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Abstract
The goal in thinning is to summarize a dataset
using a small set of representative points. Re-
markably, sub-Gaussian thinning algorithms can
match the quality of uniform subsampling while
substantially reducing the number of summary
points. However, existing guarantees cover only
a restricted range of distributions and kernel-
based quality measures and suffer from pes-
simistic dimension dependence. To address these
deficiencies, we introduce a new low-rank anal-
ysis of sub-Gaussian thinning that applies to any
distribution and any kernel, guaranteeing high-
quality compression whenever the kernel or data
matrix is approximately low-rank. To demon-
strate the broad applicability of the techniques,
we design practical sub-Gaussian thinning ap-
proaches that improve upon the best known guar-
antees for approximating attention in transform-
ers.

1. Introduction
This work is about thinning, finding a small set of repre-
sentative points to summarize a larger dataset. State-of-
the-art thinning techniques provably improve upon uniform
subsampling but only for restricted classes of kernel-based
quality measures and with pessimistic dependence on the
data dimension (see, e.g., Harvey & Samadi, 2014; Phillips
& Tai, 2020; Alweiss et al., 2021; Dwivedi & Mackey,
2024; 2022; Shetty et al., 2022; Li et al., 2024). We intro-
duce a new analysis for sub-Gaussian thinning algorithms
that applies to any kernel and shows that one can efficiently
identify a better-than-uniform set of representative points
whenever the kernel or data matrix is nearly low-rank. This
opens the door to a variety of impactful applications, in-
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cluding approximate dot-product attention in transformers.

Notation. For each n ∈ N and a, b ∈ R, we define
[n] ≜ {1, . . . , n}, a∧b ≜ min(a, b), and a∨b ≜ max(a, b).
We let ∥A∥op, ∥A∥max, and ∥A∥2,∞ respectively repre-
sent the maximum singular value, absolute entry, and row
Euclidean norm of a matrix A. We also define the Eu-
clidean norm balls Bm ≜ {u ∈ Rm : ∥u∥2 ≤ 1} and
Bm(R) ≜ RBm for each m ∈ N and R > 0. For an
event E and an integrable random variable X , we define
EE [X] ≜ E[X · 1[E]]. We write an ≤ Õ(bn) to mean
an ≤ bn polylog(n).

2. Sub-Gaussian Thinning
Consider a fixed collection of nin input points Xin belong-
ing to a potentially larger universe of datapoints X ≜
{x1, . . . ,xn}. The aim of a thinning algorithm is to se-
lect nout points from Xin that together accurately summa-
rize Xin. This is formalized by the following definition.

Definition 1 (Thinning algorithms). A thinning algorithm
ALG takes as input Xin and returns a possibly random
subset Xout of size nout. We denote the input and out-
put empirical distributions by Pin ≜ 1

nin

∑
x∈Xin

δx and
Pout ≜ 1

nout

∑
x∈Xout

δx and define the induced probability
vectors pin,pout ∈∆n−1 over the indices [n] by

pin,i =
1[xi∈Xin]

nin
and pout,i =

1[xi∈Xout]
nout

for all i ∈ [n].

When X ⊂ Rd, we use X ≜ [x1, . . . ,xn]
⊤ ∈ Rn×d to

denote the input point matrix so that

Ex∼Pin [x] = X⊤pin and Ex∼Pout [x] = X⊤pout.

We will use the following measure of summarization qual-
ity.

Definition 2 (Kernel max seminorm). Given two distribu-
tions µ, ν and a reproducing kernel k (Steinwart & Christ-
mann, 2008, Def. 4.18), and any indices I ⊆ [n], we fur-
ther define the kernel max seminorm (KMS)

∥K(pin − pout)∥I ≜ maxi∈I |e⊤i K(pin − pout)|. (1)

A common strategy for bounding the error of a thinning
algorithm is to establish its sub-Gaussianity.
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Table 1: Examples of (K, ν, δ)-sub-Gaussian thinning algorithms. For input size nin, output size nout ≥
√
nin, and

∥K∥max = 1 we report each sub-Gaussian parameter ν and runtime up to constants independent of (nin, nout, δ,K).

Algorithm
Prop. B.1

SUBSAMPLING
Prop. B.2

KH(δ)
Prop. B.5

KH-COMPRESS(δ)
Prop. B.6

GS-THIN
Prop. B.10

GS-COMPRESS

parameter ν
Sub-Gaussian 1√

nout

√
log(nout/δ)

nout

√
log(nout) log(nout/δ)

nout

1
nout

√
log(nout)

nout

Runtime nout n2in n2out n3in n3out

Definition 3 (Sub-Gaussian thinning algorithm). We
write ALG ∈ Gν,δ(K) and say ALG is (K, ν, δ)-sub-
Gaussian, if ALG is a thinning algorithm, K is a symmetric
positive semidefinite (SPSD) matrix, ν > 0, δ ∈ [0, 1), and
there exists an event E with probability at least 1−δ/2 such
that, the input and output probability vectors satisfy

EE [exp(⟨u,K(pin − pout)⟩)] ≤ exp
(
ν2

2 u⊤Ku
)
,∀u ∈ Rn.

Here, the sub-Gaussian parameter ν controls the summa-
rization quality of the thinning algorithm, and we see from
Tab. 1 that a variety of practical thinning algorithms are
(K, ν, δ)-sub-Gaussian for varying levels of ν.

2.1. Examples of sub-Gaussian thinning algorithms

Perhaps the simplest sub-Gaussian thinning algorithm is
uniform subsampling: by Prop. B.1, selecting nout points
from Xin uniformly at random (without replacement) is
(K, ν, 0)-sub-Gaussian with ν =

√
∥K∥max/

√
nout. Un-

fortunately, uniform subsampling suffers from relatively
poor summarization quality. As we prove in App. B.1.1,
its KMS is Ω(1/

√
nout) meaning that nout = 10000 points

are needed to achieve 1% relative error.

Proposition 1 (Quality of uniform subsampling). For
any I ⊆ [n], a uniformly subsampled thinning satisfies

E[∥K(pin − pout)∥
2
I ] ≥

1
nout

nin−nout
nin−1 maxi∈I CKeie⊤

i K

for any SPSD K with CK ≜
∑n

i=1 pin,iKii − p⊤
inKpin.

Fortunately, uniform subsampling is not the only sub-
Gaussian thinning algorithm available. For example,
the Kernel Halving (KH(δ)) algorithm of Dwivedi &
Mackey (2024) provides a substantially smaller sub-
Gaussian parameter, ν = O(

√
log(nout/δ)/nout), at the

cost of n2in runtime, while the KH-COMPRESS(δ) al-
gorithm of Shetty et al. (2022, Ex. 3) delivers ν =
O(

√
log(nout) log(nout/δ)/nout) in only n2out time. We de-

rive simplified versions of these algorithms with identical
sub-Gaussian constants in Apps. B.2 and B.5 and a linear-
kernel variant (LKH(δ)) with nind runtime in App. B.3. To
round out our set of examples, we show in App. B.6.1 that

two new thinning algorithms based on the Gram-Schmidt
walk of Bansal et al. (2018) yield even smaller ν at the
cost of increased runtime. We call these algorithms Gram-
Schmidt Thinning (GS-THIN) and GS-COMPRESS.

3. Low-rank Sub-Gaussian Thinning
One might hope that the improved sub-Gaussian constants
of Tab. 1 would also translate into improved quality met-
rics. Our main result, proved in App. C, shows that this is
indeed the case if the inputs are approximately low-rank.

Theorem 1 (Low-rank sub-Gaussian thinning). Fix any
δ′ ∈ (0, 1), r ≤ n, and I ⊆ [n]. If ALG ∈ Gν,δ(K), then,
with probability at least 1− δ/2− δ′:

∥K(pin − pout)∥I ≤ νDI

√
2 log(2|I|δ′ ). (2)

for DI ≜ maxi∈I
√
Kii.

Suppose that, in addition, X ⊂ Rd and |Kil − Kjl| ≤
LK∥xi − xj∥2 for some LK > 0 and all i, j ∈ I and
l ∈ supp(pin). Then, with probability at least 1− δ/2− δ′,

∥K(pin − pout)∥I ≤ νDI
√
2 log(4/δ′)(1 + 32√

3
)

+ νDI 32
√

2
3 rank(XI) log(

3e2RILK

D2
I∧(RILK)

) (3)

for RI ≜ maxi∈I ∥xi∥2 and XI ≜ [xi]
⊤
i∈I .

Let us unpack the two components of this result. First,
Thm. 1 provides a high-probability O(ν

√
log(|I|)) bound

(2) on the KMS for any kernel and any sub-Gaussian thin-
ning algorithm on any space. In particular, the non-uniform
algorithms of Tab. 1 all enjoy O(log(nout)

√
log(|I|)/nout)

KMS, a significant improvement over the Ω(1/
√
nout)

KMS of uniform subsampling. Second, Thm. 1 provides a
refined O(ν

√
rank(XI) log(RILK)) bound (3) on KMS

for datapoints in Rd. For bounded data, this trades an ex-
plicit dependence on the number of query points |I| for a
rank factor that is never larger (and sometimes significantly
smaller) than d. We will make use of these results when ap-
proximating dot-product attention in Sec. 4.
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4. Approximating Attention
Dot-product attention lies at the heart of the transformer
neural network architecture that has revolutionized natural
language processing, computer vision, and speech recog-
nition over the last decade (Vaswani et al., 2017; Dosovit-
skiy et al., 2021; Dong et al., 2018). Given a collection
of query, key, and value vectors (qi,ki,vi)

n
i=1 each in Rd,

dot-product attention computes the softmax matrix

T ≜ ATTENTION((qi)
n
i=1, (kj ,vj)

n
j=1) ≜ D−1AV (4)

for Aij ≜ exp(
⟨qi,kj⟩√

d
),D = diag(A1n), and Vij ≜ vij .

While attention has enjoyed unprecedented success in cap-
turing long-range dependencies amongst datapoints, its
computation is expensive, requiring Θ(dn2) time to con-
struct and multiply the matrix A. This bottleneck has in-
spired many practical approximate attention mechanisms
(e.g., Kitaev et al., 2020; Choromanski et al., 2021; Chen
et al., 2021), but, to our knowledge, only two guarantee
accurate reconstruction of the softmax matrix T (Zandieh
et al., 2023; Han et al., 2024). In this section, we design
a new fast attention approximation based on sub-Gaussian
thinning and derive guarantees that improve upon prior art.

4.1. Thinning attention in theory

Algorithm 1: Thinformer
Input: Queries, keys, and values (qi,ki,vi)

n
i=1 in Rd, nout

// Define key-value attention kernel

katt((k̃, ṽ), (k̃
′
, ṽ′)) ≜ exp

(
⟨k̃, k̃′⟩

)
⟨ṽ, ṽ′⟩

// Thin augmented key-value pairs using katt

vmax ← max
i∈[n]
∥vi∥∞; (k̃i, ṽi)

n
i=1 ← (ki/d

1
4 , (vi, vmax))

n
i=1

Xout ← KH-COMPRESS(0.5)(Xin = (k̃i, ṽi)
n
i=1,katt, nout)

// Return exact attention on selected key-value subset

return T̂ ≜ ATTENTION
(
(qi)

n
i=1, {(k,v) : (k̃, ṽ) ∈ Xout}

)
Alg. 1 summarizes our new Thinformer module. At its
heart is a new key-value attention kernel katt that mim-
ics the special structure of the softmax matrix T. Alg. 1
uses the attention kernel and a high-quality thinning algo-
rithm, KH-COMPRESS(0.5), to subselect key-value pairs
and then computes exact attention (4) for the key-value
subset. In total, this requires only O(dn2out) time to
run KH-COMPRESS(0.5) and O(dnnout) time to compute
ATTENTION with n queries and nout key-value pairs. In
contrast, computing the exact softmax matrix T with stan-
dard matrix multiplication requires Θ(dn2) time. Our next
result, proved in App. D, shows that Alg. 1 also admits a
strong quality guarantee for approximating T.

Theorem 2 (Quality of Thinformer). With probability at

Table 2: Practical approximations with guarantees. For
each approximation T̂ ∈ Rn×d to the softmax matrix T
(4), we report, up to a constant factor, the best worst-case
error guarantee for ∥T̂−T∥max given O(dn1+a) running
time and γ-bounded (5) queries and keys. Here, the ratio
∥V∥op/∥V∥2,∞ lies in [1,

√
n] and τ = 0.173 + o(1).

Approximation Guarantee

Thinformer n2γ
√

d log(n∥V∥max) logn

na · ∥V∥2,∞

KDEformer n2γ+ τ
2
(1+

γ
2
)

na/2 · ∥V∥op

HyperAttention n
17γ
3 (logn)

1
6

na/6 · ∥V∥op

least 1
2 , Thinformer (Alg. 1) yields

∥T̂−T∥max ≤
c exp( 2R2

√
d
)∥V∥2,∞

√
log2(nout) log(12nout log2

nin
nout

)

nout

for c ≜ 128√
3

√
(d+ 1) log(3e2(R

2√
d
+ 2)∥V∥max) +√

log(8)(4 + 128√
3
) and R ≜ maxi∈[n] max(∥ki∥2, ∥qi∥2).

To put this result into context, let us compare with the exist-
ing guarantees for practical attention approximation, sum-
marized in Tab. 2. Under the γ-boundedness assumption,

maxi∈[n] max(∥ki∥22, ∥qi∥22) ≤ γ
√
d log n, (5)

the KDEformer approximation T̂kde (Zandieh et al., 2023,
Cor. 3.6) with τ = 0.173 + o(1), the HyperAttention ap-
proximation T̂hyp (Han et al., 2024, Thm. 1) with no mask-
ing, and the Thinformer approximation T̂thin guarantee

∥T̂kde −T∥max ≤ O(n
2γ+ τ

2
(1+

γ
2
)

na/2 · ∥V∥op)

∥T̂hyp −T∥max ≤ O
(n

17γ
3 (logn)

1
6

na/6 · ∥V∥op
)

∥T̂thin −T∥max ≤ O
(n2γ
√

d log(n∥V∥max) logn

na · ∥V∥2,∞)

with O(dn1+a) runtime and probability at least 1
2 . The

Thinformer guarantee exhibits four improvements over its
predecessors. First, it establishes a significantly faster er-
ror decay rate (n−a versus n−a/2 or n−a/6) for a given
subquadratic runtime n1+a. Second, it reduces the depen-
dence on the error inflation factor γ. Third, like the Hy-
perAttention guarantee, it eliminates all dependence on the
KDEformer penalty parameter τ . Finally, it reduces depen-
dence on the value matrix by a factor of ∥V∥op

∥V∥2,∞
∈ [1,

√
n].

Put otherwise, with bounded ∥V∥2,∞, T̂thin can provide
consistent (i.e., ∥T̂thin −T∥max → 0 as n → ∞) sub-
quadratic estimation whenever γ is bounded away from 1/2
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Table 3: Quality of T2T-ViT attention approximations on ImageNet. We report mean Top-1 accuracy ±1 standard
deviation across five random seeds and mean forward pass runtime ±1 standard deviation across 50 batches of 64 images.

Attention Algorithm Top-1 Accuracy (%) Layer 1 Runtime (ms) Layer 2 Runtime (ms)

Exact 82.55 ± 0.00 18.48 ± 0.12 1.40 ± 0.01
Performer 80.56 ± 0.30 2.54 ± 0.01 0.60 ± 0.01
Reformer 81.47 ± 0.06 7.84 ± 0.03 1.53 ± 0.01

KDEformer 82.00 ± 0.07 5.39 ± 0.03 2.28 ± 0.03
Scatterbrain 82.05 ± 0.08 6.86 ± 0.02 1.55 ± 0.03

Thinformer (Ours) 82.18 ± 0.05 2.06 ± 0.01 0.54 ± 0.00

Table 4: Quality of BigGAN attention approximations for image generation. We report Frechet Inception Distance
(FID) with the ImageNet validation set, Inception Scores (IS), and forward pass runtime for computing the approximate
softmax matrix (4) on an NVIDIA A100 GPU. A lower FID or higher IS indicates better image generation quality.

Method FID (↓) IS (↑) Runtime (ms)

Exact 23.86 50.30 ± 3.94 5.61
Reformer 75.19 13.14 ± 1.66 7.98
Performer 29.68 29.30 ± 2.18 1.58

KDEformer 21.86 48.82 ± 3.85 6.87
Thinformer (Ours) 21.70 48.96 ± 3.65 2.37

and guarantee, for example, O( 1√
n
) error in Õ(dn

3
2+2γ)

time. In contrast, the T̂kde and T̂hyp bounds require
quadratic runtime to guarantee O( 1√

n
) error in the best

case (∥V∥op = O(1)) and cannot guarantee consistent sub-
quadratic estimation in the worst case (∥V∥op = Ω(

√
n)).

4.2. Thinning attention in practice

To gauge the practical effectiveness of Alg. 1, we recre-
ate the benchmark Tokens-To-Token Vision Transformer
(T2T-ViT) and BigGAN image generation experiments of
Zandieh et al. (2023). In the T2T-ViT experiment, attention
approximations are scored on their ImageNet classification
accuracy and computational expense when used as drop-in
replacements for the two most expensive attention layers in
a pretrained T2T-ViT neural network (Yuan et al., 2021).
In the BigGAN experiment, approximations are scored on
their computational expense and two popular measures of
image generation quality, the Frechet Inception Distance
(FID, Heusel et al., 2017) and Inception Score (IS, Sali-
mans et al., 2016). Using the exact implementations and
settings provided by Zandieh et al. (2023), we benchmark
our PyTorch implementation of Thinformer against exact
attention and four leading attention approximations: Per-
former (Choromanski et al., 2021), Reformer (Kitaev et al.,
2020), ScatterBrain (Chen et al., 2021), and KDEformer.

In Tab. 3, we find that Thinformer provides the highest
Top-1 accuracy on the ImageNet 2012 validation set (Rus-

sakovsky et al., 2015), while running faster than all of the
alternatives. In Tab. 4, Thinformer (g = 2) yields better
FID and IS than all of the alternatives while running signif-
icantly faster than exact, KDEformer, and Reformer. Per-
former runs faster still but at the expense of substantially
worse FID and IS. The final attention call of Thinformer
can also be combined with optimized attention implemen-
tations like FlashAttention (Dao et al., 2022; Dao, 2024) to
further reduce the time and memory footprint. See supple-
mentary experiment details in App. E.

5. Conclusion
This work introduced a new analysis of thinning algo-
rithms that adapts to low-rank structures. We exploited
this adaptivity to design fast algorithms with strong qual-
ity guarantees for dot-product attention in Transformers.
More broadly, our techniques provide a general framework
for reducing computational resource use in machine learn-
ing. Such tools have the potential to reduce energy costs
and environmental harms from model training, inference,
and evaluation and to improve accessibility in resource-
constrained settings, all while provably maintaining high
quality.
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A. Appendix Notation and Definitions
We often use the shorthand (a)+ ≜ max(a, 0) as well as the shorthand k(X ,X ) to represent the matrix (k(xi,xj))

n
i,j=1.

In addition, for each kernel k, we let Hk and ∥·∥k represent the associated reproducing kernel Hilbert space (RKHS) and
RKHS norm, so that Bk = {f ∈ Hk : ∥f∥k ≤ 1} and define

(Pin − Pout)k ≜ 1
nin

∑
x∈Xin

k(x, ·)− 1
nout

∑
x∈Xout

k(x, ·).

We also relate our definition of a sub-Gaussian thinning algorithm (Def. 3) to several useful notions of sub-Gaussianity.

Definition A.1 (Sub-Gaussian vector). We say that a random vector w ∈ Rn is (K, ν)-sub-Gaussian on an event E if K
is SPSD and ν > 0 satisfies

EE
[
exp(u⊤Kw)

]
≤ exp(ν

2

2 · u
⊤Ku) for all u ∈ Rn. (6)

If, in addition, the event has probability 1, we say that w is (K, ν)-sub-Gaussian.

Notably, a thinning algorithm is (K, ν, δ)-sub-Gaussian if and only if its associated vector pin−pout is (K, ν)-sub-Gaussian
on an event E of probability at least 1− δ/2.

Definition A.2 (Sub-Gaussian function). For a kernel k, we say that a random function ϕ ∈ Hk is (k, ν)-sub-Gaussian
on an event E if ν > 0 satisfies

EE [exp(⟨f, ϕ⟩k)] ≤ exp(ν
2

2 · ∥f∥
2
k) for all f ∈ Hk. (7)
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If, in addition, the event has probability 1, we say that ϕ is (k, ν)-sub-Gaussian.

Our next two lemmas show that for finitely-supported signed measures like Pin − Pout, this notion of functional sub-
Gaussianity is equivalent to the prior notion of vector sub-Gaussianity, allowing us to use the two notions interchangeably.
Hereafter, we say that k generates a SPSD matrix K if k(X ,X ) = K.
Lemma A.1 (Functional sub-Gaussianity implies vector sub-Gaussianity). In the notation of Def. 3, if (Pin − Pout)k is
(k, ν)-sub-Gaussian on an event E and k generates K, then the vector pin − pout is (K, ν)-sub-Gaussian on E.

Proof. Suppose (Pin − Pout)k is (k, ν)-sub-Gaussian on an event E, fix a vector u ∈ Rn, and define the function

fu ≜
∑n

i=1 uik(·, xi) ∈ Hk.

By the reproducing property,

u⊤K(pin − pout) = ⟨fu, (Pin − Pout)k⟩k and ∥fu∥2k = u⊤Ku. (8)

Invoking the representations (8) and the functional sub-Gaussianity condition (7) we therefore obtain

EE
[
exp(u⊤K(pin − pout)

]
= EE [exp(⟨fu, (Pin − Pout)k⟩k)] ≤ exp(∥fu∥2k · ν

2

2 ) = exp(u⊤Ku · ν
2

2 ),

so that pin − pout is (K, ν)-sub-Gaussian on the event E as claimed.

Lemma A.2 (Vector sub-Gaussianity implies functional sub-Gaussianity). In the notation of Def. 3, if pin − pout is
(K, ν)-sub-Gaussian on an event E and k generates K, then (Pin − Pout)k is (k, ν)-sub-Gaussian on E.

Proof. Suppose pin − pout is (K, ν)-sub-Gaussian on an event E, fix a function f ∈ Hk, and consider the set

L ≜
{
fu ≜

∑n
i=1 uik(·, xi) : u ∈ Rn

}
.

Since L is a closed linear subspace of Hk, we can decompose f as f = fu + f⊥, where u ∈ Rn and f⊥ is orthogonal to
L (Rudin, 1991, Theorem 12.4), so that

∥f∥2k = ∥fu∥2k + ∥f⊥∥2k and ∥fu∥2k = u⊤Ku. (9)

Invoking the orthogonality of f⊥ and (Pin − Pout)k ∈ L, the reproducing property representations (8), and the vector
sub-Gaussianity condition (6), we find that

EE [exp(⟨f, (Pin − Pout)k⟩k)] = EE [exp(⟨fu + f⊥, (Pin − Pout)k⟩k)] = EE
[
exp(u⊤K(pin − pout)

]
)

≤ exp(u⊤Ku · ν
2

2 )
(9)
≤ exp(∥f∥2k · ν

2

2 ),

so that (Pin − Pout)k is (k, ν)-sub-Gaussian on the event E as claimed.

We end our discussion about the versions of sub-Gaussianity considered above by presenting the standard fact about the
additivity of sub-Gaussianity parameters under summation of independent sub-Gaussian random vectors, adapted to our
setting.
Lemma A.3 (Vector sub-Gaussian additivity). Suppose that, for each j ∈ [m], ∆j ∈ Rn is (K, νj) on an event Ej given
∆1:(j−1) ≜ (∆1, . . . ,∆j−1) and E≤j−1 ≜

⋂j−1
i=1 Ei. Then

∑m
j=1 ∆j is (K, (

∑m
j=1 ν

2
j )

1/2)-sub-Gaussian on E≤m.

Proof. Let E≤s =
⋂s

j=1 Ej for each s ∈ [m]. We prove the result for Zs =
∑s

i=1 ∆j by induction on s ∈ [m]. The result
holds for the base case of s = 1 by assumption. For the inductive case, suppose the result holds for s ∈ [m − 1]. Fixing
u ∈ Rn, we may apply the tower property, our conditional sub-Gaussianity assumption, and our inductive hypothesis in
turn to conclude

E
[
exp(⟨u,K

∑s+1
j=1 ∆j⟩)1[E≤s+1]

]
= E

[
exp(⟨u,K

∑s
j=1 ∆j⟩)1[E≤s]E[exp(⟨u,∆s+1⟩)1[Es+1] | ∆1:s, E≤s]

]
≤ E

[
exp(⟨u,K

∑s
j=1 ∆j⟩)1[E≤s]

]
exp

(
ν2
s+1

2 · u⊤Ku
)
≤ exp

(∑s+1
j=1 ν2

j

2 · u⊤Ku
)
.

Hence, Zs+1 is (K, (
∑s+1

j=1 ν
2
j )

1/2)-sub-Gaussian on E≤s+1, and the proof is complete.
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B. Proof of Tab. 1: Sub-Gaussian Thinning Examples
This section provides supplementary details for each of the sub-Gaussian thinning algorithms of Tab. 1.

B.1. SUBSAMPLING

B.1.1. PROOF OF PROP. 1: QUALITY OF UNIFORM SUBSAMPLING

We begin by computing the first and second moments of pout: E[pout] = pin and

E[poutp
⊤
out] =

1
nout

diag(pin) +
nin(nout−1)
nout(nin−1) (pinp

⊤
in − 1

nin
diag(pin)) =

1
nout

(nin−nout
nin−1 ) diag(pin) +

nin(nout−1)
nout(nin−1)pinp

⊤
in .

Hence,

E[MMD2
K(pin,pout)] = p⊤

inKpin − 2p⊤
inKE[pout] + E[p⊤

outKpout] = tr(KE[poutp
⊤
out])− p⊤

inKpin

= 1
nout

(nin−nout
nin−1 )(tr(Kdiag(pin))− p⊤

inKpin) =
1

nout
(nin−nout

nin−1 )CK. (10)

To derive the second advertised result, we note that

E[∥K(pin − pout)∥
2
I ] ≥ maxi∈I E[(e⊤i K(pin − pout))

2] = maxi∈I E[MMD2
Keie⊤

i K(pin,pout)]

and invoke the initial result (10) to conclude.

B.1.2. SUB-GAUSSIANITY OF SUBSAMPLING

Proposition B.1 (Sub-Gaussianity of uniform subsampling). For any SPSD K ∈ Rn×n, uniform subsampling (without
replacement) is a (K, ν, 0)-sub-Gaussian thinning algorithm with

ν ≜
√

∥K∥max√
nout

.

Proof. Fix any vector u ∈ Rn, and let J1, . . . , Jnout be the random indices in [n] selected by uniform subsampling. Since
u⊤K(pin − pout) = 1

nout

∑nout
i=1 u

⊤K(pin − eJi
) is an average of mean-centered scalars drawn without replacement and

satisfying

|u⊤KeJi | ≤
√
u⊤Ku

√
e⊤Ji

KeJi ≤
√
∥K∥max

√
u⊤Ku with probability 1

by Cauchy-Schwarz, Thm. 4 and equations (1.8) and (4.16) of Hoeffding (1994) imply that

E[exp(u⊤K(pin − pout))] ≤ exp(∥K∥max

2nout
u⊤Ku).

B.2. KH(δ)

In this section, we analyze KH(δ) (Alg. B.1), a variant of the Kernel Halving algorithm (Dwivedi & Mackey, 2024, Alg. 2)
with simplified swapping thresholds. Prop. B.2, proved in App. B.2.1, establishes the sub-Gaussianity of KH(δ) and its
intermediate iterates.
Proposition B.2 (Sub-Gaussianity of KH(δ)). Suppose nin ≥ 2. In the notation of Alg. B.1, on a common event E of
probability at least 1− δ/2, for all i ∈ [nin/2], 1

2i ψ̃i is (k, νi)-sub-Gaussian with

νi = bmax,i

√
log(2nin/δ)

2i =

√
log(2nin/δ)

2i maxj∈[i] MMDk(δx2j−1
, δx2j

) ≤
√

log(2nin/δ)

2i maxj∈[i] MMDk(δx2j−1
, δx2j

)

≤
√

log(2nin/δ)

2i 2min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin)).

Prop. B.2 and the triangle inequality imply that (Pin − Pout)k = 1
nin
ψnin/2 is (k, ν)-sub-Gaussian on E with

ν = bmax,nin/2

√
log(2nin/δ)

nin
≤
√

log(2nin/δ)

nin
2min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin)).

By Lem. A.1, we thus have that the KH(δ) output pin − pout is (K, ν)-sub-Gaussian on E for K generated by k and that
KH(δ) ∈ Gν,δ(K).
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Algorithm B.1: KH(δ): Kernel Halving with simplified swapping thresholds and failure probability δ/2
Input: point sequence Xin = (xi)

nin
i=1 with even nin, kernel k

S(1),S(2) ← {}; ψ̃0 ← 0 ∈ Hk // Initialize empty coresets: S(1),S(2) have size i after round i
bmax,i ← 0 // Max function norm so far
for i = 1, 2, . . . , nin/2 do

// Construct kernel difference function using next two points
(x,x′)← (x2i−1,x2i); fi ← k(x2i−1, ·)− k(x2i, ·); ηi ← −1
// Compute swapping threshold ai
b2i =∥fi∥2k=k(x,x)+k(x′,x′)−2k(x, x′); bmax,i = max(bi, bmax,i−1)

ai ← bibmax,i(
1
2
+ log(2nin/δ))

// Compute RKHS inner product
〈
ψ̃i−1, fi

〉
k

, which has a simple form

αi ←
∑2i−2

j=1 (k(xj ,x)− k(xj ,x
′))− 2

∑
z∈S(1)(k(z,x)− k(z,x′))

// Assign one point to each coreset after probabilistic swapping
(x, x′)← (x′, x) and ηi ← 1 with probability min(1, 1

2
(1− αi

ai
)+)

S(1).append(x); S(2).append(x′); ψ̃i ← ψ̃i−1 + ηifi // ψ̃i =
∑

x′∈S(2)k(x
′, ·)−

∑
x∈S(1)k(x, ·)

end
return Xout ≜ S(1), coreset of size nout = nin/2

B.2.1. PROOF OF PROP. B.2: SUB-GAUSSIANITY OF KH(δ)

We begin by studying the sub-Gaussian properties of a related algorithm, the self-balancing Hilbert walk (SBHW) of
Dwivedi & Mackey (2024, Alg. 3). By Dwivedi & Mackey (2024, Thm. 3(i)), when the SBHW is run on the RKHS Hk

with the same fi and ai sequences employed in KH(δ), the output ψi of each round is (k, σi)-sub-Gaussian for

σ2
0 ≜ 0 and σ2

i ≜ σ2
i−1 + ∥fi∥2k

(
1 +

σ2
i−1

a2
i
(∥fi∥2k − 2ai)

)
+
∀i ≥ 1. (11)

The following lemma bounds the growth of the sub-Gaussian constants σi in terms of the swapping thresholds ai.

Lemma B.1 (Growth of SBHW sub-Gaussian constants). For each i, the SBHW sub-Gaussian constants (11) satisfy

σ2
i ≤ ci for ci ≜ maxj∈[i] max(b2j , rj) and ri ≜

a2
i

2ai−b2
i
≤ a2

i

2ai−bibmax,i
.

Proof. We will prove the result by induction on i.

Base case. σ2
1 = b21 ≤ c1 as desired.

Inductive case. Suppose σ2
i−1 ≤ ci−1. Then σ2

i = g(σ2
i−1) for g(x) = x + b2i (1 − x/ri)+. Note that the slope of g is

1− b2i /ri for x < ri and 1 for x > ri. If 1− b2i /ri ≥ 0, then g is increasing and its maximum value over [0, ci] is at ci. If,
on the other hand, 1− b2i /ri < 0, then g first decreases and then increases so its maximum value over [0, ci] is either at 0
or at c. Since ci ≥ max(ri, ci−1), σ2

i ≤ max(g(0), g(ci)) = max(b2i , ci) = ci. The proof is complete.

Invoking Lem. B.1, the assumption nin ≥ 2, and the fact that δ 7→
1
2+log(2/δ)

log(2/δ) is increasing on (0, 1], we find that

σ2
i ≤ b2max,i log(2nin/δ)

( 1
2+log(2nin/δ))

2

2(log(2nin/δ))2
≤ b2max,i log(2nin/δ)

( 1
2+log(4))2

2(log(4))2 ≤ b2max,i log(2nin/δ). (12)

The first inequality in (12) and the definition (11) further imply that

ai = bibmax,i(
1
2 + log(2nin/δ)) ≥ σibi

√
2 log(2nin/δ) ≥ σi−1bi

√
2 log(2nin/δ).

Hence, by Dwivedi & Mackey (2024, Thm. 3(iii)), for each i ∈ [nin/2], the vector ψ̃i of KH(δ) coincides with the vector
ψi of SBHW on a common event E of probability at least 1 − δ/2. Therefore, each 1

2i ψ̃i is (k, 1
2iσi)-sub-Gaussian on E,

implying the result.
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Algorithm B.2: LKH(δ): Kernel Halving with linear kernel and failure probability δ/2

Input: point sequence Xin = (xi)
nin
i=1 with even nin and xi ∈ Rd

S(1),S(2) ← {}; ψ0 ← 0 ∈ Rd // Initialize empty coresets: S(1),S(2) have size i after round i
σ0 ← 0 // Keep track of sub-Gaussian constant
for i = 1, 2, . . . , nin/2 do

// Consider two points
(x,x′)← (x2i−1,x2i); ηi ← −1
// Compute swapping threshold ai
b2i = ⟨x− x′,x− x′⟩; δi =

δ
2i(log(nin/2)+1)

(ai, σi)← get swap params(σi−1, bi, δi)

// Compute inner product
αi ← ⟨ψi−1,x− x′⟩
// Assign one point to each coreset after probabilistic swapping
(x,x′)← (x′,x) and ηi ← 1 with probability min(1, 1

2
(1− αi

ai
)+)

S(1).append(x); S(2).append(x′); ψ̃i ← ψ̃i−1 + ηifi
end
return Xout ≜ S(1), coreset of size nout = nin/2

function get swap params(σ, b, δ):
a ← max(bσ

√
2 log(2/δ), b2)

σ2 ← σ2+b2(1+(b2−2a)σ2/a2)+
return (a, σ);

B.3. LKH(δ)

In this section, we analyze LKH(δ) (Alg. B.2), the Kernel Halving algorithm of (Dwivedi & Mackey, 2024, Alg. 2) with
a linear kernel, k(x,y) = ⟨x,y⟩, on Rd and failure probability δ/2. Notably, Alg. B.2 can be carried out in only O(nd)
time thanks to the linear kernel structure. Prop. B.3, proved in App. B.3.1, establishes the sub-Gaussianity of LKH(δ) and
its intermediate iterates.

Proposition B.3 (Sub-Gaussianity of LKH(δ)). Suppose nin ≥ 2. In the notation of Alg. B.2, on a common event E of
probability at least 1− δ/2, for all i ∈ [nin/2], 1

2i ψ̃i is (k, νi)-sub-Gaussian with k(x,y) = ⟨x,y⟩ and

νi =

√
log(2nin(log(nin/2)+1)/δ)

2i maxj∈[i] ∥x2j−1 − x2j∥2

≤
√

log(2nin(log(nin/2)+1)/δ)

2i 2min(maxx∈Xin

√
∥x∥2,maxx∈Xin ∥x− x̄∥2) for x̄ = 1

nin

∑
x∈Xin

δx.

Prop. B.3 and the triangle inequality imply that (Pin − Pout)k = 1
nin
ψnin/2 is (k, ν)-sub-Gaussian on E with

ν =

√
log(2nin(log(nin/2)+1)/δ)

nin
maxj∈[nin/2] ∥x2j−1 − x2j∥2

≤
√

log(2nin(log(nin/2)+1)/δ)

nin
2min(maxx∈Xin

√
∥x∥2,maxx∈Xin ∥x− x̄∥2) for x̄ = 1

nin

∑
x∈Xin

δx.

By Lem. A.1, we thus have that the LKH(δ) output pin − pout is (K, ν)-sub-Gaussian on E for K generated by k and that
LKH(δ) ∈ Gν,δ(K).

B.3.1. PROOF OF PROP. B.3: SUB-GAUSSIANITY OF LKH(δ)

We begin by studying the sub-Gaussian properties of a related algorithm, the self-balancing Hilbert walk (SBHW) of
Dwivedi & Mackey (2024, Alg. 3). By Dwivedi & Mackey (2024, Thm. 3(i)), when the SBHW is run on the RKHS Hk

with the same fi and ai sequences employed in LKH(δ), the output ψi of each round is (k, σi)-sub-Gaussian. Moreover,
since

ai ≥ σi−1bi
√
2 log(2/δi) for each i ∈ [nin/2],

11



Dwivedi & Mackey (2024, Thm. 3(iii)) implies that, for each i ∈ [nin/2], the vector ψ̃i of LKH(δ) coincides with the
vector ψi of SBHW on a common event E of probability at least 1− δ/2. Therefore, each 1

2i ψ̃i is (k, 1
2iσi)-sub-Gaussian

on E. Finally, Dwivedi & Mackey (2024, (46)) shows that σi ≤ νi for each i ∈ [nin/2], yielding the result.

B.4. RKH(δ)

Algorithm B.3: RKH(δ): Repeated KH(δ)

Input: point sequence Xin = (xi)
nin
i=1, kernel k, output size nout ∈ nin/2

N

// Repeatedly divide coreset size in half
m← log2(nin/nout)
for ℓ = 1, 2, . . . ,m do Xin ← KH(δ/m)(Xin,k) ;
return Xout ≜ Xin, coreset of size nout = nin/2

m

In this section, we analyze repeated KH(δ) (RKH(δ), Alg. B.3), a variant of the KT-SPLIT algorithm (Dwivedi & Mackey,
2024, Alg. 1a) with simplified swapping thresholds. Our next result, proved in App. B.4.1, establishes the sub-Gaussianity
of RKH(δ).

Proposition B.4 (Sub-Gaussianity of RKH(δ)). If nout ∈ nin/2
N then RKH(δ) (Alg. B.3) is (k, ν)-sub-Gaussian with

ν = 2
nout

√
3

√
log( 6nout log2(nin/nout)

δ )min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin))

on an event E of probability at least 1− δ/2.

By Lem. A.1, we thus have that the RKH(δ) output pin − pout is (K, ν)-sub-Gaussian on E for K generated by k and that

RKH(δ) ∈ Gν,δ(K). Finally, ν = O(

√
log(nout/δ)

nout
) when nout ≥

√
nin.

B.4.1. PROOF OF PROP. B.4: SUB-GAUSSIANITY OF RKH(δ)

Let c = 2min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin)), and, for each ℓ ∈ [m], let ψ̃(ℓ) represent the vector

ψ̃nin/2ℓ produced at the end of the ℓ-th call to KH(δ). By the proof of Prop. B.2 and the union bound, on an event E of

probability at least 1− δ/2, (ψ̃(ℓ))ℓ∈[m] = (ψ(ℓ))ℓ∈[m], where each 2ℓ−1

nin
ψ(ℓ) is (k, ν(ℓ))-sub-Gaussian given (ψ(j))j∈[ℓ−1]

for

ν(ℓ) = c

√
log(2ninm/(2ℓ−1δ))

nin/2ℓ−1 .

Hence, on E, the weighted sum

(Pin − Pout)k =
∑

ℓ∈[m]
2ℓ−1

nin
ψ̃(ℓ) =

∑
ℓ∈[m]

2ℓ−1

nin
ψ(ℓ)

is (k,
√∑

ℓ∈[m](ν
(ℓ))2)-sub-Gaussian by Dwivedi & Mackey (2024, Lem. 14). Finally, by Dwivedi & Mackey (2024,

Eq. (63)),
√∑

ℓ∈[m](ν
(ℓ))2 ≤ ν.

B.5. KH-COMPRESS(δ)

In this section, we analyze KH-COMPRESS(δ) (Alg. B.4), a variant of the KT-SPLIT-COMPRESS algorithm (Shetty et al.,
2022, Ex. 3) with simplified swapping thresholds.

Proposition B.5 (Sub-Gaussianity of KH-COMPRESS(δ)). If nout ∈
√
nin 2

N then KH-COMPRESS(δ) (Alg. B.4) is
(k, ν)-sub-Gaussian with

ν = 1
nout

√
log2(nout) log(

4nout log2(nin/nout)
δ )maxx∈Xin

√
k(x,x)

on an event E of probability at least 1− δ/2.
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Algorithm B.4: KH-COMPRESS(δ): Compress with KH halving and failure probability δ

Input: point sequence Xin = (xi)
nin
i=1, kernel k, nout ∈

√
nin · 2N

g← log2(nout/
√
nin) // identify compression level

function compress(S):
if |S| = 4g then return S
Partition S into four arbitrary subsequences {Si}4i=1 each of size |S|/4
for i = 1, 2, 3, 4 do

S̃i ← compress(Si) // return coresets of size 2g ·
√

|S|
4

end
S̃ ← CONCATENATE(S̃1, S̃2, S̃3, S̃4); ℓ← 2 · 2g ·

√
|S| // coreset of size ℓ

return KH
(

ℓ2

nin4
g+1(log4 nin−g)

δ
)
(S̃,k) // coreset of size 2g

√
|S|

return compress(Xin) // coreset of size nout = 2g
√
nin

Proof. Since the original Kernel Halving algorithm of Dwivedi & Mackey (2024, Alg. 2) is equal to the KT-SPLIT al-
gorithm of Dwivedi & Mackey (2024, Alg. 1a) with m = 1 halving round, KH-COMPRESS(δ) is simply the KT-SPLIT-
COMPRESS algorithm of (Shetty et al., 2022, Ex. 3) with KH(δ) of Alg. B.1 substituted for KT-SPLIT(δ,m = 1). The
result now follows immediately from the KH(δ) sub-Gaussian constant of Prop. B.2 and the argument of Shetty et al.
(2022, Rem. 2, Ex. 3).

Now fix any SPSD K and any kernel k that generates K. By Lem. A.1, we have that pin − pout is (K, ν)-sub-Gaussian

on E and hence that KH-COMPRESS(δ) ∈ Gν,δ(K). In addition, ν = O(

√
log(nout) log(nout/δ)

nout
) when nout ≥

√
nin. Fur-

thermore, Shetty et al. (2022, Rem. 1) implies that KH-COMPRESS(δ) has a runtime less than 4g+1nin(log4(nin)− g) =
4n2out log2(nin/nout) = O(n2out) when nout ≥

√
nin.

B.6. GS-THIN

The section introduces and analyzes the Gram-Schmidt Thinning algorithm (GS-THIN, Alg. B.5). GS-THIN repeatedly
divides an input sequence in half using, GS-HALVE (Alg. B.6), a symmetrized and kernelized version of the Gram-
Schmidt (GS) Walk of Bansal et al. (2018). We will present two different implementations of GS-HALVE: a quartic-time
implementation (Alg. B.6) based on the GS Walk description of Bansal et al. (2018) and a cubic-time implementation
based on local updates to the matrix inverse (Alg. B.7). While both the algorithms lead to the same output given the same
source of randomness, we present the original implementation1 for conceptual clarity and the optimized implementation
for improved runtime. Throughout, for a matrix Q and vector u, we use the notation QI×J and uI to represent the
submatrix (Qij)i∈I,j∈J and subvector (ui)i∈I .

Algorithm B.5: GS-THIN: Gram-Schmidt Thinning
Input: point sequence Xin = (xi)

nin
i=1, kernel k, output size nout ∈ nin/2

N, HALVE ∈ {GS-HALVE,GS-HALVE-CUBIC}
// Repeatedly divide coreset size in half
m← log2(nin/nout)
for ℓ = 1, 2, . . . ,m do Xin ← HALVE(Xin,k) ;
return Xout ≜ Xin, coreset of size nout = nin/2

m

Our first result, proved in App. B.6.1, shows that GS-THIN is a sub-Gaussian thinning algorithm.

Proposition B.6 (GS-THIN sub-Gaussianity). For K generated by k, GS-THIN (Alg. B.5) is a (K, ν, 0)-sub-Gaussian
thinning algorithm with parameter

ν ≜ 2√
3

√
∥K∥max

nout
. (13)

1 Towards making this equivalence clear, Alg. B.6 has been expressed with the same variables that Alg. B.7 uses. Alg. B.6 can be
slightly simplified if it were to be considered independently.
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Algorithm B.6: GS-HALVE: Gram-Schmidt Halving
Input: point sequence Xin = (xi)

nin
i=1 with even nin, kernel k

Xout ← {} // Initialize empty coreset
// Select one point to keep from each consecutive pair using kernelized GS Walk
z ← kernel gs walk(Xin)
for i = 1, . . . , nin/2 do

if zi = 1 then
Xout.append(x2i−1)

else
Xout.append(x2i)

end
end
return Xout, coreset of size nin/2

function kernel gs walk((xi)
nin
i=1):

t← 1; zt ← (0, 0, . . . , 0) ∈ Rnin/2 // Initialize fractional assignment vector
A ← [nin/2] // Initialize set of active coordinates
p ∼ A // Select a pivot uniformly at random
while zt /∈ {±1}nin/2 do
A′ ← A\

{
min

(
{i ∈ [nin/2] : |zti| = 1} \ ([nin/2] \A)

)}
// Update set of active coordinates by removing smallest index set to ±1
if p /∈ A′ then

p′ ∼ Unif(A′) // Select a new pivot from A′ uniformly at random
else

p′ ← p
end
// Compute step direction in which to update fractional assignment vector
ut ← argminu∈Rnin/2 u

⊤Qu subject to up′ = 1 and ui = 0 for all i /∈ A′,
where Q ∈ R(nin/2)×(nin/2) has entries Qij ≜ k(x2i−1, x2j−1) + k(x2i, x2j)− k(x2i−1, x2j)− k(x2i, x2j−1)

δ+ ← |max∆| and δ− ← |min∆|, where ∆ =
{
δ ∈ R : zt + δut ∈ [−1,+1]nin/2

}
// Select candidate step sizes

δt ← δ+ with probability δ−/(δ+ + δ−); otherwise δt ← −δ− // Choose step size and sign at random
zt+1 ← zt + δtut // Update fractional assignments
t← t+ 1; A ← A′; p← p′

end
return zt, sign vector in {±1}nin/2
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Algorithm B.7: GS-HALVE-CUBIC: Gram-Schmidt Halving with cubic runtime
Input: point sequence Xin = (xi)

nin
i=1 with even nin, kernel k with positive definite k(Xin,Xin)

Xout ← {} // Initialize empty coreset
// Select one point to keep from each consecutive pair using kernelized GS Walk
z ← kernel gs walk cubic(Xin)
for i = 1, . . . , nin/2 do

if zi = 1 then
Xout.append(x2i−1)

else
Xout.append(x2i)

end
end
return Xout, coreset of size nin/2

function kernel gs walk cubic((xi)
nin
i=1):

t← 1; zt ← (0, 0, . . . , 0) ∈ Rnin/2 // Initialize fractional assignment vector
A ← [nin/2] // Initialize set of active coordinates
p ∼ A // Select pivot uniformly at random
Q← (k(x2i−1, x2j−1) + k(x2i, x2j)− k(x2i−1, x2j)− k(x2i, x2j−1))

nin/2
i,j=1 // Form paired difference kernel matrix

C← (QA\{p}×A\{p})
−1

while zt /∈ {±1}nin/2 do
A′ ← A\

{
min

(
{i ∈ [nin/2] : |zti| = 1} \ ([nin/2] \A)

)}
// Update set of active coordinates by removing smallest index set to ±1
if p /∈ A′ then

p′ ∼ Unif(A′) // Select a new pivot from A′ uniformly at random
else

p′ ← p
end
A1 ← A\{p}
A2 ← A′ \ {p′}.
i← A1\A2 // Choose i as the (unique) index that was removed from the active coordinates
// Compute (QA2×A2)

−1 using block matrix inversion and the Sherman-Morrison formula
D← CA2×A2

C← D− DQA2×{i}Q{i}×A2
D

Qii+Q{i}×A2
DQA2×{i}

// Compute step direction in which to update fractional assignment vector
Compute ut as (ut)A2 = −CQA2×{p′} , utp′ = 1, and uti = 0 for i /∈ A′

δ+ ← |max∆| and δ− ← |min∆|, where ∆ =
{
δ ∈ R : zt + δut ∈ [−1,+1]nin/2

}
// Select candidate step sizes

δt ← δ+ with probability δ−/(δ+ + δ−); otherwise δt ← −δ− // Choose step size and sign at random
zt+1 ← zt + δtut // Update fractional assignments
t← t+ 1; A ← A′; p← p′

end
return zt, sign vector in {±1}nin/2
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Our second result, proved in App. B.6.2, shows that GS-THIN with the GS-HALVE implementation has O(n4in) runtime.
Proposition B.7 (Runtime of GS-THIN with GS-HALVE). The runtime of GS-THIN with implementation GS-HALVE
(Alg. B.6) is O(n4in).

Our third result, proved in App. B.6.3, establishes the equivalence between GS-HALVE and GS-HALVE-CUBIC. More
precisely, we show that the sequence of partial assignment vectors generated by kernel gs walk(·) of Alg. B.6 and
kernel gs walk cubic(·) of Alg. B.7 are identical given identical inputs, an invertible induced kernel matrix, and an
identical source of randomness.
Proposition B.8 (Agreement of GS-HALVE and GS-HALVE-CUBIC). Let z1, z2, . . . be the fractional assignment
sequence generated by kernel gs walk((xi)

nin
i=1) in Alg. B.6 and z′

1, z
′
2, . . . be the fractional assignment sequence

generated by kernel gs walk cubic((xi)
nin
i=1) in Alg. B.7 with an identical source of randomness. If the pairwise

difference matrix

Q ≜ (k(x2i−1, x2j−1) + k(x2i, x2j)− k(x2i−1, x2j)− k(x2i, x2j−1))i,j∈[nin/2]

is positive definite, then zt = z′
t for all t.

Our fourth result, proved in App. B.6.4, shows that GS-THIN with the GS-HALVE-CUBIC implementation has O(n3in)
runtime.
Proposition B.9 (Runtime of GS-THIN with GS-HALVE-CUBIC). The runtime of GS-THIN with implementation GS-
HALVE-CUBIC (Alg. B.7) is O(n3in).

B.6.1. PROOF OF PROP. B.6: GS-THIN SUB-GAUSSIANITY

Our first lemma bounds the sub-Gaussian constant of GS-HALVE (Alg. B.6).
Lemma B.2 (GS-HALVE sub-Gaussianity). In the notation of Def. 1, consider the input and output vectors pin,pout ∈ Rn

of GS-HALVE (Alg. B.6) for X ⊇ Xin with |X | = n ≥ nin. If K = k(X ,X ), then pin − pout is (K, ν)-sub-Gaussian with

ν ≜ 2∥K∥1/2
max

nin
=

∥K∥1/2
max

nout
.

Proof. Since K is SPSD, there exists a matrix Φ ∈ Rn×d such that K = ΦΦ⊤. Let B ∈ Rd×(nin/2) be the matrix with
entries

Bj,i ≜ Φ2i−1,j −Φ2i,j for i ∈ [nin/2] and j ∈ [d].

Note that, for each i ∈ [nin/2],∑
j∈[d] B

2
j,i = K2i−1,2i−1 +K2i,2i −K2i−1,2i −K2i,2i−1 ≤ 4∥K∥max.

Hence, by Harshaw et al. (2024, Thm. 6.6), 1
nin

Bz is (I, ν)-sub-Gaussian where I is the identity matrix in Rd×d.

Now fix any u ∈ Rd. Since 1
nin

Bz = −Φ⊤(pin − pout) by construction,

E
[
exp

(
u⊤K(pin − pout)

)]
≤ E

[
exp

(
−⟨Φ⊤u, 1

nin
Bz⟩

)]
≤ exp

(
ν2

2 · ∥Φ
⊤u∥22

)
= exp

(
ν2

2 · u
⊤Ku

)
.

Now, for ℓ ∈ [m], let pℓ ∈ Rn denote the output probability vector produced by the ℓ-th call to GS-HALVE. Defining
p0 ≜ pin and pout ≜ pm, we have

pin − pout =
∑m

i=1 ∆i, for ∆i ≜ pi−1 − pi for i ∈ [m].

By Lem. B.2, each pi−1 − pi is (K, 2∥K∥1/2
max

nin/2i−1 )-sub-Gaussian conditional on (∆1, . . . ,∆i−1). Applying Lem. A.3 to the
sequence (∆j)

m
j=1, we find that pin − pout is (K, ν)-sub-Gaussian with parameter

ν =
(∑m

j=1
4∥K∥max

(nin/2j−1)2

)1/2

=
2∥K∥1/2

max

nin

(∑m
j=1 4

j
)1/2

≤ ∥K∥1/2
max

nin

√
4
34

m.

Simplifying the above using the fact that nout = nin/2
m yields our desired result (13).
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B.6.2. PROOF OF PROP. B.7: RUNTIME OF GS-THIN WITH GS-HALVE

We essentially reproduce the argument from Bansal et al. (2018) for the runtime of the GS-HALVE algorithm in our
kernelized context.

The main computational cost of GS-HALVE is the execution of the kernel gs walk(·) subroutine in Alg. B.6. The
number of iterations in while loop for zt is at most nin/2. This is due to the fact that in each iteration, at least one new
variable is set to {±1}. Further, in each iteration, the main computational cost is the computation of

ut ← argminu∈Rnin/2 u
⊤Qu

under the constraints that up = 1 and ui = 0 for all i /∈ A. Since this can be implemented in O(n3in) time using standard
convex optimization techniques, GS-HALVE has total runtime

rH(ℓ) ≤ Cℓ4

for an input sequence of size ℓ and a constant C independent of ℓ. Now, note that GS-THIN calls GS-HALVE iteratively
on inputs of size nin2

−i for i = 0, 1, . . . ,m− 1 where m = log2(nin/nout). Thus, GS-THIN has runtime∑m−1
i=0 rH(nin/2

i) ≤
∑m−1

i=0 C(nin/2
i)4 = O(n4in).

B.6.3. PROOF OF PROP. B.8: AGREEMENT OF GS-HALVE AND GS-HALVE-CUBIC

We want to reason that any round of partial coloring leads to the same output across the two algorithms. Fix any fractional
assignment update round. Recall thatA1 = A\{p} andA2 = A′ \ {p′}. These represent the active set coordinates without
the pivot before and after the update respectively.

The main difference between Algs. B.6 and B.7 is in the computation of the step direction ut, which is the solution of the
program

ut ← argminu∈Rn u⊤Qu subject to up′ = 1 and ui = 0 for all i /∈ A′.

ut has a closed form with entries

(ut)A2 = −(QA2×A2)
−1 ·QA2×{p′}.

Note that the invertibility of QA2×A2
follows from the positive-definiteness of Q, as, for any w ∈ R|A2|,

w⊤QA2×A2
w = w̃⊤Qw̃ > 0

for a second vector w̃ with w̃A2
= w and all other entries equal to zero. Therefore, to compute ut, it suffices to keep track

of the inverse of QA2×A2 as A′ across iterations.

Let i be the unique element in A1\A2. Writing QA1×A1
in block form, we have

QA1×A1
=

[
QA2×A2

QA2×{i}
Q{i}×A2

Qii

]
.

By block matrix inversion (see, e.g., Saadetoglu & Dinsev, 2023, Thm. 2), the leading size |A2|× |A2| principal submatrix
of (QA1×A1

)−1 equals

D ≜
(
QA2×A2

− QA2×{i}Q{i}×A2

Qii

)−1

.

Thus, by the Sherman-Morrison formula (Sherman & Morrison, 1950),

(QA2×A2
)−1 =

(
D−1 +

QA2×{i}Q{i}×A2

Qii

)−1

= D− DQA2×{i}Q{i}×A2
D

Qii+Q{i}×A2
DQA2×{i}

. (14)

Hence, if we already have access to a matrix C = (QA1×A1
)−1, we can compute D by dropping the row and column

of C corresponding to i and then compute (QA2×A2
)−1 using (14). Since in Alg. B.7 we begin by explicitly computing

the inverse of QA′×A′ , the update step in Alg. B.7 maintains the required inverse and thus its partial assignment updates
match those of Alg. B.6.
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Algorithm B.8: GS-COMPRESS: Compress with GS-HALVE-CUBIC halving
Input: point sequence Xin = (xi)

nin
i=1, kernel k, nout ∈

√
nin · 2N

g← log2(nout/
√
nin) // identify compression level

function compress(S):
if |S| = 4g then return S
Partition S into four arbitrary subsequences {Si}4i=1 each of size |S|/4
for i = 1, 2, 3, 4 do

S̃i ← compress(Si) // return coresets of size 2g ·
√

|S|
4

end
S̃ ← CONCATENATE(S̃1, S̃2, S̃3, S̃4); ℓ← 2 · 2g ·

√
|S| // coreset of size ℓ

return GS-HALVE-CUBIC(S̃,k) // coreset of size 2g
√
|S|

return compress(Xin) // coreset of size nout = 2g
√
nin

B.6.4. PROOF OF PROP. B.9: RUNTIME OF GS-THIN WITH GS-HALVE-CUBIC

We begin by establishing the runtime of kernel gs walk cubic(·).

Lemma B.3 (Running time of kernel gs walk cubic(·) ). The routine kernel gs walk cubic(·) runs in
O(ℓ3) time given a point sequence of size ℓ.

Proof. First, the initialization of C costs O(ℓ3) time using standard matrix inversion algorithms. Second, the number of
iterations in the while loop is at most ℓ/2 since, in each iteration, at least one new variable is assigned a permanent sign
in {±1}. In each while loop iteration, the main computational costs are the update of C and the computation of the step
direction ut, both of which cost O(ℓ2) time using standard matrix-vector multiplication. Hence, together, all while loop
iterations cost O(ℓ3) time.

Given the above lemma, we have that GS-HALVE-CUBIC, on input of size ℓ, has a running time

rH(ℓ) ≤ Cℓ3

for some C independent of ℓ. When used in GS-THIN this yields the runtime∑m−1
i=0 rH(nin/2

i) =
∑m−1

i=0 C(nin/2
i)3 = O(n3in).

B.7. GS-COMPRESS

This section introduces and analyzes the new GS-COMPRESS algorithm (Alg. B.8) which combines the COMPRESS meta-
algorithm of Shetty et al. (2022) with the GS-HALVE-CUBIC halving algorithm (Alg. B.7). The following result bounds
the sub-Gaussian constant and runtime of GS-COMPRESS.

Proposition B.10 (GS-COMPRESS sub-Gaussianity and runtime). If K is generated by k, then GS-COMPRESS is
(K, ν, 0)-sub-Gaussian with

ν ≜ 1
nout

√
log2(nout)∥K∥max.

Moreover, GS-COMPRESS has an O(n3out) runtime.

Proof. By Lem. B.2 and Prop. B.8, GS-HALVE-CUBIC is (K, νH(ℓ))-sub-Gaussian for an input point sequence of size ℓ
and νH(ℓ) = 2

√
∥K∥max/ℓ. Hence, by Lem. A.2, GS-HALVE-CUBIC is also νH(ℓ) f -sub-Gaussian in the sense of Shetty

et al. (2022, Def. 2) for each f ∈ Hk. By Shetty et al. (2022, Rmk. 2), GS-COMPRESS is therefore f -sub-Gaussian with
parameter

ν ≤
√
log2(nin/nout)νH(2nout) ≤

√
log2(nout)

∥K∥1/2
max

nout

for each f ∈ Hk. Hence, Lem. A.1 implies that GS-COMPRESS is a (K, ν, 0)-sub-Gaussian thinning algorithm.
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Furthermore, Shetty et al. (2022, Thm. 1) implies that GS-COMPRESS has a runtime of∑log2(nin/(2nout))
i=0 4i · rH(2nout2

−i).

where the GS-HALVE-CUBIC runtime rH(ℓ) ≤ Cℓ3 for C independent of the input size ℓ by Lem. B.3. Therefore, the
GS-COMPRESS runtime is bounded by∑log2(nin/(2nout))

i=0 4i · (2nout)
32−3i = O(n3out).

Remark 1 (COMPRESS with GS-HALVE). If the GS-HALVE implementation were used in place of GS-HALVE-CUBIC,
parallel reasoning would yield an O(n4out) runtime for GS-COMPRESS.

C. Proof of Thm. 1: Low-rank sub-Gaussian thinning
We establish the first kernel max seminorm bound (2) in App. C.1 and the Lipschitz kernel max seminorm bound (3) in
App. C.2. Throughout, we use the notation PE(E ′) ≜ P(E, E ′) for events (E, E ′).

C.1. Proof of kernel max seminorm bound (2)

We begin by establishing a general bound on the maximum discrepancy between input and output expectations over a
collection of test functions admitting a finite cover.

Lemma C.1 (Discrepancy cover bound). Fix any kernel k, subset F ⊂ Hk, and scalars ε ≥ 0 and δ′ ∈ (0, 1). Define

a ≜ supf∈F ∥f∥k and BF ≜ {f ∈ Hk : ∥f∥k ≤ a},

and let Cϵ,F be a set of minimum cardinality satisfying

Cϵ,F ⊂ BF and supf∈F minf ′∈Cϵ,F maxx∈Xin |f(x)− f ′(x)| ≤ ε. (15)

If (Pin − Pout)k is (k, ν)-sub-Gaussian on an event E (Def. A.2), then, on E,

∥Pin − Pout∥F ≜ supf∈F (Pin − Pout)f ≤ 2ϵ+ νa
√
2 log(|Cϵ,F |/δ′) with probability at least 1− δ′.

Proof. The triangle inequality and the covering property (15) together imply that, with probability 1,

(Pin − Pout)f ≤ minf ′∈Cϵ,F (Pin − Pout)f
′ + |(Pin − Pout)(f − f ′)|

≤ ∥Pin − Pout∥Cϵ,F
+minf ′∈Cϵ,F |Pin(f − f ′)|+ |Pout(f − f ′)|

≤ ∥Pin − Pout∥Cϵ,F
+ 2minf ′∈Cϵ,F maxx∈Xin |f(x)− f ′(x)|

≤ ∥Pin − Pout∥Cϵ,F
+ 2ε (16)

for each f ∈ F . Since s 7→ ets is increasing, the bound (16), the assumed sub-Gaussianity (Def. A.2), and the fact that
Cϵ,F belongs to BF imply that

EE [exp(t∥Pin − Pout∥F )] ≤ e2tεEE [exp(t∥Pin − Pout∥Cϵ,F
)]

≤
∑

f ′∈Cϵ,F
e2tεEE [exp(t(Pin − Pout)f

′)]

≤
∑

f ′∈Cϵ,F
exp(

t2ν2∥f ′∥2
k

2 + 2tϵ) ≤ |Cϵ,F | exp( t
2ν2a2

2 + 2tϵ).

Now, by Markov’s inequality (Markov, 1884), for any α > 0,

PE(supf∈F (Pin − Pout)f > α+ 2ϵ) ≤ inft>0 EE [exp(t∥Pin − Pout∥F )]/ exp(t(α+ 2ϵ))

≤ |Cϵ,F | inft>0 exp(
t2ν2a2

2 − tα) = |Cϵ,F | exp( −α2

2ν2a2 ).

Finally, choosing α = νa
√
2 log(|Cϵ,F |/δ′) yields the desired claim.
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Now fix any ϵ ≥ 0, δ′ ∈ (0, 1), and kernel k that generates K, and consider the subset F = {±k(xi, ·) : i ∈ I}. Since
∥K(pin − pout)∥I = ∥Pin − Pout∥F and supf∈F ∥f∥k = DI , Lem. C.1 implies that, on the event E,

∥K(pin − pout)∥I ≤ 2ϵ+ νDI
√
2 log(|Cϵ,F |/δ′) with probability at least 1− δ′.

Since P(Ec) ≤ δ/2 and |F| ≤ 2|Z|, we use the estimate |C0,F | ≤ 2|I| with ϵ = 0 to obtain the advertised bound (2).

C.2. Proof of Lipschitz kernel max seminorm bound (3)

Introduce the query point set Z ≜ {xi : i ∈ I}, fix any δ′ ∈ (0, 1) and z0 ∈ Z , and define the symmetrized seminorm

∥(Pin − Pout)k∥Z,Z ≜ supz,z′∈Z |(Pin − Pout)k(z)− (Pin − Pout)k(z
′)|.

By the triangle inequality and the derivation of App. C.1, we have, on the event E,

∥K(pin − pout)∥I ≤ ∥(Pin − Pout)k∥Z,Z + |(Pin − Pout)k(z0)|

≤ ∥(Pin − Pout)k∥Z,Z + ν
√
k(z0, z0)

√
2 log(4/δ′) with probability at least 1− δ′/2. (17)

Since P(Ec) ≤ δ/2, it only remains to upper bound ∥(Pin − Pout)k∥Z,Z on E with probability at least 1− δ′/2.

To this end, we first establish that ((Pin − Pout)k(z))z∈Z is a sub-Gaussian process on E with respect to a particular
bounded-Hölder metric ρ.
Definition C.1 (Sub-Gaussian process on an event). We say an indexed collection of random variables (Xθ)θ∈Θ is a
sub-Gaussian process with respect to ρ on an event E if ρ is a metric on Θ and

EE

[
exp

( (Xθ−X′
θ)

2

ρ(θ,θ′)2

)]
≤ 2 for all θ, θ′ ∈ Θ.

Lemma C.2 (Bounded-Hölder sub-Gaussian process). Consider a kernel k on X = Rd satisfying |k(z,x)− k(z′,x)| ≤
Lk∥z − z′∥2 for all z, z′ ∈ Z ⊂ X and x ∈ Xin. If (Pin − Pout)k is (k, ν)-sub-Gaussian on an event E (Def. A.2), then
((Pin − Pout)k(z))z∈Z is a sub-Gaussian process on E with respect to the metric

ρ(z, z′) ≜ ν
√

8/3min(2 supz∈Z
√
k(z, z),

√
2Lk∥z − z′∥2). (18)

The proof of Lem. C.2 can be found in App. C.3. Our next lemma, a slight modification of Wainwright (2019, Thm. 5.36),
bounds the suprema of symmetrized sub-Gaussian processes on an event in terms of covering numbers.
Lemma C.3 (Sub-Gaussian process tails). Suppose (Xθ)θ∈Θ is a sub-Gaussian process with respect to ρ on an event E,
and define the diameter diam(Θ, ρ) ≜ supθ,θ′∈Θ ρ(θ, θ

′), the covering number

N (u; Θ, ρ) ≜ min{|Cu| : Cu ⊆ Θ,maxθ∈Θ minθ′∈Cu
ρ(θ, θ′) ≤ u} for all u > 0,

and the entropy integral J (Θ, ρ) ≜
∫ diam(Θ,ρ)

0

√
log(1 +N (u; Θ, ρ)) du. Then,

PE(supθ,θ′∈Θ |Xθ −Xθ′ | ≥ 8(J (Θ, ρ) + t)) ≤ 2 exp(−t2/ diam(Θ, ρ)2) for all t > 0.

Proof. Since
√

log(1 + xy) ≤
√
log((1 + x)(1 + y)) ≤

√
log(1 + x) +

√
log(1 + y) for all x, y > 0, the proof is

identical to that of Wainwright (2019, Thm. 5.36) with c1 = 8 and (EE ,PE) substituted for (E,P).

Our final lemma bounds the diameter, covering numbers, and entropy integral of Z using the metric ρ.
Lemma C.4 (Covering properties of bounded-Hölder metric). Consider the bounded-Hölder metric ρ (18) for a kernel k
on X = Rd and a finite set Z ⊂ X . If Z is a matrix with one row corresponding to each element of Z , r = rank(Z), and
R = maxz∈Z ∥z∥2, then, in the notation of Lem. C.3,

N (u;Z, ρ) ≤ (1 + c2/u2)r for c ≜ ν
√

32
3 RLk and all u > 0, (19)

diam(Z, ρ) ≤ D ≜ min(c, ν
√

32
3 maxz∈Z

√
k(z, z)), and (20)

J (Z, ρ) ≤ D
√
2r log(

√
3ec/D).
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Proof. The diameter bound (20) follows directly from the definition of ρ (18) and the fact maxz,z′∈Z ∥z − z′∥2 ≤ 2R.

To establish the covering number bound (19), we let UΣV⊤ be a compact singular value decomposition of Z so that

V ∈ Rd×r, Z = ZVV⊤, and maxz∈Z ∥V⊤z∥2 = maxz∈Z ∥z∥2 = R.

Fix any ϵ > 0, and let C and Cext be a sets of minimum cardinality satisfying

C ⊂ Br(R), maxv∈Br(R) minv′∈C ∥v′ − v∥2 ≤ ϵ2/2,
Cext ⊂ Bd(R), and maxz∈Z minz′∈Cext ∥z′ − z∥2 ≤ ϵ2/2. (21)

Since V⊤z ∈ Br(R) for each z ∈ Z and Vv′ ∈ Bd for each v′ ∈ Br, we have

maxz∈Z minv′∈C ∥Vv′ − z∥2 = maxz∈Z minv′∈C ∥V(v′ −V⊤z)∥2
= maxz∈Z minv′∈C ∥v′ −V⊤z∥2 ≤ ϵ2/2,

so that VC satisfies the criteria of (21). Since |VC| ≤ |C| ≤ (1 + 4R/ϵ2)r by Wainwright (2019, Lem. 5.2), we must also
have |Cext| ≤ (1 + 4R/ϵ2)r.

Now, since Cext has minimum cardinality amongst sets satisfying (21), for each z′ ∈ Cext, there is some z ∈ Z satisfying
∥z′ − z∥2 ≤ ϵ2/2 (or else z′ would be superfluous). Hence, there exists a set Cint ⊆ Z satisfying

|Cint| ≤ |Cext| ≤ (1 + 4R/ϵ2)r and maxz∈Z minz′∈Cint ∥z′ − z∥2 ≤ ϵ2.

Moreover, by our metric definition (18),

maxz∈Z minz′∈Cint ρ(z, z
′) ≤ c

2
√
R
maxz∈Z minz′∈Cint

√
∥z − z′∥2 ≤ cϵ

2
√
R
.

Hence, for u = cϵ
2
√
R

, N (u;Z, ρ) ≤ |Cint| ≤ (1 + c2/u2)r. Since ϵ > 0 was arbitrary, we have established (19).

Finally, we bound the entropy integral using the inequality 1 ≤ c2/u2 for u ∈ [0, D], the concavity of the square-root
function, and Jensen’s inequality:

J (Z, ρ) ≤
∫D

0

√
log(1 + (1 + c2/u2)r) du ≤

∫D

0

√
log((3c2/u2)r) du =

∫D

0

√
2r log(

√
3c/u) du

≤ D
√

1
D

∫D

0
2r log(

√
3c/u) du = D

√
2r log(

√
3ec/D).

Together, Lems. C.2, C.3, and C.4 imply that, in the notation of Lem. C.4,

∥(Pin − Pout)k∥Z,Z ≤ 8D
√
2r log(

√
3ec/D) + 8D

√
log(4/δ′)

on E with probability at least 1− δ′/2. Combining this bound with the inequality (17) yields the result.

C.3. Proof of Lem. C.2: Bounded-Hölder sub-Gaussian process

Define Xz = (Pin − Pout)k(z) for each z ∈ Z , and fix any z, z′ ∈ Z . Our sub-Gaussianity assumption implies

EE [exp(λ(Xz −Xz′)] ≤ exp(ν
2λ2

2 ∥k(z, ·)− k(z′, ·)∥2k) for all λ ∈ R.

Moreover, by our Lipschitz assumption,

∥k(z, ·)− k(z′, ·)∥2k = k(z, z)− k(z, z′) + k(z′, z′)− k(z′, z) ≤ min(4maxz∈Z k(z, z), 2Lk∥z − z′∥2).

Finally, Lem. C.5 shows that EE [exp(
(Xz−Xz′ )2

ρ(z,z′)2 ] ≤ 2 so that (Xz)z∈Z is a sub-Gaussian process on E with respect to ρ.

Lemma C.5 (Squared exponential moment bound). If EE [exp(λX)] ≤ exp(ν
2λ2

2 ) for all λ ∈ R, then EE [exp(
3X2

8ν2 )] ≤ 2.

Proof. The proof is identical to that in Wainwright (2019, Sec. 2.4) with EE substituted for E.
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D. Proof of Thm. 2: Quality of Thinformer
Throughout we will make use of the convenient representation

T̂ = D̂−1ÂV for Iout ≜ {i ∈ [n] : (k̃i, ṽi) ∈ Xout}, Â ≜ n
nout

(exp(
⟨qi,kj⟩√

d
)1[j ∈ Iout])

n
i,j=1, and D̂ ≜ Â1n. (22)

Our proof makes use of three lemmas. The first, proved in App. D.1, bounds the approximation error for the attention
matrix T in terms of the approximation error for AV and A1n.

Lemma D.1 (Decomposing attention approximation error). In the notation of Alg. 1 and (22),

∥D̂−1ÂV −D−1AV∥max ≤ min
(
∥( 1nD)−1∥max, ∥( 1nD̂)−1∥max

)
( 1n∥ÂV −AV∥max +

1
n∥A1n − Â1n∥∞∥V∥max).

The second, proved in App. D.2, bounds the approximation error for AV and A1n in terms of the KMS (1) for a specific
choice of attention kernel matrix.

Lemma D.2 (KMS bound on attention approximation error). Instantiate the notation of Alg. 1 and (22) and define the
query set

X ′ ≜ {xi+nj ≜ (q̃i, e
d+1
j ) : i ∈ [n], j ∈ [d+ 1]} where q̃i ≜ qi/d

1
4

and ed+1
j is the j-th standard basis vector in Rd+1. If Katt ≜ katt(X ,X ) for X ≜ X ′ ∪ Xin, then

max
(
1
n∥(Â−A)V∥max,

1
n∥(Â−A)1n∥∞∥V∥max

)
= ∥Katt(pin − pout)∥I for I ≜ [n(d+ 1)].

Our third lemma, proved in App. D.3, bounds the size of key parameters of the thinned attention problem.

Lemma D.3 (Thinned attention problem parameters). Instantiate the notation of Lem. D.2, and define R ≜
maxi∈[n] max(∥qi∥2, ∥ki∥2). Then, for all i, j ∈ I and l ∈ supp(pin),

∥( 1nD)−1∥max ≤ exp(R
2

√
d
), maxx∈Xin

√
katt(x,x) ≤ exp( R2

2
√
d
)
√
∥V∥22,∞ + ∥V∥2max,

RI ≜ maxi∈I ∥xi∥2 ≤
√

R2√
d
+ 1, DI ≜ maxi∈I

√
Katt,ii ≤ exp( R2

2
√
d
),

rank(XI) ≤ d+ 1 for XI ≜ [xi]
⊤
i∈I , and

|Katt,il −Katt,jl| ≤ LKatt∥xi − xj∥2 for LKatt ≜ exp(R
2

√
d
)
√

R2√
d
+ 2∥V∥max.

Now instantiate the notation of Lem. D.2, and define the coefficient

c ≜ 2
√
2
(
32
√

2
3 (d+ 1) log(3e2(R

2√
d
+ 2)∥V∥max) +

√
2 log(8)(1 + 32√

3
)
)
.

Together, Lem. D.3, the KMS quality bound of Thm. 1, and the KH-COMPRESS(0.5) sub-Gaussian constant ν of Prop. B.5
imply that, with probability at least 1

2 ,

∥Katt(pin − pout)∥I ≤ c
2
√
2
exp(R

2
√
d
)
√
∥V∥22,∞ + ∥V∥2max

√
log2(nout) log(8nout log2

nin
nout

)

nout
.

Hence, by Lems. D.1 and D.2, with probability at least 1
2 ,

∥D̂−1ÂV −D−1AV∥max ≤ c√
2
exp( 2R

2
√
d
)
√
∥V∥22,∞ + ∥V∥2max

√
log2(nout) log(8nout log2

nin
nout

)

nout

≤ c exp( 2R
2

√
d
)∥V∥2,∞

√
log2(nout) log(8nout log2

nin
nout

)

nout
.
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D.1. Proof of Lem. D.1: Decomposing attention approximation error

By the triangle inequality, we have

∥D̂−1ÂV −D−1AV∥max ≤ ∥D̂−1ÂV − D̂−1AV∥max + ∥D̂−1AV −D−1AV∥max.

We bound the first term on the right-hand side using the submultiplicativity of the max norm under diagonal rescaling:

∥D̂−1ÂV − D̂−1AV∥max ≤ ∥D̂−1∥max∥ÂV −AV∥max = ∥( 1nD̂)−1∥max
1
n∥ÂV −AV∥max.

To bound the second term we use the same submultiplicativity property and the fact that each entry of D−1AV is the
average of values in V:

∥D̂−1AV −D−1AV∥max = ∥D̂−1(D− D̂)D−1AV∥max ≤ ∥D̂−1∥max∥D− D̂∥max∥D−1AV∥max

= ∥( 1nD̂)−1∥max
1
n∥A1n − Â1n∥∞∥V∥max.

An identical argument reversing the roles of (D,A) and (D̂, Â) yields the second bound.

D.2. Proof of Lem. D.2: KMS bound on attention approximation error

Define the augmented value matrix Ṽ = [V, ∥V∥max1n] ∈ Rd+1. By the definition of Katt and Â,

∥Katt(pin − pout)∥I = maxi∈[n],j∈[d+1] |
∑

ℓ∈[n] AiℓṼℓj(pin − pout)ℓ| = 1
n∥(A− Â)Ṽedj∥∞ = 1

n∥(A− Â)Ṽ∥max.

D.3. Proof of Lem. D.3: Thinned attention problem parameters

First, by the Cauchy-Schwarz inequality and the nonnegativity of D = A1n we have

∥( 1nD)−1∥max = 1
mini∈[n]

1
n

∑
j∈[n] Aij

≤ 1

mini∈[n],j∈[n] exp(
⟨qi,kj⟩√

d
)
≤ 1

mini∈[n],j∈[n] exp(
−∥qi∥2∥kj∥2√

d
)
≤ exp(R

2
√
d
).

Second, the maxx∈Xin

√
katt(x,x) inequality follows as

katt((k̃i, ṽi), (k̃i, ṽi)) = exp(
∥ki∥2

2√
d

)(∥vi∥22 + ∥V∥2max) ≤ exp(R
2

√
d
)(∥V∥22,∞ + ∥V∥2max).

Third, the RI inequality follows as

∥(q̃i, e
d+1
j )∥2 =

√
∥q̃i∥22 + 1 ≤

√
R2√
d
+ 1 for all i ∈ [n], j ∈ [d+ 1].

Fourth, the DI inequality follows as

maxi∈I Katt,ii = maxi∈[n] exp(
∥qi∥

2
2√

d
) ≤ exp(R

2
√
d
).

Fifth, the rank inequality follows as xi ∈ Rd+1 for i ∈ I. Finally, the Lipschitz inequality follows as, for any i, k, l ∈ [n]
and j,m ∈ [d+ 1],

| exp( ⟨qi,kl⟩√
d

)⟨ed+1
j , ṽl⟩ − exp( ⟨qk,kl⟩√

d
)⟨ed+1

m , ṽl⟩|

≤ exp( ⟨qi,kl⟩√
d

)|ṽlj − ṽlm|+ | exp( ⟨qi,kl⟩√
d

)− exp( ⟨qk,kl⟩√
d

)||ṽlm|

≤ exp(∥qi∥2∥kl∥2√
d

)∥ed+1
j − ed+1

m ∥2 |ṽlj−ṽlm|√
2

+ exp(max(∥qi∥2,∥qk∥2)∥kl∥2√
d

)| ⟨qi−qk,kl⟩√
d
||ṽlm|

≤ exp(R
2

√
d
)∥ed+1

j − ed+1
m ∥2 |ṽlj−ṽlm|√

2
+ exp(R

2
√
d
)∥qi−qk∥2R√

d
|ṽlm|

≤ exp(R
2

√
d
)∥ed+1

j − ed+1
m ∥2

√
2∥V∥max + exp(R

2
√
d
)∥qi−qk∥2R√

d
∥V∥max

≤ exp(R
2

√
d
)
√

R2√
d
+ 2∥V∥max∥(q̃i, e

d+1
j )− (q̃k, e

d+1
m )∥2

by the triangle inequality, multiple applications of Cauchy-Schwarz, and the mean-value theorem applied to x 7→ ex.
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E. Supplementary Experiment Details
The T2T-ViT experiment of Sec. 4.2 was carried out using Python 3.12.9, PyTorch 2.8.0.dev20250407+cu128 (Paszke
et al., 2019), and an Ubuntu 22.04.5 LTS server with an AMD EPYC 7V13 64-Core Processor, 220 GB RAM, and a
single NVIDIA A100 GPU (80 GB memory, CUDA 12.8, driver version 570.124.04). For reference, attention layer 1
has (n, d) = (3136, 64) and attention layer 2 has (n, d) = (784, 64). For each layer and each of the first 50 ImageNet
2012 validation set batches of size 64, we measured the time required to complete a forward pass through the layer using
CUDA events following 10 warm-up batches to initialize the GPU. Tab. E.1 provides the hyperparameter settings for each
attention approximation in Tab. 3. The settings and implementations for all methods other than Thinformer were provided
by Zandieh et al. (2023), and our experiment code builds on their open-source repository https://github.com/
majid-daliri/kdeformer.

Table E.1: Configurations for the attention approximation methods of Tab. 3.

Attention Algorithm Layer 1 Configuration Layer 2 Configuration

Performer num_features=49 num_features=12

Reformer bucket_size=49 bucket_size=12
n_hashes=2 n_hashes=2

ScatterBrain local_context=49 local_context=12
num_features=48 num_features=6

KDEformer sample_size=64 sample_size=56
bucket_size=32 bucket_size=32

Thinformer (Ours) g=2 g=4
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