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ABSTRACT

Large language models have demonstrated remarkable capabilities across various
tasks, primarily attributed to the utilization of diversely sourced data. However,
the impact of pretraining data composition on model performance remains poorly
understood. This paper introduces BIMIX, a novel bivariate data mixing law that
models the joint scaling behavior of domain proportions and data volume in LLM
pretraining. BIMIX provides a systematic framework for understanding and opti-
mizing data mixtures across diverse domains. Through extensive experiments on
two large-scale datasets, we demonstrate BIMIX’s high accuracy in loss extrapo-
lation (mean relative error <0.2%) and its generalization to unseen mixtures (R2

>0.97). Optimization of domain proportions yields superior model performance
compared to existing methods. Furthermore, we establish entropy-based measures
as efficient proxies for data mixing, offering a computationally lightweight strat-
egy. Our work contributes both insights into data mixing dynamics and practical
tools for enhancing LLM training efficiency, paving the way for more effective
scaling strategies in language model development.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success, revolutionizing capabilities for
comprehending and generating human-like text across diverse applications, from question answering
to code generation (Bubeck et al., 2023; OpenAI, 2024). As these models scale up, the composition
of pretraining data becomes increasingly crucial for performance and generalization (Longpre et al.,
2023). The emergence of multi-source datasets has presented both opportunities and challenges in
LLM development (Gao et al., 2020; Shen et al., 2023; Chen et al., 2024), necessitating a deeper
understanding of data mixing strategies.

Current approaches to data mixing often rely on heuristics (Touvron et al., 2023; Shen et al., 2023)
or computationally expensive optimization techniques (Du et al., 2022; Xie et al., 2023; Fan et al.,
2023). While these methods have shown promise, they require significant computational resources
and lack a general framework for understanding the scaling behavior of mixed-domain training. The
absence of a systematic approach to data mixing hinders efficient resource allocation and limits the
ability to predict model performance across varied data compositions. Recent efforts have explored
related techniques (Xia et al., 2024; Albalak et al., 2023; Shen et al., 2023), yet comprehensive and
efficient solutions remain elusive.

The fundamental challenge lies in the complex interplay between different data domains in multi-
source datasets. Existing research (Kaplan et al., 2020; Hoffmann et al., 2022) primarily focuses
on scaling laws for individual metrics, overlooking this crucial aspect. This oversight hampers the
progress towards more versatile models capable of excelling across multiple domains (Dong et al.,
2024). A systematic mixing law remains to be developed to efficiently assess the importance of
diverse data sources and understand their impact on model performance.

To address these challenges and fill the gap in current research, we introduce BIMIX, a novel bi-
variate data mixing law that provides a systematic framework for understanding and optimizing data
mixtures in LLM pretraining. Our approach is rooted in the observation that the scaling behavior
of LLMs can be disentangled into two key components: domain mixing proportions and training
data quantity (embodied by model training steps). By mathematically formulating the relationship
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between these components and model performance, BIMIX offers a powerful tool for predicting
and optimizing training outcomes.

We validate the proposed mixing law on two large-scale datasets, demonstrating its applicability
across various scaling scenarios. Our experiments show that BIMIX not only provides accurate
predictions of model performance across different data mixtures but also enables optimization of
domain proportions, outperforming existing high-cost methods in terms of convergence speed and
downstream task performance.

The key contributions are summarized as follows:

• A mathematically formulated mixing law that jointly models the scaling behavior of domain pro-
portions and total training volume, providing good interpretability and functional extensibility.

• Comprehensive experiments demonstrating the effectiveness of BIMIX in predicting and optimiz-
ing model performance across diverse datasets and training scenarios.

• Empirical evidence supporting the use of entropy-based measures as lightweight mixing proxies,
offering new insights into efficient data mixture optimization.

2 RELATED WORK

Pretraining Data Mixtures The coverage and diversity of pretraining data play significant roles
in shaping the generalization capabilities of language models (Radford et al., 2019; Brown et al.,
2020; Touvron et al., 2023). Data mixtures from multiple sources, such as the Pile (Gao et al., 2020)
and ROOTS (Laurençon et al., 2022), are typically curated based on manually devised rules. How-
ever, the heuristics lack universal standards and portability. The GLaM dataset (Du et al., 2022) de-
termined domain weights based on the component performance in a small model; however, specific
details are not disclosed. SlimPajama-DC (Shen et al., 2023) investigated the effects of data mix-
tures using a set of predefined configurations and delivered several insights. Recently, DoReMi (Xie
et al., 2023) and DoGE (Fan et al., 2023) proposed learning-based methods to optimize domain pro-
portions by iterating between training reference and proxy models. These methods provide viable
pathways but require considerable computational costs. In contrast, our study demonstrates that
entropy proxies can produce data mixtures of comparable or even superior quality, while providing
a more practical training-free solution. Besides, Chen et al. (2023) explored the effects of data se-
quencing from a curriculum learning perspective, whereas our research focuses on the concurrent
integration of diverse data domains.

Neural Scaling Laws Investigations into the scaling behavior of neural models have spanned
across domains such as computer vision (Klug & Heckel, 2023; Zhai et al., 2022; Jain et al., 2023;
Sorscher et al., 2022) and natural language processing (Ivgi et al., 2022; Gordon et al., 2021; Ghor-
bani et al., 2022; Bansal et al., 2022). Kaplan et al. (2020) thoroughly evaluated the scalability of
Transformer architectures across a wide range of model sizes and data volumes. Chinchilla (Hoff-
mann et al., 2022) identified similar scaling patterns through rigorous experimentation and sug-
gested a slightly different configuration for compute-optimal pretraining. The impactful GPT-4
model (OpenAI, 2024) validated the predictive accuracy of scaling laws and underscored their im-
portant role in the development of large language models. Concurrently, additional research efforts
seek to elucidate the principles governing scaling laws (Sharma & Kaplan, 2022; Michaud et al.,
2023) and to investigate scaling effects on downstream tasks (Tay et al., 2022; Isik et al., 2024; Ca-
ballero et al., 2023; Cherti et al., 2023). In the context of data mixtures, Ye et al. (2024) proposed
a composite exponential law to capture the interactions among domains; yet, its scalability is chal-
lenged by increased complexity for expanding domain numbers, as compared in Appendix C. Our
study is distinguished by two key aspects: First, we introduce a scalable mixing law that accurately
captures the scaling behavior associated with the composition of training datasets, demonstrating
the modeling ability to up to 22 domains. Second, the proposed bivariate mixing law jointly models
two input variables, domain proportion and data volume, thereby offering broader applicability.

3 THE PROPOSED BIMIX

Existing scaling law research primarily investigates the variation of a single scalar metric related to
trained models concerning certain scaling factors. A prominent example is the relationship between
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a model’s validation loss and the amount of parameters or training tokens. However, in practice,
the training datasets for large language models encompass diverse data domains, and these scaling
laws only capture the predictability of the averaged validation loss across multiple domains. Since
each domain corresponds to vastly different corpora, knowledge, and formats, modeling solely the
average provides a coarse estimate of the model’s performance and fails to reflect the predictability
of individual domains.

In the context of data-centric language modeling, this study examines the scaling behavior of pre-
trained models across finer-grained data domains. Notably, simply applying existing scaling laws
to each domain is inappropriate, as the amount of training data for one single domain is not an in-
dependent variable; rather, it is determined by the total amount of training data and the proportion
allocated to that domain, calculated as |Di| = |D| × ri. The training data for a specific domain can
be adjusted either by changing the total training data or by modifying the allocated proportion. Con-
sequently, the data mixing modeling inherently involves a bivariate joint effect. Moreover, when the
total amount of training data is fixed, any change in the proportion allocated to one domain will also
affect the proportions (and thus the training amounts) of all other domains. This interdependence
among domains highlights the need for dedicated research on the scaling laws of data mixing.

3.1 FORMULATION

Assume the training dataset consists of m domains, each allocated a proportion ri under the unit-sum
constraint:

á
r = (r1, r2, . . . , rm) subject to

m∑
i=1

ri = 1. (1)

We propose BIMIX as a system of equations to model the vectorized scaling laws of data mixing
across the m related domains in terms of the domain proportions á

r and training steps s:
á

L(
á
r, s) = (L1(r1, s), L2(r2, s), . . . , Lm(rm, s)) . (2)

In this context, the validation loss of the model on the i-th domain, given the domain’s proportion ri
and the number of training steps s, is defined as follows:

Li(ri, s) =
Ai

rαi
i

(
Bi

sβi
+ Ci

)
for i = 1, 2, . . . ,m, (3)

where the constants Ai, Bi, Ci and the exponents αi, βi are coefficients to be fitted. Notably, only
five fitting coefficients per domain are needed to capture the joint scaling behavior concerning both
the mixing proportion and the total training volume. This linear scalability with the number of do-
mains offers a significant advantage over the quadratic complexity of other modeling approaches,
substantially reducing the number of observational data points required for fitting. A detailed dis-
cussion of the complexity analysis can be found in Appendix C.

3.2 OBSERVING SCALING BEHAVIORS BY DISENTANGLING VARIABLES

It is important to recognize that scaling laws are fundamentally empirical formulas, providing math-
ematical descriptions that closely approximate real-world scaling phenomena. The construction of
our proposed Eq. (3) is informed by a disentangled observation of the scaling behaviors of two
variables, designed to offer strong interpretability. Next, we will elaborate on the observed scaling
behaviors along with intuitive visualizations from the perspectives of the two input variables, as well
as the considerations that guided the derivation of the final functional form.

Scaling Training Steps Under Fixed Domain Proportions Figure 1 showcases the scaling be-
havior of the input variable s on the Pile and SlimPajama datasets. Both the x and y axes are
visualized on a logarithmic scale. Each line in the subplots corresponds to a specific value of the
current domain proportion ri, and the six lines represent the outcomes of six model training sessions
on different data mixtures. These lines illustrate how the validation loss of each domain changes as
the training steps increase. The discrete points in the figure indicate the actual evaluation results of
the trained model, collected every 5 billion training tokens, while the dotted lines represent the fitted
Eq. (3) derived from these observational data points. Overall, it is clear that the proposed mixing
law fits the observed data points closely, and the curves exhibit a consistent pattern of downward
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Figure 1: Visualization of the fitting results for Eq. (3) at different domain proportion values, show-
ing the relationship between validation loss and training steps. Each subplot corresponds to a specific
domain within different datasets; the points represent the actual observed validation loss, while the
dotted lines indicate the fitted results. Both axes are on a logarithmic scale.

curvature. In research related to scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022; OpenAI,
2024), the average validation loss of the model is typically described as following a power law with
an irreducible term in relation to the training steps. The decline pattern observed across the various
domains aligns with this behavior and the loss for i-th domain can be expressed as:

Li(s | ri) =
B̃i

sβ̃i

+ C̃i. (4)

Here, B̃i and β̃i are the scaling factor and exponent of the power-law function, while the additional
deviation term Ci is understood as the lower bound for language modeling (Bishop, 2006; Henighan
et al., 2020). Further examination of the curves in each subplot reveals that they approximately
exhibit a shifting relationship in logarithmic space, described by:

logLj(s | rj) = logLi(s | ri) + logFj = log(Li(s | ri) · Fj), (5)

where logFj represents an offset constant. This means that the loss function Lj of j-domain can be
obtained by multiplying Li by a scaling factor Fj :

Lj(s | rj) = Li(s | ri) · Fj (6)

Extending this relationship to all curves within the same domain, the constant Fj can be transformed
into a function f related to ri, which is applied to a base scaling function of training steps:

Li(s | ri) = Lbase(s | ri) · f(ri). (7)

Combined with Eq. (4), this multiplicative decomposition is clearly associated with Eq. (3), with the
following relations: B̃i = Bi · f(ri), C̃i = Ci · f(ri), and β̃i = βi.

Scaling Domain Proportions Under Fixed Training Steps From the other perspective, we ana-
lyze how changes in the proportion of a single domain affect its validation loss. The visualization in
Fig. 2 follows a similar setting as before. Each line in the figure represents the relationship between
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Figure 2: Visualization of the fitting results for Eq. (3) at different numbers of training steps, showing
the relationship between validation loss and domain proportion. Each subplot corresponds to a
specific domain within different datasets; the points represent the actual observed validation loss,
while the dotted lines indicate the fitted results. Both axes are on a logarithmic scale.

validation loss and domain proportion at a specific number of training steps (i.e., training data vol-
ume). The points indicate actual observed values, while the dotted line represents the fitted results
of Eq. (3). The most notable difference from the previous visualization is the prominent linear rela-
tionship observed. This straight line on a logarithmic scale strongly supports the standard power-law
function. Thus, the pattern represented by a single straight line in the figure can be expressed as:

Li(ri | s) =
Ãi

rα̃i
i

. (8)

The collection of straight lines within each subplot can be shifted relative to one another in logarith-
mic space, leading to the following derivation:

logLj(rj | s) = logLi(ri | s) + logGj = log(Li(ri | s) ·Gj). (9)

This implies:
Lj(rj | s) = Li(ri | s) ·Gj (10)

Considering the unified modeling of these straight lines, the constant Gj can be converted to a
function g , yielding the following relationship:

Li(ri | s) = Lbase(ri | s) · g(s). (11)

Relating this with Eqs. (3) and (9), we obtain the following mappings Ãi = Ai · g(s) and α̃i = αi.

Remark Through the disentanglement of the two input variables, we have identified a separable
scaling effect between domain proportions ri and the number of training steps s. Given that dual
multiplicative weighting functional forms were derived from both perspectives, we integrated them
to construct a mutually modulated bivariate mixing law that encompasses strong interpretability.
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4 EXPERIMENTAL SETUP

Datasets We employed two well-recognized datasets spanning diverse domains to conduct com-
prehensive experiments. The Pile (Gao et al., 2020) is a diverse language modeling dataset com-
prising 22 subsets with a total of 825 GiB of textual data. SlimPajama (Shen et al., 2023) is a
high-quality, seven-domain dataset that has been rigorously deduplicated and refined to 627B tokens
from the extensive 1.2T RedPajama dataset (Together Computer, 2023). Following the preprocess-
ing procedures in Xie et al. (2023), we packed all samples within each domain and chunked them
into sequences of 1024 tokens for improved training efficiency.

Model Architecture We employed decoder-only transformers based on the DoReMi architec-
ture (Xie et al., 2023). The base model comprises 12 decoder blocks, each with 768-dimensional
embeddings, 12 attention heads, and 4× MLP hidden size, matching the DoReMi 280M specifi-
cations. For scaled-up experiments on optimized mixtures, we expanded to 16 blocks with 2048-
dimensional embeddings and 32 attention heads, aligning with the DoReMi 1B model. All models
use the GPT-NeoX tokenizer (Black et al., 2022) with a vocabulary size of 50,277.

Training Details Experiments were conducted under controlled hyperparameters. Each training
run consisted of up to 200,000 update steps with a global batch size of 512. The optimizer used
was AdamW (Loshchilov & Hutter, 2019) with β1 = 0.9, β2 = 0.99, ϵ = 1 × 10−8, and a weight
decay of 0.01. The learning rate, initialized at 1 × 10−3, decayed exponentially by a factor of 10×
over the course of training. We leveraged data parallelism across eight NVIDIA A100 80GB GPUs
and bfloat16 mixed precision to improve training throughput. As a reference for the training cost, a
single round of DoReMi training took 670 GPU hours on this infrastructure.

Fitting Details As noted previously, we trained models for up to 200,000 update steps on each
data mixture, which corresponds to approximately 100 billion tokens. Model evaluation results were
collected every 5 billion tokens, allowing for a maximum of 20 assessments, denoted by symbol n.
During the training of the model on a given data mixture, validation losses for all domains can
be obtained simultaneously, with m representing the number of domains. When experiments are
conducted on k different data mixtures, we can potentially gather up to m×n× k data points in the
form of tuples ⟨ri, s, Li⟩ for fitting BIMIX. For the Pile dataset, m = 22, while for SlimPajama,
m = 7. Upon collecting the observational data points, we employ the Trust Region Reflective
algorithm (Branch et al., 1999; Virtanen et al., 2020) to fit the coefficients in Eqs. (2) and (3).

Evaluation Metrics The investigated mixing law is fundamentally a specific form of scaling law,
widely recognized for its ability to describe the predictability of model loss. Following the prevalent
consensus in relevant literature, we primarily report the model’s validation loss on each domain,
which is sometimes referred to as log-perplexity. To provide a more intuitive understanding of the
model’s actual performance, we also evaluate model performance on downstream NLP tasks when
necessary. The benchmarks from DoReMi are utilized for generative question-answering, specifi-
cally WebQuestions (Berant et al., 2013), LAMBADA (Paperno et al., 2016), and TriviaQA (Joshi
et al., 2017). We employ the same one-shot prompting and Exact Match metric as used in DoReMi.
A response is considered correct if and only if the characters of the model’s prediction exactly match
those of the True Answer.

Candidate Mixtures Estimating the coefficients in Eqs. (2) and (3) requires a series of observa-
tional data points. These are obtained by training on various candidate data mixtures for a limited
number of iterations. We consider the following three types of mixtures:

(a) Baseline: Represents the original proportions of the datasets, reflecting the intentions of the
dataset creators or the inherent distribution of the data collection process.

(b) DoReMi (Xie et al., 2023): This approach tunes domain weights by iteratively training reference
and proxy models through group distributionally robust optimization. The tuned proportions
for the Pile dataset were directly taken from the released results, while for the SlimPajama
dataset, we strictly executed the official code to optimize the proportions.

(c) Entropy: Measures that serve as efficient proxies for lightweight data mixing, including Shan-
non entropy (SE), conditional entropy (CE), joint entropy (JE), and von Neumann entropy
(VNE). Specifically, we calculate the entropy metric for all samples in each domain to represent
that domain’s data diversity or importance. These entropy values are then normalized across
domains to yield mixing proportions that sum to 1. For example, in the case of conditional
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entropy, we first tokenize the original dataset, resulting in a token set D = (D1,D2, . . . ,Dm),
where each domain Di is a set of token sequences {(x1, x2, . . . , xT )} of equal length T . The
conditional entropy for one domain is computed as follows:

Hi(X
(t+1)
i | X(t)

i ) = −
∑

x∈X
(t)
i

∑
x′∈X

(t+1)
i

P (x, x′) logP (x′ | x), (12)

where X
(t)
i and X

(t+1)
i are sets of tokens at positions t and t+ 1, respectively. The joint prob-

ability P (x, x′) and the conditional probability P (x′ | x) are both statistical estimations on the
token set. The mixing proportions (r1, r2, . . . , rm) are derived by exponentially normalizing
the entropy measures:

ri =
eHi∑m
j=1 e

Hj
. (13)

The resulting proportions place greater emphasis on domains with higher entropy, indicating
greater uncertainty, to enhance the learning process. Notably, implementing entropy measure-
ment is highly efficient, as it can be seamlessly integrated into the tokenization process with
negligible overhead. Details about the various entropy measures can be found in Appendix A.

5 RESULTS AND ANALYSIS

We illustrate the applicability of BIMIX from three dimensions: Section 5.1 validates its scalabil-
ity regarding training data volume; Section 5.2 demonstrates the fitted law’s generalization across
different mixtures; and Section 5.3 presents a direct method for optimizing domain proportions for
application in larger-scale models. Finally, in Section 5.4, we compare data mixtures driven by
different entropy measures, offering a streamlined and efficient strategy for data mixing.

5.1 EXTRAPOLATING LOSSES ON SCALED-UP DATA

Scaling laws are primarily used to extrapolate model metrics when scaling up the data volume.
We held out the validation losses at the final 200,000 steps as the prediction target, and used the
remaining observational data points to fit Eqs. (2) and (3). After fitting the coefficients, we used
the law to predict the target loss for each domain. Assuming the ground truth loss is y and the
BIMIX-predicted loss is y′, we calculate the relative prediction error as |y − y′|/y.

Table 1: Relative prediction error between the real validation loss and the BIMIX-predicted valida-
tion loss for the final training step. Fitting is performed on all domains for each mixture, reporting
the mean, worst, and best errors across domains.

Dataset Mixture
Relative Prediction Error ↓

Mean (%) Worst (%) Best (%)

The Pile
(22 domains)

Baseline 0.16 0.43 0.03
DoReMi 0.19 0.95 0.02
CE 0.17 0.67 0.05

SlimPajama
(7 domains)

Baseline 0.18 0.29 0.14
DoReMi 0.17 0.24 0.10
CE 0.18 0.31 0.12

The results are presented in Table 1. It is evident that BIMIX extrapolates losses with remarkable
accuracy. For both the Pile and SlimPajama datasets, the mean relative error remains below 0.2%.
Even for the worst-performing domain, the prediction error is less than 1.0% (DoReMi mixture on
the Pile). Moreover, when comparing the error distributions across domains in the two datasets, it is
observed that both the worst and best errors on SlimPajama are closer to the mean error, whereas the
variance is higher on the Pile. This can be attributed to the greater diversity of the Pile, which com-
prises up to 22 domains and presents a more significant challenge. In contrast, the meticulous data
deduplication applied to SlimPajama helps to reduce cross-domain interference and fitting noise.
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5.2 ESTIMATING DATA MIXTURES WITHOUT TRAINING

When training language models on multi-source data, determining the appropriate mixing propor-
tions for different domains remains a persistent challenge for practitioners. The naive approach is
trial and error, where a few random data mixtures are generated to train models and select the best-
performing one. However, as both data and model scales continue to grow, each training session
represents a significant expenditure; thus, training large language models has become a careful and
strategic process. The proposed BIMIX offers a cost-bounded solution based on scaling laws. By
training models on a limited number of data mixtures and collecting sufficient observational data
points to fit BIMIX, we can estimate the effectiveness of any given data mixture without actually
conducting training. This approach allows for prospective evaluation of candidate data mixtures
before incurring substantial computational costs, helping to eliminate poor options and prioritize
effective training configurations.
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Figure 3: Correlation between the observed validation losses (x-axis) and the BIMIX-predicted
losses (y-axis) across training iterations with the Baseline and DoReMi mixtures.

We trained models on the four entropy-driven data mixtures and collected observational data points
to fit BIMIX. This fitted model was then used to predict the validation losses for each domain
at each training step on the Baseline and DoReMi mixtures. As shown in Fig. 3, the data points
from the top right to the bottom left depict the convergence direction as training iterations progress.
The x-axis represents the actual loss observed during training, while the y-axis represents the loss
predicted by the fitted BIMIX. The presence of compact linear trends indicates a strong positive
correlation between the two losses. In the lower-left corner of each subplot, the two stars represent
the final losses at the end of model training. In Fig. 8a, observing the y-axis reveals that the law
predicts the final loss for DoReMi to be lower than that for Baseline, which is consistent with the
actual relative magnitudes displayed on the x-axis; Fig. 8b demonstrates a similar effect.

Table 2: Goodness of fit measured by the coefficient of determination (R2) on validation mixtures.
The better the fit, the closer the value is to 1.

Dataset Mixture
Goodness of Fit (R2) ↑

Mean (%) Worst (%) Best (%)

The Pile
(22 domains)

Baseline 0.9748 0.7911 0.9974
DoReMi 0.9744 0.7864 0.9972

SlimPajama
(7 domains)

Baseline 0.9940 0.9896 0.9962
DoReMi 0.9945 0.9904 0.9970

Table 2 presents a quantitative assessment of the goodness of fit. We employ the commonly used
coefficient of determination (R2) (Wright, 1921) metric, which is computed based on the residual
sum of squares SSres =

∑n
j=1(yj − y′j)

2 and the total sum of squares SStot =
∑n

j=1(yj − ȳj)
2:

R2 = 1− SSres

SStot
, (14)
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Figure 4: Comparison of average downstream accuracy of 1B models trained on different data
mixtures. Details regarding specific tasks and the Exact Match metric can be found in Section 4.

where n is the number of different training volumes. The R2 value is computed over the sequence
of n data points for each domain, on a logarithmic scale to reduce deviation. The better the fit,
the closer the value is to 1. Overall, the high mean R2 values suggest that BIMIX exhibits good
generalization across new data mixtures. The fitted law demonstrates a better fit on the SlimPajama
dataset compared to the Pile, as reflected by higher mean and worst R2 values, aligning with the
observations made in Section 5.1.

5.3 OPTIMIZING DOMAIN PROPORTIONS FOR IMPROVED PERFORMANCE

Recall that BIMIX in Eq. (2) describes a system of related equations in which the input variable á
r

adheres to a unit-sum constraint. This vectorized formulation facilitates the direct optimization of
the proportions across various domains. Consider a common objective of minimizing the model’s
average validation loss across domains, defined as:

L̄(
á
r, s) =

m∑
i=1

Li(ri, s), (15)

where Li is the loss function specific to i-th domain with proportion ri and training steps s. Solving
the following constrained minimization problem yields an optimized domain proportion vector:

á
r∗ = argmin

r1,r2,...,rm

L̄(
á
r, s) subject to

m∑
i=1

ri = 1. (16)

This presents a classic constrained optimization problem, which can be addressed using Lagrange
multipliers and numerical methods (Virtanen et al., 2020). For fitting and optimization, we utilized
all observational data points from the four entropy-driven data mixtures, as they serve as effective
proxies in practical applications (discussed in Section 5.4).

To validate the efficacy of this approach, we adopt a strategy similar to that in DoReMi (Xie et al.,
2023), whereby the optimized mixtures derived from smaller models are utilized to train a larger
model with billion-level parameters. Figure 4 illustrates how downstream performance varies as the
number of training steps increases. Recent advancements in mixture optimization are also included
for comparison, including RegMix (Liu et al., 2024) on the Pile and DoGE (Fan et al., 2023) on
SlimPajama. The models trained on the BIMIX-optimized mixtures demonstrated performance
advantages throughout the training process. While we note that RegMix achieved performance
comparable to that of BIMIX, it is crucial to highlight that our approach not only optimizes mixtures
but also provides a mathematical model for understanding mixing behavior. A detailed comparison
of performance across each task is included in Appendix B.

5.4 ENTROPY MEASURES AS EFFICIENT MIXING PROXIES

To collect the observational data points necessary for fitting the coefficients of BIMIX, we trained
models on a series of entropy-driven data mixtures. Entropy essentially quantifies the uncertainty of
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Figure 5: Comparison of log-perplexity evaluations for models trained on different data mixtures.

data distribution, thereby reflecting the learning capacity of domains. It is hypothesized as a valuable
proxy. Figure 5 compares the average log-perplexity evaluated on validation sets for models trained
on different data mixtures. It is evident that all models trained on these entropy-driven data mix-
tures exhibit lower log-perplexity compared to the baseline, indicating that the models have learned
statistical patterns from the data more effectively. This finding suggests that entropy measures are in-
deed efficient mixing proxies, facilitating the streamlined initial construction of pretraining datasets.
Among these entropy-driven proxies, conditional entropy (CE) consistently demonstrates lower log-
perplexity, thereby being regarded as the preferred candidate through experiments.

6 DISCUSSION AND FUTURE WORK

Scaling laws model the empirical behavior of model outcomes with respect to certain variables, typ-
ically effective within a limited observational range. The applicability of our proposed mixing law
under extreme conditions is not guaranteed. In our experiments, domain proportions ranged from
0.0007 to 0.7256, with maximum training data capped at approximately 100B tokens. However,
existing research suggests that loss predictability may extend to larger scales (Kaplan et al., 2020;
Hoffmann et al., 2022). Our study adheres to settings aligned with relevant work, ensuring consis-
tent domain inclusion during both model training and evaluation (Xie et al., 2023). When evaluating
the trained model on new domains, the model’s generalization capability and the correlation be-
tween new and training domains become primary considerations. This aspect, extending beyond the
basic mixing laws studied in this work, warrants dedicated exploration. Our work contributes to the
limited research on mixing laws, aiming to establish a foundation for more comprehensive studies.

Reflecting on broader implications, our findings on mixing laws can assist practitioners in optimiz-
ing computational resource allocation, promoting advancements in economical and environmentally
friendly AI development. This vision is also relevant to the rapidly evolving field of multimodal
large models (McKinzie et al., 2024), where processing images, videos, or audio may consume
significant computational power. Consequently, exploring the mixing of multimodal training data
presents vast opportunities for enhancing model efficiency and performance. Future work could
focus on extending our mixing law framework to multimodal contexts, potentially leading to more
efficient and effective training paradigms for next-generation AI models.

7 CONCLUSION

This paper introduces BIMIX, a bivariate data mixing law for language model pretraining. BIMIX
accurately models the joint scaling behavior of domain proportions and training volume, enabling
precise loss extrapolation and generalization to different mixtures. Our experiments demonstrate its
effectiveness in optimizing domain proportions, outperforming existing methods. Additionally, we
show that entropy-based measures serve as efficient proxies for lightweight data mixing. By offering
a nuanced understanding of data mixing dynamics, this research contributes to the development of
more efficient large-scale language models and opens avenues for further exploration in data-centric
machine learning.
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A ENTROPY PROXIES

Given a text dataset such as Pile and SlimPajama, we concatenate all samples within each domain
and tokenize them into fixed-length sequences of 1024 tokens. During tokenization, we concur-
rently record the occurrence frequencies of all unigrams and bigrams, in preparation for computing
Shannon entropy, joint entropy, and conditional entropy. The procedure for von Neumann entropy
is slightly different: we employ the FastText (Grave et al., 2018) embedding model to map each text
sample into a 300-dimensional vector, which will be used to compute their pairwise similarities.

Given a tokenized dataset D = (D1,D2, . . . ,Dm), where each domain Di is a set of token sequences
{(x1, x2, . . . , xT )} of equal length T , the following entropy proxies are computed.

Shannon Entropy (SE) Hi(Di) = −
∑

x∈Xi
P (x) logP (x), where Xi is the set of all available

tokens in domain Di and P (x) denotes the probability of observing token x. This proxy quantifies
the expected information content associated with token appearances in the dataset, indicative of the
corpus diversity.

Joint Entropy (JE) Hi(X
(t)
i , X

(t+1)
i ) = −

∑
x∈X

(t)
i

∑
x′∈X

(t+1)
i

P (x, x′) logP (x, x′), where

X
(t)
i and X

(t+1)
i represent the sets of tokens at positions t and t+ 1 across all sequences in domain

Di, respectively. The joint probability function P (x, x′) was statistically estimated by observing a
token x at position t, followed by a token x′ at position t + 1. This metric measures the average
uncertainty associated with consecutive token pairs and highlights the sequential dependencies in
the dataset.

Conditional Entropy (CE) Hi(X
(t+1)
i | X(t)

i ) = −
∑

x∈X
(t)
i

∑
x′∈X

(t+1)
i

P (x, x′) logP (x′ |

x), with X
(t)
i , X(t+1)

i , and P (x, x′) as previously defined. The term P (x′ | x) denotes the condi-
tional probability of observing a token x′ at position t+ 1 given the presence of token x at position
t. This measures the anticipated level of surprise when predicting the next token in a sequence,
providing a clearer understanding of the text’s predictability and its complex linguistic structure.

Von Neumann Entropy (VNE) In physics, the von Neumann entropy extends the concept of
Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-
mechanical system described by a density matrix ρ, the von Neumann entropy for domain Di is
defined as

Hi(ρi) = −Tr(ρi log ρi), (17)
where Tr denotes the trace operation and log the matrix logarithm. Recent research has highlighted
its utility in quantifying the diversity of datasets from a system perspective (Friedman & Dieng,
2023). For simplicity, we will drop the subscript i in subsequent discussions, but keep in mind that all
discussions pertain to a single domain. In the context of data mixture, we define ρ as K/N ∈ RN×N ,
where N = |Di|. The matrix K is determined by a positive semi-definite kernel k : D × D → R,
such that Kjk = k(vj , vk) and k(vj , vk) = 1 for 1 ≤ j, k ≤ n, where vj and vk are the embedding
vectors processed by FastText. In practice, the von Neumann entropy is computed through the
eigenvalues of the density matrix ρ:

Hi(ρ) = −
N∑
i=1

λi log λi, (18)

where the eigenvalues λi represent the probability distributions akin to quantum states.
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B DOWNSTREAM TASK PERFORMANCE
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Figure 6: Detailed downstream task performance of the 1B model trained with various data mixtures
on the Pile dataset.
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Figure 7: Detailed downstream task performance of the 1B model trained with various data mixtures
on the SlimPajama dataset.

Figures 6 and 7 present the downstream performance of the 1B model trained on various data mix-
tures for the Pile and SlimPajama datasets. Key observations include:

• BIMIX-trained models consistently outperform others across most tasks.
• Performance on WebQuestions and LAMBADA shows some variability, but BIMIX models main-

tain overall superiority.
• In TriviaQA, all models demonstrate a stable upward trend with increasing iterations, with BIMIX

mixtures showing clear advantages.

These results underscore the effectiveness of BIMIX-optimized data mixtures in enhancing model
performance across diverse downstream tasks.

C COMPLEXITY ANALYSIS

Table 3: Complexity comparison between two mixing laws

Mixing Law
Number of Coefficients

1 domain
1 target

m domains
1 target

m domains
n targets

Li(r1...m) = ci + ki exp(
∑m

j=1 tijrj) (Ye et al., 2024) m+ 2 m2 + 2m m2n+ 2mn

Li(ri, s) =
Ai

r
αi
i

(
Bi

sβi
+ Ci

)
(BIMIX) 2 2m 5m

Table 3 compares the fitting complexity of our proposed BIMIX with the concurrent compos-
ite exponential law by Ye et al. (2024). Both equations model the validation loss for multi-
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domain language modeling. The exponential law, Li(r1...m), operates on all domain proportions
(ri, r2, . . . , rm) without considering training steps, while our mixing law incorporates both domain
proportion r and training steps s. We analyze complexity across three scenarios, progressing from
simple to complex.

Base Case: Fitting an Individual Domain. The exponential law requires m + 2 fitting coeffi-
cients, aggregating proportions across m domains with m weighting coefficients tij , plus scaling
coefficient ki and translation coefficient ci. Our bivariate mixing law simplifies to Eq. (8) for fixed
training steps, needing only two coefficients: a scaling factor Ãi and an exponent α̃i.

General Case: Fitting All Domains. For m domains, both mixing law’s coefficient requirement
scales by m, while our mixing law maintains an order of magnitude fewer coefficients.

Extensive Case: Fitting Across Multiple Targets. The exponential law, not accounting for vari-
able s, requires (m2 + 2m)n coefficients for n training step targets. Our bivariate mixing law,
incorporating both domain proportions and training steps, shares fitting coefficients across various
training steps. Specifically, only five coefficients are required to fit an individual domain across
different training steps; this number scales linearly to 5m when generalized to all m domains.

Overall, Our bivariate scaling law consistently requires significantly fewer coefficients compared
to the composite exponential law in Ye et al. (2024). This reduction translates to fewer required
observations for effective fitting, enabling our law to be fit with just a few (potentially as few as
two) candidate mixtures, whereas the exponential law needs tens of mixtures. The computational
efficiency of our method offers economic and environmental benefits through reduced resource uti-
lization, while simultaneously achieving better data mixtures and enhanced model performance, as
demonstrated in Section 5.3.

D COMPARISION WITH RECENT MIXING LAW
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Figure 8: Performance comparison of the 1B model trained on the SlimPajama dataset with recent
work by Ye et al. (2024).

We extended the comparison to include the optimal data mixture identified by Ye et al. (2024) for
training the 1B model on the SlimPajama dataset. Notably, the exponential law proposed by Ye
et al. faces scalability challenges when applied to the more diverse, 22-domain Pile dataset due to
the previously discussed quadratic complexity.

Analysis of the results presented in Fig. 8 reveals several key findings:

• Both our BIMIX-optimized mixture and Ye et al. (2024)-optimized mixture demonstrated accel-
erated model convergence compared to the default Baseline mixture.

• Our BIMIX-optimized data mixture achieved equivalent log-perplexity to the Baseline using only
50% of the training steps required by Ye et al. (80,000 vs. 160,000), indicating more effective
data utilization.
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• While the 1B model trained on the Ye et al.-optimized mixture showed performance comparable to
the Baseline on downstream tasks, the model trained on our BIMIX-optimized mixture exhibited
substantial advantages.

These results further underscore the effectiveness of our BIMIX approach in optimizing data mix-
tures for large language model training, offering both improved convergence speed and enhanced
downstream task performance.

E MIXTURE RECIPES

Tables 4 and 5 provide detailed compositions of the candidate data mixtures employed for the Pile
and SlimPajama datasets, respectively. These mixtures form the basis of our experiments and are
integral to the evaluation of our BIMIX approach.

Table 4: Data mixtures on the Pile dataset

Domain Baseline DoReMi SE CE JE VNE

ArXiv 0.0886 0.0535 0.0336 0.0350 0.0236 0.0258
BookCorpus2 0.0044 0.0037 0.0349 0.0461 0.0323 0.0210
Books3 0.0720 0.0757 0.0544 0.0697 0.0763 0.0283
DM Mathematics 0.0204 0.0019 0.0047 0.0078 0.0007 0.0434
Enron Emails 0.0029 0.0040 0.0416 0.0272 0.0228 0.0717
EuroParl 0.0075 0.0120 0.0681 0.0314 0.0431 0.0709
FreeLaw 0.0403 0.0380 0.0375 0.0394 0.0297 0.0334
GitHub 0.0554 0.0325 0.0382 0.0451 0.0346 0.1021
Gutenberg (PG-19) 0.0218 0.0292 0.0348 0.0535 0.0375 0.0211
HackerNews 0.0079 0.0084 0.0343 0.0474 0.0328 0.0404
NIH ExPorter 0.0047 0.0084 0.0437 0.0406 0.0357 0.0321
OpenSubtitles 0.0110 0.0032 0.0161 0.0202 0.0065 0.0202
OpenWebText2 0.1242 0.1905 0.0719 0.0761 0.1101 0.0517
PhilPapers 0.0032 0.0093 0.0772 0.0603 0.0936 0.0390
Pile-CC 0.1090 0.1379 0.0549 0.0841 0.0928 0.0405
PubMed Abstracts 0.0756 0.0970 0.0541 0.0497 0.0541 0.0423
PubMed Central 0.1139 0.0608 0.0536 0.0462 0.0498 0.0383
StackExchange 0.0907 0.0746 0.0431 0.0506 0.0439 0.0428
USPTO Backgrounds 0.0401 0.0327 0.0362 0.0423 0.0308 0.0321
Ubuntu IRC 0.0098 0.0083 0.0374 0.0281 0.0212 0.0529
Wikipedia (en) 0.0894 0.1068 0.0626 0.0639 0.0804 0.0784
YoutubeSubtitles 0.0072 0.0117 0.0670 0.0353 0.0476 0.0716

Table 5: Data mixtures on the SlimPajama dataset

Domain Baseline DoReMi SE CE JE VNE

ArXiv 0.0458 0.0213 0.0738 0.0710 0.0339 0.0598
Books 0.0420 0.0420 0.1474 0.1669 0.1592 0.0700
C4 0.2660 0.2864 0.1619 0.2079 0.2179 0.1265
CommonCrawl 0.5203 0.5518 0.1863 0.2175 0.2623 0.0933
GitHub 0.0522 0.0191 0.0952 0.0902 0.0556 0.2314
StackExchange 0.0337 0.0292 0.1152 0.1177 0.0878 0.1088
Wikpedia 0.0399 0.0501 0.2202 0.1287 0.1834 0.3103
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