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Abstract: Imitating human demonstrations is a promising approach to endow
robots with various manipulation capabilities. While recent advances have been
made in imitation learning and batch (offline) reinforcement learning, a lack of
open-source human datasets and reproducible learning methods make assessing
the state of the field difficult. In this paper, we conduct an extensive study of
six offline learning algorithms for robot manipulation on five simulated and three
real-world multi-stage manipulation tasks of varying complexity, and with datasets
of varying quality. Our study analyzes the most critical challenges when learning
from offline human data for manipulation. Based on the study, we derive a series
of lessons including the sensitivity to different algorithmic design choices, the
dependence on the quality of the demonstrations, and the variability based on the
stopping criteria due to the different objectives in training and evaluation. We
also highlight opportunities for learning from human datasets, such as the ability
to learn proficient policies on challenging, multi-stage tasks beyond the scope of
current reinforcement learning methods, and the ability to easily scale to natural,
real-world manipulation scenarios where only raw sensory signals are available.
We have open-sourced our datasets and all algorithm implementations to facilitate
future research and fair comparisons in learning from human demonstration data at
https://arise-initiative.github.io/robomimic-web/
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1 Introduction

Human supervision has been at the heart of the most significant recent advances in several domains
such as computer vision [1–4] and natural language processing [5–7]. By intelligently extracting
information from large-scale human-labeled datasets, autonomous machines have been able to
reach near- or even super-human performance on decades-old problems such as image recognition
and question answering. Roboticists have also attempted to tackle robot manipulation through
learning from human datasets, using the paradigms of Imitation Learning [8–10] and Batch (Offline)
Reinforcement Learning [11–13], where datasets consisting of robot arm trajectories, action labels at
each timestep, and possibly reward labels, are used to train closed-loop policies.

As in other domains, large offline datasets offer several benefits such as scale, portability, and
reproducible evaluations to measure progress. Recently, there has been considerable progress in
offline learning for robot manipulation from human demonstrations [9, 14, 10]. Despite these
advances, the offline learning paradigm has not been nearly as disruptive in robotics as in other
disciplines – there is a large gap between autonomous robot manipulation capabilities and the wide
range of tasks that humans can solve effortlessly using physical and cognitive intelligence. What has
inhibited the use of large human-provided datasets to address this gap?

In contrast to other domains where supervised learning has been successful, robotic manipulation
is a time-evolving dynamical system, requiring fine-grained real-time control to guide robot arms
successfully through tasks – consequently, data collection can present technical challenges requiring
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(a) Lift (b) Can (c) Tool Hang (d) Square

(e) Lift (Real) (f) Can (Real) (g) Tool Hang (Real) (h) Transport

Figure 1: Tasks. We collect datasets across 6 operators of varying proficiency and evaluate offline policy
learning methods on 8 challenging manipulation tasks that test a wide range of manipulation capabilities
including pick-and-place, multi-arm coordination, and high-precision insertion and assembly.

specialized systems [15], which can explain why large-scale human-provided datasets [16, 17] have
not been very prevalent. Learning from such datasets can also present several challenges. Human
demonstrations can differ from machine-generated datasets (a recent trend in benchmarks for offline
policy learning [18, 19]) due to a non-Markovian decision process, since humans may not act purely
based on the current observation. There can also be significant variance in both data quality and
solution strategy when collecting data from multiple humans [20]. Differences from classic supervised
learning, such as a mismatch between training and evaluation objectives (task success rate), can make
selecting a final policy challenging [21, 22], especially in real-world settings where evaluating each
policy on a robot can be infeasible. Finally, offline learning is sensitive to state and action space
coverage (dataset size) and agent design decisions.

Studying these challenges in the context of robot manipulation and human-provided datasets could be
a stepping stone to closing the gap between robot and human manipulation capabilities. Unfortunately,
a lack of suitable benchmark and human datasets have made studying this setting difficult. Prior
works are either limited to studying simple 2D environments [23] or using data generated from
hard-coded policies [24, 25]. In this paper, we address this need by presenting a study of data-driven
offline policy learning methods on several human-provided robot manipulation datasets. We collect
task demonstrations from human teleoperators across a broad range of simulated and real world
manipulation tasks and investigate several factors that play a role in learning from such data.

From our results, we point out several lessons to guide future research in leveraging human supervision
for robot manipulation effectively. We find that history-dependent models can be extremely effective
in learning from single and multi-human datasets while state-of-the-art batch RL algorithms struggle
to learn from such datasets, and that the choice of observation space and hyperparameters play a
substantial role in training proficient policies. We also find that there is substantial promise for
solving more complex tasks using large-scale human datasets and that our insights directly transfer to
real-world scenarios, making this an important setting to explore further.

2 Challenges in Offline Learning from Human Datasets

In this section, we outline five challenges in offline learning from human datasets that motivate
different factors that we investigate in our study.

(C1) Data from Non-Markovian Decision Process. Human demonstrations can differ substantially
from machine-generated demonstrations because humans may not act purely based on a single current
observation. External factors (teleoperation device, past actions, history of episode) may all play a
role. Prior work [20] has noted substantial benefits from leveraging models that are history-dependent
and / or with temporal abstraction to learn from human demonstrations. We investigate various design
choices related to such architectures in this study.
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Dataset BC BC-RNN BCQ CQL HBC IRIS
Lift (MG) 65.3±2.5 70.7±3.4 91.3±1.9 64.0±2.8 47.3±4.1 96.0±1.6
Can (MG) 64.7±3.4 68.7±2.5 75.3±0.9 1.3±0.9 40.7±3.4 48.0±6.5

Lift (PH) 100.0±0.0 100.0±0.0 100.0±0.0 92.7±5.0 100.0±0.0 100.0±0.0
Can (PH) 95.3±0.9 100.0±0.0 88.7±0.9 38.0±7.5 100.0±0.0 100.0±0.0

Square (PH) 78.7±1.9 84.0±0.0 50.0±4.9 5.3±2.5 82.6±0.9 78.7±2.5
Transport (PH) 17.3±2.5 71.3±6.6 7.3±3.3 0.0±0.0 48.6±3.8 41.3±3.4
Tool Hang (PH) 29.3±0.9 19.3±5.0 0.0±0.0 0.0±0.0 30.0±7.1 11.3±2.5

Lift (MH) 100.0±0.0 100.0±0.0 100.0±0.0 56.7±40.3 100.0±0.0 100.0±0.0
Can (MH) 86.0±4.3 100.0±0.0 62.7±8.2 22.0±5.7 91.3±2.5 92.7±0.9

Square (MH) 52.7±6.6 78.0±4.3 14.0±4.3 0.7±0.9 60.7±5.0 52.7±5.0
Transport (MH) 11.3±2.5 65.3±7.4 2.6±0.9 0.0±0.0 14.0±1.6 10.7±0.9

Table 1: Results on Low-Dimensional Observations. We present success rates averaged over 3 seeds for
each method across the low-dim Machine-Generated (MG), Proficient-Human (PH), and Multi-Human (MH)
datasets. The results show that methods that model temporal correlations (BC-RNN, HBC, IRIS) exhibit
strong performance on human datasets. Furthermore, while Batch RL algorithms like BCQ are proficient on
machine-generated data, they perform poorly on human datasets.

(C2) Variance in Demonstration Quality from Multiple Humans. Prior work [20, 17] has found
that data collected from several humans can differ substantially in both demonstration proficiency
and solution strategy. Differences in supervisor proficiency can manifest in many ways, such as
large variations in trajectory length and noise in robot movement or mistakes (e.g. missed grasps).
In our study, we evaluate offline policy learning algorithms on such datasets. While recent batch
RL algorithms have shown an excellent ability to learn from mixed quality machine-generated
datasets [26, 27], we empirically find that they fail to learn well from mixed quality human data.

(C3) Dependence on Dataset Size. Offline policy learning is sensitive to the state and action space
coverage in the dataset, and by extension, the size of the dataset itself. In our study, we investigate
how dataset sizes affect policy performance. This analysis is useful to understand the value of adding
more data – an important consideration since collecting human demonstrations can be costly.

(C4) Mismatch between Training and Evaluation Objectives. Unlike traditional supervised learn-
ing, where model selection can be achieved by using the model with the lowest validation loss [21],
offline policy learning often suffers from the fact that the training objective is only a surrogate for the
true objective of interest (e.g. task success rate), and policy performance can change significantly
from epoch to epoch. This makes it difficult to select the best trained model [19, 28, 29]. In our
study, we evaluate each policy checkpoint online in the environment in simulation, and report the best
policy success rate per training run. We use these ground-truth values to understand the effectiveness
of different selection criteria, and confirm that offline policy selection is an important problem,
especially in real-world scenarios where large-scale empirical evaluation is difficult.

(C5) High Sensitivity to Agent Design Decisions. Prior studies on machine-generated datasets have
shown that offline policy learning can be extremely sensitive to hyperparameter choices [19, 28]. In
our study, we explore how agent design decisions affect policy performances, including the choice of
agent architecture, agent observation space, and hyperparameter choices per algorithm. This results
in several practical conclusions that should prove useful to researchers and practitioners alike. We
further show that important design decisions made through our study in simulation directly translate
to effective policy learning on real world tasks and datasets.

3 Study Design

3.1 Tasks

We conducted our study across 5 simulated and 3 real world tasks. The tasks were chosen to test a
broad range of manipulation capabilities. See Fig 1 and Appendix E for more details.

Lift (sim + real)). The robot arm must lift a small cube. This is the simplest task.

Can (sim + real). The robot must place a coke can from a large bin into a smaller target bin. Slightly
more challenging than Lift, since picking the can is harder than picking the cube, and the can must
also be placed into the bin.

Square (sim). The robot must pick a square nut and place it on a rod. Substantially more difficult
than Lift and Pick Place Can due to the precision needed to pick up the nut and insert it on the rod.
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Dataset BC BC-RNN BCQ CQL HBC IRIS
Can-Worse 56.7±2.5 92.0±1.6 29.3±10.9 4.0±3.3 78.7±3.4 77.3±1.9
Can-Okay 72.0±2.8 95.3±1.9 58.0±8.6 22.0±4.3 97.3±0.9 96.0±0.0
Can-Better 83.3±2.5 99.3±0.9 62.0±5.9 20.7±7.4 96.7±0.9 96.0±0.0

Can-Worse-Okay 74.7±5.7 98.7±1.9 50.7±3.8 18.7±2.5 88.0±1.6 87.3±1.9
Can-Worse-Better 76.0±4.3 100.0±0.0 48.0±4.9 20.7±5.7 90.0±1.6 91.3±2.5
Can-Okay-Better 90.7±1.9 100.0±0.0 68.7±2.5 30.7±7.7 99.3±0.9 98.0±1.6

Square-Worse 22.0±4.3 39.3±3.8 5.3±1.9 0.0±0.0 44.7±6.8 38.7±0.9
Square-Okay 27.3±3.4 45.3±2.5 6.7±1.9 0.0±0.0 52.0±2.8 42.0±3.3
Square-Better 58.7±2.5 66.0±2.8 32.0±4.3 0.7±0.9 61.3±1.9 60.0±1.6

Square-Worse-Okay 28.7±2.5 55.3±0.9 8.7±1.9 2.7±1.9 50.7±4.1 43.3±2.5
Square-Worse-Better 46.7±5.7 73.3±6.2 15.3±2.5 1.3±0.9 65.3±3.4 56.7±3.4
Square-Okay-Better 56.7±4.1 74.0±2.8 22.0±4.3 1.3±0.9 63.3±4.1 56.7±3.8

Can-Paired 64.0±9.1 70.0±4.3 44.7±1.9 6.0±1.6 70.7±5.2 75.3±1.9

Table 2: Results on Suboptimal Human Data. We present success rates averaged over 3 seeds for each method
across different subsets of the Multi-Human datasets, corresponding to mixtures of demonstrations from “Better”,
“Adequate”, and “Worse” human operators, and finally on a diagnostic dataset with paired success and failure
human trajectories for each starting initialization. Results indicate that BC-RNN is a strong baseline, and that
Batch RL methods perform poorly across all datasets, even on the simple diagnostic dataset.

Transport (sim). Two robot arms must transfer a hammer from a closed container on a shelf to a
target bin on another shelf. One robot arm must retrieve the hammer from the container, while the
other arm must clear the target bin by moving a piece of trash to the nearby receptacle. Finally, one
arm must hand the hammer over to the other, which must place the hammer in the target bin.

Tool Hang (sim + real). A robot arm must assemble a frame consisting of a base piece and hook
piece by inserting the hook into the base, and hang a wrench on the hook. This is the most difficult
task due to the multiple stages that each require precise, and dexterous, rotation-heavy movements.

3.2 Data Collection

To study the effect of dataset source, we collected data from three different sources – Machine-
Generated, Proficient-Human, and Multi-Human (more details in Appendix B).

Machine-Generated (MG). We collected these datasets by first training a state-of-the-art RL al-
gorithm [30] on the Lift and Can task, taking agent checkpoints that are saved regularly during
training, and collecting 300 rollout trajectories from each checkpoint. Consequently, these datasets
are comprised of mixtures of expert and suboptimal data, and resemble datasets from common offline
RL benchmarks [18, 19]. We excluded other tasks because they could not be solved by the RL
algorithm even with substantial tuning. See the appendix for more details.

Proficient-Human (PH) and Multi-Human (MH). Datasets are collected by humans through Robo-
Turk [15, 17], a remote teleoperation platform. The PH datasets consist of 200 demonstrations
collected by a single, experienced teleoperator, while the MH datasets consist of 300 demonstrations,
collected by 6 teleoperators of varying proficiency, each of which provided 50 demonstrations. The 6
teleoperators consisted of a “better” group of 2 experienced operators, an “okay” group of 2 adequate
operators, and a “worse” group of 2 inexperienced operators. These data subsets in the Multi-Human
data allowed us to investigate the ability of algorithms to deal with mixed quality human data.

Observation Modalities. To study the effect of observation modalities, we capture a diverse set of
sensor streams when collecting the dataset, including end-effector, gripper fingers, and joints, ground-
truth object poses, and images from an external camera and wrist-mounted camera per robot arm (see
Appendix E). We have two observation spaces – “low-dim” and “image”. Both include end-effector
poses and gripper finger positions, and only differ in whether ground-truth object information is used
(low-dim) or whether that information is replaced by the available camera observations (image).

3.3 Training and Evaluation Protocols

There are several approaches to offline imitation learning [31–34, 9, 10, 25, 35, 36] and offline
reinforcement learning [26, 27, 37–43] (see Appendix A for more discussion on related work). We
chose to evaluate 6 algorithms in this study – Behavioral Cloning (BC), BC with an RNN policy
(BC-RNN), Hierarchical Behavioral Cloning (HBC) [10], Batch-Constrained Q-Learning (BCQ) [26],
Conservative Q-Learning (CQL) [27], and IRIS [20]. BC-RNN, HBC, and IRIS have all been used
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(a) Observation Space (b) Low-Dim Hyperparameters (c) Image Hyperparameters

Figure 2: Effect of Observation Space and Hyperparameter Choice. We show how the success rate that
BC-RNN obtains can drop drastically due to changes to the observation space and hyperparameter settings.

(a) Low-Dim (b) Image

Figure 3: Effect of Dataset Size. We study how the BC-RNN success rate changes when lowering the quantity
of data to 20% and 50%. Results show that less complex tasks (Lift, Can) be learned with a fraction of the data,
while more complex tasks might benefit from even larger human datasets.

in prior work to learn offline from teleoperated human demonstrations, while BCQ and CQL are
commonly-used offline RL algorithms (see Appendix C). We use binary task completion rewards for
all our experiments. Each agent is trained for N epochs, where each epoch consists of M gradient
steps, and evaluated every E epochs, by running 50 rollouts in the environment and reporting the
success rate over a maximum horizon. For each agent, we report the maximum success rate over the
coarse of training, and average over 3 seeds. For low-dim agents, N = 2000, M = 100, and E = 50,
and for image agents, N = 600, M = 500, and E = 20 (see Appendix B.2).

4 Experiments

In this section, we present each factor that we explored in our study, and note the relevant challenges
from Sec. 2 that each pertains to.

4.1 Algorithm Comparison on Single and Multi-Human Demonstrations (C1, C2)

We trained and evaluated all algorithms on the Proficient-Human (PH) and Multi-Human (MH)
datasets and report the average success rates across 3 seeds in Table 1.

Observation history is crucial for good performance. There is a substantial performance gap
between BC-RNN and BC, which highlights the benefits of history-dependence. The performance
gap is larger for longer-horizon tasks (e.g. ⇠ 55% for Transport (PH) compared to ⇠ 5% for Square
(PH)) and for multi-human data compared to single-human data (e.g. ⇠ 25% for Square (MH)
compared to ⇠ 5% for Square (PH)). Interestingly, results are lower for MH datasets compared to PH
datasets, even though the MH datasets contain 100 more demos (300 demos vs. 200 demos). This
most likely stems from the presence of suboptimal and multimodal data in the MH datasets.

Batch RL algorithms perform poorly on Human Datasets. Recent batch (offline) RL algorithms
such as BCQ and CQL have demonstrated excellent results in learning from suboptimal and multi-
modal agent-generated datasets. Our results confirm the capacity of such algorithms to work well –
BCQ in particular performs strongly on our agent-generated MG datasets that consist of a diverse
mixture of good and poor policies. Surprisingly though, neither BCQ nor CQL performs particularly
well on these human-generated datasets. This puts the ability of such algorithms to learn from more
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(a) Effect of Policy Selection Criteria

Dataset BC BC-RNN BCQ CQL
Lift (PH) 100.0±0.0 100.0±0.0 98.0±1.6 52.0±13.0
Can (PH) 97.3±1.9 98.0±0.9 86.7±2.5 0.7±0.9

Square (PH) 62.0±4.9 82.0±0.0 41.3±4.1 -
Transport (PH) 55.3±6.2 72.0±4.3 0.7±0.9 -
Tool Hang (PH) 20.0±5.9 67.3±4.1 3.3±0.9 -

Lift (MH) 100.0±0.0 100.0±0.0 93.3±0.9 11.3±9.3
Can (MH) 85.3±0.9 96.0±1.6 77.3±6.8 0.0±0.0

Square (MH) 46.0±1.6 76.7±3.4 17.3±7.5 -
Transport (MH) 18.7±2.5 42.0±1.6 0.0±0.0 -

Table 3: Results on Image Observations.

Figure 5: (left) Effect of Policy Selection Criteria. We compare how performance decreases when choosing the
policy to evaluate by using the lowest validation loss, or when using the final trained checkpoint, with respect to
the best policy performance. (right) Results on Image Observations. We present success rates for each method
across the image observation human datasets. BC-RNN maintains nearly the same performance as learning from
ground-truth observations, providing an optimistic view for learning with real-world raw sensory observations.
natural dataset distributions into question (instead of those collected via RL exploration or pre-trained
agents). There is an opportunity for future work in batch RL to resolve this gap.

4.2 Learning from Suboptimal Human Data (C2)

To further investigate how algorithms deal with suboptimal human data, we split our MH datasets
into smaller subsets based on the proficiency of the human operators. The MH-Better, MH-Okay,
and MH-Worse are the 100 demo subsets corresponding to the 2 “better”, 2 “okay”, and 2 “worse”
operators respectively, while MH Worse-Okay, MH Worse-Better, and MH Okay-Better are the 200
demo subsets corresponding to the mixture of the previous subsets. Similar data mixtures have been
used for evaluations in batch RL [18]. Appendix B shows the average trajectory lengths in each data
subset – lower quality datasets contain demonstrations that take more time to solve the task.

BC-RNN is a strong baseline on suboptimal human data, but there is room for improvement.
Table 2 shows that BC exhibits a large performance gap between the Better and Worse 100-demo
subsets (roughly 27% and 35% for Can and Square respectively). Interestingly, BC-RNN is able
to nearly eliminate this gap in performance on the Can task, but not on the Square task. However,
BC-RNN outperforms BC on all datasets (7%-35% improvement). Comparing results on the 100
Better demonstrations and 100 Okay demonstrations to the 200 Worse-Better demonstrations and 200
Worse-Okay demonstrations further allows us to analyze how adding 100 “worse” demonstrations
impacts the performance of each algorithm. Most algorithms decline in performance while BC-RNN
is able to uniformly improve from the added data. Comparing the performance of BC-RNN on the
200-demo Square mixture datasets (55.3%, 73.3%, 74.0%) to the high-quality 200-demo Square (PH)
dataset (84.0%) shows that there is still room for algorithms to improve on the use of this data.

Diagnostic dataset shows that Batch RL struggles in simpler settings as well. The final row of
Table 2 shows additional results on a diagnostic dataset termed Can-Paired, where a single operator
collected 2 demonstrations for each of 100 task initializations – one successful demonstration, and
one where the can is tossed outside of the bin (task failure), for a total of 200 demonstrations. There
is a strong expectation for batch RL algorithms to be able to distinguish between actions leading
to successful placement and actions leading to task failure, but even in this simple setting, most
algorithms suffer, providing a pessimistic view of the state-of-the-art. The 5% improvement that IRIS
provides over BC-RNN suggests that introducing history-dependence into state-of-the-art batch RL
algorithms might be a promising direction for future work.

4.3 Effect of Observation Space (C5)

Learning from image observations can match low-dim agent performance. In Table 3, we
present policy learning results when using image observations instead of ground-truth object locations
– an important setting for real-world policy learning. BC-RNN still maintains superior performance
improvements over BC on the complex Square and Transport tasks, and with the exception of
Transport (MH), maintains nearly the same performance as learning from ground-truth observations.
This result provides an optimistic view for learning with real-world raw sensory observations.
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Features used for robot proprioception can matter. In Fig 2a, we study the effect of adding end ef-
fector velocities to the observations (+ EEF Vel), and joint positions and velocities to the observations
(+ Joint). Surprisingly, we find that including end effector velocity information, and joint information
hurts agents trained on low-dim observations substantially (49%-88% relative performance drop),
while image-based agents are more tolerant to the inclusion of this extra information (2%-29%
relative performance drop). We hypothesize that performance drops might be due to overfitting
to the presence of this extra information not needed for solving these tasks. Thus, practitioners
should take care to engineer the robot observation space and exclude possibly irrelevant information –
information-hiding can be a powerful paradigm for training proficient robots [44].

Image randomization and wrist observations can be crucial for manipulation tasks. In Fig 2a,
we report performance drops from removing pixel shift image randomization (- Rand) and the wrist
camera (- Wrist) from image-based agents to understand their importance. We see that removing
randomization results in 47% and 35% relative performance drops on Square and Transport respec-
tively, and removing wrist images results in 9% and 43% relative drops. Consequently, both wrist
camera images and image randomization play a substantial role in producing performant policies. We
confirm the importance of each for visuomotor imitation in the real world as well (see Sec 4.7). Wrist
observations likely help the robot improve gripper alignment for grasping and randomization helps
the policy develop invariance for portions of the image that are not important for action prediction.

4.4 Effect of Hyperparameter Choice (C5)

In this section, we take our default hyperparameters for BC-RNN and study the effect of changing a
subset of them to report practical recommendations for learning from human datasets (see Appendix I
for BCQ and CQL). We present our results in Fig 2b (low-dim) and Fig 2c (image).

(larger LR) Increasing the learning rate from 1e-4 to 1e-3 affects the performance of image-agents
substantially (drop of 35%-63%), while low-dim agents are more tolerant to the change. (no GMM)
Using a deterministic policy instead of learning a GMM action distribution results in significant
relative performance drops on the MH datasets (especially low-dim Transport, with a drop of 58%).
(larger MLP) Using a larger MLP size at each RNN timestep reduces performance uniformly,
suggesting that it is possible to overfit to dataset actions if network architectures are too large.
(shallow Conv) Using a shallow convolutional network [45] instead of the ResNet backbone [46] for
encoding image observations reduces performance significantly – with relative drops of 25%-62%,
suggesting that large-capacity visual encoders are crucial for visuomotor imitation. (smaller RNN
dim) Reducing the size of the RNN hidden dimension from 400 to 100 (low-dim) and 1000 to 400
(image) uniformly decreases performance (drops of 3%-58%), showing the importance of a large
RNN hidden dimension. (Recommendations) We recommend tuning the LR (especially for image
agents) and network structure (MLP size, size of RNN dim) carefully. Opting to use a GMM policy
and a ResNet encoder appears to be uniformly better.

4.5 Selecting a Policy to Evaluate (C4)

Model selection in offline policy learning can be challenging – for this reason, in our simulation
experiments, we evaluated every policy checkpoint online and reported the best one. This is not
feasible for real-world settings, making offline policy selection desirable. In Fig 4a, we show that this
can be non-trivial, by showing the relative performance drop when selecting the policy using the best
loss on validation data (common in supervised learning), and when using the final training checkpoint
as well (common in offline RL [47, 18, 27]) – in both cases, the selected policy is significantly worse
than the best one (10% to 100% decrease). See Appendix G for more detailed results and discussion.
This motivates the need for better offline evaluation metrics.

4.6 Effect of Dataset Size (C3)

To study how dataset size impacts performance, we formed smaller 20% and 50% subsets of our
human datasets by sampling trajectories. We evaluate low-dim and image BC-RNN agents across
these subsets in Table 27 and Table 28. There are several promising results here. We first note that
less complex tasks (Lift, Can) can yield proficient policies (75%-100% success rate) using a small
fraction of the data (20%). Second, while policies trained on more complex tasks (Square, Transport)
suffer substantially when using 50% or 20% of the data, the converse is also true – adding more data
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(e.g. moving from 20% to 50% or 50% to 100% size) can result in significant policy improvement.
This confirms the value of using large human datasets as a means to obtain proficient policies for
challenging and complex manipulation tasks.

4.7 Applicability to Real-World Settings

Here, we show that design decisions made in simulation can potentially transfer to real world settings.
We collected 3 additional real-world datasets with a Franka robotic arm – Lift (Real), Can (Real), and
Tool Hang (Real). Each consists of 200 trajectories collected by one operator. We train BC-RNN and
report the final policy checkpoint success rate, over 30 rollouts, due to the time-consuming nature
of real world policy evaluation. We also emphasize that no real-world hyperparameter tuning took
place, so our results are a lower bound. We were able to train proficient Lift (96.7%) and Can
(73.3%) policies, and the Tool Hang (3.3%) policy is able to generate some task successes, despite
the extremely difficult nature of the task. Furthermore, as in Sec. 4.3, we validate the importance
of pixel shift randomization and the wrist camera by ablating each component on the Can task, and
show that including both is the difference between a proficient and non-proficient real-world policy –
Can (- Rand) (26.7%), Can (- Wrist) (43.3%).

5 Discussion

In this section, we summarize the lessons from our study and make recommendations for future work.

(L1) Models with temporal abstraction can be extremely effective in learning from human
datasets. In Sec 4.1 and Sec 4.2, we demonstrated that history-dependent models (BC-RNN, HBC,
and IRIS) are particularly effective in learning from human datasets compared to algorithms that do
not take temporal context into account.

(L2) Need to improve the ability of batch (offline) RL to learn from suboptimal human datasets.
Sec 4.2 and Appendix I demonstrated that state-of-the-art batch RL algorithms are excellent at
learning from suboptimal machine-generated datasets but much worse at learning from suboptimal
human datasets. They even struggled with a diagnostic dataset with paired good and bad human
demonstration trajectories while IRIS was able to improve slightly on BC-RNN, suggesting that
combining history-dependence with value learning might be a good place to start for improving batch
RL methods [48–51]. This also demonstrates a need to start benchmarking new batch RL algorithms
on human datasets instead of purely on machine-generated datasets.

(L3) Improving offline policy selection is important for real world settings. Sec 4.5 demonstrated
the need for better ways to select an evaluation policy in an offline manner. We hope that our datasets
can help supplement other efforts [29].

(L4) Observation space plays a large role and hyperparameters matter. Sec 4.3 demonstrates
that policies trained on low-dim observations can be very sensitive to the choice of robot propriocep-
tion, while pixel shift randomization and wrist camera images are critical for effective visuomotor
policy learning. The choice of observation space for imitation merits careful consideration – other
work has also confirmed the importance of feature representations used for offline policy learn-
ing [52, 53]. Sec 4.4 and Appendix I made practical recommendations for choosing hyperparameters
to learn from human data.

(L5) There is substantial promise for solving more complex tasks using large-scale human
datasets. Sec 4.6 showed that adding more data can result in significant policy improvement on
complex tasks. Table 3 and Sec 4.7 shows that we could learn proficient policies on the Tool Hang
task, our most complex task, without any hyperparameter tuning on the task or dataset. Together,
these results show the potential of large human datasets as a means to solve challenging and complex
manipulation tasks.

(L6) Study results transfer to real-world settings. In Sec 4.7, we showed that we could directly
apply hyperparameters that were tuned on simulated tasks directly to real-world datasets and tasks.
This provides promise for using our tasks, datasets, and codebase to enable reproducible evaluation
in simulation, while also being confident that conclusions can transfer to real-world settings.

Going forward, we hope that the datasets, tasks, code, and subsequent insights of our study will serve
researchers and practitioners alike.
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