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Abstract

Inference latency stands as a critical bottleneck
in the large-scale deployment of Large Language
Models (LLMs). Speculative decoding methods
have recently shown promise in accelerating in-
ference without compromising the output distri-
bution. However, existing work typically relies
on a dualistic draft-verify framework and lacks
rigorous theoretical grounding. In this paper, we
introduce a novel polybasic speculative decod-
ing framework, underpinned by a comprehensive
theoretical analysis. Specifically, we prove a fun-
damental theorem that characterizes the optimal
inference time for multi-model speculative de-
coding systems, shedding light on how to extend
beyond the dualistic approach to a more general
polybasic paradigm. Through our theoretical in-
vestigation of multi-model token generation, we
expose and optimize the interplay between model
capabilities, acceptance lengths, and overall com-
putational cost. Our framework supports both
standalone implementation and integration with
existing speculative techniques, leading to accel-
erated performance in practice. Experimental re-
sults across multiple model families demonstrate
that our approach yields speedup ratios ranging
from 3.31× to 4.01× for LLaMA2-Chat 7B, up to
3.87× for LLaMA3-8B, up to 4.43× for Vicuna-
7B and up to 3.85× for Qwen2-7B—all while
preserving the original output distribution. We
release our theoretical proofs and implementation
code to facilitate further investigation into poly-
basic speculative decoding.
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1. Introduction
Large Language Models (LLMs) have substantially ad-
vanced Natural Language Processing (NLP), achieving lead-
ing performance in a wide range of tasks. Yet their excep-
tional capabilities are tempered by significant computational
demands, particularly in low-latency scenarios. Among mul-
tiple acceleration techniques, speculative decoding (Stern
et al., 2018; Leviathan et al., 2023; Xia et al., 2023; Chen
et al., 2023a; Anonymous, 2025b;a; Teng et al., 2024; Zhang
et al., 2024b) has emerged as a strategy to speed up inference
while preserving output fidelity.

The current speculative decoding ecosystem largely hinges
on draft-then-verify paradigms, which spawn various sub-
directions such as the design of lightweight draft mod-
els (Leviathan et al., 2023; Xia et al., 2023; Chen et al.,
2023a; Kim et al., 2024a; Svirschevski et al., 2024; Yin et al.,
2024; Sadhukhan et al., 2024), hierarchical token struc-
tures (Stern et al., 2018; Miao et al., 2024; Du et al., 2024),
and unified architectures (Yi et al., 2024; Cai et al., 2024).
Verification strategies typically follow three approaches:
greedy sampling, speculative sampling (Leviathan et al.,
2023), and typical acceptance (Cai et al., 2024). Despite
these efforts, current strategies remain limited by a dualis-
tic relationship between draft and target models (Qin et al.,
2024; Liu et al., 2024; Gui et al., 2024; Khisti et al., 2024),
affecting key parameters such as acceptance length due to
inherent capacity disparities between the two models. While
some recent works (Chen et al., 2023b; Kim et al.; Spector &
Ré, 2023) investigate multi-level drafts, they still employ a
singular top-level target model. Moreover, the field has hith-
erto lacked an overarching theoretical framework to guide
system design and provide robust performance guarantees.

In this paper, we introduce a principled polybasic specula-
tive decoding framework that uses multiple interconnected
models, grounded in a thorough theoretical analysis. Our
investigation yields two central insights. First, we derive a
fundamental relationship between the number of forward
passes and average acceptance lengths that dictates opti-
mal system-level inference speed. This relationship allows
us to precisely quantify potential inference speedups when
adding additional models. Second, we establish the capacity
of speculative sampling to enhance stability in acceptance
lengths. By optimizing sampling parameters, we can reduce
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variance in token acceptance to achieve more predictable
performance.

Building on these insights, we propose a unified architec-
ture for polybasic speculative decoding wherein multiple
draft models coordinate with each other and with a single
target model. Our implementation guidelines detail how
to select models, set speculation lengths, and implement
multi-stage verification procedures that maximize through-
put. Experimental evaluations demonstrate that this ap-
proach outperforms typical dualistic methods on diverse
tasks including MT-bench (Zheng et al., 2023), translation,
summarization, QA, mathematical reasoning, and Retrieval-
Augmented Generation (RAG). Our empirical results indi-
cate that the proposed polybasic framework maintains out-
put fidelity while delivering speedup ratios from 3× to over
4× across a range of widely used LLMs (e.g., Vicuna-7B,
LLaMA2-Chat 7B, LLaMA3-8B).

The main contributions of this work are summarized as
follows:

• We develop a formal theoretical framework for polyba-
sic speculative decoding, identifying the system-level
dependencies between model forward-pass cost, accep-
tance lengths, and stable acceleration performance.

• We prove a fundamental theorem that provides a rig-
orous expression for optimal inference time in multi-
model speculative decoding, highlighting conditions
under which additional models improve speedups.

• We show that speculative sampling significantly re-
duces variance in token acceptance lengths for multi-
model settings, increasing stability and improving in-
ference throughput.

• Our empirical investigation demonstrates the effec-
tiveness of the proposed polybasic approach, achiev-
ing notable speedups (up to 4.43×) on widely used
LLMs across various tasks, while preserving the target
model’s output distribution.

2. Related Work
The concept of speculative decoding originated from block-
wise parallel decoding (Stern et al., 2018), showcasing the
viability of partially parallel language generation. More
recently, research on speculative decoding (Stewart et al.,
2024; Zafrir et al., 2024) has coalesced around two dimen-
sions: drafting strategies for token prediction and verifica-
tion mechanisms for ensuring correctness.

Drafting Strategies. Drafting approaches typically follow
either independent or self-drafting protocols. Independent
drafting involves utilizing smaller or more efficient models

to propose candidate tokens, later verified by a larger model.
Methods range from training specialized drafters (Leviathan
et al., 2023; Xia et al., 2023; Chen et al., 2023a; Kim et al.,
2024a; Metel et al., 2024) to zero-shot usage of pre-existing
models (Spector & Ré, 2023). Self-drafting employs the
same model at intermediate stages, as in blockwise decod-
ing (Stern et al., 2018; Xiao et al., 2024), early exiting (Yang
et al., 2023), or mask-predict (Zhao et al., 2024), aiming to
amortize computation within the same architecture.

Verification Mechanisms. Verification primarily ensures
that proposed tokens maintain consistency with the target
distribution. Greedy verification (Kim et al., 2024a; Xia
et al., 2023; Agrawal et al., 2024) is conceptually straight-
forward but may hinder speedups for certain tasks. Specu-
lative sampling (Leviathan et al., 2023) introduces a proba-
bilistic acceptance rule that adaptively filters tokens while
retaining a high acceptance length. Token-tree-based veri-
fication (Miao et al., 2024; Spector & Ré, 2023; Lu et al.,
2024; Gao et al., 2024) provides hierarchical checks, which
can be beneficial for highly parallel architectures.

Recent Advances and Limitations. Recent work on cas-
cade or multi-level drafting (Chen et al., 2023b; Sun et al.,
2024) has partially moved beyond the dualistic draft-target
scheme. TRIFORCE (Sun et al., 2024) tackles long se-
quence generation by introducing a two-level hierarchy with
retrieval-based drafting and partial KV cache as an interme-
diate layer, achieving up to 2.31× speedup for Llama2-7B-
128K. CS Drafting (Chen et al., 2023b), on the other hand,
employs vertical and horizontal cascades to eliminate neural
autoregressive generation and optimize time allocation in
drafting, resulting in up to 81% additional speedup over
standard speculative decoding. While TRIFORCE focuses
on memory efficiency in long-context scenarios through
KV cache optimization, CS Drafting targets general infer-
ence optimization through cascade structures and statistical
drafting.

However, these approaches usually rely on empirical heuris-
tics without a unified theoretical framework to guide model
selection, acceptance-length control, and stability analysis.
Our work explicitly addresses these gaps by introducing
a comprehensive theoretical treatment of polybasic specu-
lative decoding and validating the resulting system design
empirically.

3. Polybasic Speculative Decoding Framework
Although speculative decoding has been demonstrated as an
effective technique for single-model verification, its acceler-
ation potential remains capped by the inherent draft-target
capacity gap in dualistic paradigms. We propose a polyba-
sic speculative decoding framework, which systematically
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(a) Dualistic speculative decoding 

Target model
Draft model

(b) Polybasic speculative decoding

1st draft 
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Speedup ratio:  2~3 ×           Generalization: 

Average acceptance length: 3~4

Speedup ratio:  𝟒 × Generalization : 

Average acceptance length: 𝟖~𝟏𝟎

Figure 1. Comparison of speculative decoding frameworks. (a) Traditional dualistic approach with a single draft model. (b) Our polybasic
framework with multiple draft models achieves superior performance (4× speedup and 8-10 tokens acceptance length) while maintaining
good generalization ability. The framework demonstrates significant improvements over the dualistic baseline.

employs multiple models to increase parallelism and ac-
ceptance length while preserving fidelity to the final target
distribution. Below, we detail the core problem setting,
theoretical foundations, and practical instantiations.

3.1. Problem Formulation

Let us consider a chain of models M = {M1, . . . ,Mn},
where M1 is the final target model we wish to replicate
in distribution, and M2, . . . ,Mn act as drafters at progres-
sively lower capacity (higher index indicates a smaller or
faster model). Let V be the vocabulary, and pi(x | x≤t) =
Mi(x≤t) the distribution over V given context x≤t.

At each decoding step t, Mn drafts a block of K tokens,
verified in ascending order by Mn−1,Mn−2, . . . ,M1. To-
kens are accepted if they do not exceed a certain mismatch
criterion, reflecting speculative sampling, greedy matching,
or another verification rule. Define:

Li = E
[
(# of consecutive tokens accepted by Mi)

]
, (1)

i.e., the expected block length accepted when verifying with
model Mi. Denoting by Fi the number of forward passes
that Mi must perform, our goal is to minimize the total
inference time

T =

n∑
i=1

Fi · Ti, (2)

where Ti is the cost of a single forward pass for model Mi.

3.2. Theoretical Foundations

We establish fundamental properties of multi-model (polyba-
sic) speculative decoding that govern how additional models

impact computational cost and acceptance lengths. Our anal-
ysis focuses on two main aspects: (i) optimal inference time
and (ii) stability of acceptance lengths.

Optimal Inference Time. In a conventional dualistic
system with one draft model (M2) and a single target
(M1), the total inference time is approximately equal to
N
L1

T1 + β N
L1

T2, where N is the sequence length and β is
a system-dependent scaling factor reflecting the final draft
model’s capability. In a polybasic setting with n > 2 mod-
els, additional drafting layers can bring more tokens per
verification cycle if acceptance lengths between interme-
diate pairs are high. However, each additional model also
introduces its own forward-pass costs. Formally, we have:

Lemma 3.1 (Optimal Inference Time). For an n-model
polybasic system generating N tokens, the total inference
time T can be expressed as:

T =

n−1∑
i=1

N

Li
· Ti + β · N

Ln−1
Tn, (3)

where Li is the expected acceptance length for verification
by Mi, and β is a system-dependent scaling factor reflecting
the final draft model’s capability.

Sketch of Proof. We segment the total generation length N
into accepted blocks validated by pairs (Mi,Mi+1). Each
model Mi must run as many forward passes as needed to
accept N tokens in total. A more detailed version of the
proof incorporates the block acceptance process for each ad-
jacency (Mi,Mi+1), culminating in the time decomposition
of Equation (3).
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Model Selection Criterion. The next question is whether
introducing a new model Mnew between Mi and Mi+1 im-
proves T . The improvement depends on whether the re-
duced cost from higher acceptance length outweighs the
additional forward-pass overhead. Formally:

Theorem 3.2 (Model Insertion Efficiency). Adding Mnew

between Mi and Mi+1 decreases total inference time if and
only if it achieves a sufficiently large increase in accep-
tance lengths, balanced against its forward-pass cost Tnew.
Concretely, if Lnew is the acceptance length when verifying
tokens from Mnew against Mi, and L′

i+1 is the acceptance
length from Mi+1’s perspective, then improvement occurs
if:

Tnew

Ti
< Lnew

(
1

Li
− 1

Li−new

)
or

Tnew

Ti+1
< β

(
Lnew−(i+1)

Li
− 1

)

Proof. First, we prove the case for three models:

For i = 2:

T =
N

L1
· T1 + β · N

L1
· T2 (4)

For i = 3:

T =
N

L′
1

· T1 +
N

L′
2

· T ′
2 + β · N

L′
2

· T ′
3 (5)

where Ti is the inference time of the i-th model, α is
considered to be equal in both equations, and T2 = T ′

3,
L′
1 > L′

2 > L1.

We can calculate the difference between Equation 4 and
Equation 5:

N ·
(

1

L′
1

− 1

L1

)
· T1 +

N

L′
2

· T ′
2

+ β ·N ·
(

1

L′
2

− 1

L1

)
· T2 < 0

The expression is less than 0 if either of the following con-
ditions is met:

Condition 1: Sum of the first two terms is less than 0

N ·
(

1

L′
1

− 1

L1

)
· T1 +

N

L′
2

· T ′
2 < 0

⇔T ′
2

T1
< L′

2 ·
(

1

L1
− 1

L′
1

)

OR

Condition 2: Sum of the last two terms is less than 0

N

L′
2

· T ′
2 + β ·N ·

(
1

L′
2

− 1

L1

)
· T2 < 0

⇔T ′
2

T2
< β ·

(
L′
2

L1
− 1

)

This result generalizes to inserting a new model at any po-
sition in a polybasic system. When inserting model Mnew

between Mi and Mi+1, we can treat all models before the in-
sertion point (M1 through Mi) as a single composite model,
and all models after the insertion point (Mi+1 through Mk)
as another composite model. This reduces the general case
to the three-model case proven above, where the composite
model before insertion corresponds to M1, the new model
corresponds to M ′

2, and the composite model after insertion
corresponds to M2.

Therefore, the same conditions for efficiency improvement
apply at any insertion point in the model sequence, subject
to the specified constraints on acceptance lengths.

Stability Analysis. Beyond achieving higher acceptance
lengths, stability in acceptance is crucial for consistent
speedups. We analyze speculative sampling with probability
pi = 1 − α to accept a token from Mi+1 if it is likely un-
der Mi’s distribution. Let σ2

i be the variance of acceptance
lengths. As shown below, for multi-model chaining, accep-
tance length variance grows with smaller pi, implying that
high acceptance probability supports stable performance:

Theorem 3.3 (Sampling Stability). In the model chain using
speculative sampling with acceptance probability pi = 1−
α, the variance in acceptance length satisfies:

σ2 =
α
[
1− (n2 − 1)αn

]
− (n2 − 1)αn+1

(1− α)2
.

Proof. Let p = 1 − α be the probability of accepting a
token. For a truncated geometric distribution of maximum
n trials, define:

S =

n−1∑
k=1

k · (1− p)k−1.

Using standard manipulation (method of differences), one
can show:

S =
1− (1− p)n−1 − n(1− p)n−1 + (1− p)n

p2
.

Hence, the expectation of the acceptance length, allowing
up to n tokens, is

E[N ] =
1− (1− p)n

p
.
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We similarly compute

E[N2] =

n−1∑
k=1

k2 · p · (1− p)k−1 + n2 · (1− p)n−1.

After careful algebra (omitted for brevity), one obtains:

E[N2] =

1− (1− p)n(n2 + 2n− 1) + 2(1− p)n+1(n− 1)

p2
.

Thus,
Var(N) = E[N2]− (E[N ])2,

leading to the formula stated in Theorem 3.3.

Collectively, these results establish a principled foundation
for polybasic speculative decoding. Given model inference
times Ti and acceptance probabilities, one can estimate
the optimal system layout via Equation (3), gauge whether
a new model confers net benefit (Theorem 3.2), and use
speculative sampling to ensure stable acceptance lengths
(Theorem 3.3).

3.3. Three-Model System Design

To illustrate practical deployment, we describe a three-
model system (M1: target, M2: intermediate, M3:
lightweight) that exemplifies the design choices guided by
our theory.

Architecture. Our reference system includes:

• M1 (Target): A high-capacity model such as Vicuna-
7B or LLaMA2-Chat 7B.

• M2 (Intermediate): A quantized 4-bit version of M1

or a comparable mid-size model to bridge the capacity
gap.

• M3 (Draft): A lightweight, fast model (e.g., EA-
GLE2(Li et al., 2024)) for initial token proposals.

By Theorem 3.2, M2 should be inserted if it raises the
acceptance length enough to offset its own forward-pass
cost.

Staged Verification. Tokens first pass from M3 to M2,
whose verification is relatively fast. Accepted tokens are
then periodically verified by M1. This two-stage verifica-
tion acts as a filter, rapidly discarding problematic tokens
at the cheaper M2 stage. The threshold for passing tokens
to M1 is set to accumulate a small block (e.g., µ tokens) to
amortize M1’s forward-pass overhead. This setup capital-
izes on the fact that M3 can generate numerous tentative
tokens quickly, while M1 only checks consolidated blocks
of already moderately validated tokens.

Algorithm 1 Polybasic Speculative Decoding (Three Mod-
els)

1: Input: Target model M1, intermediate model M2, draft
model M3

2: Input: Context x≤t, total length N
3: Input: Draft length K, threshold µ
4: Initialize: t← |x≤t|, accepted← ∅, cnt← 0
5: while t < N do
6: // Draft and verify with M3 and M2

7: x̃1:K ←M3(x≤t) // Draft
8: p1:K ←M2(x≤t, x̃1:K) // Verify
9: for i = 1 to K do

10: if VERIFY(x̃i, pi) then
11: accepted.append(x̃i)
12: cnt← cnt + 1
13: else
14: break
15: end if
16: end for
17: // Check if threshold reached for M1 verification
18: if cnt ≥ µ then
19: v ←M1(x≤t, accepted) // Verify
20: if VERIFYBLOCK(accepted, v) then
21: xt+1:t+cnt ← accepted
22: t← t+ cnt
23: else
24: xt+1 ← SampleOne(v1) // fallback acceptance
25: t← t+ 1
26: end if
27: accepted← ∅
28: cnt← 0
29: end if
30: end while

Algorithm. Algorithm 1 details a generic procedure for
polybasic speculative decoding with three models. The sys-
tem accumulates tokens verified by M2 until a threshold,
then triggers verification by M1. Upon acceptance or par-
tial acceptance, it appends tokens to the growing output
sequence and advances t. Simple or more sophisticated
error handling (e.g., partial rollback) can be adopted if M1

rejects tokens.

Such a staged design is representative rather than exhaus-
tive. Model scaling, verification strategies, and drafting
lengths can be adapted to different resource constraints or
performance targets. Our theoretical framework offers ex-
plicit performance bounds, making the design space more
transparent.

3.4. Generalization to Self-Drafting Methods

Our polybasic speculative decoding framework provides a
general theoretical foundation that naturally extends to self-
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drafting approaches, demonstrating the broad applicability
of our theoretical principles. This generalization reveals new
opportunities for designing efficient speculative decoding
systems using model-internal components.

In self-drafting methods like FFN heads approaches (Cai
et al., 2024) (Ankner et al., 2024) (Kim et al., 2024b) and
early exiting (Elhoushi et al., 2024) techniques, multiple
prediction sources are derived from the same model architec-
ture. These can be viewed as the fundamental draft models
in a polybasic system, with the original model serving as
the target. For instance, in an FFN heads approach, each
head functions as a base draft model capable of generating
tokens in parallel, forming the lowest tier in our polybasic
hierarchy. Similarly, early exit points at different layers can
be treated as draft models with varying capabilities.

The optimization principles established in Section 3.2 re-
main applicable in this context, though they require careful
algorithmic design to account for the shared computational
paths in self-drafting approaches. The relationship between
forward pass frequency and acceptance length provides guid-
ance for optimal configuration of these systems, while our
stability analysis (Theorem 3.3) informs the design of verifi-
cation strategies.

This generalization demonstrates that our polybasic frame-
work provides a unified theoretical foundation for specula-
tive decoding, encompassing both independent draft models
and self-drafting approaches. This suggests promising direc-
tions for developing new algorithmic techniques that fully
exploit the parallel prediction capabilities inherent in these
methods while maintaining the theoretical guarantees of our
framework.

4. Experiments
We conduct comprehensive evaluations to validate our theo-
retical claims and to benchmark the proposed polybasic sys-
tem against traditional dualistic strategies. Our experiments
span various LLMs, tasks, and hyperparameter settings.

4.1. Setup and Metrics

Models and Tasks. We conducted experiments on Vicuna-
7B, LLaMA2-chat-7B, and LLaMA3-7B-Instruct. We eval-
uated our multi-model speculative system in SpecBench(Xia
et al., 2024), across multiple tasks including multi-turn con-
versation, translation, summarization, question answering,
mathematical reasoning, and retrieval-augmented genera-
tion, employing the MT-bench (Zheng et al., 2023), WMT14
DE-EN, CNN/Daily Mail (Nallapati et al., 2016), Natural
Questions (Kwiatkowski et al., 2019), GSM8K (Cobbe et al.,
2021), and DPR (Karpukhin et al., 2020). Speculative sam-
pling (Leviathan et al., 2023) conducted experiments with a
batch size of 1, similarly, the majority of our experiments

also adopted this setting.

Performance Metrics. Following previous speculative de-
coding studies, we focus on two metrics. Walltime speedup
ratio c: ratio of actual decoding time in our system vs. stan-
dard autoregressive decoding. Average acceptance length
µ: mean number of consecutively accepted tokens per for-
ward pass by the final (largest) model.

Quantization and Training Details. For the intermediate
model, we adopt 4-bit quantization (Ma et al., 2024) with a
group size of 128, balancing reduced inference cost against
quality. Draft models are built following EAGLE2, trained
on ShareGPT data. Our experiments run on NVIDIA A800
80G GPUs.

4.2. Theoretical Validation

To empirically validate Theorem 3.2, we conducted two
targeted experiments evaluating the impact of inserting ad-
ditional draft models into a polybasic system. We measured
Tnew , Lnew, and the resultant speedup ratio. Results are
summarized in Table 4.2.

Case 1: Non-Compliant Insertion We inserted a
lightweight Vicuna-1B model between Vicuna-7B (target)
and EAGLE2 (baseline drafter). Here, Tnew/Ti = 0.80,
while the acceptance-length improvement factor Lnew ·
(1/Li − 1/Li-new) = 0.117. Since 0.80 > 0.117, Theo-
rem 3.2 predicts a performance degradation. Empirically,
the speedup ratio dropped from 2.61× to 1.08×, confirming
the theoretical prediction. This highlights the necessity of
balancing model capacity and computational overhead when
expanding the polybasic hierarchy.

Case 2: Compliant Insertion We inserted a quantized
Vicuna-7B (W4A16) model between the original Vicuna-
7B and EAGLE2. Here, Tnew/Ti = 0.318 and Lnew ·
(1/Li − 1/Li-new) = 0.330. Since 0.318 < 0.330, The-
orem 3.2 predicts a speedup improvement. Experimentally,
the system achieved a 3.48× speedup, up from 2.61×. This
demonstrates the theorem’s utility in guiding effective model
selection.

Case 3: Generalization To substantiate the universal the-
oretical guidance of Theorem 3.2 across diverse cascaded
speculative sampling methodologies, we reproduced Cas-
cade Speculative Drafting (Chen et al., 2023b) and con-
ducted rigorous evaluations spanning multiple model scales
including FLAN-T5-XXL, Base, and Small variants. We in-
serted FLAN-T5-base between FLAN-T5-XXL and FLAN-
T5-small. The configuration yields Tnew/Ti = 0.403 with
acceptance metric Lnew · (1/Li − 1/Li-new) = 0.461, satis-
fying the acceleration criterion 0.403 < 0.461 as shown in
Table 1. The system exhibits statistically significant speedup
improvement from 3.19× to 3.88×.
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Table 1. Theoretical Validation via Model Insertion
Case Ti (ms) Li-new Tnew (ms) Lnew Ti+1 (ms) Li Speedup

Non-compliant 22 3.83 17.61 3.77 4 4.34 2.61× → 1.08×
Compliant 22 6.26 7.00 4.67 4 4.34 2.61× → 3.48×
CS Drafting 47.52 3.50 19.16 3.02 12.42 2.28 3.19×→3.88×

These experiments directly corroborate Theorem 3.2, show-
ing that the theoretical conditions on Tnew and Lnew are nec-
essary for improving system performance. The results em-
phasize the framework’s ability to rigorously guide model
selection and hierarchy design, moving beyond heuristic-
driven approaches.

4.3. Effectiveness

Figures 2 and 3 summarize speedup ratios on various tasks.
Our polybasic approach demonstrates clear gains over dual-
istic baseline systems (including EAGLE2 and Speculative
Sampling). Notably:

• Vicuna-7B achieves 3.16× on average and up to
4.43× in mathematical reasoning.

• LLaMA2-Chat 7B attains 3.66× overall, peaking at
4.10× in multi-turn conversation.

• LLaMA3-8B yields 3.31×–3.87× speedups, illustrat-
ing the method’s adaptability to larger model sizes.

• qwen2-7B-Instruct demonstrates a 3.28× average
speedup, which is approximately 69% higher than EA-
GLE2’s 1.94× acceleration on the same model.

Our analysis also shows that average acceptance lengths
range from 9.1 to over 10 tokens, significantly higher than
typical dual-model methods. This corroborates our theoreti-
cal claim that multi-tiered speculation improves acceptance
efficiency.

As shown in Figure 3, our method demonstrates substantial
speedups across diverse tasks, with particularly strong per-
formance in math reasoning (up to 4.43×) and multi-turn
conversation (up to 4.10×). However, we observe rela-
tively modest acceleration on summarization tasks, where
the speedup ranges from 2.95× to 3.41×. This pattern can
be attributed to the higher token generation requirements in
summarization, which necessitates maintaining KV caches
across multiple models in our polybasic speculative decod-
ing framework. Despite this limitation, our approach is or-
thogonal to KV cache optimization techniques, suggesting
potential for further improvements through the integration
of cache-focused methods.

4.4. Scalability to Larger Models

To demonstrate the generalizability of our framework across
model scales, we conducted additional experiments with
Vicuna-13B and LLaMA-2-chat-70B models. As shown in
Table 3, our polybasic approach maintains significant advan-
tages over EAGLE baseline even when scaled to larger mod-
els. Specifically, we achieve 2.69× speedup with Vicuna-
13B (vs. EAGLE2’s 2.30×) and 2.92× for LLaMA-70B
(vs. 2.46×), while maintaining substantially higher average
acceptance lengths. These results confirm that our method’s
benefits are not limited to smaller models but extend to
larger-scale LLMs. The slightly reduced absolute speedup
ratios compared to 7B models align with expectations, as
larger models naturally incur higher verification costs that
partially offset drafting efficiency gains.

4.5. Ablation Study: Speculative vs. Greedy Sampling

To validate the impact of speculative sampling on stability,
we compare acceptance-length variance from speculative
vs. greedy verification. We sample 50 queries in a three-
model setup and record acceptance-length distributions (Fig-
ure 4). As anticipated, speculative sampling yields smaller
variance, indicating more stable acceptance lengths across
diverse inputs. This result aligns with Theorem 3.3 and
further justifies the use of speculative sampling in multi-tier
verification.

4.6. Four-Model System Discussion and Limitations

While our theoretical analysis suggests the potential bene-
fits of incorporating more models into the polybasic spec-
ulative decoding framework, empirical implementation of
systems with four or more models faces practical challenges.
Under our sufficient (though not necessary) condition for
model insertion efficiency, it is currently difficult to find
suitable off-the-shelf models that satisfy the theoretical re-
quirements without additional training. This limitation pri-
marily stems from the stringent balance needed between
acceptance length improvements and computational over-
head. However, we believe this barrier is not fundamental.
Through future exploration of complementary optimization
techniques, such as advanced KV cache management, model
pruning, and quantization, we anticipate achieving break-
throughs in systems with four or more models, potentially

7
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Figure 2. Speedup ratios for Vicuna-7B, LLaMA2-Chat 7B, LLaMA3-8B-Instruct and Qwen2-7B-Instruct on SpecBench. Our
polybasic system consistently achieves the highest speedups (3.16×–3.66×), surpassing EAGLE2 and vanilla baselines.

Table 2. Average acceptance length (µ) and speedup ratio (c) on different tasks. V7B: Vicuna-7B, L3-8B: LLaMA3-8B-Instruct, L2-7B:
LLaMA2-Chat-7B, Q2-7B: Qwen2-7B-Instruct.

MT Trans. Sum. QA Math RAG Overall

Model c µ c µ c µ c µ c µ c µ c µ

Our

V7B 3.77x 11.22 3.07x 7.76 3.01x 10.24 3.65x 9.53 4.43x 10.28 2.98x 10.30 3.48x 9.88
L3-8B 3.70x 9.97 3.39x 8.86 3.02x 9.38 3.16x 9.08 3.87x 10.08 2.71x 9.24 3.31x 9.44
L2-7B 4.10x 10.47 3.46x 9.15 3.41x 9.86 3.61x 9.49 4.02x 9.99 3.31x 10.08 3.66x 9.84
Q2-7B 3.65x 9.85 3.15x 8.65 2.95x 9.15 3.25x 8.95 3.85x 9.95 2.85x 9.35 3.28x 9.32

EAGLE2

V7B 3.19x 4.76 2.07x 3.22 2.59x 3.96 2.45x 3.71 3.19x 4.72 2.15x 3.95 2.61x 4.34
L3-8B 2.69x 3.99 2.37x 3.53 2.23x 3.58 2.21x 3.42 2.83x 4.20 2.23x 3.95 2.44x 3.82
L2-7B 3.04x 4.48 2.61x 3.96 2.50x 4.04 2.55x 4.05 3.04x 4.68 2.40x 4.19 2.70x 4.30
Q2-7B 2.40x 3.74 1.45x 2.45 1.59x 3.06 1.81x 2.91 2.63x 4.26 1.72x 3.27 1.94x 3.51

Table 3. Speedup Ratios and Acceptance Lengths on Larger Mod-
els

Method Model c µ

Our Vicuna-13B 2.69× 8.62
LLaMA-70B 2.92× 7.48

EAGLE Vicuna-13B 2.30× 4.42
LLaMA-70B 2.46× 4.08

unlocking even greater acceleration benefits while maintain-
ing inference quality.

Our polybasic framework, like other speculative decoding
methods, can be limited by large KV cache footprints, which
scale with text length. Thus, for tasks with extensive con-
text, the overhead from additional models can be more

pronounced. As Figure 3 and Table 2 shows, we observe
somewhat lower acceleration in summarization and RAG
tasks than in shorter contexts. Addressing KV cache con-
straints via caching techniques (Xiao et al., 2023; Zhang
et al., 2024c;a; Jin et al., 2024) is an active research avenue
and remains a promising direction for future improvements.

5. Conclusion
We have presented a polybasic speculative decoding sys-
tem that systematically extends beyond dualistic draft-target
paradigms. By establishing a rigorous theoretical frame-
work, we derived an expression for optimal inference time
and showed how speculative sampling stabilizes acceptance
lengths in multi-model systems. Extensive experiments
spanning multiple tasks and model families corroborate our
claims, demonstrating 4× speedups while preserving the

8
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Figure 3. Speedup by task. Our method excels in math tasks, reaching 4.43× with Vicuna-7B, while also maintaining strong accelerations
in translation, QA, and multi-turn conversation.

Figure 4. Variance of acceptance length. Speculative sampling (blue) exhibits noticeably lower variance compared to greedy sampling
(orange), aligning with our theoretical stability analysis.

target model’s output distribution.

In future work, we will extend our findings to more com-
plex parallel computing scenarios by developing distributed
speculative sampling systems. We also plan to explore more
efficient caching strategies, implement dynamic adaptation
of speculation lengths, and validate the framework’s general-

ity across models of varying scales (from billions to trillions
of parameters), aiming to continuously push the boundaries
of efficient LLM inference.
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