in the Appendix C.4 of Chen et al. (2023c). Then, we
complete our proof. ■

To prove Theorem 4.3, we need to do the following decomposition for the population loss of the
target datasets

Lta

(
sV̂ta,θ̂

)
= Lta

(
sV̂ta,θ̂

)
− (1 + a)L̂ta

(
sV̂ta,θ̂

)
+ (1 + a)L̂ta

(
sV̂ta,θ̂

)
≤ Ltrunc

ta

(
sV̂ta,θ̂

)
− (1 + a)L̂trunc

ta

(
sV̂ta,θ̂

)
︸ ︷︷ ︸

(a)

+Lta

(
sV̂ta,θ̂

)
− Ltrunc

ta

(
sV̂ta,θ̂

)
︸ ︷︷ ︸

(b)

+(1 + a) inf
sVta,θ̂∈Q(θ̂)

L̂ta

(
sVta,θ̂

)
︸ ︷︷ ︸

(c)

,

where a ∈ (0, 1) and Ltrunc
ta is defined as

Ltrunc
ta

(
sV̂ta,θ̂

)
= Ex∼q0

[
ℓtrunc
ta

(
x; sV̂ta,θ̂

)]
= Ex∼q0

[
ℓta

(
x; sV̂ta,θ̂

)
1 {∥x∥2 ≤ R} dt

]
.

In this section, we take R = O
(√

d log d+ logK1 + log nta

δ1

)
to guarantee

PXta,i∼qta
(
∥Xta,i∥2 ≤ R for all i = 1, . . . , nta) ≥ 1− δ1, where K1 is defined in Appendix A.

Term (a). Similar to Chen et al. (2023c), we define a function class G(θ̂) ={
ℓtruncta

(
·; sV,θ̂

)
: sV,θ̂ ∈ QNN(θ̂)

}
, which is induced by Q(θ̂). For the upper bound of G(θ̂), we

directly use the augmentation of Chen et al. (2023c) to obtain that

ℓtruncta

(
X; sV,θ̂

)
≤ O

(
K2

1 +R2

δ (T − δ)

)
, for any sV,θ̂ ∈ QNN(θ̂) .
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Then, by using Lemma D.1, we know that with probability 1− δ1, term (a) is bounded by

O

 (1 + 3/a)
(
(1 + β)2d2 log d

δϵ + log nta

δ

)
ntaδ (T − δ)

log
N
(
τ1,G(θ̂), ∥ · ∥∞

)
δ1

+ τ1

 .

To bound the above term, we need to calculate the covering number of G(θ̂), which
is related to a ι-covering of QNN (θ̂). Suppose that given sV1,θ̂

and sV2,θ̂
with

sup∥x∥2≤3R+
√
D logD,t∈[δ,T ]

∥∥∥sV1,θ̂
(x, t)− sV2,θ̂

(x, t)
∥∥∥
2
≤ ι, we need to bound∥∥∥ℓtrunc

ta

(
·; sV1,θ̂

)
− ℓtrunc

ta

(
·; sV2,θ̂

)∥∥∥
∞

.

By using the same calculation compared to Term (A) of Chen et al. (2023c), we know that∥∥∥ℓtrunc
ta

(
·; sV1,θ̂

)
− ℓtrunc

ta

(
·; sV2,θ̂

)∥∥∥
∞

≤ O
(

ι

T − δ
(K1 +R) log

T

δ
+

4K1(K1 +R)

δ (T − δ)
(R/D)D−2 exp

(
− 1

σ2
t

R2

))
.

The above inequality indicates that a ι-covering of QNN (θ̂) in L2 norm leads a ι
T−δ (K1+R) log T

δ +
4K1(K1+R)

δ(T−δ) (R/D)D−2 exp
(
− 1

σ2
t
R2
)

-covering of of G(θ̂) in L∞ norm.

By taking R = O
(√

d log d+ logK1 + log nta

δ1

)
, K1 = O

(
2d2 log

(
d
δϵ

))
, ι = 2

ntaδ(T−δ) , we
know that

τ1 ≤ d2

ntaδ
log(

T

δ
) log(

d

δϵ
) log(

nta

δ
) ,

which indicates with probability 1− δ1, term (a) is bounded by

O

 (1 + 3/a)
(
(1 + β)2d2 log d

δϵ + log nta

δ

)
ntaδ (T − δ)

log
N
(

1
ntaδ(T−δ) ,QNN(θ̂), ∥ · ∥2

)
δ1

+
d2

ntaδ
log(

T

δ
) log(

d

δϵ
) log(

nta

δ
)

 .

After that, we need to determine the covering number of QNN (θ̂) with a truncated X to bound term
(a).
Lemma B.2. The logarithmic covering number of QNN (θ) for ∥X∥2 ≤ 3R+

√
D logD, t ∈ [δ, T ]

is

logN (ι,QNN (θ), ∥ · ∥2) = O

(
2Dd · log

(
1 +

6Kγ
√
d(3R+

√
D logD)

δι

))
.

Proof. Suppose that there exists two orthonormal column matrix V1, V2 such that ∥V1 − V2∥F ≤ δ2,
then we have

sup
∥X∥2≤3R+

√
D logD,t∈[δ,T ]

∥sV1,θ(X, t)− sV2,θ(X, t)∥2

=
1

σ2
t

sup
∥X∥2≤3R+

√
D logD,t∈[δ,T ]

[∥∥V1fθ
(
V ⊤1 X, t

)
− V1fθ

(
V ⊤2 X, t

)∥∥
2
+
∥∥V1fθ

(
V ⊤2 x, t

)
− V2fθ

(
V ⊤2 X, t

)∥∥
2

]
≤ 1

σ2
t

(
γδ1

√
d(3R+

√
D logD) + δ1K

)
For set

{
V ∈ RD×d : ∥V ∥2 ≤ 1

}
, the δ2-covering number is

(
1 + 2

√
d

δ2

)Dd

. Then we know that

logN (ι,SNN, ∥ · ∥2) = O

(
2Dd · log

(
1 +

6Kγ
√
d(3R+

√
D logD)

δι

))
.

■
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Term (b). For the term (b), the proof of Theorem 2 in Chen et al. (2023c) shows that

Term (b) ≤ 1

ntaδ (T − δ)
.

Term (c). For the term (c), we know that it is bounded by the constructed solution (V̄ta, θ̂):

inf
sVta,ô∈Q(θ̂)

L̂ta

(
sVta,θ̂

)
≤ L̂ta

(
sV̄ta,θ̂

)
− (1 + a)Ltrunc

(
sV̄ta,θ̂

)
︸ ︷︷ ︸

(C1)

+(1 + a)Ltrunc
(
sV̄ta,θ̂

)
︸ ︷︷ ︸

(C2)

.

For the term (C.1), since sV̄ta,θ̂
is a fixed function, we directly use the results of (Chen et al., 2023c):

Term(C1) ≤ O

(
(1 + 6/a)

(
(1 + β)2d2 log d

δϵ + log n
δ

)
ntaδ (T − δ)

log
1

δ1

)
,

with probability 1− δ1. For the term (C.2), we know that

Ltrunc
ta

(
sV̄ta,θ̂

)
≤ L

(
sV̄ta,θ̂

)
=

1

T − δ

∫ T

δ

∥∥∥sV̄ta,θ̂
(·, t)−∇ log qtat (·)

∥∥∥2
L2(qt)

dt

+ L
(
sV̄ta,θ̂

)
− 1

T − δ

∫ T

δ

∥∥∥sV̄ta,θ̂
(·, t)−∇ log qtat (·)

∥∥∥2
L2(qt)

dt︸ ︷︷ ︸
(E)

.

As we show in Section 3.2, the two terms in E are both the score matching objective function and
have a constant different E, which is independent of the trainable parameters (V, θ). We denote by
this difference E and F = (d+CZ)d2β2

δ2c0
. With probability 1− δ1, Lemma B.1 shows that term (C.2)

is bounded by

O

(
d

δ(T − δ)
ϵ2 + Fn

− 2−2α(ns)
d+5

s log

(
1

δ1

))
+ E .

After bounding these three terms, we prove Theorem 4.3.

Theorem 4.3. Let α(n) = d log logn
logn , F = (d+CZ)d2β2

δ2c0
and network parameter ϵ = n

−1/2
ta . Assume

Assumption 3.1, 4.1, 4.2 and n
d+5

4(1−α(ns))

ta ≥ ns. Then, with probability 1− δ1, the following inequality
holds (hiding logarithmic factors)

1

T − δ

∫ T

δ

∥∥∥sV̂ta,θ̂
(·, t)−∇ log qtat (·)

∥∥∥2
L2(qtat )

dt ≤ Õ

((
(1 + β)2Dd3

δ (T − δ)
√
nta

+ Fn
− 2−2α(ns)

d+5
s

)
log

(
1

δ1

))
.

Proof. Equipped with the bound of the term (a), (b), and (c) and hiding the logarithmic term (except
for the covering number term), with probability 1− δ1, we have that

Lta

(
sV̂ta,θ̂

)
≤ (1 + a)2E + Õ

((
(1 + β)2d2 log d

δϵ + log nta

δ

)
aδ (T − δ)nta

log
N
(

1
ntaδ(T−δ) ,QNN(θ̂), ∥ · ∥2

)
δ1

+
d2

ntaδ

+
1

ntaδ(T − δ)
+

d

δ(T − δ)
ϵ2 + Fn

− 2−2α(ns)
d+5

s log

(
1

δ1

))
.
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Since Lta

(
sV̂ta,θ̂

)
− E = 1

T−δ
∫ T

δ

∥∥∥sV̂ta,θ̂
(·, t)−∇ log qtat (·)

∥∥∥2
L2(qt)

, we have that the following

inequality when choosing a = ϵ2:

1

T − δ

∫ T

δ

∥∥∥sV̂ta,θ̂
(·, t)−∇ log qtat (·)

∥∥∥2
L2(qt)

≤ Õ

 (1 + β)2d2

ϵ2δ (T − δ)nta
log

N
(

1
ntaδ(T−δ) ,QNN(θ̂), ∥ · ∥2

)
δ1

+
d

δ(T − δ)
ϵ2 +

d2

ntaδ
+ Fn

− 2−2α(ns)
d+5

s log

(
1

δ1

)
≤ Õ

(
(1 + β)2Dd3

δ (T − δ)ntaϵ2
log

(
1 +

6Kγ
√
d(3R+

√
D logD)ntaδ(T − δ)

δ1

)
+

d

δ(T − δ)
ϵ2 +

d2

ntaδ

+ Fn
− 2−2α(ns)

d+5
s log

(
1

δ1

))
,

where the second inequality follows the convering number of QNN (θ̂) for ∥X∥ ≤ 3R+
√
D logD

with R = O
(√

d log d+ logK1 + log nta

δ1

)
and the network parameters is defined in Appendix A.

Finally, we choose ϵ2 = 1/
√
nta, then we have that

1

T − δ

∫ T

δ

∥∥∥sV̂ta,θ̂
(·, t)−∇ log qtat (·)

∥∥∥2
L2(qt)

≤ Õ

(
(1 + β)2Dd3

δ (T − δ)
√
nta

log

(
1

δ1

)
+

d2

ntaδ
+ Fn

− 2−2α(ns)
d+5

s log

(
1

δ1

))
.

As we require in Lemma B.1, we need ϵ = 1/n
1/4
ta ≤ n

− 1−α(ns)
d+5

s , which indicates n
d+5

4(1−α(ns))

ta ≥
ns. ■

C The Proof of the Optimization Problem

C.1 The Pre-trained Diffusion Model Generate Accurate Enough Latent Distribution

Since we need to use the approximated latent distribution in the few-shot phase, we show that the
pre-trained diffusion models with solution (V̂s, θ̂) can generate an accurate enough latent distribution.
As shown in Section 5, when considering the optimization perspective of diffusion models, we assume
the latent distribution is a Gaussian distribution qz = N (0,Σ) with Σ = diag

(
λ2
1, . . . , λ

2
d

)
≻ 0.

Yuan et al. (2023) show that in the setting, the approximation error bound (Lemma D.3) for the target
dataset is

1

T − δ

∫ T

δ

∥∥∥∇ log qst (·)− sV̂s,θ̂
(·, t)

∥∥∥2
L2(qst )

dt ≤ O

1

δ

√
(d2 +Dd) log (Ddns) (d2 ∨D) log 1

δ1

ns

 .

To generate latent distribution, we first introduce the reverse process in the latent space. The
introduction mainly follows the outline of Appendix C.2 of Chen et al. (2023c). For Xt, we can
do the following decomposition: Xt = AsZt +Xt,⊥, where Zt = A⊤s Xt. With Z←t = ZT−t, the
reverse process in the latent space is

dZ←t =

[
1

2
Z←t +∇ log qLDT−t (Z

←
t )

]
dt+ d

(
A⊤s Bt

)
As shown in Theorem 3 of Chen et al. (2023c), the solution (V̂s, θ̂) of the pre-trained diffusion models
only guarantee ∥V̂sV̂

⊤
s − AsA

⊤
s ∥2F is small instead of ∥V̂s − As∥2F is small. Hence, Theorem 3

of Chen et al. (2023c) assume there exists an orthogonal matrix Us ∈ Rd×d and do an orthogonal
transformation on V̂s to obtain V̂sUs, which can guarantee ∥V̂sUs−As∥2F is small. After such orthog-
onal transformation, the reverse process with an approximated score function and an approximated
reversing beginning distribution Z̃←,r

0 ∼ N (0, Id) is

dZ̃←,r
t =

[
1

2
Z̃←,r
t + sLD

Us,θ̂

(
Z̃←,r
t , T − t

)]
dt+ d

(
U⊤s V̂ ⊤s Bt

)
, Z̃←,r

0 ∼ N(0, Id) (2)
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where

Z̃←,r
t = U⊤s Z̃←t and sLD

Us,θ̂
(Z, t) =

1

σ2
t

[
−Z + U⊤s fθ̂(UsZ, t)

]
.

Then, we discretize the above process with the exponential integrator (EI) discretization scheme
(Zhang & Chen, 2022) to obtain an implementable algorithm:

dZ̃⇐,r
t =

[
1

2
Z̃⇐,r
t + sLD

Us,θ̂

(
Z̃⇐,r
kη , T − t′k

)]
dt+ d

(
U⊤s V̂ ⊤s Bt

)
,where t ∈ [t′k, t

′
k+1] . (3)

As shown in Appendix C.4 of Chen et al. (2023c), if the target ground truth score function has a
L2-accurate approximated score:

1

T − δ

∫ T

δ

∥∥∥sV̂s,θ̂
(·, t)−∇ log qst (·)

∥∥∥2
L2(qst )

dt ≤ ϵ2 ,

the latent score function also has an L2 norm bound ϵ2latent-score, which is determined by ϵ:

ϵlatent-score = ϵ · O
([

δ

c0

(
(T − log δ) d · γ2 + dβ

)
+

γ2 · CZ

c0

])
.

The remaining term is to determined ϵ. Since we assume Gaussian latent variable instead of sub-
Gaussian one. Hence, we do not use ϵ in Chen et al. (2023c). We use ϵ in Yuan et al. (2023) (Theorem
4.5 of Yuan et al. (2023)), which also considers Gaussian latent variable, to achieve the final results.

Finally, we have that with probability 1− δ1:

1

T − δ

∫ T

δ

∥∥∥∇ log qLDt (·)− sLD
Us,θ̂

(·, t)
∥∥∥2
L2(qLD

t )
dt

≤ O

d2β2
(
d+ λ2

max

)
λminδ

√
(d2 +Dd) log (Ddns) (d2 ∨D) log 1

δ1

ns

 ≜ ϵ2latent-score . (4)

Let pLDt be the distribution of the algorithm (the above discretization process). In the following
lemma, we adopt Theorem 5 of Chen et al. (2023a) and show that the pre-trained diffusion model can
obtain an accurate enough latent distribution with the above L2-accurate latent score function.

Lemma C.1. With ϵ2latent-score defined in Equation (4), T = log
(

λ2
max+d

ϵ2latent-score

)
and K =

Θ
(

d2(T+log(λ2
max))

2

ϵ2latent-score

)
, by using the exponentially decreasing (then the constant) stepsize hk =

cmin
{
max

{
tk,

1
λ2

max

}
, 1
}
, c =

log(λ2
max)+T
K , the results pLDT of sampling algorithm (Equation (3))

has the following guarantee with probability 1− δ1 (hiding the logarithmic factor):

KL
(
q0∥p̂LDT

)
≤ Õ(ϵ2latent-score)

= Õ

d2β2
(
d+ λ2

max

)
λminδ

√
(d2 +Dd) log (Ddns) (d2 ∨D) log 1

δ1

ns


Proof. The Theorem 5 of Chen et al. (2023a) show that if ∇ log qLD0 is L-Lipschitz, diffusion models
with a L2-accurate can generate p̂LDT , which is close to q0 in KL divergence. Since qz = N (0,Σ), it
is easy to verify L = λ2

max. Then, we complete the proof. ■

C.2 The Closed-form Minimizer of Few-shot Diffusion Models

When the latent distribution is a Gaussian distribution qz = N (0,Σ) with Σ = diag
(
λ2
1, . . . , λ

2
d

)
≻

0, the ground truth score function for the target dataset is

∇ log qtat (X) = −AtaΣ
−1
t A⊤taX − 1

σ2
t

(
ID −AtaA

⊤
ta

)
X ,
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where Σt = diag
(
. . . ,m2

tλ
2
k + σ2

t , . . .
)
. Since the matrix Ata is independent of time t, we fix a

t ∈ [δ, T ] and minimize the few-shot objective function at this time. With an approximated Σ̂, which
is learned by the pre-trained diffusion models, fθ̂(Z, t) = (Id−σ2

t Σ̂
−1
t )Z, where Σ̂t = m2

t Σ̂+σ2
t Id.

Hence, the expected objective function for the few-shot diffusion models at a fixed time t is:

min
sVta,θ̂∈Q̃NN (θ̂)

Lta,t(sVta,θ̂
) = EXta∼qta

[
ℓtat

(
Xta; sVta,θ̂

)]
,

where

Q̃NN(θ) = {sV,θ(X, t) =
1

σ2
t

V fθ
(
V ⊤X, t

)
− 1

σ2
t

X : V ∈ RD×d with rank(V ) = d.} ,

Note that the constraint rank(V ) = d is a weaker constraint than V ⊤V = Id since rank(V ) = d
does not involve length information.
Lemma C.2. Assume Assumption 3.1 and qz = N (0, λ2Id). Let C = EXta∼qta

[
XtaX

⊤
ta

]
be the

expected data covariance matrix. Then, Ṽta has a closed form:

ṼtaṼ
⊤
ta =

m2
t λ̂

2 + σ2
t

λ̂2

(
C + σ2

t ID
)−1

C .

Proof. Let Ĝt = Id − σ2
t Σ̂
−1
t , then we have that

ℓtat

(
Xta,i; sVta,θ̂

)
= EXt|X0=Xta,i

[
∥ 1

σ2
t

VtaĜtV
⊤
taXt −

1

σ2
t

Xt −∇ log qtat (Xt|X0)∥22
]

=
1

σ4
t

EXt|X0=Xta,i

[
∥VtaĜtV

⊤
taXt −mtX0∥22

]
where the second equality follows ∇ log qtat (Xt|X0) = −Xt−mtX0

σ2
t

. Let C = EXta∼qta
[
XtaX

⊤
ta

]
be the expected covariance matrix of the target dataset. With the fact EXt|X0

[XtX
⊤
t ] = m2

tX0X
⊤
0 +

σ2
t ID and EXt|X0

[X0X
⊤
t ] = mtX0X

⊤
0 , the optimization problem can be simplified to the following

form (without misunderstanding, we ignore the subscript ta):

min
V ∈RD×d,rank(V )=d

L(V ) = ∥(m2
tC + σ2

t ID)
1
2V ĜtV

⊤∥2F − 2m2
t tr(V ĜtV

⊤C) ,

where (m2
tC + σ2

t ID)
1
2 is meaningful since (m2

tC + σ2
t ID) is positive-definite matrix. Let Ṽ be

the solution of the above minimization problem. We first ignore the constraint rank(V ) = d and
calculate ∂L(V )/∂V = 0 (since Ṽ also satisfied ∂L(V )/∂V |V=Ṽ = 0), we know that Ṽ satisfies
the following equality:

(m2
tC + σ2

t ID)V ĜtV
⊤V Ĝt = m2

tCV Ĝt ,

which indicate
((m2

tC + σ2
t ID)V ĜtV

⊤ −m2
tC)(V Ĝt) = OD×d .

The above equality means rank((m2
tC + σ2

t ID)V ĜtV
⊤ − m2

tC) + rank(V Ĝt) ≤ d. Since
rank(V ) = d and rank(Ĝt) = d, then we have that rank(V Ĝt) = d and

(m2
tC + σ2

t ID)V ĜtV
⊤ = m2

tC . (5)

In Section 5, we assume the latent distribution is a isotropic Gaussian distribution qz = N (0, λ2Id).

In this setting, Σ̂ is equal to λ̂2Id and Ĝt =
m2

t λ̂
2

m2
t λ̂

2+σ2
t

, which indicate the closed form solution of Ṽ
is

Ṽ Ṽ ⊤ =
m2

t λ̂
2 + σ2

t

λ̂2
(C + σ2

t ID)−1C .

The last step is to prove rank(Ṽ Ṽ ⊤) = d. Note that rank(C) = rank
(
EXta∼qta

[
XtaX

⊤
ta

])
=

rank(AΣA⊤) = d, which indicates

min{rank(Ṽ Ṽ ⊤), rank(m2
tC + σ2

t ID)} ≥ d .

Combined with Ṽ ∈ RD×d, we complete the proof. ■

20



C.3 The Error Bound for the empirical Closed-form Solution

In this part, we prove the accuracy bound of the empirical version closed form solution ¯̃
V
¯̃
V
⊤

w.r.t.
ns and nta. The empirical solution has the following form (without misunderstanding, we ignore the
subscript ta):
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Proof. The empirical solution indicates that

(m2
t C̄ + σ2

t ID)
¯̃
V
¯̃
V
⊤
=

m2
t λ̂

2 + σ2
t

λ̂2
C̄ . (6)

To analyze this equality, we first show that λ̂2 is accurate enough. We know that KL
(
q0∥p̂LDT

)
=

d
(
λ2/λ̂2 − log(λ2/λ̂2)− 1

)
. Let M1 =

d2β2(d+λ2
max)

λminδ

√
(d2 +Dd) log (Ddns) (d2 ∨D). Then,

Lemma C.1 show that with probability 1− δ1, we have

KL
(
q0∥p̂LDT

)
= d

(
λ2/λ̂2 − log(λ2/λ̂2)− 1

)
≤ Õ
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m2
tλ

2 + σ2
t +

√
M1

√
log(1/δ1)

d
√
ns

σ2
t

(1 + 2
√

d+ log (1/δ1)√
nta

)
AA⊤

 .

(7)

For the left hand of Equation (6), we know that
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Then, we complete the proof ■

D Auxiliary Lemmas

The following concentration lemma comes from Lemma 15 of Chen et al. (2023c).
Lemma D.1 (Lemma 15, (Chen et al., 2023c)). Let G be a bounded function class, i.e., there exists a
constant B such that any g ∈ G : Rd 7→ [0, B]. Let z1, . . . , zn ∈ Rd be i.i.d. random variables. For
any δ ∈ (0, 1), a ≤ 1, and τ > 0, we have
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In the following lemma, we show the concentration of the data covariance matrix. Note that the
proof sketch of the following lemma mainly follows Lemma 6 of (Du et al., 2020). We prove a
concentration bound that depends on n instead of a constant bound with a large enough n.
Lemma D.2 (The Modified Lemma A.6, (Du et al., 2020)). Let a1, . . . ,an be i.i.d. d-dimensional
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Next, we take a 1
5 -net N ⊂ Sd−1 of Sd−1 with size |N | ≤ eO(d). By using the union bound, we

know that
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Then, we complete the proof. ■

In Section 5, we assume the latent distribution is a Gaussian distribution instead of a subgaussian one.
Yuan et al. (2023) show that in this setting, the approximation error bound has better dependence on
ns.

Lemma D.3 (Lemma C.1, (Yuan et al., 2023)). Assume the latent distribution is a Gaussian distribu-
tion qz = N (0,Σ) with Σ = diag

(
λ2
1, . . . , λ

2
d

)
≻ 0. Then, the solution (V̂s, θ̂) of Equation (1) has

the following approximation error bound with probability 1− δ1:
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E Additional Experiments

In this section, we do experiments on real-world datasets to show that the new model obtained by
only fine-tuning appropriate encoder and decoder layers on target datasets with only 10 images
can generate novel images with the target dataset feature. On the contrary, if all parameters can be
fine-tuned, the model will suffer from memory phenomenon and only generate the ten images in the
target dataset. This phenomenon indicates that only fine-tuning the appropriate encoder and decoder
will result in a model with a generalization property.

Setting. In this experiment, we use a U-net network with attention layers, which contains 11
downblocks, 2 middleblocks, and 15 upblocks. When only fine-tuning the encoder and decoder
layers, we fine-tune the first 4 downblock layers (encoder) and 4 upblock layers (decoder) instead of
only using linear layers as the encoder and decoder (discuss in the later discussion paragraph).

The above experiments are conduct on a GeForce RTX 4090. We train the neural network using
AdamW optimizer with learning rate 0.0001. For the pre-trained phase, we train the models for
200 epochs with batch size 20. It takes 5 hours to obtain a pre-trained diffusion models. For the
fine-tuning phase, we fine-tune the pre-trained models for 400 epochs with batch size 2. It take 3
minutes to fine-tune the pre-trained models.
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Figure 2: The experiments on cat face dataset

Dataset. Our experiments use 2 real-world datasets: the CelebA64 dataset and the cat face dataset.

• CelebA64 (size 3 ∗ 64 ∗ 64).
(a) Source dataset: 6400 images of faces with different hairstyles (without the bald feature).
(b) Target dataset: 10 images with the bald feature in CelebA64.

• Cat face images (size 3 ∗ 64 ∗ 64).
(a) Source dataset: 4200 cat images with different colors (without black color cat).
(b) Target dataset: 10 black color cat images (The color black constitutes more than 70% of
the image’s composition.).

Discussion on results. The experiment results of CelebA64 have been discussed in Section 6. The
experiment phenomenon is similar for the cat face images, which means the models obtained by only
fine-tuning the encoder and decoder can generate novel images with the target feature (Figure 2). We
note that when choosing the target cat face dataset if the color black constitutes more than 70% of
the image’s composition, we view this cat image as the black cat. Hence, different colors exist for
cats, such as white and grey, due to the target dataset containing a small number of these colors (such
as images 1, 3, 4, 6, 8). As a result, our fine-tuning results also contain these colors. However, our
results do not contain colors other than those in the target dataset and can produce novel samples,
which also proves the effectiveness of our fine-tuning method.

Discussion on linear encoder and decoder. Assumption 3.1 assumes the linear subspace, which
indicates linear encoder and decoder. However, we fine-tune the first 4 downblock layers (encoder)
and 4 upblock layers (decoder) instead of only using linear layers as the encoder and decoder. We note
that this operation does not conflict with our Assumption. Recall that in Stable Diffusion (Rombach
et al., 2022), the diffusion models run in the VAE embedding space 7. Hence, we can view the first
3 downblock layers and the last 3 upblock layers as the VAE encoder and VAE decoder. Then, we
can obtain X in this paper by running the VAE encoder. The remaining 1 downblock and 1 upblock
layer can be viewed as linear encoder and decoder A. As mentioned in Section 4.2 of StyleGAN
(Karras et al., 2019), the feature of X obtained by running a good-enough VAE encoder has linear
separability, which also supports our Assumption 3.1.

7To distinguish the latent space in this paper, we use embedding space here.
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paper’s contributions and scope?
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safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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