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ABSTRACT

Utilizing unsupervised representation learning for quantum architecture search
(QAS) represents a cutting-edge approach poised to realize potential quantum ad-
vantage on Noisy Intermediate-Scale Quantum (NISQ) devices. QAS is a scheme
to design quantum circuits for variational quantum algorithms (VQAs). Most
QAS algorithms combine their search space and search algorithms together and
thus generally require evaluating a large number of quantum circuits during the
search process, which results in formidable computational demands and limits
their applications to large-scale quantum circuits. Predictor-based QAS algo-
rithms can alleviate this problem by directly estimating the performance of circuits
according to their structures. However, a high-performance predictor generally re-
quires very time-consuming labeling to obtain a large number of labeled quantum
circuits because the gate parameters of quantum circuits need to be optimized un-
til convergence to their ground-truth performances. Recently, a classical neural
architecture search algorithm Arch2vec inspires us by showing that architecture
search can benefit from decoupling unsupervised representation learning from the
search process. Whether unsupervised representation learning can help QAS with-
out any predictor is still an open topic. In this work, we propose a framework
QAS with unsupervised representation learning and visualize how unsupervised
architecture representation learning encourages quantum circuit architectures with
similar connections and operators to cluster together. Specifically, our framework
enables the process of QAS to be decoupled from unsupervised architecture rep-
resentation learning so that the learned representation can be directly applied to
different downstream applications. Furthermore, our framework is predictor-free
eliminating the need for a large number of labeled quantum circuits. During the
search process, we use two algorithms REINFORCE and Bayesian Optimization
to directly search on the latent representation, and compare them with the method
Random Search. The results show our framework can more efficiently get well-
performing candidate circuits within a limited number of searches.

1 INTRODUCTION

Quantum Computing (QC) has made progress in the last decades. The development of quantum
hardware and new quantum algorithms have shown their potential to provide advantages over clas-
sical computers in diverse tasks, such as image processing (Wang et al., 2022), reinforcement learn-
ing (Skolik et al., 2022), knowledge graph embedding (Ma et al., 2019), and network architecture
search (Zhang et al., 2022; Giovagnoli et al., 2023; Du et al., 2022). However, the scale of a quantum
computer is still limited by the noise, which comes from the environment and leads to an unstable
performance. These noisy intermediate-scale quantum (NISQ) devices fall short of fault tolerance in
the near future (Preskill, 2018). The variational quantum algorithm (VQA), a hybrid quantum algo-
rithm using quantum operations with adjustable parameters, is referred to as a leading strategy in the
NISQ era (Cerezo et al., 2021). In VQA, the parameterized quantum circuit (PQC) with trainable
parameters is viewed as a general paradigm of quantum neural networks and has reached remarkable
achievements in quantum machine learning. These parameters control quantum circuit operations,
changing the distribution of circuit output states, and are updated by a classical optimizer given a
task-specific objective function. Although VQA has its own problems such as Barren Plateaus (BP)
or scalable problems, it has shown the potential to improve performance by solving diverse problems
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such as image processing, combinatorial optimization problems, chemistry, and physics (Pramanik
et al., 2022; Amaro et al., 2022; Tilly et al., 2022). Variational quantum eigensolver (VQE) (Peruzzo
et al., 2014; Tilly et al., 2022) is one of VQAs. It is referred to as an approximator of the ground
state and provides more flexibility for quantum machine learning. We are considering using VQE
for some circuit performance evaluation.

Unsupervised representation learning seeks to find hidden patterns or structures of unlabeled data,
and it is a well-studied problem in general computer vision research (Radford et al., 2015). Autoen-
coder as one of the approaches for unsupervised representation learning has good expressiveness
for feature representation. It consists of an encoder and decoder, which first maps images into a
compact feature space and then decodes features to reconstruct similar images. Besides images, the
autoencoder can learn good features from graphs, such as encoding and reconstructing a directed
acyclic graph (DAG) or a neural network architecture (Yan et al., 2020; Zhang et al., 2019; Pan
et al., 2018; Wang et al., 2016). Architecture search and representation learning are coupled in most
research. However, this leads to an inefficient search, which strongly depends on labeled architec-
tures by numerous evaluations. A framework Arch2vec seeks to make the representation learning
independent of architecture search by downstream conducting search algorithms (Yan et al., 2020).
This decoupling helps to reach a smooth latent space that can benefit different search algorithms
without numbers of labeling.

Quantum architecture search (QAS) or quantum circuit architecture search is a scheme to design
quantum circuits efficiently and automatically. It aims to create a circuit to increase the learning
performance (Du et al., 2022). Diverse algorithms are proposed for QAS (Zhang et al., 2022; Du
et al., 2022; Zhang et al., 2021; He et al., 2023a; Giovagnoli et al., 2023). However, most algorithms
define the search space and search algorithm together, leading to inefficient performance and high
evaluation costs. The search algorithm performance often depends on how well the search space is
defined, embedded, and learned. In order to find a suitable circuit, they need to evaluate different
architectures many times. Although a predictor-based QAS He et al. (2023a) can separate the rep-
resentation learning and search algorithm, it must often label different architectures by evaluation,
and the training performance strongly depends on the quantity and quality of evaluations as well as
the embedding. In this work, we are inspired by the idea of decoupling, and try to conduct QAS
without any labeling. We seek to find out whether the decoupling can help to embed quantum circuit
architectures into a smooth latent space benefiting predictor-free QAS algorithms.

We summarise our contributions as follows:

1. We conduct a general framework for QAS by decoupling the unsupervised architecture
representation learning from QAS. Without labeling, this framework can embed quantum
architectures into a compact, smooth latent space.

2. We use two popular visualization approaches PCA (Shlens, 2014) and t-SNE (Van der
Maaten & Hinton, 2008) to demonstrate high-dimensional latent vector space and analyze
the effect of their clustering. Both of them especially PCA can map high-performance
quantum circuit architectures into a concentrated region.

3. After acquiring the latent representation, we apply REINFORCE and Bayesian optimiza-
tion approaches directly to it during the search process. In this way, our framework elimi-
nates the need for pre-training a high-performance predictor with a large number of labeled
circuits, and it is free from the uncertainty resulting from prediction.

4. We conduct various experiments in the field of QC including unitary approximation, max-
cut, and quantum chemistry (Liang et al., 2019; Poljak & Rendl, 1995; Tilly et al., 2022)
to show the effectiveness of our framework and that the pre-trained quantum architecture
embedding can benefit QAS for these applications.

2 RELATED WORK

Unsupervised Graph Representation Learning. Graph data is rapidly becoming a key instru-
ment for understanding complex interactions among real-world objects, for instance, biochemical
molecules (Jiang et al., 2021), social networks (Shen et al., 2023), purchase networks from e-buy
websites (Li et al., 2021), and academic collaboration networks (Newman, 2001). Graph data is
often represented as a discrete data structure, making it extremely difficult to solve downstream
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tasks with large search spaces. Our work is based on unsupervised graph representation learning
that aims to learn a low-dimensional compact and continuous graph embedding without supervision
while preserving graph topological structures and node attributive features. In this domain, Perozzi
et al. (2014); Wang et al. (2016); Grover & Leskovec (2016); Tang et al. (2015) propose a type of
method using local random walk statistics or matrix factorization-based learning objectives to learn
corresponding representations, Kipf & Welling (2016); Hamilton et al. (2017) propose a kind of
method reconstructing the adjacency matrix of graphs by predicting edge existence, and Veličković
et al. (2018); Sun et al. (2019); Peng et al. (2020) propose another type of method maximizing the
mutual information between local node representations and a pooled graph representation, etc. Addi-
tionally, Xu et al. (2019) explores the expressiveness of Graph Neural Networks (GNNs) in terms of
their capability to distinguish any two graphs and introduces Graph Isomorphism Networks (GINs)
which are proven to be as powerful as the Weisfeiler-Lehman test (Leman & Weisfeiler, 1968) for
graph isomorphism. Getting inspired by the success of Arch2vec (Yan et al., 2020), a method with
unsupervised graph representation learning and used in classic neural architecture search (NAS),
we injectively encode quantum architecture structures using GINs as well since quantum circuit
architectures also can be represented as DAGs.

Quantum Architecture Search (QAS). As mentioned in the previous section, PQCs are required
as ansatz for various VQAs (Benedetti et al., 2019). Expressive power and entangling capacity of
PQCs play an essential role in their optimization performance (Sim et al., 2019). It is highly possible
that a badly designed ansatz suffers from limited expressive power or entangling capacity, which re-
sults in the global minimum for an optimization problem out of reach. Furthermore, such ansatz may
be more susceptible to noises (Stilck França & Garcia-Patron, 2021), waste quantum resources, or
lead to barren plateaus that frustrate the optimization procedure (McClean et al., 2018; Wang et al.,
2021). Therefore, a systematic approach namely QAS is proposed to search for optimal PQCs. The
goal of QAS is to automatically, effectively, and efficiently search high-performance custom quan-
tum circuits for given problems that not only minimize the loss functions but also satisfy some other
constraints imposed by the hardware connections between qubits, the native set of quantum gates,
the quantum noise model, the training loss landscape and other practical issues. Quantum archi-
tectures and neural network architectures have many similar properties, like hierarchical, directed,
and acyclic structures, so existing QAS works have been heavily inspired by ideas from NAS. More
specifically, greedy approaches (Mitarai et al., 2018; Tang et al., 2021), evolutionary or genetic
methodologies (Zhang & Zhao, 2022; Ding & Spector, 2022), reinforcement learning (RL) engine-
based methods (Kuo et al., 2021; Ostaszewski et al., 2021), Bayesian optimization (Duong et al.,
2022), and gradient-based approaches (Zhang et al., 2022) have all been adopted to discover better
PQCs for VQAs, but they require the evaluation of numerous quantum circuits during the search
process, which is time-consuming and computationally demanding. Therefore, predictor-based ap-
proaches (Zhang et al., 2021; He et al., 2023b) are proposed to alleviate this problem, but they still
suffer the aforementioned problem since they require a large number of labeled circuits to train a
predictor with generalized capability. Furthermore, the predictor leads to additional uncertainty in
QAS, so it is necessary to reevaluate the circuit candidates obtained by the predictor. In this work,
we propose a framework to further improve the problems.

3 QAS WITH UNSUPERVISED REPRESENTATION LEARNING

In this work, we show our method in Figure 1, which consists of two independent learn-
ing parts: one is an autoencoder for circuit architecture representation learning, and another
is the part for the search process, including search and estimation strategy. The number of
gates in a circuit and an operation pool define our search space created by gate types such as
{X, Y, Z, H, Rx, Ry, Rz, U3, CNOT, CZ, SWAP}. A random circuit generator pro-
vides a set of circuit architectures with the predefined qubit quantity, gate quantity, and maximal
circuit depth, then encodes these architectures into two matrices, and feeds them into an autoen-
coder. The autoencoder independently learns a latent distribution from the search space and provides
pre-trained architecture embeddings for search algorithms. The estimation strategy takes circuit ar-
chitecture from the search algorithm and returns evaluation performance. We use the ground state of
Hamiltonian to evaluate a circuit architecture for solving max-cut and quantum chemistry problems
and use fidelity for unitary approximation problems.
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Figure 1: Illustration of the algorithm

3.1 CIRCUIT ENCODING SCHEME

We represent a quantum circuit with a DAG by a circuit encoding scheme described in He et al.
(2023b;a). As known, any quantum circuit is a sequence of quantum gates. Each circuit can be
transferred into a DAG by mapping gates on each qubit into a sequence of nodes, adding two nodes
at the start and end of the sequence as circuit in-/output, and connecting nodes of each qubit from
input to output according to their sequence order. Given a set of gates O = {gate1, .., gatek}, the
mapping of a circuit of n qubits is shown in Figure 2a. An adjacency matrix will then describe the
created DAG in Figure 2b. The set of nodes is additionally described through a gate matrix, which
shows the node feature information. In Figure 2b, each row of the gate matrix stands for a node
on the graph, the columns before the dotted line with one-hot encoding indicate the node type and
other columns are used to encode position information such as which qubits the gate acts on. The
encoding scheme still has some limitations whose details are introduced in Appendix A.1.

(a) Circuit to Graph (b) Gate matrix and adjacency matrix

Figure 2: Circuit encoding scheme

3.2 VARIATIONAL GRAPH ISOMORPHISM AUTOENCODER

3.2.1 PRELIMINARIES

The most common graph autoencoders (GAEs) consist of an encoder and a decoder, which first
maps a graph into a feature space and then decodes features to reconstruct a graph. As one of the au-
toencoders, the variational graph autoencoder (VGAE) is a promising framework for unsupervised
graph representation learning, using a graph convolutional network encoder and a simple inner prod-
uct decoder (Kipf & Welling, 2016). This work does not use VGAE as a framework to learn latent
representations but with a powerful encoder, graph isomorphism network (GIN) (Xu et al., 2019).
Definition 1. We are given a circuit created by m gate types, h gates and g qubits. Then, the circuit
can be described by a DAG G = {V,E} with n = h + 2 = |V | gate nodes including START and
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END. The adjacency matrix of graph G is summarized in n × n matrix A and its gate matrix X is
in size of n× (m+2+ g). We further introduce d-dimensional latent variables zi composing latent
matrix Z = {z1, .., zK}T .

3.2.2 ENCODER

The encoder GIN maps the structure and node features to latent representations Z. An approxima-
tion of the posterior distribution q(Z|X,A) is:

q(Z|X,A) =

K∏
i=1

q(zi|X,A), (1)

where q(zi|X,A) = N (zi|µi, diag(σ2
i )). The L-layer GIN generates the embedding matrix M (s)

for s-layer by:

M (s) = MLP (s)((1 + ϵ(s)) ·M (s−1) + ÂM (s−1)), s = 1, 2, ..., L, (2)

where M (0) = X , and ϵ(s) is a bias with the standard norm distribution for each layer. MLP

is a multi-layer perception consisting of Linear-Batchnorm-ReLU and Â = A + AT transforms
a directed graph into an undirected one to capture bi-directional information. Then, the mean
µ = GINµ(X, Â) = FC(M (L)) is calculated by two fully connected layers FC, similarly for
the standard deviation σ. We can sample the latent matrix Z ∼ q(Z|X,A) by zi = µi + σi · ϵi.
For 4-qubit experiments, this work uses L = 5, a 16-dimensional latent vector zi, and the GIN with
hidden sizes of {128, 128, 128, 128, 16} as the encoder and a one-layer MLP with a hidden dimen-
sion of 16 as the decoder. For 8-qubit experiments, we change the dimension of the latent vector to
32, the hidden sizes of the encoder to {128, 128, 128, 128, 32}, and the hidden dimension of the
decoder to 32. More details of hyperparameters are described in Appendix A.3.

3.2.3 DECODER

The decoder inputs the sampled latent variables Z to reconstruct the adjacency matrix A and gate
matrix X . The generative process is summarized as

p(A|Z) =

K∏
i=1

K∏
j=1

p(Aij |zi, zj), with p(Aij = 1|zi, zj) = sigmoidj(Fadj(z
T
i zj)), (3)

p(X type|Z) =

K∏
i=1

p(xtype
i |zi), with p(xtype

i |zi) = softmaxli(Ftype(zi)), (4)

p(Xqubit|Z) =

K∏
i=1

g∏
j=1

p(Xqubit
ij |zi), with p(Xqubit

ij = 1)|zi) = softmaxj(Fqubit(zi)), (5)

where Fadj, Ftype, Fqubit are trainable linear functions and li = argmaxjX
type
ij .

3.2.4 OBJECTIVE FUNCTION

The weights in the encoder and decoder are optimized by maximizing the evidence lower bound L
defined as:

L = Eq(Z|X,A)[log p(X
type, Xqubit, A|Z)]− KL[(q(Z|X,A))||p(Z)], (6)

where KL[q(·)||p(·)] is the Kullback-Leibler (KL) divergence between q(·) and p(·). We further
adopt Gaussian prior p(Z) =

∏
i N (zi|0, I). The weights are optimized by minibatch gradient

descent. This work selects a batch in size of 32.

3.3 ARCHITECTURE SEARCH STRATEGIES

This work uses reinforcement learning and Bayesian optimization as two search strategies in the
second part of our framework.

5



Under review as a conference paper at ICLR 2024

3.3.1 REINFORCEMENT LEARNING (RL)

After some simple trials of PPO (Schulman et al., 2017) and A2C (Huang et al., 2022), this work
uses REINFORCE (Williams, 1992) as a more powerful RL algorithm for architecture search. The
environment state space is a pre-trained embedding, and the agent uses a one-cell LSTM as their
policy to choose an action, which is a sampled latent vector according to the distribution of the given
state, and moves to the next state given the action. The energy/groud-energy is viewed as a reward
for max-cut and quantum chemistry tasks. If the value is out of the [0, 1] range, it is set to the corner
value 0 or 1. The circuit fidelity is a reward for the unitary design task. The reward for each step will
be factorized with a predefined penalty. We use adaptive batch size as steps for each training epoch.
The average reward of steps decides the number of steps for the next training epoch. Additionally,
we use a linear adaptive baseline with the formula baseline = α · baseline + (1 − α) · avg-reward
where α is predefined in the range [0,1] (0.7 for the experiments of the state preparation and 0.8 for
others). The number of searches is set to 1000 for each run in this work.

3.3.2 BAYESIAN OPTIMIZATION (BO)

As another search strategy used in this work without labeling, we employ deep networks for global
optimization (DNGO) (Snoek et al., 2015) in BO. We adopt a one-layer adaptive BO regression with
a basis function extracted from a feed-forward neural network and 128 units in the hidden layer to
model distributions over functions. We select expected improvement (EI) (Mockus, 1977) as the
acquisition function. EI takes top-5 embeddings for each training epoch with default objective 0.9.
The training begins with 16 samples and adds the top-5 architectures proposed by EI in this batch
for every new training epoch. Then the network is retrained for 100 epochs using the architectures
selected from the updated batch. This process is iterated until the predefined search times.

4 EXPERIMENTAL RESULTS

To prove the effectiveness and generalized capability of our approach, we conduct experiments on
three well-known applications in the field of QC including quantum state preparation, max-cut,
and quantum chemistry. For each application, we first choose a simple example with 4 qubits and
then select a relatively more complex example with 8 qubits. We employ the random generator to
generate 100,000 circuits as our search space and all experiments so far have been performed on a
noise-free simulator during the search process. Detailed settings are introduced in Appendix A.2.

In the following, we first evaluate the pre-training performance of the model for Unsupervised rep-
resentation learning (§4.1) and then the QAS performance based on its pre-trained latent representa-
tions (§4.2). Additionally, some additional experiments for the pre-training process and for the QAS
process are demonstrated in Appendix A.4 and Appendix A.5 respectively.

4.1 PRE-TRAINING PERFORMANCE

Observation (1): GAE and VGAE (Kipf & Welling, 2016) are two popular baselines for NAS.
To explore outstanding models that can acquire superior latent representations of quantum circuit
architectures, we first try these two well-known models, but quantum circuit architectures are more
complex than neural network architectures, so they cannot obtain the expected results. However,
the models based on GINs (Xu et al., 2019) successfully acquire valid latent representations due
to its better neighbor aggregation scheme. In Table 1, we show the performance of the original
model without KL divergence and the improved model with KL divergence for 4-qubit and 8-qubit
circuits using four metrics: Accuracyops is the reconstruction accuracy of the operation/gate matrix
for the held-out test set; Accuracyadj is the reconstruction accuracy of the adjacency matrix for the
test set; Validity refers to how often a random sample from the prior distribution can generate a
valid architecture; Uniqueness refers to the ratio of unique architectures out of valid generations.
The table demonstrates that the improved model outperforms the original one, because the KL term
effectively regularizes the mapping from the discrete space to the continuous latent space, leading
to better generative performance particularly measured by the validity. Considering its superior
performance, we stick to the model for further evaluation.
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Table 1: Model performance measured by reconstruction accuracy, validity, and uniqueness.

Qubit Model Metric
Accuracyops Accuracyadj Validity Uniqueness

4 QASURL wo KL 87.12 99.86 6.21 100
4 QASURL w KL 99.99 99.99 86.91 100
8 QASURL wo KL 99.97 99.97 20.37 100
8 QASURL w KL 99.99 99.99 81.55 100

Observation (2): In Figure 3, we apply two popular techniques PCA (Shlens, 2014) and t-SNE
(Van der Maaten & Hinton, 2008) on our pre-trained models with and without KL divergence for
visualizing high-dimensional latent representation of the 4-qubit max-cut application. The results
first show that using KL divergence is extremely important for acquiring a superior latent repre-
sentation. Furthermore, Yang & Wu (2006) and Linderman & Steinerberger (2019) have pointed
out the effectiveness of the two approaches on unsupervised clustering in addition to visualizing
high-dimensional data. The figures also demonstrate that the latent representation space of quantum
circuits is smooth and compact and architectures with similar performance are clustered together
when our model is with KL divergence. Specifically, high-performance quantum circuit architec-
tures are mapped more concentrated in the upper left corner of the figures. In particular, the PCA
method shows extremely smooth and compact visualization results with outstanding clustering ef-
fects. Conducting QAS on such smooth latent space with clustering effects is much easier and is
hence more efficient, which provides a solid foundation for our QAS algorithms.

(a) PCA result (b) t-SNE result

Figure 3: The 2D smooth visualization for the latent representation of 4-qubit max-cut with PCA
and t-SNE. Color encodes the achieved energy of the randomly generated 100,000 circuits. These
graphs show the energy distribution of the 100,000 circuits. Only when the achieved energy is lower
than −9.0 Ha, it is encoded in red. In (a) and (b), the left one is the result of our model with KL
divergence and the other is without KL divergence.

4.2 QUANTUM ARCHITECTURE SEARCH (QAS) PERFORMANCE

Observation (1): In Figure 4, we demonstrate the average reward per 100 searches for each exper-
iment. The experimental results illustrate that the REINFORCE and BO methods effectively learn to
search from the latent representation, resulting in noticeable improvements in average reward during
the early stages. However, this is not achieved by Random Search. Furthermore, although the plots
reveal a slightly higher variance in the average reward for REINFORCE and BO methods compared
to Random Search, their overall average reward surpasses that of Random Search significantly.

Observation (2): In Figure 5, we demonstrate the number of candidate circuits that can be found
to achieve a preset threshold by performing 1000 searches using the three search methods. The fig-
ures illustrate that the 8-qubit experiments are more complicated, so only fewer circuits that meet
the requirements can be found in the search space. Additionally, Within a limited number of search
iterations, the REINFORCE and BO methods can discover a greater number of candidate circuits
that achieve the threshold even in the worst case, i.e. when comparing the minimal candidate quan-
tity. Notably, their performance significantly outperforms the Random Search method, especially
REINFORCE, even though the difference between the minimal and maximal candidate quantity
demonstrates that REINFORCE is more sensitive to the initial value in comparison to the other
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(a) State preparation (b) Max-cut (c) Quantum chemistry

Figure 4: Average rewards of the 6 sets of experiments. In (a), (b), and (c), the left side is the 4-qubit
experiments and the right side is the 8-qubit experiments. The plots show the average reward of 50
independent runs (with different random seeds) given 1000 search queries. The shaded areas in the
plots demonstrate the standard deviation of the average rewards.

two approaches. These results underscore the evident improvements and advantages introduced by
QAS based on the latent representation. This approach enables the effective discovery of numerous
high-performance candidate circuits while minimizing the number of searches required.

(a) 4-qubit experiments (b) 8-qubit experiments

Figure 5: Candidate quantity of 4-qubit and 8-qubit applications. The reward thresholds of all 4-
qubit experiments are 0.95, but 8-qubit experiments are more complex, so their thresholds are soft.
The thresholds of the 8-qubit state preparation, max-cut, and quantum chemistry experiments are
0.75, 0.925, and 0.9 respectively. All experiments are executed for only 1000 queries, i.e. only
1000 search samples are performed from the search space of 100,000 circuits. Additionally, the left
results in (a) and (b) are the average of 50 runs (using different random seeds) and the right ones
correspond to the maximal and minimum candidate quantity in the 50 runs.

Table 2: Compare the QAS performance of different QAS methods for the 4-qubit state preparation.

Method Fthr Nlbl Nrest N>0.95 Neval NQAS Popt NQAS/Neval

GNNURL
0.4 1000 18963 2255 2000 120 ≈ 1.00 0.0600
0.5 1000 5182 913 2000 183 ≈ 1.00 0.0915

GSQASURL
0.4 1000 20876 2380 2000 116 ≈ 1.00 0.0580
0.5 1000 6228 1036 2000 168 ≈ 1.00 0.0840

DQAS - 0 - - 1000 0 ≈ 0.86 0

QASURL&RL - 0 100000 4729 1000 178 ≈ 1.00 0.1780

Observation (3): In Table 2, based on the 4-qubit state preparation and 4-qubit circuit space
with 100,000 circuits, we compare other QAS methods with our approach within 1000 searches.
GNNURL and GSQASURL employ predictors in He et al. (2023b) and He et al. (2023a) respectively,
but they are based on our pre-training model, QASURL&RL and DQAS denote the QAS approach
with REINFORCE in this work and the method in Zhang et al. (2022) respectively. URL denotes
unsupervised representation learning, Fthr is the threshold to filter poor-performance architectures,
Nlbl, Nrest and N>0.95 refer to the number of required labeled circuits, rest circuits after filtering and
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the circuits that achieve the performance higher than 0.95 in the rest circuits respectively. Neval rep-
resents the number of evaluated circuits, i.e. the sum of the number of labeled and sampled circuits,
NQAS is the number of searched candidates, and Popt represents the achieved optimal performance
(reward in the range [0, 1]). The average experimental results in 50 runs show that DQAS exhibits
poor search outcomes due to its sensitivity to the operation pool selection, requiring extensive sam-
pling for limited success. The predictor-based methods and our approach can yield a substantial
number of high-performance circuits with fewer samples. However, predictor-based methods rely
on labeled circuits for training predictors, introducing uncertainty in filtering poor architectures, be-
cause they also filter out good architectures simultaneously. The higher Fthr can filter more poor
circuit architectures, making the proportion of good architectures in the filtered space larger and the
performance of random search higher, but more well-performing architectures are sacrificed simul-
taneously. Despite this, our method achieves comparable performance to predictor-based methods,
demonstrating higher efficiency in terms of NQAS/Neval and Popt while evaluating fewer circuits.
Additional experiment tables in Appendix A.5 demonstrate similar results.

Observation (4): In Figure 6, we present the best candidate circuits acquired by each of the three
methods for every experiment. These circuits exhibit a higher likelihood of being discovered by RE-
INFORCE and BO in contrast to Random Search. This observation underscores the superior search
capabilities of REINFORCE and BO in navigating the large and diverse search space generated by
our approach, which is based on a random generator derived from a fixed operation pool. Unlike
conventional approaches that adhere to layer-wise circuit design baselines, our method excels in
discovering circuits with fewer trainable parameters. This characteristic is of paramount importance
when addressing real-world optimization challenges in QAS. In conclusion, our approach not only
enhances the efficiency of candidate circuit discovery but also accommodates the distinct character-
istics of various problem domains through a large and diverse search space.

(a) 4-qubit state preparation (b) 4-qubit max-cut (c) 4-qubit quantum chemistry

(d) 8-qubit state preparation (e) 8-qubit max-cut (f) 8-qubit quantum chemistry

Figure 6: Best candidates of the six experiments in 50 runs.

5 CONCLUSION

Our framework is inspired by the method Arch2vec (Yan et al., 2020) to explore whether unsuper-
vised architecture representation learning can also help QAS. By decoupling the part of unsupervised
architecture representation learning from the process of QAS, we successfully eliminate the require-
ment for a large number of labeled circuits. Furthermore, our framework conducts the process of
QAS without any predictor by directly applying the search algorithms REINFORCE and BO to the
latent representation. We have demonstrated the effectiveness of our framework through various
experiments. In our framework, the performance of the QAS depends on the effect of unsupervised
architecture representation learning and choices of search algorithms, so we suggest that it is desir-
able to take a deeper investigation into architecture representation learning for QAS and designing
QAS approaches using our framework with better search strategies in the latent representation.

9



Under review as a conference paper at ICLR 2024

REFERENCES

David Amaro, Matthias Rosenkranz, Nathan Fitzpatrick, Koji Hirano, and Mattia Fiorentini. A
case study of variational quantum algorithms for a job shop scheduling problem. EPJ Quantum
Technology, 9(1), feb 2022. doi: 10.1140/epjqt/s40507-022-00123-4.

Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum cir-
cuits as machine learning models. Quantum Science and Technology, 4(4):043001, 2019.

Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fu-
jii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quantum
algorithms. Nature Reviews Physics, 3(9):625–644, 2021.

Li Ding and Lee Spector. Evolutionary quantum architecture search for parametrized quantum
circuits. In Proceedings of the Genetic and Evolutionary Computation Conference Companion,
pp. 2190–2195, 2022.

Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, and Dacheng Tao. Quantum circuit architecture
search for variational quantum algorithms. npj Quantum Information, 8(1):62, 2022.

Trong Duong, Sang T Truong, Minh Tam, Bao Bach, Ju-Young Ryu, and June-Koo Kevin Rhee.
Quantum neural architecture search with quantum circuits metric and bayesian optimization.
arXiv preprint arXiv:2206.14115, 2022.

Alessandro Giovagnoli, Volker Tresp, Yunpu Ma, and Matthias Schubert. Qneat: Natural evolution
of variational quantum circuit architecture. In Proceedings of the Companion Conference on
Genetic and Evolutionary Computation, pp. 647–650, 2023.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Zhimin He, Maijie Deng, Shenggen Zheng, Lvzhou Li, and Haozhen Situ. Gsqas: Graph self-
supervised quantum architecture search. arXiv preprint arXiv:2303.12381, 2023a.

Zhimin He, Xuefen Zhang, Chuangtao Chen, Zhiming Huang, Yan Zhou, and Haozhen Situ. A
gnn-based predictor for quantum architecture search. Quantum Information Processing, 22(2):
128, 2023b.

Shengyi Huang, Anssi Kanervisto, Antonin Raffin, Weixun Wang, Santiago Ontañón, and Rousslan
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A APPENDIX

A.1 ENCODING LIMITATIONS AND CIRCUIT GENERATOR SETTINGS

As shown in Figure 2b, the gate matrix captures the position information of qubits that quantum
gates act on, but it still has some limitations for two-qubit or multiple-qubit gates. Specifically, two-
qubit control gates have a control and a target operation whose directions have an essential impact
on the gate operation. For instance, asymmetric gates like CNOT have different unitary matrices for
their original (the control operation is above the target one) and inverted forms (the target operation
is above the control one), so they generate different results when acting on qubits, but it has no
impact on symmetric gates such as CZ and SWAP since their original and inverted forms are same.
This limitation is because the representation of qubits cannot distinguish the relative positions of the
control and target qubits of two-qubit quantum gates, which destroys the uniqueness of the encoding.
Therefore, we set specific generation rules for these asymmetric gates when using a random circuit
generator to generate circuits. For example, only the control qubit is allowed to be above the target,
i.e. inverted gates are not allowed, or like the qt = (qc + 1) mod Nq set in our experiment where
qt and qc is the corresponding qubit position of the target and control operation, and Nq denotes
the number of qubits. Through these rules, we sacrifice the diversity of the generated circuits to a
small extent but ensure that the uniqueness of the encoding scheme is not destroyed, making our
representation learning process effective.

The predefined operation pool which defines allowed gates in circuits is important for QAS as well,
because a terrible operation pool such as one with no rotation gates or no control gates cannot gen-
erate numerous quantum circuits with excellent expressibility and entanglement capability. This
makes the initial quantum search space poor, so it will influence our further pre-training and QAS
process. Therefore, we choose some generally used quantum gates in PQCs as our operation pool
{X, Y, Z, H, Rx, Ry, Rz, U3, CNOT, CZ, SWAP} for the circuit generator to guar-
antee the generality of our quantum circuit space. Other settings of the circuit generator are summa-
rized below:

Table 3: Description of settings predefined for the circuit generator.

Hyperparameter Hyperparameter explanation Value for 4(8)-qubit
experiments

num-qubits the number of qubits 4(8)
num-gates the number of gates in a circuit 10(20)
max-depth the maximal depth in a circuit 5
num-circuits required the number of circuits 105

A.2 APPLICATION SETTINGS

(a) The target circuit of the 4-qubit state preparation (b) The target circuit of the 8-qubit state preparation

Figure 7: The circuits used to generate the target states.
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Quantum State Preparation. In quantum information theory, fidelity (Liang et al., 2019) is an
important metric to measure the similarity of two quantum states. By introducing fidelity as the
performance index, we aim to maximize the similarity of the final state density operator with a
certain desired target state. We first obtain the target state by randomly generating a corresponding
circuit, and then with a limited number of sample circuits, we use the search methods to search
candidate circuits that can achieve a fidelity higher than a certain threshold. During the search
process, the fidelity can be directly used as a normalized reward function since its range is [0, 1].
Figure 7 shows the circuits used to generate the corresponding target states.

Max-cut Problems. The max-cut problem (Poljak & Rendl, 1995) consists of finding a decompo-
sition of a weighted undirected graph into two parts (not necessarily equal size) such that the sum of
the weights on the edges between the parts is maximum. Over these years, the max-cut problem can
be efficiently solved with quantum algorithms such as QAOA (Villalba-Diez et al., 2021) and VQE
(using eigenvalues). In our work, we address the problem by deriving the Hamiltonian of the graph
and using VQE to solve it. We use a simple graph with the ground state energy −10 Ha for the
4-qubit experiment and a relatively complex graph with the ground state energy −52Ha in the case
of the 8-qubit experiment. Furthermore, we convert the energy into a normalized reward function
integral to the search process. The visual representations of these graphs are presented below:

(a) The 4-qubit max-cut graph (b) The 8-qubit max-cut graph

Figure 8: The graphs of the experiments on max-cut problems.

Quantum Chemistry. In the field of QC, VQE (Peruzzo et al., 2014; Tilly et al., 2022) is a hybrid
quantum algorithm for quantum chemistry, quantum simulations, and optimization problems. It is
used to compute the ground state energy of a Hamiltonian based on the variational principle. For the
4-qubit quantum chemistry experiment, we use the Hamiltonian of the molecule H2 and its common
approximate ground state energy −1.136 Ha as the optimal energy. As for the 8-qubit experiment,
we consider n = 8 transverse field Ising model (TFIM) with the Hamiltonian as follows:

H =

7∑
i=0

σi
zσ

(i+1) mod 6
z + σi

x. (7)

We design some circuits to evaluate the ground state energy of the above Hamiltonian and get an
approximate value −10 Ha as the optimal energy. According to the approximate ground state
energy, we can use our methods to search candidate circuits that can achieve the energy reaching a
specific threshold. In the process of searching for candidates, the energy is normalized as a reward
function with the range [0, 1] to guarantee search stability.

A.3 HYPERPARAMETERS OF PRE-TRAINING

Table 4 shows the hyperparameter settings of the pre-training model for 4-qubit and 8-qubit experi-
ments.
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Table 4: Description of hyperparameters adopted for pre-training.

Hyperparameter Hyperparameter explanation Value for 4(8)-qubit
experiments

bs batch size 32
epochs traning epochs 16 (25)
dropout decoder implicit regularization 0.3
normalize input normalization True
input-dim input dimension 2+#gates+#qubits
hidden-dim dimension of hidden layer 128
dim dimension of latent space 16 (32)
hops the number of GIN layers (L in eq.2) 5
mlps the number of MLP layers 2
latent-points latent points for validity check 10000

A.4 LATENT DIMENSION ANALYSIS

Table 5 demonstrates a supplementary experiment for the pre-training process of the 4-qubit quan-
tum circuit space. It can be observed from the experimental results that when the dimension of the
latent space is too low, the training effect is very poor. This is because the dimension of the latent
space cannot fully capture the characteristics of gate and adjacency matrices. As the dimension of the
latent space increases, the model can capture the properties of the two matrices, so the performance
gradually becomes better. However, continuing to increase the dimension will cause the dimension
of the latent space to be too high, which will increase the difficulty of training. Simultaneously,
an excessively high-dimensional potential space will increase the computational complexity, which
is not what we expect, so we choose 16 as the potential feature dimension of the 4-qubit quantum
circuit space. The 8-qubit one also shows similar results, but because the quantum circuit space of
8-qubit is more complex, the final selected feature dimension is 32.

Table 5: Model performance with different latent dimensions measured by reconstruction accuracy,
validity, and uniqueness. The model is QASURL with KL divergence and has the same training
epoch 16.

Qubit Dimension Metric
Accuracyops Accuracyadj Validity Uniqueness Lossavg

4 8 35.87 99.44 57.22 100 0.1753
4 16 99.99 99.99 86.91 100 0.0345
4 24 99.94 99.92 76.52 100 0.0371
4 32 93.92 99.99 70.02 100 0.0429

A.5 SUPPLEMENT COMPARISON EXPERIMENTS OF QAS METHODS

(a) State preparation (b) Max-cut (c) Quantum chemistry

Figure 9: Regret values of the 6 sets of experiments. In (a), (b), and (c), the left side is the 4-qubit
experiments and the right side is the 8-qubit experiments. The plots show the mean regret values of
50 independent runs (with different random seeds) given 1000 search queries. The shaded areas in
the plots demonstrate the standard deviation of the regret value.
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Figure 9 presents regret values for each experiment, representing the difference between actual re-
sults and their optimal counterparts. The plots intuitively illustrate that, with the exception of the
4-qubit max-cut experiment, the REINFORCE and BO algorithms excel in the search for quantum
architectures, more approaching optimal values. This advantage becomes particularly pronounced in
8-qubit complex applications. Furthermore, our results demonstrate that both methods consistently
yield smaller average regret variances than Random Search when searching for circuit architectures
that closely approximate optimal values, underscoring their stability and reliability.

Table 6 and 7 are additional experiments max-cut and quantum chemistry for Table 2. The experi-
mental results show the same conclusions.

Table 6: Compare the QAS performance of different QAS methods for the 4-qubit max-cut.

Method Fthr Nlbl Nrest N>0.95 Neval NQAS Popt NQAS/Neval

GNNURL
0.85 1000 31338 19186 2000 612 ≈ 1.00 0.3060
0.9 1000 9778 7234 2000 743 ≈ 1.00 0.3715

GSQASURL
0.85 1000 32012 18809 2000 588 ≈ 1.00 0.2940
0.9 1000 13935 9479 2000 685 ≈ 1.00 0.3425

QASURL&RL - 0 100000 37709 1000 727 ≈ 1.00 0.7270

Table 7: Compare the QAS performance of different QAS methods for the 4-qubit quantum chem-
istry.

Method Fthr Nlbl Nrest N>0.95 Neval NQAS Popt NQAS/Neval

GNNURL
0.6 1000 28322 11277 2000 376 ≈ 0.98 0.1880

0.675 1000 12303 5944 2000 458 ≈ 0.98 0.2290

GSQASURL
0.6 1000 27201 10820 2000 387 ≈ 0.98 0.1935

0.675 1000 12608 5966 2000 452 ≈ 0.98 0.2260

QASURL&RL - 0 100000 22514 1000 531 ≈ 0.98 0.5310
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