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Abstract

Recently, deep learning has driven significant advancements in multivariate time1

series forecasting (MTSF) tasks. However, much of the current research in MTSF2

tends to evaluate models from a holistic perspective, which obscures the individ-3

ual contributions and leaves critical issues unaddressed. Adhering to the current4

modeling paradigms, this work bridges these gaps by systematically decomposing5

deep MTSF methods into their core, fine-grained components like series-patching6

tokenization, channel-independent strategy, attention modules, or even Large Lan-7

guage Models and Time-series Foundation Models. Through extensive experiments8

and component-level analysis, our work offers more profound insights than previ-9

ous benchmarks that typically discuss models as a whole.10

Furthermore, we propose a novel automated solution called TSGym for MTSF11

tasks. Unlike traditional hyperparameter tuning, neural architecture searching12

or fixed model selection, TSGym performs fine-grained component selection13

and automated model construction, which enables the creation of more effec-14

tive solutions tailored to diverse time series data, therefore enhancing model15

transferability across different data sources and robustness against distribution16

shifts. Extensive experiments indicate that TSGym significantly outperforms17

existing state-of-the-art MTSF methods. All code is publicly available on18

https://github.com/SUFE-AILAB/TSGym.19

1 Introduction20

Multivariate time series refer to time series data involving multiple interdependent variables, which are21

widely present in various fields such as finance [51], energy [5, 17], traffic [15, 69], and health [9, 29].22

Among the numerous analysis tasks, multivariate time series forecasting (MTSF) attracts substantial23

attention from the research community due to its significant practical applications. Traditional24

approaches to MTSF are largely based on statistical methods [4, 72] and machine learning tech-25

niques [23, 44]. In recent years, deep learning (DL) has become the most active area of research for26

MTSF, driven by its ability to handle complex patterns and large-scale datasets effectively [59].27

Early academic efforts of deep MTSF methods like RNN-type methods [67] are reported to struggle28

with capturing long-term temporal dependencies due to their inherent limitations of gradient vanishing29

or exploding problem [76, 78]. More recently, Transformer [56] shows significant potential, largely30

due to the effectiveness of its attention mechanisms in modeling temporal correlation [56, 62].31

Consequently, attention mechanism has continuously been studied in MTSF, with a focus on adapting32

them to time series data, for instance, by exploiting sparsity inductive bias [33, 76], transforming time33

and frequency domains [78], and fusing multi-scale series [36]. While simpler MLP-based structures34
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emerged [70] offering alternatives to the established Transformer architecture in MTSF, notable35

modeling strategies like series-patching and channel-independent [45], significantly enhanced the36

performance of Transformer-based methods, thereby sustaining research interest in them. Building37

upon these developments, large time-series models including large language models (LLMs) [28, 79,38

25] and time series foundation models (TSFMs) [27, 42] have recently been introduced, achieving39

promising results and fostering new research directions for MTSF. Alongside these advancements40

in model architectures, active research within the deep MTSF community also focuses on other41

critical topics, such as variable (channels) dependency modeling [45, 37, 75], series normalization42

methods [40, 19], and trend-seasonal decomposition [70, 38].43

As the field of MTSF continues to diversify, existing studies typically address critical concerns about44

methodological effectiveness, either by conducting large-scale benchmarks [59, 52, 47] or performing45

model selection via AutoML [2, 20]. However, we identify three main challenges with these prevailing46

approaches: First, the granularity of existing studies is insufficient. Current benchmarking works47

evaluate or select models as a whole, which hinders a deeper understanding of the mechanisms that48

drive model performance. In AutoML, this lack of granularity prevents breakthroughs beyond the49

limits of existing models. Second, the scope of existing studies is limited. Current benchmarking and50

automated selection efforts are often confined to restricted model architectures or hyperparameters,51

without covering a broad range of data processing methods or feature modeling techniques. Third,52

the range of existing studies is narrow. Existing studies tend to cover only a subset of network53

architectures and often lack discussions on more diverse models, such as LLMs and TSFMs.54

Figure 1: The Pipeline of Existing Multivariate Time Series Forecasting Methods.

To bridge these gaps, we propose TSGym—a framework designed for the Large-scale Evaluation,55

Analysis, and Automated Model Construction in deep MTSF tasks. Rather than viewing models as56

unified entities, TSGym systematically deconstructs popular deep MTSF methods by organizing them57

into distinct design dimensions that cover the entire time series modeling pipeline (see Fig. 1 and58

Table 1). Through extensive experiments, TSGym conducts fine-grained, isolated evaluations of core59

components, thereby identifying key design dimensions/choices and valuable insights from the vast60

MTSF methods. Moreover, TSGym proposes the first component-level model construction in MTSF61

tasks, which effectively overcomes limitations in the previous automation methods by enabling more62

flexible and customized model designs tailored to data characteristics. Extensive experimental results63

indicate that the proposed TSGym generally outperforms existing SOTA methods. We summarize the64

key contributions of TSGym as follows:65

Component-level evaluation of MTSF methods. We propose TSGym, the first large-scale bench-66

mark that systematically decouples deep MTSF methods. By evaluating 16 design dimensions across67

10 benchmark datasets, TSGym offers key insights to inform future development for MTSF.68

Automated MTSF model construction. Leveraging meta-learning, TSGym develops models that69

outperform current SOTA methods, offering the MTSF community an effective, automated, and70

data-adaptive solution for model design.71
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Discussion on emerging large time-series models. TSGym broadens current MTSF scope by72

applying systematic evaluation and automated combination not only to well-established models like73

MLP and Transformer, but also to novel large time-series models like LLMs and TSFMs.74

2 Related Work75

2.1 Deep Learning-based MTSF76

MTSF evolves from traditional statistical methods like ARIMA and Gaussian processes to modern77

deep learning approaches. Recurrent Neural Networks (RNNs) introduce memory mechanisms for78

sequential data but struggle with long-term dependencies. Temporal Convolutional Networks (TCNs)79

improve this by capturing multi-scale patterns, though their fixed window sizes limit global context.80

Transformers, using self-attention, enable long-range forecasting but introduce high computational81

complexity, leading to efficient variants like sparse attention [65] and patch-based models [45].82

Multilayer Perceptrons (MLPs) regain attention as simple yet effective models [71], with numerous83

variants offering competitive performance [14, 68, 16, 38]. Leveraging NLP foundation models,84

LLM adaptation approaches use frozen backbones and prompt engineering [26, 79] or fine-tuning85

[11] to transfer pretrained knowledge. Simultaneously, pure TSFMs trained on large datasets achieve86

zero-shot generalization [42, 21], though constrained by Transformers’ complexity. Our TSGym87

framework modularizes six core backbones—RNNs, CNNs, Transformers, MLPs, LLMs, and88

TSFMs—offering flexible, hybrid integration based on temporal dependencies and resource needs.89

In recent advancements in MTSF, we summarize the design paradigm through a unified pipeline90

(Fig. 1), consisting of four stages: Series Preprocessing→Series Encoding→Network Architec-91

ture→Network Optimization. Additionally, several specialized modules are proposed to enhance92

predictive accuracy by addressing non-stationarity, multi-scale dependencies, and inter-variable93

interactions. We categorize these developments into 6 specialized modules:94

(1) Normalization methods like RevIN [30] adjust non-stationary data, improving robustness against95

distribution shifts. (2) Decomposition methods, such as Autoformer [65]’s trend-seasonality separa-96

tion, isolate non-stationary components, making the data more predictable by separating trends from97

seasonality. (3) Multi-scale analysis extracts temporal patterns across granularities, as in TimeMixer98

[58], capturing both high-frequency fluctuations and low-frequency trends through hierarchical99

resolution modeling. (4) Temporal tokenization techniques like PatchTST[45]’s subseries-level100

embedding represent time series hierarchically, improving the capture of complex temporal semantics.101

(5) Temporal dependency modeling through architectures like Transformers leverages self-attention102

to capture long-range dependencies, effectively modeling both short- and long-term relationships. (6)103

Variate correlation learning, exemplified by DUET [48], models inter-variable dependencies using104

frequency-domain metric learning, improving predictions by capturing interactions across variables.105

To provide a more detailed categorization and comprehensive technical specifications, please refer to106

Appx. B. Due to the extensive focus and continuous evolution of these modules in MTSF research,107

TSGym strives to decouple and modularize these key modules, exploring their real contributions and108

enabling more flexible model structure selection and configuration.109

2.2 Benchmarks for Time Series Forecasting110

Recent time series forecasting benchmark studies [59, 52, 47, 41] have conducted large-scale ex-111

periments across a diverse range of datasets. However, most of these works treat current models as112

monolithic entities. TSlib1 [59], one of the most popular repositories for time series analysis, provides113

a comprehensive survey and evaluates recent time series models across various time series analysis114

tasks. From the perspective of time series characteristics, BasicTS [52] analyzes model architectures115

and the strategy of treating channels (or variables) independently. With a more extensive experimental116

setup, TFB [47] additionally includes machine learning and statistical forecasting methods, and117

covers datasets from a broader range of domains. More recently, OpenLTM2 [41] provides a system118

to evaluate Time Series Foundation Models as well as Large language Models for time series methods.119

Although some surveys and benchmarks analyze the fine-grained components of time series models,120

their scope is often limited. Wen et al. [61] discuss various time series data augmentation techniques121

1https://github.com/thuml/Time-Series-Library
2https://github.com/thuml/OpenLTM
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and evaluate their effectiveness. Another survey [62] systematically reviews fine-grained compo-122

nents within Transformer-based architectures, but lacks broader coverage of model structures and123

experimental evaluations. To the best of our knowledge, TSGym is the first benchmark that not only124

provides component-level fine-grained analysis, but also conducts large-scale empirical evaluations.125

2.3 AutoML for Time Series Forecasting126

Current automated approaches for DL-based MTSF can be categorized into ensemble-based [53]127

and meta-learning-based [2, 20] methods. The former fits and integrates various models from a128

predefined pool with ensemble techniques, which inevitably incurs substantial computational cost.129

The latter leverages meta-features to characterize datasets and selects optimal models for the given130

datasets. However, both approaches operate at the model level and struggle to surpass the performance131

ceiling of existing methods. AutoCTS++ [66] achieves automated selection by searching over model132

architectures and hyperparameters, but its search space is limited in scope. In contrast, TSGym is133

the first framework to support automated selection over a wide range of fine-grained components for134

MTSF, extending beyond narrow model structures, hyperparameters, and data processing strategies.135

A closely related work is our previous effort, ADGym[24], which is designed for tabular anomaly136

detection with model decomposition. Differently, TSGym deals with multivariate time series data,137

which presents more complex data processing design choices, such as series sampling, series nor-138

malization, and series decomposition. Besides, TSGym considers finer-grained model structures,139

such as various attention variants in Transformers, and broader network types, including LLMs and140

TSFMs. It is worth mentioning that the success of TSGym validates the universality of the model141

decomposition framework, marking an innovation and progression distinct from ADGym. Further142

details on the differences between two works can be found in Appx.F.143

3 TSGym: Benchmarking and Automating Design Choices in Deep MTSF144

3.1 Problem Definition for MTSF145

In this paper, we focus on the common MTSF settings for time series data containing C variates.146

Given historical data χ = {xt
1, . . . ,x

t
C}

L
t=1, where L is the look-back sequence length and xt

i is the147

i-th variate, the forecasting task is to predict T -step future sequence χ̂ = {x̂t
1, . . . ,x

t
C}

L+T
t=L+1. To148

avoid error accumulation (T > 1), we directly predict all future steps, following [76].149

3.2 Large Benchmarking towards Design Choices of Deep MTSF150

Considering the above numerous methods proposing for MTSF tasks, the foremost priority involves151

decoupling the current state-of-the-art (SOTA) methods and further conducting large-scale benchmark152

to identify the core components that really drive the improvements in time-series forecasting.153

Following the taxonomy of the previous study [62, 71], we decouple existing SOTA methods154

according to the standard process of MTSF modeling, while significantly expanding the diversity of155

the modeling pipeline. Based on the flow direction from the input to the output sequence, the Pipeline156

of TSGym includes: Series Prepropcessing→Series Encoding→Network Architecture→Network157

Optimization, as is demonstrated in Fig. 1. Moreover, we structure each pipeline step according to158

distinct Design Dimensions, where a DL-based time-series forecasting model can be instantiated by159

specified Design Choices, as is shown in Table 1.160

Through the proposed design dimensions and choices, TSGym provides detailed description of161

time-series modeling pipeline, disentangling key elements within mainstream time-series forecasting162

methods and facilitating component-level comparison/automated construction. For example, TS-163

Gym includes multi-scale mixing module proposed in TimeMixer [58], Inverted Encoding method164

proposed in iTransformer [37], Channel-independent strategy and Series-Patching encoding used in165

PatchTST [45], various attention mechanism discussed in [62], and also LLM and TSFM network166

type choices that are often integrated without fully considering their interactions with other design167

dimensions. Detailed descriptions of all design choices are provided in Appx. G.1.168

3.3 Automated construction MTSF models via TSGym169

Overview. Differing from traditional methods that focus on selecting an off-the-shelf model, TSGym170

aims to customize models given the downstream MTSF tasks and data descriptions. Given a171

pre-defined conflict-free model set M = {M1, ...,Mm}, each model Mi is instantiated by the172
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Table 1: TSGym supports comprehensive design choices for deep time-series forecasting methods.
Pipeline Design Dimensions Design Choices

↓Series Preprocessing
Series Normalization [None, Stat, RevIN, DishTS]
Series Decomposition [None, MA, MoEMA, DFT]
Series Sampling/Mixing [False, True]

↓Series Encoding Channel Independent [False, True]
Sequence Length [48, 96, 192, 512]
Series Embedding [Inverted Encoding, Positional Encoding, Series Patching]

↓Network Architecture

Network Type [MLP, RNN, Transformer, LLM, TSFM]
Series Attention [Null, SelfAttn, AutoCorr, SparseAttn, FrequencyAttn, DestationaryAttn]
Feature Attention [Null, SelfAttn, SparseAttn, FrequencyAttn]
d_model [64, 256]
d_ff [256, 1024]
Encoder Layers [2, 3]

↓Network Training

Epochs [10, 20, 50]
Loss Function [MSE, MAE, HUBER]
Learning Rate [1e-3, 1e-4]
Learning Rate Strategy [Null, Type1]

design choice combinations illustrated in Table 1. TSGym learns the mapping function from these173

automatically combined models to their associated forecasting performance on the training datasets,174

and generalize to the test dataset(s) to select the best model based on predicted results.175

Meta-learning for automated MTSF model construction. Formally speaking, TSGym propose k176

design dimensions DD = {DD1, ..., DDk} for comprehensively describing each step of aforemen-177

tioned pipeline in deep learning time-series modeling. Each design dimension DDi represents a set178

containing elements of different design choices DC. By taking the Cartesian product of the sets DD179

corresponding to different design dimensions, we obtain the pool of all valid model combinations180

M = DD1 × DD2 × · · · × DDk = {(DC1, DC2, . . . , DCk) | DCi ∈ DDi, i = 1, 2, . . . , k}.181

Considering the potentially large number of combinations and the computational cost, we randomly182

sampled M to Ms, where Mi = (DC1 = RevIN,DC1 = DFT, ...,DCk = Type1) ∈ Ms, for183

example, which means Mi instantiates RevIN method to normalize input series, then decompose it to184

the seasonal and trend term. Subsequently, following the Series Encoding and Network Architecture185

constructing pipeline (as illustrated in Table 1), finally the Type1, i.e., a step decay learning rate186

strategy is employed to adjust the learning rate for updating the model parameters.187

Suppose we have n training datasets Dtrain = {D1, . . . ,Dn} and the number of sampled model com-188

binations (i.e., the size of the set Ms) is m, TSGym conducts extensive experiments on n historical189

training datasets to evaluate and further collect the forecasting performance of m model combinations.190

TSGym then acquire the MSE performance matrix P ∈ Rn×m, where Pi,j corresponds to the j-th191

auto-constructed MTSF model’s performance on the i-th training dataset. Since the difficulty of192

prediction tasks varies across training datasets, leading to significant differences in the numerical193

range of performance metrics. Directly using these metrics (e.g., MSE) as training targets of a meta-194

learner may result in overfitting on more difficult dataset(s). Therefore, we convert the performance195

metrics of Ms into their corresponding normalized ranking, where Ri,j = rank(Pi,j)/m ∈ [0, 1]196

and smaller values indicate better performance on the corresponding dataset.197

Distinguished from previous model selection approaches [2, 3], TSGym decouples more recently198

MTSF methods (including MLP-Mixer-type, Transformer-based, LLM and TSFM models), and199

supports fine-grained model construction at the component level, rather than being constrained to a200

fixed, limited set of existing models, which enables significantly greater flexibility and effectiveness.201

Specifically, TSGym follows the idea of meta-learning to construct a meta-learner that learns the202

mapping function f(·) from training dataset Di and model combination Mj , to the performance203

rankings Ri,j , as is shown in Eq. 1. We leverage meta-features Emeta
i that capture multiple aspects204

such as statistical, temporal, spectral, and fractal features, and distribution shift metrics to fully205

describe the complex data characteristics of time series datasets. Learnable continuous embeddings206

Ecomp
j are used to represent different model combinations and are updated through the gradient207

backpropagation of the meta-learner.208

f(Di,Mj) = Ri,j , f : Emeta
i

meta features

, Ecomp
j

component embed.

7→ Ri,j , i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (1)
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We used a simple two-layer MLP as the meta-learner and trained it through a regression problem,209

thereby transferring the learned mapping to new test datasets. For a newcoming dataset (i.e., test210

dataset Xtest), we acquire the predicted relative ranking of different components using the trained f(·),211

and select top-1 (k) to construct MTSF model(s). Note this procedure is zero-shot without needing212

any neural network training on Xtest but only extracting meta-features and pipeline embeddings. We213

show the effectiveness of the meta-predictor in §4.3.214

4 Experiments215

4.1 Experiment Settings216

Datasets. Following most prior works [65, 64, 26], we adopt 9 datasets as experimental data for217

MTSF tasks, ETT (4 subsets), Traffic, Electricity, Weather, Exchange, ILI. And we utilize the218

M4 dataset for short-term forecasting tasks. The forecast horizon L for long-term forecasting is219

{96, 192, 336, 720}, while for the ILI dataset, it is {24, 36, 48, 60}. For short-term forecasting, the220

forecast horizons are {6, 8, 13, 14, 18, 48}. More details can be seen in Appx. A.221

Baseline. We present a comprehensive set of baseline comparison experiments to demonstrate222

the superior performance of the pipelines automatically constructed by TSGym. Due to space223

limitations, the baseline methods presented in this section include the latest clustering-based approach224

DUET [48], time series mixing methods (TimeMixer [58]), MLP-based methods (MICN [57]),225

RNN-based methods (SegRNN [34]), CNN-based methods (TimesNet [64]), and Transformer-based226

methods (PatchTST [45], Crossformer [75], Autoformer [65]). We present experiments based on the227

complete baseline in the Appx. H.228

Evaluation Metrics. We follow the experimental setup of most prior works, using Mean Squared229

Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics for long-term forecasting tasks,230

and using Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error231

(MASE), and Overall Weighted Average (OWA) as metrics for short-term forecasting tasks. The232

mathematical formulas for these evaluation metrics are provided in the Appx. D.233

Meta-predictor in TSGym. The meta-predictor is instantiated as a two-layer MLP and trained for234

100 epochs with early stopping. The training process utilizes the Adam optimizer [31] with a learning235

rate of 0.001 and batch size of 512. See details in Appx. G.2.236

4.2 Large Evaluation on AD Design Choices237

In this work, we perform large evaluations on the decoupled pipelines according to the standard238

procedure of MTSF methods. Such analysis is often overlooked in previous studies, and we investigate239

each design dimension of decoupled pipelines by fixing its corresponding design choice (e.g., Self240

Attention), and randomly sampling other dimensional design choices to construct MTSF pipelines.241

In the following sections, we provide systematic conclusions based on long-term MTSF experimental242

results, addressing several gaps in the current MTSF research community. Specifically, different243

design choices are compared and demonstrated using a spider chart, where each vertex represents a244

dataset. Design choices that are closer to the vertices exhibit superior performance in their respective245

design dimensions. We analyze these components based on the different design dimensions, namely246

Series Preprocessing, Series Encoding and Network Construction. Finally, we evaluated the247

performance on four datasets under the fixed model architectures of LLMs or TSFMs, and discussed248

the effects of various design choices in the subsection on Large Time Series Models. More detailed249

information, including the complete design choices and their performance on short-term time series250

forecasting tasks, is provided in the Appx. H.251

Series Preprocessing. Based on the systematic evaluation of Series Preprocessing strategies in Fig. 2a252

and Fig. 2b, several key insights emerge. Series Normalization (Fig. 2a) proves universally effective,253

with RevIN and Stationary achieving the lowest MSE (75th percentile) across diverse datasets,254

establishing them as essential baselines for stabilizing non-stationary dynamics. In contrast, Series255

Decomposition (Fig. 2b) demonstrates varying effectiveness depending on the dataset. For example,256

decomposition methods improve performance on datasets like ETTm1 when using MA, while others,257

such as ETTh1, ECL, ETTh2, and traffic datasets, perform better without decomposition.258

Series Encoding. Several clear observations emerge from the Series Encoding stage, as illustrated259

in Fig.2c and Fig.2d. First, as shown in panel Fig. 2c, channel-independent methods consistently260
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DishTS
RevIN

Stat.
Without Norm.

(a) Series Normalization

DFT
MA

MoEMA
Without Decomp.

(b) Series Decomposition

Channel Indepen. Channel Depen.

(c) Channel Independent

Inverted Encoding
Positional Encoding

Series Patching

(d) Series Tokenization

GRU
MLP

Transformer

(e) Network Backbone

Without Attn.
SelfAttn.
AutoCorr.

SparseAttn.
FrequencyAttn.
DestationaryAttn.

(f) Series Attention

Figure 2: Overall performance across key design dimensions. The results (MSE) are based on the
75th percentile across all forecasting horizons.

outperform channel-dependent ones, with the exception of traffic and ILI, highlighting the advantage261

of modeling each variable separately. Regarding tokenization strategies Fig. 2d, both patch-wise262

(sequence patching) and series-wise (inverted encoding) approaches outperform the traditional point-263

wise encoding. Among them, patch-wise encoding shows strong performance across most datasets,264

whereas inverted encoding proves particularly effective on the traffic dataset.265

Network Construction. As is shown in Fig. 2e, we find that complex network architectures like the266

Transformer are not always necessary, which only performs better than MLP on weather, traffic and267

ILI datasets. This result is reasonable since more sophisticated DL backbone like Transformer and268

its variants often require specific hyperparameter combinations and tailored architectural designs269

to achieve satisfactory performance. We indicate that these observed results further emphasize the270

importance of automated model construction tailored to specific data characteristics. Indeed, we show271

in § 4.3 that including the Transformer architecture in the set of design choices would enhance the272

performance of constructed model via TSGym. Fig. 2f suggests that employing Attention mechanisms273

for modeling dependencies of input sequence does not offer significant advantages, which aligns with274

recent findings [70]. Additionally, the spider chart shows no significant performance differences were275

observed among different variants of attention mechanisms.276

Large Time Series Models. We choose three design dimensions crucial to large time-series models277

for discussion, as is shown in Fig.3. The most surprising finding pertains to the model backbones.278

We observe that GPT4TS demonstrates stable and competitive performance across most datasets. In279

contrast, Time-LLM, which is also based on LLMs, exhibits opposite results. A highly plausible280

explanation is that time series embeddings processed through different methods struggle to align281

consistently with the embedding space of word representations, which is an important part in Time-282

LLM, resulting in suboptimal performance of Time-LLM under diverse experimental configurations.283

4.3 Automatic Component Construction via TSGym284

Extensive experimental results discussed above indicate that in deep time series modeling, most285

design choices are determined by data characteristics, meaning one-size-fits-all approaches are seldom286

effective. This, in turn, emphasizes the necessity of automated model construction.287
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LLM-GPT4TS
LLM-TimeLLM

TSFM-Moment
TSFM-Timer

(a) Network Backbone

DishTS
RevIN

Stat.
Without Norm.

(b) Series Normalization

DFT
MA

MoEMA
Without Decomp.

(c) Series Decomposition

Figure 3: Overall performance of different design choices across 3 design dimensions (Network
Backbone 3a, Series Normalization 2a, Series Decomposition 2b) when using LLMs or TSFMs. The
results (MSE) are based on the 75th percentile across all forecasting horizons.

In this subsection, we compare the MTSF pipeline selected by TSGym with existing SOTA methods.288

Through large-scale experiments, we found that TSGym outperforms existing SOTA models in both289

long- and short-term MTSF tasks. Regarding algorithm efficiency, our experiments demonstrate that290

even when limited to a search pool of lightweight model structures, such as MLP and RNNs, TSGym291

can still achieve competitive results. We analyze the effectiveness of the pipelines automatically292

constructed by TSGym through five key questions as follows. Additional details, such as the results293

based on more metrics and more complex meta-features, can be found in the Appx.H.294

Question 1: Is the model constructed by meta-predictor better than existing SOTA methods?295

Comprehensive forecasting results are presented in Table 2 and 3, where the best performances are296

highlighted in red and the second-best results are underlined. Compared with other state-of-the-art297

forecasters, TSGym demonstrates superior capability, especially in handling high-dimensional time298

series data. Its consistent top-ranking performance across multiple datasets underlines its robustness299

and effectiveness for complex multivariate forecasting tasks.300

Table 2: Short-term forecasting task on M4. The results are averaged from several datasets under
different sample intervals. See Table in Appendix for the full results.

Models TSGym (ours) TimeMixer MICN TimesNet PatchTST DLinear Crossformer Autoformer SegRNN

OWA 0.872 0.884 0.984 0.907 0.965 0.922 8.856 1.273 1.007
SMAPE 12.013 11.985 13.025 12.199 12.848 12.511 >30 16.392 13.509
MASE 1.575 1.615 1.839 1.662 1.738 1.693 >10 2.317 1.823

Table 3: Long-term forecasting task. The past sequence length is set as 36 for ILI and 96 for the
others. All the results are averaged from 4 different prediction lengths, that is {24, 36, 48, 60} for ILI
and {96, 192, 336, 720} for the others. See Table in Appendix for the full results.

Models TSGym DUET TimeMixer MICN TimesNet PatchTST DLinear Crossformer Autoformer SegRNN
(Ours) [48] [58] [57] [64] [45] [71] [75] [34] [65]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.357 0.383 0.407 0.409 0.384 0.399 0.402 0.429 0.432 0.430 0.390 0.404 0.404 0.407 0.501 0.501 0.532 0.496 0.388 0.404
ETTm2 0.261 0.319 0.296 0.338 0.277 0.325 0.342 0.391 0.296 0.334 0.288 0.334 0.349 0.399 1.487 0.789 0.330 0.368 0.273 0.322
ETTh1 0.426 0.440 0.433 0.437 0.448 0.438 0.589 0.537 0.474 0.464 0.454 0.449 0.465 0.461 0.544 0.520 0.492 0.485 0.422 0.429
ETTh2 0.358 0.400 0.380 0.403 0.383 0.406 0.585 0.530 0.415 0.424 0.385 0.409 0.566 0.520 1.552 0.908 0.446 0.460 0.374 0.405

ECL 0.170 0.265 0.179 0.262 0.185 0.273 0.186 0.297 0.219 0.314 0.209 0.298 0.225 0.319 0.193 0.289 0.234 0.340 0.216 0.302
Traffic 0.435 0.313 0.797 0.427 0.496 0.313 0.544 0.320 0.645 0.348 0.497 0.321 0.673 0.419 1.458 0.782 0.637 0.397 0.807 0.411

Weather 0.229 0.268 0.252 0.277 0.244 0.274 0.264 0.316 0.261 0.287 0.256 0.279 0.265 0.317 0.253 0.312 0.339 0.379 0.251 0.298
Exchange 0.410 0.431 0.322 0.384 0.359 0.402 0.346 0.422 0.405 0.437 0.381 0.412 0.346 0.414 0.904 0.695 0.506 0.500 0.408 0.423

ILI 2.233 1.015 2.640 1.018 4.502 1.557 2.938 1.178 2.140 0.907 2.160 0.901 4.367 1.540 4.311 1.396 3.156 1.207 4.305 1.397

1st Count 11 3 0 0 1 1 0 0 0 2

Specifically, TSGym achieves the lowest MSE and MAE on a total of 11 occasions, reflecting its301

strong generalization ability over both medium and long forecasting horizons. While some baseline302

models, like DUET, PatchTST and SegRNN, occasionally show competitive results on certain datasets.303

As for short-term forecasting tasks, both TSGym and TSMixer demonstrate competitive performance,304

with TSGym outperforming on most evaluation metrics.305

Question 2: Is TSGym with lightweight architecture better than existing SOTA methods?306

In the previous section, we compared TSGym using the full component pool with SOTA and found307

that TSGym outperforms SOTA on 66.7% of the datasets evaluated. In this ablation experiment Table308
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4, we specifically compare the -Transformer configuration of TSGym with DUET. Remarkably,309

even after removing Transformer-related components from the TSGym component pool and retaining310

only the more computationally efficient MLP- and RNN-based models, TSGym still outperforms311

DUET on the majority of datasets. This demonstrates the robustness and efficiency of TSGym’s312

architecture and highlights the strong predictive power of the simplified MLP-based design.313

Question 3: Does the training strategies bring significant improvement for TSGym?314

Following Table 4, we find that the introduction of the resampling method enhances TSGym’s315

meta-predictor performance across 2 datasets, improving both robustness and accuracy. The +AllPL316

configuration, which trains on datasets with varying prediction lengths and transfers this knowledge317

to a test set with a single prediction length, further improves generalization, with the best performance318

observed on the ETTh1 dataset. Additionally, removing the Transformer component (-Transformer)319

leads to performance gains on certain datasets, suggesting that a simplified MLP- or RNN-based320

architecture can be more effective in specific scenarios. These results highlight the flexibility321

of TSGym’s design and the potential benefits of customizing the component pool to suit dataset322

characteristics.323

Table 4: Ablation study
evaluates the removal
of Transformer-based
components and different
training strategies, with
results averaged over all
prediction lengths, and
the final row shows how
often TSGym variants
outperform DUET.

Models TSGym -Transformer +Resample +AllPL DUET
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.357 0.383 0.363 0.388 0.361 0.384 0.367 0.391 0.407 0.409
ETTm2 0.261 0.319 0.274 0.330 0.260 0.320 0.265 0.320 0.296 0.338
ETTh1 0.426 0.440 0.441 0.450 0.432 0.440 0.424 0.434 0.433 0.437
ETTh2 0.358 0.400 0.358 0.401 0.357 0.398 0.361 0.404 0.380 0.403

ECL 0.170 0.265 0.174 0.273 0.170 0.265 0.185 0.277 0.179 0.262
Traffic 0.435 0.313 0.415 0.293 0.429 0.307 0.429 0.306 0.797 0.427

Weather 0.229 0.268 0.226 0.265 0.229 0.267 0.234 0.271 0.252 0.277
Exchange 0.410 0.431 0.409 0.435 0.399 0.430 0.377 0.411 0.322 0.384

ILI 2.233 1.015 2.437 1.053 2.698 1.114 2.173 1.020 2.640 1.018

Better Count 14/18 12/18 12/18 12/18

Question 4: Does large time-series models bring significant improvement for TSGym?324

Table 5: Ablation study of TSGym incorporating
LLM and TSFM in 4 datasets. The average results
of all prediction lengths are listed here.

Models TSGym +LLM +TSFM
Metric MSE MAE MSE MAE MSE MAE
ETTh1 0.442 0.440 0.442 0.438 0.432 0.437
ETTh2 0.411 0.429 0.364 0.402 0.376 0.409

Exchange 0.673 0.522 0.503 0.466 0.374 0.411
ILI 2.682 1.112 2.470 1.063 2.860 1.163

Table 5 evaluates the impact of incorporating325

LLM and TSFM into the base TSGym frame-326

work. It is evident that both the introduction of327

LLM and TSFM consistently improve forecast-328

ing accuracy compared to the baseline TSGym329

configuration. This demonstrates the effective-330

ness of leveraging advanced model architectures331

and fusion strategies to further enhance the pre-332

dictive performance of TSGym, particularly on333

complex multivariate time series datasets.334

5 Conclusions, Limitations, and Future Directions335

To advance beyond holistic evaluations in multivariate time-series forecasting (MTSF), this paper336

introduced TSGym, a novel framework centered on fine-grained component analysis and the au-337

tomated construction of specialized forecasting models. By systematically decomposing MTSF338

pipelines into design dimensions and choices informed by recent studies, TSGym uncovers crucial339

insights into component-level forecasting performance and leverages meta-learning method for the340

automated construction of customized models. Extensive experimental results indicate that the341

MTSF models constructed by the proposed TSGym significantly outperform current MTSF SOTA342

solutions—demonstrating the advantage of adaptively customizing models according to distinct data343

characteristics. Our results show that TSGym is highly effective, even without exhaustively covering344

all SOTA components, and TSGym is made publicly available to benefit the MTSF community.345

Future efforts will focus on expanding TSGym’s range of forecasting techniques with emerging346

techniques and refining its meta-learning capabilities by incorporating multi-objective optimization to347

balance predictive performance against computational costs, especially for large time-series models,348

while also broadening its applicability across diverse time series analysis tasks.349
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as grounds for rejection, a worse outcome might be that reviewers discover limitations that580

aren’t acknowledged in the paper. The authors should use their best judgment and recognize581

that individual actions in favor of transparency play an important role in developing norms that582

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize583

honesty concerning limitations.584

3. Theory assumptions and proofs585

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete586

(and correct) proof?587

Answer: [NA]588

Justification: the paper does not include theoretical results.589

Guidelines:590

• The answer NA means that the paper does not include theoretical results.591

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.592
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• All assumptions should be clearly stated or referenced in the statement of any theorems.593

• The proofs can either appear in the main paper or the supplemental material, but if they appear in594

the supplemental material, the authors are encouraged to provide a short proof sketch to provide595

intuition.596

• Inversely, any informal proof provided in the core of the paper should be complemented by597

formal proofs provided in appendix or supplemental material.598

• Theorems and Lemmas that the proof relies upon should be properly referenced.599

4. Experimental result reproducibility600

Question: Does the paper fully disclose all the information needed to reproduce the main experimental601

results of the paper to the extent that it affects the main claims and/or conclusions of the paper602

(regardless of whether the code and data are provided or not)?603

Answer: [Yes]604

Justification: We have open-sourced all the code and data. Anyone can directly reproduce our605

experimental results using the predefined scripts provided.606

Guidelines:607

• The answer NA means that the paper does not include experiments.608

• If the paper includes experiments, a No answer to this question will not be perceived well by the609

reviewers: Making the paper reproducible is important, regardless of whether the code and data610

are provided or not.611

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make612

their results reproducible or verifiable.613

• Depending on the contribution, reproducibility can be accomplished in various ways. For614

example, if the contribution is a novel architecture, describing the architecture fully might suffice,615

or if the contribution is a specific model and empirical evaluation, it may be necessary to either616

make it possible for others to replicate the model with the same dataset, or provide access to617

the model. In general. releasing code and data is often one good way to accomplish this, but618

reproducibility can also be provided via detailed instructions for how to replicate the results,619

access to a hosted model (e.g., in the case of a large language model), releasing of a model620

checkpoint, or other means that are appropriate to the research performed.621

• While NeurIPS does not require releasing code, the conference does require all submissions622

to provide some reasonable avenue for reproducibility, which may depend on the nature of the623

contribution. For example624

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to625

reproduce that algorithm.626

(b) If the contribution is primarily a new model architecture, the paper should describe the627

architecture clearly and fully.628

(c) If the contribution is a new model (e.g., a large language model), then there should either be629

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,630

with an open-source dataset or instructions for how to construct the dataset).631

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are632

welcome to describe the particular way they provide for reproducibility. In the case of633

closed-source models, it may be that access to the model is limited in some way (e.g.,634

to registered users), but it should be possible for other researchers to have some path to635

reproducing or verifying the results.636

5. Open access to data and code637

Question: Does the paper provide open access to the data and code, with sufficient instructions to638

faithfully reproduce the main experimental results, as described in supplemental material?639

Answer: [Yes]640

Justification: We have open-sourced all the code and data, including component-level evaluations and641

the meta-learning based automated selection model. All code and datasets are publicly available at642

https://github.com/SUFE-AILAB/TSGym.643

Guidelines:644

• The answer NA means that paper does not include experiments requiring code.645

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/646

guides/CodeSubmissionPolicy) for more details.647

• While we encourage the release of code and data, we understand that this might not be possible,648

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless649

this is central to the contribution (e.g., for a new open-source benchmark).650
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• The instructions should contain the exact command and environment needed to run to reproduce651

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/652

guides/CodeSubmissionPolicy) for more details.653

• The authors should provide instructions on data access and preparation, including how to access654

the raw data, preprocessed data, intermediate data, and generated data, etc.655

• The authors should provide scripts to reproduce all experimental results for the new proposed656

method and baselines. If only a subset of experiments are reproducible, they should state which657

ones are omitted from the script and why.658

• At submission time, to preserve anonymity, the authors should release anonymized versions (if659

applicable).660

• Providing as much information as possible in supplemental material (appended to the paper) is661

recommended, but including URLs to data and code is permitted.662

6. Experimental setting/details663

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,664

how they were chosen, type of optimizer, etc.) necessary to understand the results?665

Answer: [Yes]666

Justification: We provide detailed descriptions of the datasets and experimental settings, the evaluation667

metrics used, the baselines, and the training hyperparameters of our proposed meta predictor in the668

Experiment Settings and Appendix sections.669

Guidelines:670

• The answer NA means that the paper does not include experiments.671

• The experimental setting should be presented in the core of the paper to a level of detail that is672

necessary to appreciate the results and make sense of them.673

• The full details can be provided either with the code, in appendix, or as supplemental material.674

7. Experiment statistical significance675

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-676

tion about the statistical significance of the experiments?677

Answer: [Yes]678

Justification: We present the error bars in the box plots shown in the Appendix.679

Guidelines:680

• The answer NA means that the paper does not include experiments.681

• The authors should answer "Yes" if the results are accompanied by error bars, confidence682

intervals, or statistical significance tests, at least for the experiments that support the main claims683

of the paper.684

• The factors of variability that the error bars are capturing should be clearly stated (for example,685

train/test split, initialization, random drawing of some parameter, or overall run with given686

experimental conditions).687

• The method for calculating the error bars should be explained (closed form formula, call to a688

library function, bootstrap, etc.)689

• The assumptions made should be given (e.g., Normally distributed errors).690

• It should be clear whether the error bar is the standard deviation or the standard error of the691

mean.692

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report693

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is694

not verified.695

• For asymmetric distributions, the authors should be careful not to show in tables or figures696

symmetric error bars that would yield results that are out of range (e.g. negative error rates).697

• If error bars are reported in tables or plots, The authors should explain in the text how they were698

calculated and reference the corresponding figures or tables in the text.699

8. Experiments compute resources700

Question: For each experiment, does the paper provide sufficient information on the computer701

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?702

Answer: [Yes]703

Justification: provide sufficient information on the computer resources needed to reproduce the704

experiments in the Appendix Section.705

Guidelines:706

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The answer NA means that the paper does not include experiments.707

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud708

provider, including relevant memory and storage.709

• The paper should provide the amount of compute required for each of the individual experimental710

runs as well as estimate the total compute.711

• The paper should disclose whether the full research project required more compute than the712

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into713

the paper).714

9. Code of ethics715

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code716

of Ethics https://neurips.cc/public/EthicsGuidelines?717

Answer: [Yes]718

Justification: The research conforms with the NeurIPS Code of Ethics, adhering to ethical standards in719

methodology, transparency, and data usage.720

Guidelines:721

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.722

• If the authors answer No, they should explain the special circumstances that require a deviation723

from the Code of Ethics.724

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due725

to laws or regulations in their jurisdiction).726

10. Broader impacts727

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts728

of the work performed?729

Answer: [Yes]730

Justification: In the Introduction section, we discuss the broad applicability and value of the research731

topic addressed in this paper.732

Guidelines:733

• The answer NA means that there is no societal impact of the work performed.734

• If the authors answer NA or No, they should explain why their work has no societal impact or735

why the paper does not address societal impact.736

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,737

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-738

ment of technologies that could make decisions that unfairly impact specific groups), privacy739

considerations, and security considerations.740

• The conference expects that many papers will be foundational research and not tied to particular741

applications, let alone deployments. However, if there is a direct path to any negative applications,742

the authors should point it out. For example, it is legitimate to point out that an improvement in743

the quality of generative models could be used to generate deepfakes for disinformation. On the744

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks745

could enable people to train models that generate Deepfakes faster.746

• The authors should consider possible harms that could arise when the technology is being used747

as intended and functioning correctly, harms that could arise when the technology is being used748

as intended but gives incorrect results, and harms following from (intentional or unintentional)749

misuse of the technology.750

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies751

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-752

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the753

efficiency and accessibility of ML).754

11. Safeguards755

Question: Does the paper describe safeguards that have been put in place for responsible release of756

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or757

scraped datasets)?758

Answer: [Yes]759

Justification: The paper outlines the safeguards implemented for the responsible release of data and760

models in the experiment settings section , ensuring that they are protected against potential misuse.761

Guidelines:762
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• The answer NA means that the paper poses no such risks.763

• Released models that have a high risk for misuse or dual-use should be released with necessary764

safeguards to allow for controlled use of the model, for example by requiring that users adhere to765

usage guidelines or restrictions to access the model or implementing safety filters.766

• Datasets that have been scraped from the Internet could pose safety risks. The authors should767

describe how they avoided releasing unsafe images.768

• We recognize that providing effective safeguards is challenging, and many papers do not require769

this, but we encourage authors to take this into account and make a best faith effort.770

12. Licenses for existing assets771

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,772

properly credited and are the license and terms of use explicitly mentioned and properly respected?773

Answer: [Yes]774

Justification: The creators and original owners of all assets (e.g., code, data, models) used in the paper775

are properly credited.776

Guidelines:777

• The answer NA means that the paper does not use existing assets.778

• The authors should cite the original paper that produced the code package or dataset.779

• The authors should state which version of the asset is used and, if possible, include a URL.780

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.781

• For scraped data from a particular source (e.g., website), the copyright and terms of service of782

that source should be provided.783

• If assets are released, the license, copyright information, and terms of use in the package should784

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for785

some datasets. Their licensing guide can help determine the license of a dataset.786

• For existing datasets that are re-packaged, both the original license and the license of the derived787

asset (if it has changed) should be provided.788

• If this information is not available online, the authors are encouraged to reach out to the asset’s789

creators.790

13. New assets791

Question: Are new assets introduced in the paper well documented and is the documentation provided792

alongside the assets?793

Answer: [Yes]794

Justification: We provide detailed descriptions of the code and experimental settings in the text.795

Guidelines:796

• The answer NA means that the paper does not release new assets.797

• Researchers should communicate the details of the dataset/code/model as part of their sub-798

missions via structured templates. This includes details about training, license, limitations,799

etc.800

• The paper should discuss whether and how consent was obtained from people whose asset is801

used.802

• At submission time, remember to anonymize your assets (if applicable). You can either create an803

anonymized URL or include an anonymized zip file.804

14. Crowdsourcing and research with human subjects805

Question: For crowdsourcing experiments and research with human subjects, does the paper include806

the full text of instructions given to participants and screenshots, if applicable, as well as details about807

compensation (if any)?808

Answer: [NA]809

Justification: The paper does not involve crowdsourcing nor research with human subjects.810

Guidelines:811

• The answer NA means that the paper does not involve crowdsourcing nor research with human812

subjects.813

• Including this information in the supplemental material is fine, but if the main contribution of the814

paper involves human subjects, then as much detail as possible should be included in the main815

paper.816
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other817

labor should be paid at least the minimum wage in the country of the data collector.818

15. Institutional review board (IRB) approvals or equivalent for research with human subjects819

Question: Does the paper describe potential risks incurred by study participants, whether such820

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an821

equivalent approval/review based on the requirements of your country or institution) were obtained?822

Answer: [NA]823

Justification: The paper does not involve crowdsourcing nor research with human subjects.824

Guidelines:825

• The answer NA means that the paper does not involve crowdsourcing nor research with human826

subjects.827

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be828

required for any human subjects research. If you obtained IRB approval, you should clearly state829

this in the paper.830

• We recognize that the procedures for this may vary significantly between institutions and831

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for832

their institution.833

• For initial submissions, do not include any information that would break anonymity (if applica-834

ble), such as the institution conducting the review.835

16. Declaration of LLM usage836

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard837

component of the core methods in this research? Note that if the LLM is used only for writing,838

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or839

originality of the research, declaration is not required.840

Answer: [NA]841

Justification: The core method development in this research does not involve LLMs as any important,842

original, or non-standard components.843

Guidelines:844

• The answer NA means that the core method development in this research does not involve LLMs845

as any important, original, or non-standard components.846

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what847

should or should not be described.848
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