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Abstract

Recently, deep learning has driven significant advancements in multivariate time
series forecasting (MTSF) tasks. However, much of the current research in MTSF
tends to evaluate models from a holistic perspective, which obscures the individ-
ual contributions and leaves critical issues unaddressed. Adhering to the current
modeling paradigms, this work bridges these gaps by systematically decomposing
deep MTSF methods into their core, fine-grained components like series-patching
tokenization, channel-independent strategy, attention modules, or even Large Lan-
guage Models and Time-series Foundation Models. Through extensive experiments
and component-level analysis, our work offers more profound insights than previ-
ous benchmarks that typically discuss models as a whole.

Furthermore, we propose a novel automated solution called TSGym for MTSF
tasks. Unlike traditional hyperparameter tuning, neural architecture searching
or fixed model selection, TSGym performs fine-grained component selection
and automated model construction, which enables the creation of more effec-
tive solutions tailored to diverse time series data, therefore enhancing model
transferability across different data sources and robustness against distribution
shifts. Extensive experiments indicate that TSGym significantly outperforms
existing state-of-the-art MTSF methods. All code is publicly available on
https://github.com/SUFE-AILAB/TSGym,

1 Introduction

Multivariate time series refer to time series data involving multiple interdependent variables, which are
widely present in various fields such as finance [51]], energy [5, [17], traffic [15}169], and health [9} 29].
Among the numerous analysis tasks, multivariate time series forecasting (MTSF) attracts substantial
attention from the research community due to its significant practical applications. Traditional
approaches to MTSF are largely based on statistical methods [4] [/2] and machine learning tech-
niques [23}/44]). In recent years, deep learning (DL) has become the most active area of research for
MTSF, driven by its ability to handle complex patterns and large-scale datasets effectively [S9].

Early academic efforts of deep MTSF methods like RNN-type methods [67] are reported to struggle
with capturing long-term temporal dependencies due to their inherent limitations of gradient vanishing
or exploding problem [76] [78]]. More recently, Transformer [56] shows significant potential, largely
due to the effectiveness of its attention mechanisms in modeling temporal correlation [56} [62].
Consequently, attention mechanism has continuously been studied in MTSF, with a focus on adapting
them to time series data, for instance, by exploiting sparsity inductive bias [33|[76]], transforming time
and frequency domains [78]], and fusing multi-scale series [36]. While simpler MLP-based structures
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emerged [70] offering alternatives to the established Transformer architecture in MTSF, notable
modeling strategies like series-patching and channel-independent [45], significantly enhanced the
performance of Transformer-based methods, thereby sustaining research interest in them. Building
upon these developments, large time-series models including large language models (LLMs) 28, [79]
25]] and time series foundation models (TSFMs) [27, 42] have recently been introduced, achieving
promising results and fostering new research directions for MTSF. Alongside these advancements
in model architectures, active research within the deep MTSF community also focuses on other
critical topics, such as variable (channels) dependency modeling [45] 137, [75]], series normalization
methods [40, [19], and trend-seasonal decomposition [[70} 38]].

As the field of MTSF continues to diversify, existing studies typically address critical concerns about
methodological effectiveness, either by conducting large-scale benchmarks 59,152, 147] or performing
model selection via AutoML [2}20]. However, we identify three main challenges with these prevailing
approaches: First, the granularity of existing studies is insufficient. Current benchmarking works
evaluate or select models as a whole, which hinders a deeper understanding of the mechanisms that
drive model performance. In AutoML, this lack of granularity prevents breakthroughs beyond the
limits of existing models. Second, the scope of existing studies is limited. Current benchmarking and
automated selection efforts are often confined to restricted model architectures or hyperparameters,
without covering a broad range of data processing methods or feature modeling techniques. Third,
the range of existing studies is narrow. Existing studies tend to cover only a subset of network
architectures and often lack discussions on more diverse models, such as LLMs and TSFMs.
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Figure 1: The Pipeline of Existing Multivariate Time Series Forecasting Methods.

To bridge these gaps, we propose TSGym—a framework designed for the Large-scale Evaluation,
Analysis, and Automated Model Construction in deep MTSF tasks. Rather than viewing models as
unified entities, TSGym systematically deconstructs popular deep MTSF methods by organizing them
into distinct design dimensions that cover the entire time series modeling pipeline (see Fig. [I]and
Table[T). Through extensive experiments, TSGym conducts fine-grained, isolated evaluations of core
components, thereby identifying key design dimensions/choices and valuable insights from the vast
MTSF methods. Moreover, TSGym proposes the first component-level model construction in MTSF
tasks, which effectively overcomes limitations in the previous automation methods by enabling more
flexible and customized model designs tailored to data characteristics. Extensive experimental results
indicate that the proposed TSGym generally outperforms existing SOTA methods. We summarize the
key contributions of TSGym as follows:

Component-level evaluation of MTSF methods. We propose TSGym, the first large-scale bench-
mark that systematically decouples deep MTSF methods. By evaluating 16 design dimensions across
10 benchmark datasets, TSGym offers key insights to inform future development for MTSF.

Automated MTSF model construction. Leveraging meta-learning, TSGym develops models that
outperform current SOTA methods, offering the MTSF community an effective, automated, and
data-adaptive solution for model design.
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Discussion on emerging large time-series models. TSGym broadens current MTSF scope by
applying systematic evaluation and automated combination not only to well-established models like
MLP and Transformer, but also to novel large time-series models like LLMs and TSFMs.

2 Related Work
2.1 Deep Learning-based MTSF

MTSF evolves from traditional statistical methods like ARIMA and Gaussian processes to modern
deep learning approaches. Recurrent Neural Networks (RNNs) introduce memory mechanisms for
sequential data but struggle with long-term dependencies. Temporal Convolutional Networks (TCNs)
improve this by capturing multi-scale patterns, though their fixed window sizes limit global context.
Transformers, using self-attention, enable long-range forecasting but introduce high computational
complexity, leading to efficient variants like sparse attention [65] and patch-based models [45]].
Multilayer Perceptrons (MLPs) regain attention as simple yet effective models [71], with numerous
variants offering competitive performance [14, 68| [16, 38]. Leveraging NLP foundation models,
LLM adaptation approaches use frozen backbones and prompt engineering [26}79] or fine-tuning
[L1] to transfer pretrained knowledge. Simultaneously, pure TSFMs trained on large datasets achieve
zero-shot generalization [42, 21]], though constrained by Transformers’ complexity. Our TSGym
framework modularizes six core backbones—RNNs, CNNs, Transformers, MLPs, LLMs, and
TSFMs—offering flexible, hybrid integration based on temporal dependencies and resource needs.

In recent advancements in MTSF, we summarize the design paradigm through a unified pipeline
(Fig. [T), consisting of four stages: Series Preprocessing—Series Encoding—Network Architec-
ture—Network Optimization. Additionally, several specialized modules are proposed to enhance
predictive accuracy by addressing non-stationarity, multi-scale dependencies, and inter-variable
interactions. We categorize these developments into 6 specialized modules:

(1) Normalization methods like RevIN [30] adjust non-stationary data, improving robustness against
distribution shifts. (2) Decomposition methods, such as Autoformer [65]]’s trend-seasonality separa-
tion, isolate non-stationary components, making the data more predictable by separating trends from
seasonality. (3) Multi-scale analysis extracts temporal patterns across granularities, as in TimeMixer
[58]], capturing both high-frequency fluctuations and low-frequency trends through hierarchical
resolution modeling. (4) Temporal tokenization techniques like PatchTST[45]]’s subseries-level
embedding represent time series hierarchically, improving the capture of complex temporal semantics.
(5) Temporal dependency modeling through architectures like Transformers leverages self-attention
to capture long-range dependencies, effectively modeling both short- and long-term relationships. (6)
Variate correlation learning, exemplified by DUET [48]], models inter-variable dependencies using
frequency-domain metric learning, improving predictions by capturing interactions across variables.

To provide a more detailed categorization and comprehensive technical specifications, please refer to
Appx. [B] Due to the extensive focus and continuous evolution of these modules in MTSF research,
TSGym strives to decouple and modularize these key modules, exploring their real contributions and
enabling more flexible model structure selection and configuration.

2.2 Benchmarks for Time Series Forecasting

Recent time series forecasting benchmark studies [59} 52, 47, 141]] have conducted large-scale ex-
periments across a diverse range of datasets. However, most of these works treat current models as
monolithic entities. TSlilﬂ [59]], one of the most popular repositories for time series analysis, provides
a comprehensive survey and evaluates recent time series models across various time series analysis
tasks. From the perspective of time series characteristics, BasicTS [52]] analyzes model architectures
and the strategy of treating channels (or variables) independently. With a more extensive experimental
setup, TFB [47] additionally includes machine learning and statistical forecasting methods, and
covers datasets from a broader range of domains. More recently, OpenLT [41] provides a system
to evaluate Time Series Foundation Models as well as Large language Models for time series methods.

Although some surveys and benchmarks analyze the fine-grained components of time series models,
their scope is often limited. Wen et al. [61]] discuss various time series data augmentation techniques

"https://github.com/thum]/Time-Series-Library
“https://github.com/thuml/OpenL.TM
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and evaluate their effectiveness. Another survey [62] systematically reviews fine-grained compo-
nents within Transformer-based architectures, but lacks broader coverage of model structures and
experimental evaluations. To the best of our knowledge, TSGym is the first benchmark that not only
provides component-level fine-grained analysis, but also conducts large-scale empirical evaluations.

2.3 AutoML for Time Series Forecasting

Current automated approaches for DL-based MTSF can be categorized into ensemble-based [53]
and meta-learning-based [2, [20] methods. The former fits and integrates various models from a
predefined pool with ensemble techniques, which inevitably incurs substantial computational cost.
The latter leverages meta-features to characterize datasets and selects optimal models for the given
datasets. However, both approaches operate at the model level and struggle to surpass the performance
ceiling of existing methods. AutoCTS++ [66] achieves automated selection by searching over model
architectures and hyperparameters, but its search space is limited in scope. In contrast, TSGym is
the first framework to support automated selection over a wide range of fine-grained components for
MTSEF, extending beyond narrow model structures, hyperparameters, and data processing strategies.

A closely related work is our previous effort, ADGym][24]], which is designed for tabular anomaly
detection with model decomposition. Differently, TSGym deals with multivariate time series data,
which presents more complex data processing design choices, such as series sampling, series nor-
malization, and series decomposition. Besides, TSGym considers finer-grained model structures,
such as various attention variants in Transformers, and broader network types, including LLMs and
TSFMs. It is worth mentioning that the success of TSGym validates the universality of the model
decomposition framework, marking an innovation and progression distinct from ADGym. Further
details on the differences between two works can be found in Appx [

3 TSGym: Benchmarking and Automating Design Choices in Deep MTSF

3.1 Problem Definition for MTSF
In this paper, we focus on the common MTSF settings for time series data containing C' variates.

Given historical data x = {z!, ..., :c’b}le, where L is the look-back sequence length and «! is the
i-th variate, the forecasting task is to predict T-step future sequence ¥ = {&},. .., :ctc}tLILT 41 To

avoid error accumulation (I' > 1), we directly predict all future steps, following [76].

3.2 Large Benchmarking towards Design Choices of Deep MTSF

Considering the above numerous methods proposing for MTSF tasks, the foremost priority involves
decoupling the current state-of-the-art (SOTA) methods and further conducting large-scale benchmark
to identify the core components that really drive the improvements in time-series forecasting.

Following the taxonomy of the previous study [62, [71], we decouple existing SOTA methods
according to the standard process of MTSF modeling, while significantly expanding the diversity of
the modeling pipeline. Based on the flow direction from the input to the output sequence, the Pipeline
of TSGym includes: Series Prepropcessing—Series Encoding— Network Architecture— Network
Optimization, as is demonstrated in Fig.[I] Moreover, we structure each pipeline step according to
distinct Design Dimensions, where a DL-based time-series forecasting model can be instantiated by
specified Design Choices, as is shown in Table

Through the proposed design dimensions and choices, TSGym provides detailed description of
time-series modeling pipeline, disentangling key elements within mainstream time-series forecasting
methods and facilitating component-level comparison/automated construction. For example, TS-
Gym includes multi-scale mixing module proposed in TimeMixer [58]], Inverted Encoding method
proposed in iTransformer [37], Channel-independent strategy and Series-Patching encoding used in
PatchTST [45]], various attention mechanism discussed in [62]], and also LLLM and TSFM network
type choices that are often integrated without fully considering their interactions with other design
dimensions. Detailed descriptions of all design choices are provided in Appx.

3.3 Automated construction MTSF models via TSGym

Overview. Differing from traditional methods that focus on selecting an off-the-shelf model, TSGym
aims to customize models given the downstream MTSF tasks and data descriptions. Given a
pre-defined conflict-free model set M = {Mj, ..., M,,}, each model M; is instantiated by the
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Table 1: TSGym supports comprehensive design choices for deep time-series forecasting methods.
Pipeline Design Dimensions Design Choices

Series Normalization [None, Stat, RevIN, DishTS]
JSeries Preprocessing Series Decomposition [None, MA, MoEMA, DFT]
Series Sampling/Mixing  [False, True]

ISeries Encoding Channel Independent [False, True]
; Sequence Length [48, 96, 192, 512]
Series Embedding [Inverted Encoding, Positional Encoding, Series Patching]
Network Type [MLP, RNN, Transformer, LLM, TSFM]

Series Attention [Null, SelfAttn, AutoCorr, SparseAttn, FrequencyAttn, DestationaryAttn]

Feature Attention [Null, SelfAttn, SparseAttn, FrequencyAttn]
JNetwork Architecture | d_model [64, 256]
[

d_ff 256, 1024]
Encoder Layers [2,3]
Epochs [10, 20, 50]
.. Loss Function [MSE, MAE, HUBER]
Network Training Learning Rate [1e-3, le-4]

Learning Rate Strategy [Null, Typel]

design choice combinations illustrated in Table[[] TSGym learns the mapping function from these
automatically combined models to their associated forecasting performance on the training datasets,
and generalize to the test dataset(s) to select the best model based on predicted results.

Meta-learning for automated MTSF model construction. Formally speaking, TSGym propose k
design dimensions DD = {D Dy, ..., DDy} for comprehensively describing each step of aforemen-
tioned pipeline in deep learning time-series modeling. Each design dimension D D; represents a set
containing elements of different design choices DC'. By taking the Cartesian product of the sets DD
corresponding to different design dimensions, we obtain the pool of all valid model combinations
M = DDy x DDy x --- x DDy, = {(DCl,DCg,,DCk) | DC; € DD;,i = 1,27...,16}.
Considering the potentially large number of combinations and the computational cost, we randomly
sampled M to M, where M; = (DC; = RevIN,DCy = DFT, ..., DCy = Typel) € My, for
example, which means M; instantiates RevIN method to normalize input series, then decompose it to
the seasonal and trend term. Subsequently, following the Series Encoding and Network Architecture
constructing pipeline (as illustrated in Table [T), finally the Typel, i.e., a step decay learning rate
strategy is employed to adjust the learning rate for updating the model parameters.

Suppose we have n training datasets Dyin = {D1, ..., D, } and the number of sampled model com-
binations (i.e., the size of the set M) is m, TSGym conducts extensive experiments on n historical
training datasets to evaluate and further collect the forecasting performance of m model combinations.
TSGym then acquire the MSE performance matrix P € R"*™, where P; ; corresponds to the j-th
auto-constructed MTSF model’s performance on the i-th training dataset. Since the difficulty of
prediction tasks varies across training datasets, leading to significant differences in the numerical
range of performance metrics. Directly using these metrics (e.g., MSE) as training targets of a meta-
learner may result in overfitting on more difficult dataset(s). Therefore, we convert the performance
metrics of M, into their corresponding normalized ranking, where R; ; = rank(P; ;)/m € [0, 1]
and smaller values indicate better performance on the corresponding dataset.

Distinguished from previous model selection approaches [2, 3], TSGym decouples more recently
MTSF methods (including MLP-Mixer-type, Transformer-based, LLM and TSFM models), and
supports fine-grained model construction at the component level, rather than being constrained to a
fixed, limited set of existing models, which enables significantly greater flexibility and effectiveness.
Specifically, TSGym follows the idea of meta-learning to construct a meta-learner that learns the
mapping function f(-) from training dataset D; and model combination M, to the performance
rankings R; ;, as is shown in Eq. |1} We leverage meta-features E!"'® that capture multiple aspects
such as statistical, temporal, spectral, and fractal features, and distribution shift metrics to fully
describe the complex data characteristics of time series datasets. Learnable continuous embeddings
ES°"? are used to represent different model combinations and are updated through the gradient
backpropagation of the meta-learner.

f(Di, Mj) = Rij, f - B EP™ = Ri;, ie{l,....,n}, je{l,....m} (1)

- | IS |
meta features component embed.
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We used a simple two-layer MLP as the meta-learner and trained it through a regression problem,
thereby transferring the learned mapping to new test datasets. For a newcoming dataset (i.e., test
dataset Xeq), we acquire the predicted relative ranking of different components using the trained f(-),
and select top-1 (k) to construct MTSF model(s). Note this procedure is zero-shot without needing
any neural network training on X5 but only extracting meta-features and pipeline embeddings. We
show the effectiveness of the meta-predictor in §4.3]

4 Experiments

4.1 Experiment Settings

Datasets. Following most prior works [65] 164, 26], we adopt 9 datasets as experimental data for
MTSF tasks, ETT (4 subsets), Traffic, Electricity, Weather, Exchange, ILI. And we utilize the
M4 dataset for short-term forecasting tasks. The forecast horizon L for long-term forecasting is
{96,192, 336, 720}, while for the ILI dataset, it is {24, 36,48, 60}. For short-term forecasting, the
forecast horizons are {6, 8, 13,14, 18, 48}. More details can be seen in Appx.

Baseline. We present a comprehensive set of baseline comparison experiments to demonstrate
the superior performance of the pipelines automatically constructed by TSGym. Due to space
limitations, the baseline methods presented in this section include the latest clustering-based approach
DUET [48], time series mixing methods (TimeMixer [58]), MLP-based methods (MICN [57]),
RNN-based methods (SegRNN [34]), CNN-based methods (TimesNet [64]]), and Transformer-based
methods (PatchTST [45]], Crossformer [75]], Autoformer [65]). We present experiments based on the
complete baseline in the Appx. [H]

Evaluation Metrics. We follow the experimental setup of most prior works, using Mean Squared
Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics for long-term forecasting tasks,
and using Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error
(MASE), and Overall Weighted Average (OWA) as metrics for short-term forecasting tasks. The
mathematical formulas for these evaluation metrics are provided in the Appx. [D]

Meta-predictor in TSGym. The meta-predictor is instantiated as a two-layer MLP and trained for
100 epochs with early stopping. The training process utilizes the Adam optimizer [31] with a learning
rate of 0.001 and batch size of 512. See details in Appx. [G.2}

4.2 Large Evaluation on AD Design Choices

In this work, we perform large evaluations on the decoupled pipelines according to the standard
procedure of MTSF methods. Such analysis is often overlooked in previous studies, and we investigate
each design dimension of decoupled pipelines by fixing its corresponding design choice (e.g., Self
Attention), and randomly sampling other dimensional design choices to construct MTSF pipelines.

In the following sections, we provide systematic conclusions based on long-term MTSF experimental
results, addressing several gaps in the current MTSF research community. Specifically, different
design choices are compared and demonstrated using a spider chart, where each vertex represents a
dataset. Design choices that are closer to the vertices exhibit superior performance in their respective
design dimensions. We analyze these components based on the different design dimensions, namely
Series Preprocessing, Series Encoding and Network Construction. Finally, we evaluated the
performance on four datasets under the fixed model architectures of LLMs or TSFMs, and discussed
the effects of various design choices in the subsection on Large Time Series Models. More detailed
information, including the complete design choices and their performance on short-term time series
forecasting tasks, is provided in the Appx. [H]

Series Preprocessing. Based on the systematic evaluation of Series Preprocessing strategies in Fig.
and Fig. several key insights emerge. Series Normalization (Fig.[2a)) proves universally effective,
with RevIN and Stationary achieving the lowest MSE (75th percentile) across diverse datasets,
establishing them as essential baselines for stabilizing non-stationary dynamics. In contrast, Series
Decomposition (Fig. [2b) demonstrates varying effectiveness depending on the dataset. For example,
decomposition methods improve performance on datasets like ETTm1 when using MA, while others,
such as ETTh1, ECL, ETTh2, and traffic datasets, perform better without decomposition.

Series Encoding. Several clear observations emerge from the Series Encoding stage, as illustrated
in Fig[2cand Fig[2d| First, as shown in panel Fig.[2c| channel-independent methods consistently
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Figure 2: Overall performance across key design dimensions. The results (MSE) are based on the
75th percentile across all forecasting horizons.

outperform channel-dependent ones, with the exception of traffic and ILI, highlighting the advantage
of modeling each variable separately. Regarding tokenization strategies Fig. 2d] both patch-wise
(sequence patching) and series-wise (inverted encoding) approaches outperform the traditional point-
wise encoding. Among them, patch-wise encoding shows strong performance across most datasets,
whereas inverted encoding proves particularly effective on the traffic dataset.

Network Construction. As is shown in Fig. 2e] we find that complex network architectures like the
Transformer are not always necessary, which only performs better than MLP on weather, traffic and
ILI datasets. This result is reasonable since more sophisticated DL backbone like Transformer and
its variants often require specific hyperparameter combinations and tailored architectural designs
to achieve satisfactory performance. We indicate that these observed results further emphasize the
importance of automated model construction tailored to specific data characteristics. Indeed, we show
in § #.3]that including the Transformer architecture in the set of design choices would enhance the
performance of constructed model via TSGym. Fig. 2f]suggests that employing Attention mechanisms
for modeling dependencies of input sequence does not offer significant advantages, which aligns with
recent findings [70]. Additionally, the spider chart shows no significant performance differences were
observed among different variants of attention mechanisms.

Large Time Series Models. We choose three design dimensions crucial to large time-series models
for discussion, as is shown in Fig[3] The most surprising finding pertains to the model backbones.
We observe that GPT4TS demonstrates stable and competitive performance across most datasets. In
contrast, Time-LLM, which is also based on LLMs, exhibits opposite results. A highly plausible
explanation is that time series embeddings processed through different methods struggle to align
consistently with the embedding space of word representations, which is an important part in Time-
LLM, resulting in suboptimal performance of Time-LLM under diverse experimental configurations.

4.3 Automatic Component Construction via TSGym

Extensive experimental results discussed above indicate that in deep time series modeling, most
design choices are determined by data characteristics, meaning one-size-fits-all approaches are seldom
effective. This, in turn, emphasizes the necessity of automated model construction.
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Figure 3: Overall performance of different design choices across 3 design dimensions (Network
Backbone [3a] Series Normalization [2a] Series Decomposition 2b) when using LLMs or TSFMs. The
results (MSE) are based on the 75th percentile across all forecasting horizons.

In this subsection, we compare the MTSF pipeline selected by TSGym with existing SOTA methods.
Through large-scale experiments, we found that TSGym outperforms existing SOTA models in both
long- and short-term MTSF tasks. Regarding algorithm efficiency, our experiments demonstrate that
even when limited to a search pool of lightweight model structures, such as MLP and RNNs, TSGym
can still achieve competitive results. We analyze the effectiveness of the pipelines automatically
constructed by TSGym through five key questions as follows. Additional details, such as the results
based on more metrics and more complex meta-features, can be found in the Appx[H]

Question 1: Is the model constructed by meta-predictor better than existing SOTA methods?
Comprehensive forecasting results are presented in Table[2] and [3] where the best performances are
highlighted in red and the second-best results are underlined. Compared with other state-of-the-art
forecasters, TSGym demonstrates superior capability, especially in handling high-dimensional time
series data. Its consistent top-ranking performance across multiple datasets underlines its robustness
and effectiveness for complex multivariate forecasting tasks.

Table 2: Short-term forecasting task on M4. The results are averaged from several datasets under
different sample intervals. See Table in Appendix for the full results.

Models | TSGym (ours) | TimeMixer | MICN | TimesNet | PatchTST | DLinear | Crossformer | Autoformer | SegRNN

OWA 0.872 0.884 0.984 0.907 0.965 0.922 8.856 1.273 1.007
SMAPE 12.013 11.985 13.025 12.199 12.848 12,511 >30 16.392 13.509
MASE 1.575 1.615 1.839 1.662 1.738 1.693 >10 2.317 1.823

Table 3: Long-term forecasting task. The past sequence length is set as 36 for ILI and 96 for the
others. All the results are averaged from 4 different prediction lengths, that is {24, 36,48, 60} for ILI
and {96, 192, 336, 720} for the others. See Table in Appendix for the full results.

Models TSGym DUET TimeMixer MICN TimesNet PatchTST DLinear Crossformer Autoformer SegRNN
7 (Ours) 25 5% 57 {6 @ i i 4 63
Metric MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

ETTml | 0.357 0.383 | 0.407 0.409 | 0.384 0.399 | 0.402 0.429 | 0.432 0.430 | 0.390 0.404 | 0.404 0.407 | 0.501 0.501 | 0.532 0.496 | 0.388 0.404
ETTm2 | 0.261 0.319 | 0.296 0.338 | 0.277 0.325 | 0.342 0.391 | 0.296 0.334 | 0.288 0.334 | 0.349 0.399 | 1.487 0.789 | 0.330 0.368 | 0.273 0.322
ETThl 0.426 0.440 | 0.433 0.437 | 0.448 0.438 | 0.589 0.537 | 0.474 0.464 | 0.454 0.449 | 0.465 0.461 | 0.544 0.520 | 0.492 0.485 | 0.422 0.429
ETTh2 | 0.358 0.400 | 0.380 0.403 | 0.383 0.406 | 0.585 0.530 | 0.415 0.424 | 0.385 0.409 | 0.566 0.520 | 1.552 0.908 | 0.446 0.460 | 0.374 0.405
ECL 0.170 0.265 | 0.179 0.262 | 0.185 0.273 | 0.186 0.297 | 0.219 0.314 | 0.209 0.298 | 0.225 0.319 | 0.193 0.289 | 0.234 0.340 | 0.216 0.302
Traffic 0.435 0.313 | 0.797 0.427 | 0.496 0.313 | 0.544 0.320 | 0.645 0.348 | 0.497 0.321 | 0.673 0.419 | 1.458 0.782 | 0.637 0.397 | 0.807 0.411
Weather | 0.229 0.268 | 0.252 0.277 | 0.244 0.274 | 0.264 0.316 | 0.261 0.287 | 0.256 0.279 | 0.265 0.317 | 0.253 0.312 | 0.339 0.379 | 0.251 0.298
Exchange | 0.410 0.431 | 0.322 0.384 | 0.359 0.402 | 0.346 0.422 | 0.405 0.437 | 0.381 0.412 | 0.346 0.414 | 0.904 0.695 | 0.506 0.500 | 0.408 0.423
ILI 2233 1.015 | 2.640 1.018 | 4.502 1.557 | 2.938 1.178 | 2.140 0.907 | 2.160 0.901 | 4.367 1.540 | 4.311 1.396 | 3.156 1.207 | 4.305 1.397

I Count | 11 3 0 0 1 1 0 0 0 2

Specifically, TSGym achieves the lowest MSE and MAE on a total of 11 occasions, reflecting its
strong generalization ability over both medium and long forecasting horizons. While some baseline
models, like DUET, PatchTST and SegRNN, occasionally show competitive results on certain datasets.
As for short-term forecasting tasks, both TSGym and TSMixer demonstrate competitive performance,
with TSGym outperforming on most evaluation metrics.

Question 2: Is TSGym with lightweight architecture better than existing SOTA methods?

In the previous section, we compared TSGym using the full component pool with SOTA and found
that TSGym outperforms SOTA on 66.7% of the datasets evaluated. In this ablation experiment Table
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Ml we specifically compare the -Transformer configuration of TSGym with DUET. Remarkably,
even after removing Transformer-related components from the TSGym component pool and retaining
only the more computationally efficient MLP- and RNN-based models, TSGym still outperforms
DUET on the majority of datasets. This demonstrates the robustness and efficiency of TSGym’s
architecture and highlights the strong predictive power of the simplified MLP-based design.

Question 3: Does the training strategies bring significant improvement for TSGym?

Following Table ] we find that the introduction of the resampling method enhances TSGym’s
meta-predictor performance across 2 datasets, improving both robustness and accuracy. The +A11PL
configuration, which trains on datasets with varying prediction lengths and transfers this knowledge
to a test set with a single prediction length, further improves generalization, with the best performance
observed on the ETTh1 dataset. Additionally, removing the Transformer component (-Transformer)
leads to performance gains on certain datasets, suggesting that a simplified MLP- or RNN-based
architecture can be more effective in specific scenarios. These results highlight the flexibility
of TSGym’s design and the potential benefits of customizing the component pool to suit dataset
characteristics.

Table 4: Ablation StUdy Models TSGym | -Transformer | +Resample | +AlIPL | DUET
evaluates the removal Metric MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
\

of  Transformer-based ETTml 0357 0.383 0361 0.384 | 0.367 0.391 | 0407 0.409

components and different ETTm2 | 0261 0319

P : : ETThl | 0426 0.440
training strategies, with ETThz | 0358 0.400

results averaged over all ECL 0.170  0.265

0.363 0.388
0.260  0.320 | 0.265 0.320 | 0.296 0.338
0.432  0.440 | 0.424 0.434 | 0433 0437
0.358 0.401 | 0.357 0.398 | 0.361 0.404 | 0.380 0.403

\
0.274  0.330
0.174 0273 | 0.170 0.265 | 0.185 0.277 | 0.179  0.262
\

0.441  0.450

- Traffic | 0435 0313 | 0.415 0293 | 0.429 0307 | 0.429 0306 | 0.797 0.427
prediction lengths, and GRS | 000 (068 | 0226 0265 | 0229 0267 | 0234 0271 | 0252 0277
the final row shows how  Exchange | 0410 0431 | 0409 0435 | 0399 0430 | 0.377 0411 | 0.322  0.384
often TSGym variants ILI 2233 1015 | 2437 1053 | 2.698 1.114 | 2173 1.020 | 2.640 1018
outperform DUET. Better Count | 14/18 12/18 1218 | 1218 |

Question 4: Does large time-series models bring significant improvement for TSGym?

Table [5| evaluates the impact of incorporating Table 5: Ablation study of TSGym incorporating

LLM and TSFM into the base TSGym frame- ] M and TSFM in 4 datasets. The average results
work. It is evident that both the introduction of  of a]] prediction lengths are listed here.

LLM and TSFM consistently improve forecast-

ing accuracy compared to the baseline TSGym Models TSGym | +LLM | +TSFM

configuration. This demonstrates the effective- Metric  MSE MAE | MSE MAE | MSE MAE
ness of leveraging advanced model architectures ETThl | 0442 0440 | 0442 0438 | 0432 0.437
and fusion strategies to further enhance the pre- ETTh2 | 0411 0429 | 0.364 0402 | 0376  0.409

Exchange | 0.673 0.522 | 0.503 0.466 | 0.374 0.411

dictive performance of TSGym, particularly on oI 2682 1112 | 2470 1063 | 2860 1163

complex multivariate time series datasets.

5 Conclusions, Limitations, and Future Directions

To advance beyond holistic evaluations in multivariate time-series forecasting (MTSF), this paper
introduced TSGym, a novel framework centered on fine-grained component analysis and the au-
tomated construction of specialized forecasting models. By systematically decomposing MTSF
pipelines into design dimensions and choices informed by recent studies, TSGym uncovers crucial
insights into component-level forecasting performance and leverages meta-learning method for the
automated construction of customized models. Extensive experimental results indicate that the
MTSF models constructed by the proposed TSGym significantly outperform current MTSF SOTA
solutions—demonstrating the advantage of adaptively customizing models according to distinct data
characteristics. Our results show that TSGym is highly effective, even without exhaustively covering
all SOTA components, and TSGym is made publicly available to benefit the MTSF community.

Future efforts will focus on expanding TSGym’s range of forecasting techniques with emerging
techniques and refining its meta-learning capabilities by incorporating multi-objective optimization to
balance predictive performance against computational costs, especially for large time-series models,
while also broadening its applicability across diverse time series analysis tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We systematically present the research topic, background, methodology, and conclusions
of this paper in the abstract and introduction.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly state the limitations of this paper in the “Conclusions, Limitations, and
Future Directions” section.

Guidelines:
¢ The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: the paper does not include theoretical results.
Guidelines:

¢ The answer NA means that the paper does not include theoretical results.
¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have open-sourced all the code and data. Anyone can directly reproduce our
experimental results using the predefined scripts provided.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We have open-sourced all the code and data, including component-level evaluations and
the meta-learning based automated selection model. All code and datasets are publicly available at
https://github.com/SUFE-AILAB/TSGym.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

¢ Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide detailed descriptions of the datasets and experimental settings, the evaluation
metrics used, the baselines, and the training hyperparameters of our proposed meta predictor in the
Experiment Settings and Appendix sections.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: We present the error bars in the box plots shown in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

« Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: provide sufficient information on the computer resources needed to reproduce the
experiments in the Appendix Section.

Guidelines:

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

707

708
709

710
71

712
713
714

715

716
77

718

719
720

721

722

723
724

725
726
727

728
729

730

731
732

733

734
735
736
737
738

740
741
742
743
744
745
746
747
748
749

751
752
753
754

755

756
757
758

759

761

762

9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics, adhering to ethical standards in
methodology, transparency, and data usage.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: In the Introduction section, we discuss the broad applicability and value of the research
topic addressed in this paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: The paper outlines the safeguards implemented for the responsible release of data and
models in the experiment settings section , ensuring that they are protected against potential misuse.

Guidelines:
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14.

* The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The creators and original owners of all assets (e.g., code, data, models) used in the paper
are properly credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

» The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

» For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]
Justification: We provide detailed descriptions of the code and experimental settings in the text.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA|
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main

paper.
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA|

Justification: The core method development in this research does not involve LLMs as any important,
original, or non-standard components.
Guidelines:
¢ The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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