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ABSTRACT

Molecular docking is a technique widely used in drug design that predicts the
binding mode of a protein-ligand complex, given a ligand molecule and a ligand
binding site (called a “pocket”) on a protein. Although many deep learning models
have been developed for molecular docking, most of them perform docking on the
whole protein, rather than on a given pocket as the traditional molecular docking
approaches, which does not meet common needs. Many deep learning models
have been developed for molecular docking, while most existing deep learning
models perform docking on the whole protein, rather than on a given pocket as the
traditional molecular docking approaches, which does not match common needs
where pockets are mostly known. Moreover, these models claim to perform better
than traditional molecular docking methods, but the comparison is unfair because
traditional methods are not designed for docking on the whole protein without
a given pocket. In this paper, we design a series of experiments to examine the
actual performance of these deep learning models and traditional methods. For a
fair comparison, we decompose the docking on the whole protein into two steps,
pocket searching and docking on a given pocket, and build pipelines to evaluate
traditional methods and deep learning methods respectively. Our findings suggest
that deep learning models are good at pocket searching, but traditional methods
are better than deep learning models at docking on given pockets. Overall, our
work explicitly reveals some potential problems in current deep learning models
for molecular docking and provides several suggestions for future improvements.

1 INTRODUCTION

Molecular docking is a widely used technique in drug design that predicts the binding mode of a
protein-ligand complex, given a ligand molecule and a ligand binding site called ”pocket.” Over the
last few decades, several molecular docking methods have been proposed, including Trott & Olson
(2010); Alhossary et al. (2015); Hassan et al. (2017); Quiroga & Villarreal (2016).

Recently, deep learning has been increasingly used in drug design applications, such as molecular
property prediction Zhou et al. (2022); Rong et al. (2020); Wang et al. (2022); Fang et al. (2022) and
protein structure predition Jumper et al. (2021). Several recent works Stärk et al. (2022); Lu et al.
(2022); Corso et al. (2022) have attempted to apply deep learning to molecular docking. However,
most of these works did not follow traditional molecular docking settings. Instead of docking on a
given pocket, these deep learning works directly perform docking on the whole protein (called “blind
docking” 1), which does not match common needs in drug design. Besides, although they claimed
they are better than traditional molecular docking approaches, the experiment and the evaluation in
their papers are questionable. Specifically, we have the following questions.

• Are the comparisons with traditional approaches fair? The traditional molecular docking ap-
proaches are not designed for blind docking. But the early works Stärk et al. (2022); Lu et al.
(2022); Corso et al. (2022) directly apply traditional molecular docking approaches on the whole

1We use “molecular docking” to refer to the docking on a given pocket in this paper.
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proteins, rather than the pockets, in the experiments. It is obvious that such a comparison is not
fair for traditional molecular docking approaches.

• What are these deep learning models really good at? Pocket searching or molecular docking?
In traditional methods, blind docking is generally divided into two steps: pocket searching and
docking. Although these works combine pocket searching and molecular docking together, they
simply evaluate the performance of the final complex conformation. We do not know whether
the gain is brought by better pocket searching or better molecular docking. Thus, we actually do
not know whether these models can outperform the traditional approaches in molecular docking
or not, given the same protein pockets.

To answer the above questions, we design a series of experiments in Sec. 3, and have the following
findings.

• Traditional molecular docking approaches are still better than deep learning models, when given
the same pockets. Besides, the two-stage traditional approaches (traditional pocket searching +
molecular docking) can outperform most of the deep learning models.

• Deep learning models are actually good at pocket searching. Although their performance on
molecular docking is worse, deep blind docking models actually perform well in pocking search-
ing. Besides, we find there is still a large room to reach the performance upper bound of pocket
searching.

• Deep Learning models are full of potential. DiffDock Corso et al. (2022) is currently the best
method in pocket searching, and its performance in molecular docking is very close to traditional
approaches. It is no doubt that deep learning models will outperform traditional approaches in
the future.

2 RELATED WORK

Pocket Searching Approaches To find potential new biological targets on proteins, several pocket
searching approaches have been proposed. Fpocket Le Guilloux et al. (2009) uses Voronoi tessella-
tion and alpha spheres to locate, rank and describe pockets. P2Rank Krivák & Hoksza (2018) is a
convolutional neural network based tool. PointSite Yan et al. (2022) further leverages the 3D spatial
information, based on 3D U-Net model Çiçek et al. (2016).

Traditional Molecular Docking Approaches AutoDock and its variants Trott & Olson (2010);
Ravindranath et al. (2015); Eberhardt et al. (2021); Santos-Martins et al. (2021) are popular tools in
molecular docking to efficiently predict binding poses and affinities of ligands according to the scor-
ing function and fast search methods. Vinardo Quiroga & Villarreal (2016), QVina2 Alhossary et al.
(2015), QVina-W Hassan et al. (2017), and Smina Koes et al. (2013) are developed from AutoDock
to further improve docking’s searching and scoring power. To handle ultra-large ligand datasets,
GPU-accelerated docking engines such as Uni-Dock Yu et al. (2022) and AutoDock-GPU Santos-
Martins et al. (2021) have broadened docking’s throughput dramatically.

Deep Learning Models for Docking Recent advances in deep learning-based molecular docking
focus on blind docking, where the protein’s pocket is unknown, and the molecular positions and
conformations are directly predicted. EquiBind Stärk et al. (2022) proposed a SE(3)-equivariant
geometric deep learning model to predict the molecular positions and conformations by directly
predicting 3D atom coordinates. Several later works Zhang et al. (2022); Lu et al. (2022); Corso et al.
(2022) also focus on blind docking. TANKBind Lu et al. (2022) proposes a two-stage deep docking
framework that segments the whole protein into functional blocks and predicts their interactions
with the ligand using a trigonometry-aware architecture. Then, the binding structure is prioritized
based on the predicted interactions. DiffDock Corso et al. (2022) randomly samples a molecular
conformation and predicts the molecular atom coordinates with a denoising diffusion probability
model starting from the random molecular conformation.
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3 EXPERIMENTS

We design a series of experiments, to ensure a fair comparison between traditional molecular dock-
ing approaches and deep learning based models. To address the limitations of traditional approaches
in searching pockets, we have incorporated additional pocket searching tools or utilized the pockets
identified by deep learning models. The details of the experimental designs are in the following
subsection.

3.1 EXPERIMENTAL SETTINGS

Data We used the same benchmark dataset as Equibind Stärk et al. (2022) and DiffDock Corso
et al. (2022) with the test set collected from PDBBind Liu et al. (2017). The conforma-
tions of molecular ligands are initialized by RDKit, and the protein structures are sourced from
https://anonymous.4open.science/r/DiffDock.

Deep learning models The below models are used as baselines.

• EquiBind Stärk et al. (2022), a docking tool that predicts the conformation without binding site
knowledge. We directly use the number reported in DiffDock Corso et al. (2022) paper.

• TANKBind Lu et al. (2022), we used the number reported in DiffDock Corso et al. (2022) paper.

• TANKBind*, we reproduced TANKBind’s results, based on its officially released model weights
and source codes 2. We ran the model three times with different random seeds, and reported the
mean and std like in DiffDock Corso et al. (2022).

• DiffDock Corso et al. (2022), a generative model of binding pose prediction under the setting
from the corresponding paper Corso et al. (2022), which generates 40 samples with 20 diffusion
steps. We directly used the reported number in their paper.

• DiffDock*, we reproduced DiffDock’s results, based on its officially released model weights
and source codes 3. We ran the results three times with different random seeds, and reported the
mean and std the same way as TANKBind*.

Traditional approaches To have a fair comparison with deep learning models in the blind docking
setting, we applied the two-stage solution for the traditional approaches: pocket searching, followed
by molecular docking. For the molecular docking, we use Uni-dock Yu et al. (2022), a highly effi-
cient GPU-accelerated docking tool. We set up five different configurations using different pocket
searching methods, as follows:

• 1. Fpocket + Uni-dock, we used pockets found by Fpocket Le Guilloux et al. (2009). Specifi-
cally, we used the pocket with the best “fpocket score”. We created an axis-parallel cube with
30 Å edge size for molecular docking, using the geometric center of the predicted pocket atoms
as the center.

• 2. P2Rank + Uni-dock, we used pockets found by P2Rank Krivák & Hoksza (2018). Specifi-
cally, we used the rank-1 pocket predicted by P2Rank. We created an axis-parallel cube with 30
Å edge size for molecular docking, using the geometric center of the predicted pocket atoms as
the center.

• 3. PointSite + Uni-dock, we used PointSite Yan et al. (2022), a 3D U-Net model to find the
pocket atoms. PointSite only predicts one pocket for one protein, which we used directly. We
created an axis-parallel cube with 30 Å edge size for molecular docking, using the geometric
center of the predicted pocket atoms as the center.

• 4. DiffDock* + Uni-dock, we used pockets found by DiffDock. Specifically, we selected the top-
1 conformation for each protein based on DiffDock*’s predicted confidence scores. Then, we
created a minimal axis-parallel rectangular cuboid that could cover all ligand molecular atoms.
Finally, we enlarged the cuboid in three axes by 5 Å, and used it for molecular docking. Note
that here we only used the pockets found from DiffDock in this setting, rather than its predicted
molecular conformations.

2https://github.com/luwei0917/TankBind
3https://github.com/gcorso/DiffDock
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• 5. GT pocket + Uni-dock, we used the ground-truth (GT) pockets directly. Similar to DiffDock’s
pockets, we created a minimal axis-parallel rectangular cuboid that could cover all ground-truth
molecular atoms. Then, we enlarged the cuboid in three axes by 5 Å, and used the enlarged
cuboid for molecular docking. We set up this experiment to demonstrate the performance upper
bound of traditional docking approaches when given the correct pockets.

Each of the above settings was run three times with different random seeds, and we reported the
means and standard deviations for evaluation metrics. We also provided a repository 4 for reproduc-
ing our results. Notably, in the repository, we used the open-source Autodock Vina as the traditional
docking engine, as Uni-dock is not open-sourced yet. However, the repository should be able to
reproduce our results, considering that Uni-dock can be recognized as the GPU-accelerated version
of Autodock Vina.

Evaluation metrics The evaluation also follows DiffDock Corso et al. (2022). In particular, we
first select the top-k (k ∈ {1, 5}) conformations based on docking scores (or confidence scores pre-
dicted by deep learning models), for each protein. Then, we compute the heavy atoms’ RMSD for
each of these conformations, using ground-truth conformations. Next, we select the best conforma-
tion with the minimal RMSD for each protein. Finally, we report the percentage of best conformation
with RMSD < mÅ (m ∈ {1, 2}) across all proteins, as well as the median RMSD of the best con-
formation on all proteins. Notably, the RMSD between two conformations considers the symmetry
permutations, which is consistent with DiffDock’s evaluation.

3.2 RESULTS

Blind docking performance From the end-to-end blind docking performance shown in Table 1,
we have the following findings. 1) Firstly, traditional approaches (with P2Rank and PointSite) out-
perform deep learning approaches for accurate docking conformations (percentage of RMSD < 1Å).
2) Even for less accurate metrics (percentage of RMSD < 2Å), traditional approaches still outper-
form EquiBind and TankBind. 3) although DiffDock performs well on RMSD < 2Å, Uni-Dock
with DiffDock’s pocket performs even better, indicating that its performance is attributed to the
better pocket searching ability.

Molecular docking performance We can compare DiffDock* with “DiffDock* +Uni-dock”, to
examine the performance of molecular docking, when given the same pockets. From the results,
it is clear that “DiffDock* +Uni-dock” consistently outperforms DiffDock*. This suggests that
traditional molecular docking approaches are still better than deep learning models when using the
same pocket.

Pocket searching performance We can compare Uni-dock with different pocket searching meth-
ods, to examine the pocket searching performance. 1) It is easy to find that PointSite is the best,
and fpocket is the worst. 2) The pockets found by DiffDock* are quite good, outperforming all
existing pocket searching tools. We suppose the gain is from the additional molecule inputs used
in DiffDock, since fpocket, P2Rank, and PointSite only take the protein as input. 3) When using
the ground-truth pockets, the performance of Uni-Dock largely outperforms all other methods. This
indicates there is still a large room to reach the performance upper bound of pocket searching.

3.3 DISCUSSIONS

Based on the experimental results presDented above, it can be concluded that current deep learning
models excel at pocket searching, but not molecular docking. We have the following suggestions for
future deep learning models for molecular docking:

• Focus on molecular docking with given pockets, rather than blind docking. In real-world appli-
cations, pockets are usually known and fixed in a drug design project.

4https://github.com/pkuyyj/Blind_docking
5Here, we use the confidence model provided in https://github.com/gcorso/DiffDock to iden-

tify molecular conformations with RMSD < 1Å. Although the confidence model here is originally trained
based on molecular conformations with RMSD < 2Å, it still provides a reasonable indicator of model perfor-
mance.

4

https://github.com/pkuyyj/Blind_docking
https://github.com/gcorso/DiffDock


Published at the MLDD workshop, ICLR 2023

Table 1: Performance of blind docking.

Method Top-1 RMSD(Å) Top-5 RMSD(Å)
% < 1Å (↑) % < 2Å (↑) Med. (↓) % < 1Å (↑) % < 2Å (↑) Med. (↓)

Deep Learning EquiBind - 5.5±1.2 6.2±0.3 - - -
TANKBind 20.4±2.1 4.0±0.2 24.5±2.1 3.4±0.1
TANKBind* 2.66±0.26 18.18±0.6 4.2±0.05 4.13±0.0 20.39±0.45 3.5±0.04
DiffDock 38.2±2.5 3.30±0.3 44.7±2.6 2.40±0.2
DiffDock* 15.41±0.495 36.62±0.35 3.31±0.03 21.58±0.385 44.19±0.49 2.37±0.06

Traditional Fpocket + Uni-dock 13.33±0.4 18.7±0.13 13.2±0.26 19.16±0.39 27.32±0.69 8.3±0.25
P2Rank + Uni-dock 19.31±1.07 28.6±1.17 6.4±0.22 27.76±1.03 39.18±1.03 3.76±0.06
PointSite + Uni-dock 21.36±1.65 32.12±0.93 5.54±0.46 31.38±0.86 46.06±0.69 2.52±0.18

Better Pocket DiffDock* + Uni-dock 25.49±0.6 38.93±0.23 4.14±0.07 36.97±1.05 51.07±1.06 1.93±0.12
+ Traditional GT pocket + Uni-dock 32.77±0.38 51.11±0.6 1.89±0.04 47.5±0.23 67.59±0.94 1.11±0.02

• Pocket searching itself is an important problem, and still has plenty of room for improvement.
Moreover, if the additional ligand molecules can be used as model inputs (like in DiffDock), the
performance may be further improved.

• For end-to-end blind docking models, it’s important to ensure a fair comparison in experiments.
Specifically, you should first use pocket searching approaches (or directly use the same pockets
as your models), then apply the traditional molecular docking methods in the pockets, rather
than in the whole proteins.

• The deep learning models, particularly DiffDock, show tremendous potential. From the results,
we can find that DiffDock is the best model in pocket searching, and achieve almost comparable
performance with traditional approaches. We believe the deep learning models can be further
improved in the near future.

4 CONCLUSION

Several deep learning models have been proposed for molecular docking. However, these models
focus on blind docking, which differs from the docking in a given pocket in traditional approaches.
Besides, in their experiments, traditional approaches are often used on the whole protein rather than
in a given pocket, making the comparison with deep learning models unfair. To examine the actual
performance of deep learning models, we design a series of experiments to compare them with tra-
ditional molecular docking approaches. Our experimental results indicate that traditional molecular
docking approaches still outperform deep learning models when using the same pockets. Based on
our findings, we suggest the community and future works on molecular docking can correctly eval-
uate the traditional approaches. Besides, since blind docking actually does not align with common
real-world applications, it may be more effective to address pocket searching and molecular docking
(on given pockets) separately.
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Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

David Ryan Koes, Matthew P Baumgartner, and Carlos J Camacho. Lessons learned in empirical
scoring with smina from the csar 2011 benchmarking exercise. Journal of chemical information
and modeling, 53(8):1893–1904, 2013.

Radoslav Krivák and David Hoksza. P2rank: machine learning based tool for rapid and accurate
prediction of ligand binding sites from protein structure. Journal of cheminformatics, 10(1):1–12,
2018.

Vincent Le Guilloux, Peter Schmidtke, and Pierre Tuffery. Fpocket: an open source platform for
ligand pocket detection. BMC bioinformatics, 10(1):1–11, 2009.

Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the basis
for developing protein–ligand interaction scoring functions. Accounts of chemical research, 50
(2):302–309, 2017.

Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, and Shuangjia Zheng. Tankbind:
Trigonometry-aware neural networks for drug-protein binding structure prediction. bioRxiv, pp.
2022–06, 2022.

Rodrigo Quiroga and Marcos A Villarreal. Vinardo: A scoring function based on autodock vina
improves scoring, docking, and virtual screening. PloS one, 11(5):e0155183, 2016.

Pradeep Anand Ravindranath, Stefano Forli, David S Goodsell, Arthur J Olson, and Michel F San-
ner. Autodockfr: advances in protein-ligand docking with explicitly specified binding site flexi-
bility. PLoS computational biology, 11(12):e1004586, 2015.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Diogo Santos-Martins, Leonardo Solis-Vasquez, Andreas F Tillack, Michel F Sanner, Andreas
Koch, and Stefano Forli. Accelerating autodock4 with gpus and gradient-based local search.
Journal of chemical theory and computation, 17(2):1060–1073, 2021.

Hannes Stärk, Octavian Ganea, Lagnajit Pattanaik, Regina Barzilay, and Tommi Jaakkola. Equibind:
Geometric deep learning for drug binding structure prediction. In International Conference on
Machine Learning, pp. 20503–20521. PMLR, 2022.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence, 4(3):279–
287, 2022.

6



Published at the MLDD workshop, ICLR 2023

Xu Yan, Yingfeng Lu, Zhen Li, Qing Wei, Xin Gao, Sheng Wang, Song Wu, and Shuguang Cui.
Pointsite: A point cloud segmentation tool for identification of protein ligand binding atoms.
Journal of Chemical Information and Modeling, 62(11):2835–2845, 2022. doi: 10.1021/acs.jcim.
1c01512. URL https://doi.org/10.1021/acs.jcim.1c01512. PMID: 35621730.

Yuejiang Yu, Chun Cai, Zhengdan Zhu, and Hang Zheng. Uni-dock: A gpu-accelerated docking
program enables ultra-large virtual screening. 2022.

Yangtian Zhang, Huiyu Cai, Chence Shi, Bozitao Zhong, and Jian Tang. E3bind: An end-to-end
equivariant network for protein-ligand docking. arXiv preprint arXiv:2210.06069, 2022.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
2022.

7

https://doi.org/10.1021/acs.jcim.1c01512

	Introduction
	Related Work
	Experiments
	Experimental Settings
	Results
	Discussions

	Conclusion

