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ABSTRACT

Deep Learning (DL) has advanced various fields by extracting complex patterns
from large datasets. However, the computational demands of DL models pose
environmental and resource challenges. Deep shift neural networks (DSNNs)
offer a solution by leveraging shift operations to reduce computational complexity
at inference. Following the insights from standard DNNs, we are interested in
leveraging the full potential of DSNNs by means of AutoML techniques. We study
the impact of hyperparameter optimization (HPO) to maximize DSNN performance
while minimizing resource consumption. Since this combines multi-objective (MO)
optimization with accuracy and energy consumption as potentially complementary
objectives, we propose to combine state-of-the-art multi-fidelity (MF) HPO with
multi-objective optimization. Experimental results demonstrate the effectiveness of
our approach, resulting in models with over 80% in accuracy and low computational
cost. Overall, our method accelerates efficient model development while enabling
sustainable AI applications.

1 INTRODUCTION

Deep Learning (DL) is considered one of the most promising approaches to extracting information
from large data collections with complex structures. This includes performing computations in IoT
environments and on edge devices (Li et al., 2018; Zhou et al., 2019). With the ever-increasing size
and performance of such models due to the progress in science and industry, a computational cost is
associated with them (Sze et al., 2017). Minimizing this cost directly affects a model’s environmental
impact (Schwartz et al., 2020). Thus, resources are freed up and can be used for other tasks, e.g.,
those with resource limitations (Howard et al., 2017). With our approach, we contribute to DL in
such low-resource settings.

Deep shift neural networks (DSNNs) offer great potential in reducing power consumption compared
to traditional deep learning models (Elhoushi et al., 2021). Instead of floating point arithmetic, they
leverage shift operations — specifically, bit shifting — as the computational unit, which boosts
efficiency by replacing costly multiplication operations in convolutional networks. We suspect that
the configuration of DSNNs has a huge impact on both performance and computational efficiency.

One of the key challenges with DSNNs is determining the appropriate level of precision for the shift
operations to minimize quantization errors without excessively increasing the computational load. In
this study, we leverage DSNNs in combination with automated machine learning (AutoML) to find
the optimal configuration of DSNNs in the spirit of Green AutoML (Tornede et al., 2023). This is
achieved by hyperparameter optimization (HPO) using the framework SMAC3 proposed by Lindauer
et al. (2022), which automates the search for optimal model configurations. Integrating multi-fidelity
(MF) and multi-objective optimization (MO) techniques (Belakaria et al., 2020) facilitates an optimal
exploration of the hyperparameter space that jointly prioritizes performance and energy consumption
(Deb, 2014). SMAC’s MO implementation effectively balances the trade-off between achieving high
predictive accuracy and minimizing energy consumption. The MF aspect allows for the efficient use
of computational resources by evaluating configurations at varying levels of detail. Employing tools
like CodeCarbon (Lacoste et al., 2019; Lottick et al., 2019) during the training and evaluation phases
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provides real-time insights into the energy consumption and carbon emissions associated with each
model configuration.

Overall, we make the following contributions:

1. A configuration space specific for DSNNs,
2. a Green AutoML approach for efficiency-driven model building,
3. insights into the design decisions for obtaining optimal tradeoffs between accuracy and

energy efficiency, and
4. combining MO and MF approaches in SMAC to improve optimization performance and

computational resource utilization.

2 BACKGROUND

The following chapter introduces foundational concepts for our approach.

2.1 DEEP SHIFT NEURAL NETWORKS

Deep shift neural networks (DSNNs) are a novel approach to reducing the computational and energy
demands of deep learning (Elhoushi et al., 2021). They achieve a considerable reduction in latency
time by simplifying the network architecture such that they replace the traditional multiplication
operations in neural networks by bit-wise shift operations and sign flipping, making DSNNs suitable
for computing devices with limited resources. There are two methods for training DSNNs (Elhoushi
et al., 2021): DeepShift-Q (Quantization) and DeepShift-PS (Powers of two and Sign). DeepShift-Q
involves training regular weights constrained to powers of 2 by quantizing weights to their nearest
power of two during both forward and backward passes. DeepShift-PS directly includes the values of
the shifts and sign flips as trainable parameters.

The DeepShift-Q approach obtains the sign matrix S from the trained weight matrix W as S =
sign(W ). The power matrix P is the base-2 logarithm of W ’s absolute values, i.e., P = log2(|W |).
After rounding P to the nearest power of two, Pr = round(P ), the quantized weights W̃q are
calculated by applying the sign from S, shown as W̃q = flip(2Pr , S). The DeepShift-PS approach
optimizes neural network weights by directly adapting the shift (P̃ ) and sign (S̃) values. The shift
matrix P̃ is obtained by rounding the base-2 logarithm of the weight values, P̃ = round(P ), and
the sign flip S̃ is computed as S̃ = sign(round(S)). Weights are calculated as W̃ps = flip(2P̃ , S̃),
where the sign flip operation S̃ assigns values of −1, 0, or +1 based on s.

2.2 HYPERPARAMETER OPTIMIZATION

The increasing complexity of deep learning algorithms enhances the need for automated hyperpa-
rameter optimization (HPO) to increase model performance (Bischl et al., 2023). Consider a dataset
D = {(xi, yi)}Ni=1 ∈ D ⊂ X × Y , where X is the instance space and Y is the target space, and a
hyperparameter configuration space Λ = {λ1, . . . , λL}, L ∈ N. In our study, M denotes the space
of possible DSNN models. An algorithm A : D×Λ → M trains a model M ∈ M, instantiated with
a configuration of L hyperparameters sampled from Λ, on a training subset of D. The dataset D is
split into training, validation, and test sets: Dtrain,Dval, and Dtest respectively. The performance of the
algorithm is assessed via an expensive-to-evaluate loss function L : M× D → R. The optimization
objective of HPO is to find the configuration λ∗ ∈ Λ with minimal validation loss L, such that:

λ∗ ∈ argmin
λ∈Λ

L
(
A(Dtrain, λ),Dval

)
. (2.1)

This process tunes hyperparameters based on validation set performance. Models are trained on Dtrain
and optimized using Dval. Finally, the model’s performance is assessed on Dtest.

2.3 BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) is a strategy for global optimization of black-box loss functions L :
M × D −→ R that are expensive to evaluate (Jones et al., 1998). BO uses a surrogate model S,
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a probabilistic model to approximate the loss function, commonly given by a Gaussian Process
or a Random Forest (Rasmussen & Williams, 2006; Hutter et al., 2011). An acquisition function
C : Λ −→ R guides the search for the next optimal evaluation points by balancing the exploration-
exploitation trade-off, based on the set of previously queried points {(λ1,L1), ..., (λm−1,Lm−1)} at
time m. L is only evaluated at certain points, with which the surrogate model is updated.

2.4 MULTI-FIDELITY OPTIMIZATION

Since it is not feasible to fully train multiple configurations of DSNNs for comparison due to
computational efficiency, we employ a multi-fidelity (MF) approach (Li et al., 2017), which is a
common strategy in AutoML to navigate the trade-off between performance and approximation error
(Hutter et al., 2019). MF approaches train cheap-to-evaluate proxies of black-box functions following
different heuristics, e.g., allocating a small number of epochs to many configurations in the beginning
and training the best-performing ones on an increasing number of epochs. Formally, we define a
space of fidelities F and aim to minimize a high-fidelity function F ∈ F (Kandasamy et al., 2019):

min
λ∈Λ

F (λ) . (2.2)

We aim to approximate F ∈ F , using a series of lower-fidelity, less expensive approximations
{f(λ)1, . . . , f(λ)j}, where j denotes the total number of fidelity levels. The allocated resources for
evaluating a model’s performance at various fidelities are referred to as a budget. MF assumes that
the highest fidelities approximate the black-box function best.

2.5 MULTI-OBJECTIVE OPTIMIZATION

Multi-Objective Optimization (MO) addresses problems involving multiple, often competing ob-
jectives. This approach is used in scenarios where trade-offs between two or more conflicting
objectives must be navigated, such as, in the context of DSNNs, enhancing accuracy alongside
reducing energy consumption. MO aims to identify Pareto-optimal solutions (Deb, 2014). To ensure
effective approximation of the Pareto front, new points are added based on the current observation
dataset Dobs = {(λ1,L(λ1)), . . . , (λn,L(λn))} at time n. These points augment the surface formed
by the non-dominated solution set D⋆

n, which satisfies the condition for d objective variables and
a loss function L = (L1, . . . ,Ld) (Wada & Hino, 2019): For all λ, (λ,L(λ)) ∈ D⋆

n ⊂ Dn and
λ′, (λ′,L(λ′)) ∈ Dn exists k ∈ {1, . . . , d}, such that Lk(λ) ≤ Lk(λ

′).

3 APPROACH

To computationally enhance Deep shift neural networks (DSNN) via AutoML, we employ multi-
fidelity optimization (MF). We introduce different fidelities to the training process by increasing
the number of shift layers in the model. The initially trained models will include fewer shift layers,
which will increase during the optimization process. We assume this will guide the search toward the
highest-performing shift networks since a low number of shift layers introduces the least numerical
inaccuracy and mathematical uncertainty to the model. We aim to investigate whether picking the best-
performing models under low model-intrinsic uncertainty continues to show improved performance
when combined with more shift layers.

In Section 2, we explained the MF approach. One algorithm that formalizes its heuristics is successive
halving (Jamieson & Talwalkar, 2016), where nc configurations are trained on an initial small budget
bI . After that, the ν/(ν + 1) best-performing configurations are trained on a budget of νbI/(ν + 1)
until the best configuration is determined. We address the trade-off between bI and nc, or between
approximation error and exploration inherent in successive halving, using the HyperBand algorithm
for MF. HyperBand (Li et al., 2017) runs successive halving in multiple brackets, where each bracket
provides a combination of nc and a fraction of the total budget per configuration so that they sum up
to the total budget.

We extend this to multi-fidelity multi-objective optimization (MFMO). We simultaneously address
the accuracy of the model as well as its energy consumption. The goal is to optimize the performance
of the DSNNs, ensuring they achieve high accuracy and robustness in their predictive capabilities;
secondly, to minimize energy consumption, a critical factor given the environmental implications of
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computational efficiency. To this end, we implement a two-dimensional objective function fMO :
Λ −→ R2, fM0(λ) =

(
floss(λ), femission(λ)

)
, where, given a configuration λ ∈ Λ, floss(λ) aims

to minimize the loss, enhancing the model’s accuracy, and femission(λ) seeks to minimize the energy
consumption during training and inference, promoting environmental sustainability. We aim to solve
the following optimization problem:

argmin
λ∈Λ

fM0(λ) . (3.1)

SMAC3 uses a mean aggregation strategy by calculating the objective’s arithmetic mean to aggregate
multiple objectives into a single scalar value for MF optimization. We use the ParEGO algorithm
(Knowles, 2006) to compute Pareto optimal objectives. It transforms the multi-objective problem into
a series of single-objective problems by introducing varying weight parameters for the objectives in
each iteration of HyperBand. Thus optimizing a different scalarization per evaluation to approximate
the Pareto front. The resulting single-objective optimization function can now be evaluated in an MF
setting.

4 EXPERIMENTS

In the following section, we detail the setup and methodology used to evaluate our approach discussed
in Section 3, focusing on optimizing deep shift neural networks (DSNNs) through multi-fidelity,
multi-objective optimization (MFMO) as well as multi-fidelity optimization (MF). We discuss how
our approach successfully navigates the model performance and environmental impact trade-offs.

4.1 EVALUATION SETUP

We train and evaluate our models on the Cifar10 dataset (Krizhevsky et al., 2009), using NVIDIA
A100 GPUs. For hyperparameter optimization (HPO), we rely on using SMAC3 (Lindauer et al.,
2022). To incorporate the environmental impact into our HPO workflow, we use the CodeCarbon
emissions tracker (Lacoste et al. (2019), Lottick et al. (2019)) to track carbon emissions from
computational processes by monitoring energy use and regional energy mix in gCO2eq , grams of
CO2 equivalent (Tornede et al., 2023). We chose a pre-trained ResNet20 (He et al., 2016).

4.2 RESULTS
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Figure 1: Test accuracy of the default DSNN and a
configured DSNN

Figure 1 displays the Top-1 test accuracy of a
DSNN trained with the default configuration
from Table 1 as defined by Elhoushi et al. (2021),
as well as the test accuracy from the config-
ured DSNN according to SMAC3 with MF us-
ing HyperBand, with the number of shift layers
inducing the fidelities. The Pareto-optimal So-
lution No. 1 configuration from Table 1 is used.
The MF algorithm, trained on the same seed
as MFMO, identifies it as the optimal model
configuration out of fifty evaluated configura-
tions. While volatile to a certain degree, the plot
clearly shows that the model’s performance with
the optimal configuration surpasses that of the
model instantiated with the default configura-
tion by at least three percent. This verifies our
approach that MF can successfully be executed
with DSNN-specific budgets such as the shift
depth.

Furthermore, it confirms our assumption from
Section 3 that the models can be evaluated under low model-intrinsic uncertainty and continue to
perform well when instantiated with more shift layers.
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Parameter Search Space Default POS 1 POS 2
Batch Size [32, 128] 128 97 102
Optimizer SGD, Adam, Adagrad,

Adadelta, RMSProp, RAdam,
Ranger

SGD Ranger SGD

Learning Rate [0.001, 0.1] 0.1 0.0847 0.0798
Momentum [0.0, 0.9] 0.9 0.5016 0.6738
Epochs [5, 100] 200 67 91
Weight Bits [2, 8] 5 4 7
Activation Integer Bits [2, 32] 16 4 29
Activation Fraction Bits [2, 32] 16 4 10
Shift Depth [0, 20] 20 5 16
Shift Type Q, PS PS Q Q
Rounding deterministic, stochastic deterministic stochastic deterministic
Weight Decay [1e-6, 1e-2] 0.0001 0.0026 0.00012
Accuracy (in %) 83.50 84.67
Emissions (in gCO2eq) 0.1661 0.1673

Table 1: MFMO findings, incl. two Pareto optimal solutions (POS 1 & 2)

Table 1 shows two Pareto optimal solutions out of 33 evaluated configurations with our MFMO
approach. Evaluating solution No. 1 results in a Top-1 accuracy of 83.50% and 0.1661 gCO2eq .
Solution No. 2 yields a Top-1 accuracy of 84,67%, producing 0.1673 gCO2eq . Note that they
were trained for fewer epochs due to computational limitations. Both configurations yield good
performance results while keeping emissions low.

The DSNN-specific model hyperparameters include activation integer bits, activation fraction bits,
weight bits, and shift depth. Solution No.1 includes fewer shift layers with fewer bits representing the
weights activation function values. Activation bits and weight bits seem to affect emissions and model
performance similarly. Fewer shift layers increase the computational demand of a model. However,
the reduced number of bits used to replace floating-point operations (FLOPs) seems to compensate
for this since solution No. 1 produces approximately the same amount of emissions as solution No. 2.
This one contains more than three times the number of shift layers, using only four convolutional
layers with FLOPs, but uses substantially more representation bits. There seems to be a trade-off
between the number of shift layers and the number of representation bits that, when navigated
efficiently, yields model configurations with satisfying performance and energy consumption. This
supports our claim that our MFMO approach is promising for building high-performance, energy-
efficient DSNNs.

5 CONCLUSION

In this work, we present our Green AutoML approach towards the sustainable optimization of
DSNNs through a multi-fidelity, multi-objective (MFMO) HPO framework. We address the critical
intersection between advancing the capabilities of Deep Learning and environmental sustainability.
By leveraging AutoML tools and integrating the environmental impact as an objective, we navigate
the trade-off between model performance and efficient resource utilization.

Our experimental results highlight the potential of our approach. We successfully optimized a
DSNN to achieve high accuracy while minimizing energy consumption. We have delivered a
thorough configuration space for DSNNs, introduced a Green AutoML approach for efficiency-driven
model development, and provided valuable insights into the design decisions. Future work includes
extending our approach to multiple benchmarks and neural network architectures to sufficiently verify
our approach on a broad spectrum of model designs and applications. This way, we hope to gain
more insight into critical design decisions for DSNNs and other models built for energy-efficient
computations. Revisiting our MFMO implementation to find a more efficient way for ParEGO and
Hyperband to intertwine, e.g. by finding a more effective way to assign budgets and weights to
configurations, is subject to further work to lighten the computational load when computing the
MFMO Pareto fronts. Furthermore, we will investigate more DSNN-specific fidelity types and MO
algorithms to achieve further reductions in model emissions.
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