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ABSTRACT

Contrastive Language-Image Pretraining (CLIP) has gained popularity for its re-
markable zero-shot capacity. Recent research has focused on developing efficient
fine-tuning methods, such as prompt learning and adapter, to enhance CLIP’s
performance in downstream tasks. However, these methods still require additional
training time and computational resources, which is undesirable for devices with
limited resources. In this paper, we revisit a classical algorithm, Gaussian Dis-
criminant Analysis (GDA), and apply it to the downstream classification of CLIP.
Typically, GDA assumes that features of each class follow Gaussian distributions
with identical covariance. By leveraging Bayes’ formula, the classifier can be
expressed in terms of the class means and covariance, which can be estimated from
the data without the need for training. To integrate knowledge from both visual and
textual modalities, we ensemble it with the original zero-shot classifier within CLIP.
Extensive results on 17 datasets validate that our method surpasses or achieves
comparable results with state-of-the-art methods on few-shot classification, im-
balanced learning, and out-of-distribution generalization. In addition, we extend
our method to base-to-new generalization and unsupervised learning, once again
demonstrating its superiority over competing approaches. Our code is publicly
available at https://github.com/mrflogs/ICLR24.

1 INTRODUCTION

Contrastive Language-Image Pretraining, known as CLIP (Radford et al., 2021), has attracted consid-
erable attention in recent years as a powerful method for aligning vision and language representations.
By leveraging a massive dataset of 400 million web-scale image-text pairs, CLIP learns to encode
images and text into a shared semantic space using vision and language encoders, respectively. This
shared semantic space facilitates the comparison of similarities and differences between images and
texts. One remarkable feature of CLIP is its zero-shot ability to perform image classification without
any additional training on the target classes. This is accomplished by using the language encoder to
generate classifier weights based on a simple prompt, such as “a photo of a {class}”. By inputting
different class names into the prompt, we can generate the corresponding weights for classification,
thereby enabling the classification of images into a broad range of categories without training.

Despite its powerful zero-shot capability, recent works (Zhou et al., 2022b; Zhang et al., 2022;
Zhou et al., 2022a; Lu et al., 2022; Gao et al., 2024) have focused on designing efficient fine-tuning
methods for downstream classification tasks. These methods have achieved significant improvements
compared to Zero-Shot CLIP (Radford et al., 2021), even when trained on few-shot datasets and
optimizing extremely small numbers of parameters. For instance, CoOp (Zhou et al., 2022b) proposes
to learn a set of global text prompts for the pre-trained CLIP (Radford et al., 2021) on downstream
tasks, which achieves a 15% improvement compared to Zero-Shot CLIP (Radford et al., 2021) with
only 16 samples per class by fine-tuning a mere 16k parameters. While these methods are efficient
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and yield satisfactory results in downstream tasks, they demand extra computational resources to
learn new parameters. This can be inconvenient, especially on devices with limited resources.

We aim to develop a method that not only eliminates the need for additional training, similar to Zero-
Shot CLIP but also attains comparable or even better results than these training-required methods. To
achieve this, we revisit a classical algorithm, Gaussian Discriminant Analysis (GDA) (Bishop, 2006),
and apply it to the downstream classification tasks of CLIP. Typically, GDA assumes that features
from different classes follow Gaussian distributions with identical covariance. By leveraging Bayes’
formula, the classification probability, p(y|x), can be expressed as a softmax of a linear function,
where the weight and bias are determined by the mean vectors and covariance. Based on this, we can
compute the mean vectors and covariance from the training dataset to construct the classifier, thereby
eliminating the need for any additional training process such as SGD. To fully utilize the knowledge
in pretrained CLIP, we ensemble it with the CLIP zero-shot classifier, integrating the knowledge from
both visual and textual modalities.

To further demonstrate its efficacy, we develop two variants of our method for base-to-new general-
ization and unsupervised learning, where our method can not be directly applied. In the base-to-new
generalization, the model is trained on a base dataset and then adapted to a new dataset with different
classes. Based on the observation that similar samples have similar statistical information (Yang et al.,
2021), we propose using the K-Nearest-Neighbor algorithm to synthesize data for new classes, and we
obtain the classifier for new classes using these synthesized data. For unsupervised learning, where
no labeled data are available for training, the mean and covariance cannot be directly obtained from
data. Based on the Gaussian assumption in GDA, the unlabeled data then follow a Gaussian mixture
distribution. We straightforwardly employ the EM algorithm to estimate its mean and covariance. In
both scenarios, we endeavor to keep the modifications relatively straightforward to avoid introducing
additional complexity that might impact the assessment of our approach. Nevertheless, these two
simple variants still achieve comparable performance with previous complex state-of-the-art methods.

We conduct extensive experiments on 17 widely adopted datasets to evaluate the effectiveness of our
method. Despite the simplicity of our approach, we demonstrate that our method serves as a hard-to-
beat baseline. In few-shot classification, our method surpasses state-of-the-art training-free methods
by a margin of 2.82% on average over 11 datasets, and it achieves comparable performance with
training-required methods (76.05% vs. 75.83%). For imbalanced learning, our method outperforms
previous state-of-the-art methods, even if they are fully fine-tuned. The two variants of base-to-new
generalization and unsupervised learning achieve comparable performance with previous methods.
These results underscore the effectiveness of our method.

2 RELATED WORK

Vision-Language Models. In recent years, vision-language models (VLMs) have become a new
paradigm for foundational models that aim to bridge the gap between the modalities of vision
and language. These models are trained on large-scale image-text datasets, which endows them
with powerful transferable abilities such as zero-shot learning, few-shot adaptation, and in-context
learning (Radford et al., 2021; Kim et al., 2021; Lu et al., 2019; Su et al., 2020; Jia et al., 2021).
Moreover, they exhibit strong open-world capabilities and have been successfully applied to recognize
open-world concepts, including zero-shot learning (Radford et al., 2021; Jia et al., 2021), open-world
segmentation (Mengde et al., 2022; Ding et al., 2022), and open-world detection (Joseph et al., 2021;
Gu et al., 2022; Gupta et al., 2022). Contrastive-based vision-language pre-training has become
the mainstream approach in this field. These methods, including CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021), are trained on large-scale web-based noisy image-text pairs. They employ a
language encoder and a vision encoder to encode the texts and images, respectively, and learn to align
their representations through contrastive loss. We utilize CLIP (Radford et al., 2021) in this work.

Efficient Fine-tuning for VLMs. Recent works (Zhou et al., 2022a;b; Zhang et al., 2022; Gao et al.,
2024; Lu et al., 2022; Chen et al., 2023; Guo et al., 2023; Udandarao et al., 2023; Huang et al., 2022;
Wang et al., 2024; 2023b) focus on developing efficient fine-tuning methods for large pre-trained
vision-language models that can be used in downstream tasks due to their large model size. These
methods aim to achieve the maximum performance gain by fine-tuning the minimum number of
model parameters on few-shot downstream datasets. For instance, CoOp (Zhou et al., 2022b) proposes
to learn global text prompts for downstream tasks through back-propagation on few-shot datasets.
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Meanwhile, CLIP-Adapter (Gao et al., 2024) proposes to learn a visual and a textual adapter to refine
the original representations of the vision-language models. Despite being efficient and achieving
significant improvements, previous works (Zhou et al., 2022a; Wang et al., 2023b) have found that
these methods tend to exhibit poor generalization when confronted with new classes. In response to
this limitation, CoCoOp (Zhou et al., 2022a) proposes a solution by incorporating visual information
into the text prompt for regularization, leading to improved base-to-new generalization performance.
Besides, other works (Wang et al., 2024; Huang et al., 2022; Manli et al., 2022) attempt to adapt
CLIP (Radford et al., 2021) for imbalanced learning and unsupervised learning scenarios. While
these approaches have achieved satisfactory results, they still require additional training processes to
learn the newly introduced parameters, which is undesirable for devices with limited resources.

High-dimensional Covariance Estimation. Our method involves estimating the covariance or preci-
sion matrices in high-dimensional space, which can be challenging, particularly when data is limited.
Typically, the covariance matrix is estimated using the Maximum Likelihood Estimator (MLE), but
this is not a reliable estimator of the eigenvalues of the covariance matrix. As a result, the precision
matrix obtained from the inversion of the estimated covariance matrix may not be accurate. In some
cases, it may even be impossible to invert the empirical covariance matrix due to numerical issues.
To address this problem, previous works have proposed shrinkage methods (Ledoit & Wolf, 2004;
Chen et al., 2010; Kubokawa & Srivastava, 2008; Efron & Morris, 1976). For instance, Ledoit-Wolf
shrinkage (Ledoit & Wolf, 2004) provides a formula to calculate the optimal shrinkage coefficient
that minimizes the MSE between the estimated and actual covariance matrices. Similarly, OAS (Chen
et al., 2010) presents a formula that aims to select a shrinkage coefficient that results in a lower MSE
than the one given by Ledoit-Wolf shrinkage (Ledoit & Wolf, 2004). However, these approaches
require additional optimization processes to estimate the covariance and precision matrices. In our
work, we use the empirical Bayes ridge-type estimator (Kubokawa & Srivastava, 2008), which does
not require any training, to address this challenge.

3 METHOD

3.1 GAUSSIAN DISCRIMINANT ANALYSIS FOR CLIP ADAPTATION

Gaussian Discriminant Analysis. We revisit a traditional probabilistic generative model (Bishop,
2006), Gaussian Discriminant Analysis (GDA), for training-free CLIP-based adaptation, whose
classifier can be derived by making an assumption about the data distribution of each class. The
parameters of the classifier can be obtained from the statistical information of the data without the
need for explicit training. By applying Bayes’ formula, the classification probability can be expressed
as the function of the data distribution and its prior probability:

p(y = i|x) = p(x|y = i)p(y = i)∑K
j=1 p(x|y = j)p(y = j)

=
exp(fi(x))∑K
j=1 exp(fj(x))

, (1)

where i = 1, 2, . . . ,K for K-class classification tasks, x ∈ RD is the visual feature, and we normalize
Eq. (1) using the softmax function. And the logit function is fi(x) = log(p(x|y = i)p(y = i)), i =
1, 2, . . . ,K. Therefore, by assuming the data distribution of each class and their prior distribution,
we can obtain the classifier. In GDA (Bishop, 2006), the features are typically assumed to follow the
Gaussian distributions with identical covariance, i.e., (X|Y = i) ∼ N (µi,Σ) for i = 1, 2, ..,K. We
substitute this assumption into Eq. (1), which then can be expressed as follows:

p(y = i|x) =
exp(µT

i Σ
−1x− 1

2µ
T
i Σ

−1µi + log pi)∑K
j=1 exp(µ

T
j Σ

−1x− 1
2µ

T
j Σ

−1µj + log pj)
, (2)

where pi = p(y = i) = 1/K, i = 1, 2, ...,K is the prior probability of the corresponding class,
which is assumed to be uniform. And thus, the logit fi(x) = µT

i Σ
−1x− 1

2µ
T
i Σ

−1µi + log pi. Thus,
the weight W ∈ RK×D and the bias b ∈ RK for the classifier are as follows:

wi = Σ−1µi, bi = log pi −
1

2
µT
i Σ

−1µi, (3)

for i = 1, 2, ...,K. Later, we estimate the mean for each class and the precision matrix using the
training data and subsequently obtain the corresponding weight and bias for the linear classifier.
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Figure 1: The overview of our training-free method. In our method, we begin by extracting
visual features from the training dataset using the CLIP visual encoder. Next, we compute the mean
vectors for each class and the shared precision matrix (inverse covariance) using Eq. (4). Through
the Gaussian Discriminate Analysis (GDA), the weight and bias of the classifier can be expressed
in terms of the mean vectors and the precision matrix, which can be derived from Eq. (3) (the red
formula in the figure). Finally, we enhance our method by ensembling the GDA classifier and the
CLIP’s zero-shot classifier, integrating the knowledge from visual and textual modalities.

Parameter Estimation. We estimate the mean vectors using the empirical mean µ̂k =∑N
j=1 I(yj=k)xj/

∑N
j=1 I(yj=k). However, in high-dimensional spaces, estimating the precision

matrix is a challenging task due to the inverse of the empirical covariance matrix being a biased
estimator of the precision matrix, and it may be impossible to invert due to numerical issues. To solve
this, we utilize shrinkage methods to estimate the precision matrix. To avoid introducing additional
computations, we use the empirical Bayes ridge-type estimator (Kubokawa & Srivastava, 2008) to
estimate the precision matrix:

Σ̂−1 = D((N − 1)Σ̂ + tr(Σ̂)ID)−1, (4)

where N is the number of samples, D is the dimension of the features, and Σ̂ represents the empirical
covariance. Once the parameter estimation is completed, we can input it into Eq. (3) to obtain the
weight and bias of the classifier.

Besides the knowledge extracted from visual modality, the prior knowledge of text modality in
pre-trained CLIP is calculated by xtestW

T
c , where Wc is the weights of CLIP’s classifier generated

from the text encoder by inputting a predefined prompt, such as “a photo of a {class}”. For simplicity,
we integrate the knowledge from visual and text modalities by mixing the predictions. Therefore, the
output logits of the test image are then calculated as:

logits = xtestW
T
c + α(xtestW

T + b), (5)

where xtest is the visual feature of test image, and α is a hyper-parameter.

3.2 EXTENSION TO OTHER SCENARIOS

We further extend our method to base-to-new generalization and unsupervised learning, where our
method cannot directly apply, to illustrate the generalization of our method. In order to maintain
the simplicity of the method and avoid introducing additional complexities that could impact the
assessment of our approach, we only perform straightforward modifications in these two scenarios.

Extension to Base-to-New Generalization. For CLIP base-to-new generalization, the model is
trained on the base dataset and tested on a new dataset with unseen classes. However, our method
cannot be directly implemented in the scenario where data for the new classes is unavailable. Based
on the observation that similar samples have similar statistical information (Yang et al., 2021), we
propose that our method can be extended to new classes using the KNN algorithm. To achieve
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this, we utilize text embeddings of the new classes to query the training set and select the k nearest
neighbors as the synthesized labeled data. The process is defined as follows:

D̃new =

M⋃
i=K+1

{(x, i)|x ∈ NNk(ti,D)} (6)

where i = K + 1, ...,M denotes the new classes, ti denotes its text embedding, and NNk(∗,D)
denotes the k-nearest neighbors of training set D. The classifier is then produced utilizing Eq. (3).

Extension to Unsupervised Learning. In the unsupervised learning scenario, we only have the
unlabeled data {xi}Ni=1. Based on the Gaussian assumption in GDA, the unsupervised data {xi}Ni=1
follow Gaussian mixture distribution. In order to maintain the simplicity of our method, we directly
employ the EM algorithm for estimating the means and covariance matrix. To begin, we initialize the
mean vectors and covariance using the zero-shot classifier, assuming equal priors for each Gaussian
distribution. In the E-step, we calculate the probability of the unlabeled data {xi}Ni=1 as follows:

γik =
exp(fk(x))

ΣK
j=1 exp (fj(xi))

, (7)

for the unlabeled data {xi}Ni=1, and f is the logit function using Eq. (5). Moving on to the M-step,
we update the mean vectors and covariance matrix using the following formulas:

µk =

∑N
i=1 γikxi∑N
i=1 γik

, Σ =
1

K

K∑
k=1

∑N
i=1 γik(xi − µk)(xi − µk)

T∑N
i=1 γik

. (8)

Subsequently, we update the classifier using Eq. (3) and repeat the EM process until convergence.

4 EXPERIMENTS

4.1 SETUP

Dataset. According to previous works (Radford et al., 2021; Zhou et al., 2022a;b; Zhang et al.,
2022), we select 11 publicly available image classification datasets to assess the effectiveness
of CLIP few-shot classification, base-to-new generalization, and unsupervised learning. These
datasets cover a range of image recognition tasks, including generic object recognition with Im-
ageNet (Deng et al., 2009) and Caltech101 (Li et al., 2004), fine-grained image recognition with
OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zis-
serman, 2008), Food101 (Bossard et al., 2014) and FGVCAircraft (Maji et al., 2013), satellite
image classification with EuroSAT (Helber et al., 2019), action classification with UCF101 (Soomro
et al., 2012), texture classification with DTD (Cimpoi et al., 2014), and scene recognition with
SUN397 (Xiao et al., 2010). Additionally, we also select 4 datasets, ImageNetV2 (Recht et al.,
2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-
R (Hendrycks et al., 2021a), to evaluate the out-of-distribution generalization. Moreover, we adopt
2 commonly used imbalanced datasets, ImageNet-LT (Liu et al., 2019) and Places-LT (Zhou et al.,
2017), for CLIP long-tailed classification.

Training Details. To align with previous works (Zhou et al., 2022b;a; Zhang et al., 2022), we
utilize ResNet-50 (He et al., 2016) as the visual encoder of CLIP for few-shot classification by
default. Similarly, following the previous work (Wang et al., 2024), we choose ResNet-101 as the
visual encoder of CLIP for imbalanced learning. To evaluate the model’s base-to-new generalization
and out-of-distribution generalization performance, we followed CoCoOp (Zhou et al., 2022a) and
adopted ViT-B/16-based CLIP (Radford et al., 2021). We follow CLIP (Radford et al., 2021) to adopt
prompt ensembling on ImageNet and use a single Zero-Shot CLIP on the other 10 datasets. The
hyperparameter α, which is used to ensemble the classifiers, is searched in the validation set with
values ranging from 0.0001 to 100.0, and this value is kept constant for new class data. And the k for
the KNN algorithm to synthesize the new class dataset is set to 64. All experiments are conducted
on a single NVIDIA GeForce RTX 3090. To obtain a reliable estimate of model performance, we
conduct three runs with different random seeds and averaged the results.

Evaluation Protocol. For the few-shot classification, we adhere to the evaluation protocol proposed
by CLIP (Radford et al., 2021). Specifically, we randomly select 1, 2, 4, 8, or 16 instances per
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class to form the few-shot datasets. Subsequently, we train our model on the few-shot datasets
and evaluate its performance on the full test dataset. For base-to-new generalization, we adopt
the standard protocol proposed by CoCoOp (Zhou et al., 2022a). On each dataset, we split the
classes equally into two groups, one as base classes and the other as the new classes. The method is
trained using only the 16-shot base classes while the evaluation is conducted on base and new classes
separately to test generalization ability. Regarding unsupervised learning, we adhere to the evaluation
protocol described by UPL (Huang et al., 2022). For imbalanced learning, we split the classes in each
benchmark into three groups based on the number of available images per class. These groups are
referred to as Many-shot (with more than 100 images), Medium-shot (with 20 to 100 images), and
Few-shot (with less than 20 images). We report the accuracy of each group and the macro F1 score.

4.2 RESULTS ON FEW-SHOT CLASSIFICATION
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Figure 2: Results of few-shot classification on the 11 datasets. We evaluate the performance of our
proposed method against five training-free methods under 1, 2, 4, 8, and 16-shot settings. The models
are trained using ResNet-50 CLIP. Our method outperforms the baselines significantly.
Baselines. We compare our method with two kinds of methods: training-required methods and
training-free methods. For training-required methods, we consider four baselines: (1) linear
probe (Radford et al., 2021): Following CLIP, we train a linear classifier on top of high-quality
pre-trained CLIP vision encoder’s features. (2) CoOp (Zhou et al., 2022b): CoOp proposes to learn
context prompts for downstream datasets through back-propagation. For comparison, we choose
the best version of CoOp with 16 learnable prompts. (3) CLIP-Adapter (Gao et al., 2024): CLIP-
Adapter proposes to train task-specific adapters to adjust the visual and textual representations. (4)
Tip-Adapter-F (Zhang et al., 2022): Tip-Adapter-F proposes to build a cache model using the train-
ing data to construct the adapter, which is then ensembled with the zero-shot classifier and fine-tuned
during training. For training-free methods, we consider five baselines: (1) Zero-Shot CLIP (Radford
et al., 2021): Following CLIP, we build the zero-shot classifier using zero-shot prompts such as “a
photo of a {class}”. (2) CALIP (Guo et al., 2023): CALIP builds a parameter-free attention module
to boost CLIP. (3) Tip-Adapter (Zhang et al., 2022): Tip-Adaper is the training-free version of
Tip-Adapter-F. It builds the adapter with training data and ensembles it with the zero-shot classifier
without training. (4) Tip-X (Udandarao et al., 2023): Tip-X proposes retrieving images from
LAION-5B (Schuhmann et al., 2022) or Stable Diffusion (Rombach et al., 2022) to build the cache
of Tip-Adapter. (5) APE (Zhu et al., 2023): APE adds a refinement module to Tip-Adapter, which
minimizes the inter-class visual similarity and improves the text-image alignment.

Results. Figure 2 illustrates the performance of our method and five other training-free baselines:
Zero-Shot CLIP (Radford et al., 2021), CALIP (Guo et al., 2023), Tip-Adapter (Zhang et al., 2022),
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Table 1: Results of few-shot classification on 11 datasets. We report the performance of our
method against training-free and training-required baselines on 16-shot datasets. As shown in the
table, our method greatly outperforms training-free baselines on average across the 11 datasets and
achieves comparable performance as training-required methods. Blue denotes the highest results of
training-required methods. Bold denotes the highest results of training-free methods.

Method Train Pets Flowers FGVC DTD EuroSAT Cars Food SUN Caltech UCF ImageNet Average
linear-probe ✓ 76.42 94.95 36.39 63.97 82.76 70.08 70.17 67.15 90.63 73.72 55.87 71.10
CoOp ✓ 87.01 94.51 31.26 63.58 83.53 73.36 74.67 69.26 91.83 75.71 62.95 73.42
CLIP-Adapter ✓ 87.84 93.90 32.10 65.96 84.43 74.01 78.25 69.55 92.49 76.76 63.59 74.44
Tip-Adapter-F ✓ 89.70 94.80 35.55 66.55 84.54 75.74 79.43 71.47 92.86 78.03 65.51 75.83

Zero-Shot CLIP ✗ 85.77 66.14 17.28 42.32 37.56 55.61 77.31 58.52 86.29 61.46 58.18 58.77
CALIP ✗ 86.21 66.38 17.76 42.39 38.90 56.27 77.42 58.59 87.71 61.72 60.57 59.45
Tip-Adapter ✗ 88.14 89.89 29.76 60.93 70.54 66.77 77.83 66.85 90.18 70.58 62.01 70.32
Tip-X ✗ 89.86 90.29 30.12 63.53 73.12 67.30 77.93 68.00 90.70 71.95 62.61 71.40
APE ✗ 87.98 91.96 31.23 67.38 78.40 70.45 78.37 69.59 92.29 74.49 63.43 73.23
Ours ✗ 88.81 95.72 40.61 66.51 86.12 75.12 79.05 70.70 92.55 77.53 63.82 76.05

Tip-X (Udandarao et al., 2023), and APE (Zhu et al., 2023), on the 11 downstream datasets, along
with their average results. Our method outperforms all of the baselines significantly. Specifically,
under the 16-shot setting, our method greatly exceeds Zero-Shot CLIP, CALIP, Tip-Adapter, Tip-X,
and APE by 17.28%, 16.60%, 5.73%, 4.65%, and 2.82%. Our method surpasses the baselines on
almost all datasets except OxfordPets and DTD.

In Table 1, we further present the numerical results of the training-required and training-free baselines
under the 16-shot setting. In the table, our method outperforms training-free methods on 9 of 11
datasets. Specifically, our method achieves a lead of over 3% compared to the second-highest
results on Flowers102, FGVCAircraft, EuroSAT, StanfordCars, and UCF101. Moreover, our method
achieves comparable performance with training-required methods. And our method achieves great
improvement on FGVCAircraft and EuroSAT. This may be because images in these datasets are
unusual, where the covariance of the data is important to describe the features.

4.3 OUT-OF-DISTRIBUTION GENERALIZATION Table 2: Out-of-distribution Generalization.

Method Train
Source Target

IN. -V2 -Sk -A -R Avg.

CLIP ✗ 66.73 60.83 46.15 47.77 73.96 57.18
CoOp ✓ 71.92 64.18 46.71 48.41 74.32 58.41
Tip-Adapter ✗ 70.50 63.31 48.69 50.64 77.70 60.08
Tip-Adapter-F ✓ 73.72 65.73 48.52 49.39 77.22 60.21
Ours ✗ 72.23 65.04 48.96 50.51 76.97 60.37

We further conduct experiments to assess our
method on out-of-distribution generalization.
Specifically, we train our model using the
16-shot setting on ImageNet (Deng et al.,
2009). Subsequently, we transfer the model di-
rectly to target datasets, which included Ima-
geNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al.,
2021b), and ImageNet-R (Hendrycks et al., 2021a).

As presented in Table 2, we choose CLIP, CoOp, Tip-Adapter, and Tip-Adapter-F for comparison.
And these methods are based on ViT-B/16-based CLIP. Without requiring any training, our method
achieves the highest results on average over the four target datasets. These results indicate that our
model is more advantageous in dealing with out-of-distribution generalization and reduces the risk of
overfitting on the source dataset.

4.4 RESULTS ON IMBALANCED LEARNING

Table 3: Results of imbalanced learning on ImageNet-LT and Places-LT datasets. All models
are trained on ResNet-101 CLIP. We compare our method with Zero-Shot CLIP (Radford et al.,
2021), linear probe, full fine-tune, Balanced Softmax (Ren et al., 2020), CRT (Kang et al., 2020),
MARC (Wang et al., 2023a), and their variants with Decoder (Wang et al., 2024).

Method Train
ImageNet-LT Places-LT

Many Medium Few Overall F1 Many Medium Few Overall F1

Zero-Shot CLIP ✓ 59.57 53.57 52.81 53.62 52.50 36.23 30.43 37.89 32.17 30.85
Linear probe ✓ 24.23 0.00 0.00 9.33 4.97 23.50 0.20 0.00 8.52 4.81
Full finetune ✓ 74.49 52.82 26.66 57.61 55.86 47.32 28.66 11.80 32.08 30.40
Decoder + Softmax ✓ 66.93 42.09 15.32 48.01 45.21 28.42 15.80 10.36 14.95 13.04
Decoder + Balanced Softmax ✓ 60.60 52.17 40.53 53.83 52.57 20.47 21.79 21.47 21.53 18.55
Decoder + MARC ✓ 58.29 54.73 46.91 55.04 54.35 12.83 25.96 27.31 25.14 22.08
Decoder + CRT ✓ 66.89 51.98 23.82 53.89 51.77 33.14 14.70 5.01 12.77 10.78
Full finetune Balanced Softmax ✓ 69.18 58.25 43.63 60.47 59.79 42.42 38.41 27.93 37.81 37.21
Full finetune CRT ✓ 75.69 56.43 27.47 59.90 58.21 47.81 30.77 13.39 33.51 33.04
Full finetune MARC ✓ 73.73 58.69 32.91 60.97 59.61 46.57 38.09 17.51 37.13 35.95
Ours ✗ 65.72 61.88 54.35 62.34 61.63 44.71 42.67 35.79 42.07 40.78
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For imbalanced learning, we compare our method with several imbalanced learning baselines: Zero-
Shot CLIP, linear probe, full fine-tuning, and CLIP integrated with specific imbalanced algorithms,
namely: MARC (Wang et al., 2023a), CRT (Kang et al., 2020), Balanced Softmax (Ren et al.,
2020), and their variants with Decoder (Wang et al., 2024) on ImageNet-LT (Liu et al., 2019) and
Places-LT (Zhou et al., 2017) dataset.

The results are shown in Table 3. We report the results in terms of overall accuracy, many-shot
accuracy, medium-shot accuracy, and few-shot accuracy, as well as the F1 score. Specifically, we
achieve improvements against Zero-Shot CLIP of 8.72% and 9.90% for ImageNet-LT and Places-LT
datasets on overall accuracy, respectively. It is worth noting that our method surpasses previous
training-required methods, even those trained using imbalanced algorithms. Our method primarily
enhances CLIP’s performance in terms of medium-shot and few-shot accuracy. This improvement
can be attributed to the identical covariance assumption in GDA, which transfers the knowledge of
feature distribution from many-shot classes to medium- and few-shot classes.

4.5 RESULTS ON BASE-TO-NEW GENERALIZATION

Table 4: Average results over 11
datasets on base-to-new general-
ization.

train base new H
CLIP ✗ 69.34 74.22 71.70
CoOp ✓ 82.69 63.22 71.66
CoCoOp ✓ 80.47 71.69 75.83
KgCoOp ✓ 80.73 73.60 77.00
Ours ✗ 83.96 74.53 78.72

Table 4 presents the results on base-to-new generalization,
which show that our approach outperforms the other methods in
terms of base accuracy, new accuracy, and their harmonic mean.
On average across 11 datasets, our method surpasses CLIP,
CoOp, CoCoOp, and KgCoOp by 0.31%, 11.31%, 2.84%, and
0.93% in terms of new accuracy, and by 7.02%, 7.06%, 2.89%,
and 1.72% in terms of the harmonic mean. Detailed results on
each dataset can be referred to Figure 8 in the Appendix.

4.6 RESULTS ON UNSUPERVISED LEARNING

Table 5: Results of unsupervised learning. We compare our method with three baseline methods:
Zero-Shot CLIP (Radford et al., 2021), POUF (Tanwisuth et al., 2023) and UPL (Huang et al., 2022).

Method Pet Flo FGVC DTD EuroSAT Cars Food SUN Cal UCF IN Avg.
CLIP 85.77 66.14 17.28 42.32 37.56 55.61 77.31 58.52 86.29 61.46 58.18 58.77
POUF 88.00 66.71 16.67 41.49 42.06 57.43 74.70 58.61 86.92 61.05 55.16 58.98
UPL 88.28 68.90 17.34 46.57 54.83 62.13 77.58 63.98 89.94 67.17 60.51 63.38
Ours 89.90 72.65 18.69 46.81 49.92 60.78 78.25 63.60 87.53 68.70 61.21 63.46

In unsupervised learning, the estimation of mean vectors and covariance matrices in GDA is performed
by directly applying the EM algorithm for Gaussian Mixture Model (GMM). The results are shown
in Table 5. It is noteworthy that this straightforward approach significantly enhances the performance
of CLIP in downstream tasks when utilizing unlabeled data. Furthermore, our method consistently
outperforms the Zero-Shot CLIP by an average margin of 4.69% across all 11 datasets. Moreover,
when compared to the three baseline methods, our approach achieves the highest results on 7 out of
the 11 datasets. These results clearly indicate the effectiveness of our method.

Method 1 2 4 8 16

Moore-Penrose 53.87 64.22 72.74 79.21 84.16
EM 54.28 50.85 56.86 70.69 74.35
GraphicalLasso 57.69 64.22 71.70 76.89 76.56
LedoitWolf 59.59 67.01 74.23 80.52 84.33
OAS 59.58 66.81 74.25 80.46 84.31
KS 58.30 67.88 75.40 81.70 86.12

Table 6: Comparison of different precision ma-
trix estimation methods on EuroSAT, includ-
ing Moore-Penrose (Penrose, 1955), EM (Efron
& Morris, 1976), GraphicalLasso (Friedman
et al., 2008), LedoitWolf (Ledoit & Wolf, 2004),
OAS (Chen et al., 2010), and KS (Kubokawa &
Srivastava, 2008). The grey color denotes the
one used in the paper.
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Figure 3: We trained our method on
ImageNet with more shots. The x-axis
is presented on a logarithmic scale.
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4.7 ABLATION STUDY

Effectiveness of Precision Matrix Estimation. The estimation of the precision matrix is challenging
due to the limited data and bias problem. To address this, we employ the empirical Bayes ridge-type
estimator (KS) in the paper, which is specifically designed for scenarios where the sample size
is smaller than the dimension. We compare it with other robust precision estimation techniques,
including Moore-Penrose, the estimator in Efron and Morris (EM), GraphicalLasso, LedoitWolf, and
OAS. As shown in Table 6, the empirical Bayes ridge-type estimator achieves the best results, which
shows its effectiveness.
Effectiveness of Increased Sample Size. We further train our method with more training data.
Figure 3 illustrates the results of training our model on ImageNet, using 1, 2, 4, 8, 16, 32, and 64 shots
per class. The x-axis is presented on a logarithmic scale. We observe that the model performance
increases with an increase in the number of data, and it exhibits a linear relationship with the logarithm
of the number of data. This indicates that our approach is not restricted to few-shot learning, but
instead has the ability to improve consistently with an increase in the number of samples.

Method Acc.(%) Param. Train.Set Train.Time

ResNet-50 74.2 25.6M full set > 1 day
ResNet-101 77.4 44.5M full set > 1 day

DeiT-T 72.2 6.0M full set > 1 day
DeiT-S 79.9 22.1M full set > 1 day

Tip-Adapter 76.1 0M 16-shot 0
Tip-Adapter* - - full set -

Tip-Adapter-F 79.4 6.2M 16-shot 6 min
Tip-Adapter-F* - - full set -

Ours 79.1 0M 16-shot 1.6 sec
Ours 80.0 0M full set 3.6 sec

Table 7: * denotes that the model is out-of-
memory. Comparison between Tip-Adapter, Tip-
Adapter-F, and conventional methods, ResNet
and DeiT, trained by full training set on Ima-
geNet. The training time is tested on a single
NVIDIA GeForce RTX 3090.
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zero-shot classifier
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Figure 4: The figure depicts the perfor-
mance of the CLIP zero-shot classifier,
our linear classifier, and their ensemble
in the different shot settings on average
across 11 datasets.

Effectiveness of Ensemble Classifier. We evaluate the effectiveness of the ensemble of linear
classifiers, as presented in Eq. (5). Figure 4 shows the performance of the CLIP zero-shot classifier,
our linear classifier, and the ensemble classifier in few-shot classification on average on the 11 datasets.
We observe that directly using the linear classifier sometimes produces worse results than using the
zero-shot classifier. This can be attributed to inaccuracies in the estimated precision matrix, leading
to a poor classifier. However, when the classifiers are ensembled according to Eq. (5), the ensemble
classifier outperforms both individual classifiers in all settings, demonstrating its effectiveness.
Comparison to Fully-trained Methods. In Table 7, we compare efficient fine-tuning methods,
Tip-Adapter, Tip-Adapter-F, and our proposed method, with conventional fully trained methods such
as ResNet (He et al., 2016) and DeiT (Touvron et al., 2021). We adopt ViT-L/14 CLIP for efficient
fine-tuning methods. Although Tip-Adapter and Tip-Adapter-F achieve comparable performance
to conventional methods (He et al., 2016; Touvron et al., 2021), they fail to train on full set as they
need to cache all the training data, which leads to OOM error. In contrast, our proposed method does
not have this problem since we only store the classifier parameters. Therefore, our approach can
perform well not only on few-shot but also on the full training set. Furthermore, without requiring
any training, our approach achieves the highest performance compared to both efficient fine-tuning
methods and conventional training methods.

5 CONCLUSION
In this paper, we revisit Gaussian Discriminant Analysis (GDA) with CLIP as a hard-to-beat training-
free adaptation method. Without any training, we can directly obtain the classifier from the mean
vectors and covariance of the training dataset. We conduct extensive experiments of our method
on CLIP few-shot classification and imbalanced learning, and its two simple variants on base-to-
new generalization and unsupervised learning. Our method achieves state-of-the-art results against
previous training-free methods and is comparable to or even better than training-required methods.
These results demonstrate the effectiveness of our method. In the future, we will explore the
application of our method in dense prediction tasks and other scenarios such as test-time adaptation.
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REPRODUCIBILITY STATEMENT

In this paper, we provide a comprehensive overview of the datasets, training procedures, and eval-
uation settings, which are thoroughly discussed in Section 4.1. Detailed statistics for the datasets,
prompt templates, and pseudocode can be found in Appendix C. To ensure the reproducibility of our
method, we have also made the source code and scripts available in the supplementary materials.
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A DETAILS OF THE METHOD

A.1 COMPUTATION OF EQUATION (2)

Theorem A.1. Assuming that the features of different classes follow the Gaussian distribution with
identical covariance, i.e., (X|Y = i) ∼ N (µi,Σ) for i = 1, 2, ..,K. Then, the classification
probability can be expressed as follows:

p(y = i|x) =
exp(µT
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Proof. Since (X|Y = i) ∼ N (µi,Σ) for i = 1, 2, ..,K, the probability of class i is:
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where d is the feature dimension. Later, the classification probability can be derived by using the
Bayesian formula,
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(Bayesian formula)
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(11)
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A.2 PSEUDOCODE

Algorithm 1 Pytorch-like pseudocode for our method.

1 # Input:

2 # - X: (N, D) visual features from CLIP visual encoder.

3 # - Y: (N, ) ground-truth label for the features.

4 # - X_test: (M, D) test visual features from CLIP visual encoder.

5 # - Y_test: (M, ) ground-truth label for test features.

6 # - W_c: (K, D) zero-shot classifier generated by prompting.

7 # Output:

8 # - acc: test accuracy.

9

10 def hard_to_beat(X, Y, X_test, Y_test, W_c):

11 # 1. Compute mean vectors for each class.

12 mus = []

13 for i in range(K):

14 idx = torch.where(Y == i)

15 mus.append(X[idx].mean(dim=0))

16 mus = torch.cat(mus)

17

18 # 2. Estimate the precision matrix using Equation (4).

19 # centered features

20 centered_X = torch.cat([(X[torch.where(Y == i)] - mus[i]) for i in range(K)])

21 cov = torch.cov(centered_X)

22 # compute the precision matrix (inverse covariance)

23 inv_cov = D * torch.inv((N - 1) * cov + trace(cov) * eye(D))

24

25 # 3. Compute weight and bias using Equation (3).

26 W = mus @ inv_cov

27 b = log(1 / K) - 0.5 * einsum('nd, dc, nc -> n', mus, inv_cov, mus)

28

29 # 4. Search the hyperparameter using the validation set.

30 alpha = search_hyperparam(W_c, W, b)

31

32 # 5. Test.

33 test_logits = X_test @ W_c.T + alpha * (X_test @ W.T + b)

34 acc = compute_acc(test_logits, Y_test)

35 return acc

B MORE EXPERIMENTAL ANALYSIS

B.1 BASE-TO-NEW GENERALIZATION

Results. Our method can be extended to the base-to-new generalization scenario by incorporating the
KNN algorithm. To accomplish this, we utilize the text embeddings of the new classes to query the
training set and select the k nearest neighbors as the training data for the new class. Subsequently, we
apply our proposed method to generate the classifier for the new classes using the synthesized dataset.
In order to compare our approach, we select CLIP (Radford et al., 2021), CoOp (Zhou et al., 2022b),
CoCoOp (Zhou et al., 2022a), and KgCoOp (Yao et al., 2023).

Table 8 presents the results, which demonstrate that our approach outperforms the other methods in
terms of base accuracy, new accuracy, and their harmonic mean. On average across 11 datasets, our
method surpasses CLIP, CoOp, CoCoOp, And KgCoOp by 14.62%, 1.27%, 3.49%, and 3.23% in
terms of base accuracy. It also outperforms them by 0.31%, 11.31%, 2.84%, and 0.93% in terms of
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new accuracy, and by 7.02%, 7.06%, 2.89%, and 1.72% in terms of the harmonic mean. Moreover,
our approach achieves the highest harmonic mean in 6 out of 11 datasets. These results clearly
indicate the effectiveness of our approach in generalizing to new classes.

(a) Average over 11 datasets

base new H
CLIP 69.34 74.22 71.70
CoOp 82.69 63.22 71.66
CoCoOp 80.47 71.69 75.83
KgCoOp 80.73 73.60 77.00
Ours 83.96 74.53 78.72

(b) ImageNet

base new H
CLIP 72.43 68.14 70.22
CoOp 76.47 67.88 71.92
CoCoOp 75.98 70.43 73.10
KgCoOp 75.83 69.96 72.78
Ours 75.95 69.79 72.74

(c) Caltech101

base new H
CLIP 96.84 94.00 95.40
CoOp 98.00 89.81 93.73
CoCoOp 97.96 93.81 95.84
KgCoOp 97.72 94.39 96.03
Ours 98.04 94.51 96.24

(d) OxfordPets

base new H
CLIP 91.17 97.26 94.12
CoOp 93.67 95.29 94.47
CoCoOp 95.20 97.69 96.43
KgCoOp 94.65 97.76 96.18
Ours 94.10 97.15 95.60

(e) StanfordCars

base new H
CLIP 63.37 74.89 68.65
CoOp 78.12 60.40 68.13
CoCoOp 70.49 73.59 72.01
KgCoOp 71.76 75.04 73.36
Ours 78.71 66.92 72.34

(f) Flowers102

base new H
CLIP 72.08 77.80 74.83
CoOp 97.60 59.67 74.06
CoCoOp 94.87 71.75 81.71
KgCoOp 95.00 74.73 83.65
Ours 97.78 72.46 83.24

(g) Food101

base new H
CLIP 90.10 91.22 90.66
CoOp 88.33 82.26 85.19
CoCoOp 90.70 91.29 90.99
KgCoOp 90.50 91.70 91.09
Ours 90.63 91.21 90.92

(h) FGVCAircraft

base new H
CLIP 27.19 36.29 31.09
CoOp 40.44 22.30 28.75
CoCoOp 33.41 23.71 27.74
KgCoOp 36.21 33.55 34.83
Ours 45.88 34.09 39.12

(i) SUN397

base new H
CLIP 69.36 75.35 72.23
CoOp 80.60 65.89 72.51
CoCoOp 79.74 76.86 78.27
KgCoOp 80.29 76.53 78.36
Ours 81.95 75.62 78.65

(j) DTD

base new H
CLIP 53.24 59.90 56.37
CoOp 79.44 41.18 54.24
CoCoOp 77.01 56.00 64.85
KgCoOp 77.55 54.99 64.35
Ours 80.63 59.82 68.69

(k) EuroSAT

base new H
CLIP 56.48 64.05 60.03
CoOp 92.19 54.74 68.69
CoCoOp 87.49 60.04 71.21
KgCoOp 85.64 64.34 73.48
Ours 93.28 79.21 85.67

(l) UCF101

base new H
CLIP 70.53 77.50 73.85
CoOp 84.69 56.05 67.46
CoCoOp 82.33 73.45 77.64
KgCoOp 82.89 76.67 79.65
Ours 86.63 79.09 82.69

Table 8: Base-to-new generalization. Comparison of CLIP, CoOp, CoCoOp, KgCoOp, and our
method. CoOp, CoCoOp, and KgCoOp are training-required methods, while our method is a training-
free method. base and new denotes the average accuracy of base and new classes, and H denotes their
harmonic mean.

B.2 ROBUSTNESS TO DIFFERENT ARCHITECTURES

We further evaluate the efficacy of our proposed method across 11 datasets with varying visual
architectures of CLIP. We selected two approaches for comparison: a training-required method,
CoOp (Zhou et al., 2022b), and a training-free method, Tip-Adapter (Zhang et al., 2022). And these
methods are trained on the 16-shot dataset. As shown in Table 9, our method yielded a substantial
improvement of 17.28%, 18.20%, 16.18%, and 16.62% on average, compared to the Zero-Shot
CLIP (Radford et al., 2021) approach, for ResNet-50, ResNet-101, ViT-B/32, and ViT-B/16 CLIP,
respectively, across all 11 datasets. The results demonstrate the effectiveness of our method across
different CLIP architectures.

B.3 ABLATION OF THE HYPER-PARAMETER α

As shown in Equation (5), our method needs a hyper-parameter α to integrate the knowledge from
visual and text modalities. Specifically, we only performed a coarse search for α within [0.001,
0.01, 0.1, 1, 10, 100]. The search only ascertained the order of magnitude for alpha, providing a
foundational understanding of its impact. The optimal alpha values resulting from this exploration
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Table 9: Robustness of different architectures on 11 datasets. The models are trained under the
16-shot setting with different visual architectures of CLIP. Bold denotes the highest results.

Method Pets Flowers FGVC DTD EuroSAT Cars Food SUN Cal UCF IN Avg.
ResNet-50
Zero-Shot CLIP 85.77 66.14 17.28 42.32 37.56 55.61 77.31 58.52 86.29 61.46 58.18 58.77
CoOp 87.01 94.51 31.26 63.58 83.53 73.36 74.67 69.26 91.83 75.71 62.95 73.42
Tip-Adapter 88.14 89.89 29.76 60.93 70.54 66.77 77.83 66.85 90.18 70.58 62.01 70.32
Ours 88.81 95.72 40.61 66.51 86.12 75.12 79.05 70.70 92.55 77.53 63.82 76.05
ResNet-101
Zero-Shot CLIP 86.75 64.03 18.42 38.59 32.59 66.23 80.53 58.96 89.78 60.96 61.62 59.86
CoOp 88.57 95.19 34.76 65.47 83.54 79.74 79.08 71.19 93.42 77.95 66.60 75.96
Tip-Adapter 87.23 90.77 31.51 62.37 66.45 72.96 81.31 67.96 93.01 73.53 64.41 71.96
Ours 91.43 96.17 42.58 68.62 86.32 79.99 82.15 72.07 93.63 79.31 66.33 78.06
ViT-B/32
Zero-Shot CLIP 87.49 66.95 19.23 43.97 45.19 60.55 80.50 61.91 90.87 62.01 62.05 61.88
CoOp 88.68 94.97 33.22 65.37 83.43 76.08 78.45 72.38 94.62 78.66 66.85 75.70
Tip-Adapter 88.34 91.61 30.92 61.90 69.53 69.59 80.94 70.27 93.85 73.74 65.41 72.37
Ours 91.21 96.16 41.74 67.63 87.30 77.55 81.84 73.60 94.42 80.17 67.00 78.06
ViT-B/16
Zero-Shot CLIP 89.21 71.34 24.72 44.39 47.60 65.32 86.06 62.50 92.94 66.75 66.73 65.23
CoOp 92.53 96.47 42.91 68.50 80.87 83.09 87.21 75.29 95.77 82.24 71.92 79.71
Tip-Adapter 91.54 94.41 39.48 65.68 76.58 75.44 86.47 71.85 95.10 77.94 70.46 76.81
Ours 93.73 97.92 50.33 71.26 89.19 82.63 87.27 75.87 95.79 84.09 72.24 81.85

are detailed in Table 10. Notably, our analysis reveals a consistent concentration of optimal alpha
values in the range of 1 to 10 across the majority of datasets. Subsequently, we conducted additional
sensitivity experiments within this narrowed range. The results of different α values are reported
in Table 11. The findings indicate a robust model sensitivity to alpha values, with the exception of
α = 1. And on average over 11 datasets, the model achieves performance around 75.5.

Table 10: The best α in our method for 16-shot datasets with RN50 CLIP. The best alpha is searched
on [0.001, 0.01, 0.1, 1, 10, 100] using the validation set.

Pets Flo FGVC DTD EuroSAT Cars Food SUN Cal UCF IN
best α 1.00 10.00 100.00 10.00 10.00 10.00 1.00 10.00 1.00 10.00 10.00
Ours 88.81 95.72 40.61 66.51 86.12 75.12 79.05 70.70 92.55 77.53 63.82

Table 11: Ablation on hyper-parameter α of our method. The models are trained under the 16-shot
setting with RN50 CLIP.

Pets Flo FGVC DTD EuroSAT Cars Food SUN Cal UCF IN Avg
α = 1 88.81 89.32 31.10 67.65 85.87 67.54 79.05 66.73 92.55 77.53 61.79 73.45
α = 3 87.35 95.18 38.20 67.42 85.86 74.07 77.80 70.15 92.63 78.53 63.19 75.49
α = 5 86.45 95.67 39.72 67.18 85.85 75.45 76.58 70.81 90.13 78.24 63.73 75.44
α = 7 85.71 95.90 40.36 67.00 85.82 75.82 75.76 70.97 91.97 77.84 63.91 75.55
α = 9 85.36 95.99 40.63 66.86 85.80 75.62 75.17 70.79 91.94 77.59 63.88 75.42
α = 10 85.26 95.72 40.69 66.51 86.12 75.12 74.94 70.70 91.90 77.53 63.82 75.30

C EXPERIMENTAL DETAILS

C.1 STATISTIC OF DATASETS

Following previous work (Zhou et al., 2022a;b; Wang et al., 2023b; Huang et al., 2022; Wang et al.,
2024), we conduct experiments on 17 publicly available image classification datasets. The datasets
include ImageNet (Deng et al., 2009), Caltech101 (Li et al., 2004), OxfordPets (Parkhi et al., 2012),
StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard
et al., 2014), FGVCAircraft (Maji et al., 2013), EuroSAT (Helber et al., 2019), UCF101 (Soomro
et al., 2012), DTD (Cimpoi et al., 2014), SUN397 (Xiao et al., 2010), ImageNetV2 (Recht et al.,
2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), ImageNet-
R (Hendrycks et al., 2021a), ImageNet-LT (Liu et al., 2019), and Places-LT (Zhou et al., 2017).

17



Published as a conference paper at ICLR 2024

Table 12: Detailed statistics of datasets used in experiments.

Dataset # Classes # Training # Test Task

OxfordPets 37 2,944 3,669 fine-grained pets recognition
Flowers102 102 4,093 2,463 fine-grained flowers recognition
FGVCAircraft 100 3,334 3,333 fine-grained aircraft recognition
DTD 47 2,820 1,692 Textural recognition
EuroSAT 10 13,500 8,100 Satellite image recognition
StanfordCars 196 6,509 8,041 Fine-grained car recognition
Food101 101 50,500 30,300 Fine-grained food recognition
Sun397 397 15,880 19,850 Scene recognition
Caltech101 100 4,128 2,465 Object recognition
UCF101 101 7,639 3,783 Action recognition
ImageNet 1,000 1.28M 50,000 Object recognition

ImageNetV2 1,000 - 10,000 Robustness of collocation
ImageNet-Sketch 1,000 - 50,889 Robustness of sketch domain
ImageNet-A 200 - 7,500 Robustness of adversarial
ImageNet-R 200 - 30,000 Robustness of rendition styles

ImageNet-LT 1,000 115,846 50,000 long-tail object recognition
Places-LT 365 62,500 7300 long-tail place recognition

C.2 PROMPT TEMPLATES FOR EACH DATASET

For the zero-shot classifier, we employ handcrafted prompts to generate the classifier weight, as
proposed in CLIP (Radford et al., 2021). By default, we utilize the prompt template “a photo of
{class}.” for class labels, where {class} represents the name of the classes. However, for fine-grained
classification datasets such as FGVCAircraft (Maji et al., 2013), we incorporate the name of the
superclass or a description into the template. The prompt templates for each dataset are shown as
follows.
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Table 13: Prompt templates for each class.

Dataset Prompt template

Caltech101 (Li et al., 2004) “a photo of a {class}.”

OxfordPets (Parkhi et al., 2012) “a photo of a {class}, a type of pet.”

StanfordCars (Krause et al., 2013) “a photo of a {class}.”

Flowers102 (Nilsback & Zisserman, 2008) “a photo of a {class}, a type of flower.”

Food101 (Bossard et al., 2014) “a photo of {class}, a type of food.”

FGVCAircraft (Maji et al., 2013) “a photo of a {class}, a type of aircraft.”

SUN397 (Xiao et al., 2010) “a photo of a {class}.”

DTD (Cimpoi et al., 2014) “{class} texture.”

EuroSAT (Helber et al., 2019) “a centered satellite photo of {class}.”

UCF101 (Soomro et al., 2012) “a photo of a person doing {class}.”

ImageNet (Deng et al., 2009)

“a bad photo of the {class}.”
“a origami {class}.”

“a photo of the large {class}.”
“a {class} in a video game.”

“art of the {class}.”
“a photo of the small {class}.”

ImageNet-LT (Liu et al., 2019) “a photo of a {class}.”

Places-LT (Zhou et al., 2017) “a photo of a {class}.”
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