
Self-Adapting Language Models

Adam Zweiger∗ Jyothish Pari∗† Han Guo Yoon Kim Pulkit Agrawal†

Massachusetts Institute of Technology
{adamz, jyop, hanguo, yoonkim, pulkitag}@mit.edu

Abstract

Large language models (LLMs) are powerful but static; they lack mechanisms to
adapt their weights in response to new tasks, knowledge, or examples. We introduce
Self-Adapting LLMs (SEAL), a framework that enables LLMs to self-adapt by
generating their own finetuning data and update directives. Given a new input,
the model produces a self-edit—a generation that may restructure the information
in different ways, specify optimization hyperparameters, or invoke tools for data
augmentation and gradient-based updates. Through supervised finetuning (SFT),
these self-edits result in persistent weight updates, enabling lasting adaptation. To
train the model to produce effective self-edits, we use a reinforcement learning
loop, using the downstream performance of the updated model as the reward signal.
Unlike prior approaches that rely on separate adaptation modules or auxiliary
networks, SEAL directly uses the model’s generation to parameterize and control
its own adaptation process. Experiments on knowledge incorporation and few-
shot generalization show that SEAL is a promising step toward language models
capable of self-directed adaptation in response to new data. Our website and code
is available at https://jyopari.github.io/posts/seal.

1 Introduction

Large language models (LLMs) pretrained on vast text corpora exhibit remarkable abilities in language
understanding and generation [1, 2, 3, 4, 5]. However, adapting these powerful models for specific
tasks [6], integrating new information [7], or mastering novel reasoning skills [8] remains challenging
due to the limited availability of task-specific data. In this paper, we explore an intriguing hypothesis:
can an LLM self-adapt by transforming or generating its own training data and learning procedure?

As an analogy, consider a human student preparing for the final exam of a machine learning class.
Many students rely on their notes to prepare for the exam. These notes are often derived from the
lecture content, textbooks, or information available on the internet. Instead of relying on the raw
content, assimilating and rewriting the information in the form of notes often improves the ability of
students to understand the content and answer exam questions. This phenomenon of reinterpreting
and augmenting external knowledge in a way that is easier to understand is not limited to just taking
exams, but seems to be universally true of human learning across tasks. Furthermore, different
humans assimilate information in different ways—some might condense the information into a visual
diagram, some into text, or some might rely more on concrete mathematical descriptions.

Such assimilation, restructuring, or rewriting of data as part of the learning process is in contrast
with how large language models (LLMs) are typically trained and deployed. Given a new task,
current LLMs consume and learn from the task data “as-is” via finetuning or in-context learning
[9, 10, 11, 12]. However, such data may not be in an optimal format (or volume) for learning, and

∗Equal contribution.
†Improbable AI Lab, CSAIL MIT

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://jyopari.github.io/posts/seal


RL Outer Loop Iteration

Ctx LM
Policy 

Update

RL Data

Test LM
1 1

2

3

Optimize

Optimize

Optimize

SE

2
SE

3
SE

Test LM

Test LM

Ans
✓

✓

✘

✘

Ans

Ans

SE

SE

SE

State Action Reward

Ctx SE ✓

Figure 1: Overview of SEAL. In each RL outer loop iteration, the model generates candidate
self-edits (SE)—directives on how to update the weights—applies updates, evaluates performance on
a downstream task, and uses the resulting rewards to improve the self-edit generation policy.

current approaches do not enable models to develop bespoke strategies for how to best transform and
learn from their training data.

As a step towards better language model adaptation, we propose equipping LLMs with the ability to
generate their own training data and finetuning directives in response to new inputs. In particular,
we introduce a reinforcement learning algorithm that trains LLMs to generate “self-edits”—natural-
language instructions that specify the data and, optionally, optimization hyperparameters for updating
the model’s weights (see Figure 1). We refer to such models as Self-Adapting LLMs (SEAL).

We evaluate SEAL on two applications. We first consider the task of integrating new factual
knowledge into an LLM. Rather than finetuning directly on the passage text, we finetune on synthetic
data generated by the SEAL model. Our results show that, following reinforcement learning (RL)
training, finetuning on self-generated synthetic data improves question-answering performance on
the no-passage-in-context variant of SQuAD [13] from 33.5% to 47.0%. Notably, self-generated data
from SEAL outperforms synthetic data generated by GPT-4.1.

We further evaluate SEAL on few-shot learning on a simplified subset of the ARC-AGI bench-
mark [14], where the model leverages a set of tools to autonomously select both synthetic data
augmentations and optimization hyperparameters (e.g., learning rate, training epochs, selective loss
computation over token types). Our experiments demonstrate that automatic selection and configura-
tion of these tools using SEAL enhances performance compared to both standard in-context learning
(ICL) and self-editing without RL training to use the tools effectively. These results collectively show
that SEAL is a versatile framework for enabling language models to self-adapt.

2 Related Work

Synthetic Data Generation. The creation of synthetic data for LLM training is increasingly
common, from large-scale pretraining datasets [15, 16, 17, 18, 19] to task-specific data augmentation
[20, 21, 22] and instruction-tuning sets [23, 24]. For incorporation of a smaller corpus, Yang et al.
[25] use synthetic data generation via graph-based prompting. SEAL builds on this line of work by
using reinforcement learning to train a generative policy that directly maximizes the downstream
utility of synthetic data when applied for gradient-based self-updates, rather than relying on static or
heuristic generation strategies that are manually tuned.

Knowledge Updating. Several recent works aim to modify or inject factual knowledge into
language models via weight updates. Some methods attempt to directly locate specific parameters
that correspond to individual facts [26, 27, 28]. Others propose generating additional finetuning
data using the information in context [29, 30, 25, 31, 32]. We adopt the latter strategy, following
Akyürek et al. [30], who propose generating logical implications of a fact and finetuning on them,
and Lampinen et al. [31], who show that implication-based finetuning can even outperform in-context
learning. We build on these approaches by training models through RL to generate more optimal
finetuning data. Park et al. [32] show that prompting language models to generate question–answer
(QA) pairs directly can outperform implication-style prompting. Because the SEAL framework is
agnostic to the prompt and format of the self-edit data, it can also be trained to generate QA pairs or
other output formats, as explored in §B.11.

2



Test-Time Training. Test-Time Training (TTT) temporarily adapts model weights based on the
input the model receives [33, 34, 35, 36]. Akyürek et al. [36] show that combining TTT with ICL
enables gradient-updates to outperform standard ICL in the few-shot setting. SEAL can be viewed
as incorporating a round of TTT in its inner-loop optimization, leveraging TTT’s efficiency relative
to full-scale training to perform multiple updates and reward the generated data that yields the
greatest performance gain. Although our method is trained using single-example TTT episodes, we
demonstrate in the knowledge incorporation setting that it generalizes to the continued pretraining
(CPT) regime—where placing data directly in context is no longer feasible.

Reinforcement Learning for LLMs. Reinforcement learning has played a central role in improving
LLM behavior, originally through RLHF [37, 38]. More recently, RL with verifiable rewards has been
applied to boost reasoning performance by optimizing the model directly for task success [39, 40, 41].
SEAL applies RL not to optimize final answers or trace revisions, but to optimize the generation of
self-edit data that is then used for weight updates.

Meta-Learning and Self-Modifying Systems. SEAL embodies meta-learning principles [42, 43,
44] by learning an adaptation strategy—how to generate effective self-edits—via its outer optimization
loop. The goal is to learn how to learn efficiently from task contexts. In reinforcement learning,
meta-learning has been used to train agents that learn new tasks quickly [45, 46, 47, 48]. Sun
et al. [49] similarly apply RL to learn task-specific weight modulations, offering an alternative
to LoRA finetuning that is orthogonal to our approach. A natural extension of meta-learning is
self-referential networks, where models modify their own parameters [50, 51]. In the domain
of large language models, recent work has applied meta-learning to improve LLM adaptation
[52, 53, 54, 55, 49]. Notably, Hu et al. [53] train a smaller model to output token-specific weights
during finetuning, addressing a knowledge incorporation task similar to ours, while Chen et al. [54]
propose a hypernetwork that generates LoRA adapters conditioned on the input, enabling dynamic
and task-specific parameterization. However, SEAL offers greater generality by leveraging the
model’s existing generative capabilities to parametrize updates.

Self-Improvement. Several recent works fall under the umbrella of self-improvement or self-
training. Methods such as RLAIF [56, 57] and self-rewarding language models [58, 59] use the
model itself to provide reward signals, leveraging the observation that judging outputs is often easier
than generating them [60]. Other recent works improve performance on mathematical tasks by
using majority-vote or model confidence as reinforcement learning rewards, enabling performance
improvement without access to ground-truth labels [61, 62, 63, 64, 65]. However, all of these methods
are fundamentally limited by the model’s current evaluation abilities and self-consistency. In contrast,
we view self-improvement through interaction with external data as a more powerful and scalable
path. SEAL learns how to best utilize this external data for self-improvement.

3 Methods

We propose Self-Adapting LLMs (SEAL), a framework that enables language models to improve
themselves by generating their own synthetic data and optimization parameters (“self-edits”) in re-
sponse to new data. The model is trained to produce these self-edits directly through token generation
with the data provided in the model’s context. Self-edit generation is learned via reinforcement
learning (RL) where the model is rewarded for generating self-edits (SE) that, when applied, improve
the model’s performance at the target task. SEAL can therefore be interpreted as an algorithm with
two nested loops: an outer RL loop, which optimizes the self-edit generation, and an inner update
loop, which uses the generated self-edit to update the model via gradient descent. Our method can be
seen as an instance of meta-learning where we meta-learn how to generate effective self-edits.

3.1 General Framework

Let θ denote the parameters of the language model LMθ. SEAL operates on individual task instances
(C, τ) where C is a context containing information relevant to the task, and τ defines the downstream
evaluation used to assess the model’s adaptation. For example, in knowledge incorporation, C is the
passage intended to be integrated into the model’s internal knowledge, and τ is a set of questions and
associated answers about the passage. In few-shot learning, C includes few-shot demonstrations of a

3



novel task, and τ is the query input and ground-truth output. Given C, the model generates a self-edit
SE—the form of which varies by domain (see §3.2)—and updates its parameters via supervised
finetuning: θ′ ← SFT(θ, SE).

We optimize the self-edit generation process using reinforcement learning: the model takes an action
(generating SE), receives a reward r based on LMθ′’s performance on τ , and updates its policy to
maximize expected reward:

LRL(θt) := −E(C,τ)∼D

[
ESE∼LMθt (·|C) [r(SE, τ, θt)]

]
. (1)

Algorithm 1 Self-Adapting LLMs (SEAL):
Self-Edit Reinforcement Learning Loop
1: Input: LMθ , dataset D = {(C, τ)}
2: for outer iteration t = 1, 2, . . . do
3: Sample (C, τ) ∼ D
4: Generate self-edit SE ∼ LMθ(· | C)
5: Inner Loop Update: θ′t ← SFT(θt, SE)
6: Evaluate: Ans ∼ LMθ′t

(· | τ)
7: Compute reward: r ← r(Ans, τ)
8: Update: θt+1 ← RL_Update(θt, r, SE)
9: end for

Unlike in standard RL setups, the reward assigned to
a given action in our setting depends on the model
parameters θ at the time the action is taken (since θ
is updated to θ′, which is then evaluated). As a re-
sult, the underlying RL state must include the policy’s
parameters and is given by (C, θ), even though the
policy’s observation is limited to C (placing θ directly
in context is infeasible). The implication of this is that
(state, action, reward) triples collected with a previous
version of the model, θold, may become stale and mis-
aligned for the current model θcurrent. For this reason,
we adopt an on-policy approach, in which self-edits
are sampled from—and, crucially, rewards are computed using—the current model.

We experimented with various on-policy methods such as Group Relative Policy Optimization
(GRPO) [66] and Proximal Policy Optimization (PPO) [67], but found the training to be unstable.
Instead, we adopt ReSTEM [40], a simpler approach based on filtered behavior cloning—also known
as “rejection sampling + SFT” [68, 69, 38, 39, 70].

ReSTEM can be viewed as an expectation-maximization (EM) procedure: the E-step samples candi-
date outputs from the current model policy, and the M-step reinforces only those samples that receive
positive reward through supervised finetuning. This approach optimizes an approximation of our
objective (1) under the binary reward:

r(SE, τ, θt) =
{
1 If on τ , adaptation using SE improves LMθt ’s performance2

0 Otherwise
(2)

More precisely, in optimizing (1), we must compute the gradient ∇θtLRL. However, as we noted,
the reward term r(SE, τ, θt) depends on θt in our setup but is not differentiable. We address this by
treating the reward as fixed with respect to θt. With this approximation, the Monte-Carlo estimator
for a minibatch of N contexts and M sampled self-edits per context becomes

∇θtLRL ≈ −
1

NM

N∑
i=1

M∑
j=1

rij ∇θt log pθt(SEij | Ci) (3)

= − 1

NM

N∑
i=1

M∑
j=1

rij

T∑
s=1

∇θt log pθt(y
(i,j)
s | y(i,j)<s , Ci), (4)

where pθt denotes the model’s autoregressive distribution and y
(i,j)
s is the sth token of self-edit SEij ,

the jth sample for context Ci. Since sequences with r = 0 can be ignored in (4), we have shown that
ReSTEM , with simple “SFT on good self-edits,” indeed optimizes (1) under the binary reward (2)
(with a stop-gradient applied to the reward term). The SEAL training loop is summarized in Alg. 1.

Finally, we note that while the implementation in this work uses a single model for both generating
self-edits and learning from these self-edits, it is also possible to decouple these roles. In such a
“teacher-student” formulation [71], a student model would be updated using edits proposed by a
separate teacher model. The teacher would then be trained via RL to generate edits that maximize
student improvement.

2The reward may also be assigned to the single self-edit that yields the greatest improvement among sampled
candidates, which we do in knowledge incorporation, rather than to all edits that yield a positive improvement.

4



3.2 Domain Instantiations

We instantiate the SEAL framework in two distinct domains: knowledge incorporation and few-shot
learning. These domains were chosen to highlight two complementary forms of model adaptation:
(1) the ability to integrate new information into a model’s weights so that it can be recalled without
relying on context (evaluated using a no-context variant of SQuAD) and (2) the ability to generalize
to novel tasks after seeing only a small number of examples (evaluated using ARC).

Knowledge Incorporation. Our goal is to efficiently incorporate the information provided in a
passage into the model’s weights. A promising recent approach involves using a language model
to generate content derived from the passage, followed by finetuning on both the original passage
and the generated content [29, 30, 25, 31, 32]. While the form of generated content may vary, we
adopt what we consider the canonical format: implications derived from the passage. This approach,
introduced in deductive closure training [30], converts a given context C into a set of implications
SE = {s1, s2, . . . , sn} by prompting the model to “List several implications derived from the content.”
The output may include inferences, logical consequences, or restatements of the original passage. In
§B.11, we also explore alternative prompts such as “rewrite the passage in different ways” or “rewrite
in a question-answer format” and show that our method improves performance by similar or greater
margins regardless of the base prompt.

✓
SFT

Knowledge Incorporation Setup
Passage
title: Apollo program 
context: But even after 
NASA reached internal 
agreement, it was far from 
smooth sailing...

Self-Edit Evaluation

LM LM

1. The Apollo program 
faced opposition from 
Kennedy's science advisor, 
Jerome Wiesner, who had...

Who was Kennedy's 
science adviser that 
opposed manned 
spacecraft flights? Jerome Wiesner

Figure 2: Knowledge Incorporation Setup. Given a new passage, the model generates synthetic
data (the self-edit) in the form of “implications” of the passage. We then finetune on these outputs
using LoRA. The updated model is evaluated on questions about the passage without access to the
original text, and the resulting accuracy serves as the reward signal for reinforcement learning.

These self-generated statements form the training data for a supervised finetuning (SFT) update: we
compute the standard causal language-modeling loss over each sequence si and update the model
parameters, yielding θ′. Since the amount of data per update is small and the number of updates we
do in total is large, we use low-rank adapters (LoRA [72]) for efficient, lightweight tuning. Finally,
the adapted model LMθ′ is evaluated on the task τ . This process is shown in Figure 2.

During RL training, the adapted model’s accuracy on τ defines the reward r that drives the outer
RL optimization. This trains the model to restructure the passage in a way that is most effective for
assimilation via finetuning.

Few-Shot

Examples

Self-Edit (SE) Evaluation

LM

SFT

✓
LM

 basic_augmentations: true

 size_augmentations: false

 chain_augmentations: false

 repeat_augmentations: false


strategy: loss on all tokens

learning rate: 1e-05

epochs: 3

Few-Shot Setup

Figure 3: Few-Shot Learning with SEAL. Left: example ARC demonstrations. Center: the model
generates a self-edit specifying augmentations and training hyperparameters. Right: the adapted
model is evaluated on a held-out test input.

5



Few-Shot Learning. The Abstraction and Reasoning Corpus (ARC) [8] is a benchmark designed
to test abstract reasoning and generalization from very limited examples. Each task includes a small
set of input-output demonstrations and a held-out test input whose correct output must be predicted.

We adopt the test-time training (TTT) protocol of Akyürek et al. [36], where augmentations of the
few-shot examples are used to perform gradient-based adaptation. Rather than relying on manually
tuned heuristics for selecting augmentations and optimization settings, we train SEAL to learn these
decisions. This setting tests whether SEAL can autonomously configure the adaptation pipeline—
determining which augmentations to apply and what optimization parameters to use.

To implement this, we define a set of tools, each of which is a pre-defined function from Akyürek
et al. [36] that transforms data or specifies training parameters. These include:

• Data augmentations: rotations, flips, reflections, transpositions, resizing operations (e.g., changing
grid resolution), and chained or repeated transformations.

• Optimization parameters: learning rate, number of training epochs, and whether the loss is
computed over all tokens or only output tokens.

The model is prompted with a task’s few-shot demonstrations to generate a self-edit, which in this
case is a specification of which tools to invoke and how to configure them, as shown in Figure 3. The
self-edit is then applied to adapt the model via LoRA finetuning. The adapted model is evaluated on
the held-out test input, and the result determines the reward for the self-edit generation.

4 Results

In this section we empirically evaluate SEAL across our two adaptation domains: few-shot learning
and knowledge incorporation. Full training, hyperparameter, and evaluation details are provided in
§A and §B.

4.1 Few-Shot Learning

We conduct our experiments using Llama-3.2-1B-Instruct, a small open-source model with
no ARC-specific pretraining. Since most ARC tasks are challenging for models that have not
been pretrained on ARC, we curate a subset of 11 tasks from the ARC training set and 8 from the
evaluation set, filtered to ensure that they are solvable under optimal TTT configurations for a base
Llama-3.2-1B-Instruct. While this is a small number of examples, note that Akyürek et al. [36]
used the same TTT configuration for all tasks, and thus we do not need a large training set for learning
a fixed self-edit. More details are included in §A.

The model is trained using ReSTEM by sampling 15 self-edits per training task. Each self-edit is
applied individually to generate 15 updated models, which are then evaluated on the corresponding
held-out test example. We reinforce only those self-edits that lead to correctly adapted models, i.e.,
models that produce the correct output for the test input after adaptation.

After training, we evaluate the model by generating 5 self-edits per held-out evaluation task and
apply each one independently. We then report the percentage of self-edits that lead to correct outputs,
yielding a success rate that reflects the quality of the learned self-edit generation policy.

We compare against the following baselines:

1. ICL (In-Context Learning): Llama-3.2-1B-Instruct is prompted with the given few-shot
examples using Akyürek et al. [36]’s protocol, and directly queried on the test input.

2. TTT + Self-Edit (w/o prior RL): Llama-3.2-1B-Instruct performs test-time training (TTT)
using few-shot examples and synthetic augmentations, but without any prior RL to optimize which
augmentations or training configurations to use.

3. Oracle TTT: The model performs test-time training (TTT) using the optimal human-crafted
configuration from Akyürek et al. [36]. This provides an upper bound of our method.

We record results in Table 4.1. SEAL substantially improves adaptation success rate compared to
baselines: 72.5% vs. 20% (with self-edits from the base model without RL training) and 0% (no adap-
tation), though performance remains below Oracle TTT, suggesting room for further improvement.

6



Method Success Rate (%)
ICL 0
TTT + Self-Edit (w/o prior RL) 20
SEAL 72.5
Oracle TTT 100

Table 1: Few-shot Abstract Reasoning

4.2 Knowledge Incorporation

We experiment with Qwen2.5-7B on incorporating novel factual content from SQuAD passages
[13]. We use the relatively simple SQuAD dataset because its passages can be fully “understood”
by the base model in-context, yet the model cannot reliably answer questions about them without
that context. We do 2 rounds of ReSTEM with a batch of 50 contexts (see §B for further details). We
compare SEAL on knowledge incorporation against the following baseline approaches:

1. Base Model: The pretrained model is evaluated on downstream QA tasks without any adaptation
or access to the passage.

2. Train on Passage Only: The model is finetuned directly on the passage using the standard
language modeling loss, without any synthetic data.

3. Train on Passage + Synthetic Data: The model is trained on the passage along with self-generated
implications. This is the same setup as SEAL but without any prior RL training.

4. Train on Passage + GPT-4.1 Synthetic Data: The model is trained on the passage along with
model-generated implications collected from GPT-4.1 via the OpenAI API.

0 1 2
ReST-EM RL Training Iterations

32

34

36

38

40

42

44

46

K
no

w
le

dg
e 

In
co

rp
or

at
io

n 
(%

)
Single-Passage Knowledge Incorporation

Qwen 2.5 7B Base

Raw Passage

Qwen-Base Synthetic

GPT-4.1 Synthetic

SEAL

Figure 4: Accuracy over RL itera-
tions. Each iteration consists of a mini-
batch of 50 contexts, each with 5 sam-
pled self-edits. SEAL surpasses GPT-
4.1 synthetic data after two iterations of
ReSTEM on the no-context SQuAD set.

Table 4.2 reports mean no-context SQuAD accuracy under
two regimes: single-passage updating (with LoRA), and
small-scale continued pretraining (with full finetuning).
We run continued pretraining (CPT) experiments with
n = 200 documents, as well as the full SQuAD validation
set of n = 2067 documents. In the single-passage setting,
finetuning directly on the passage yields a negligible gain
over the frozen base model (33.5% vs. 32.7%), confirming
that using the raw data alone is insufficient. Augmenting
with synthetic implications generated by GPT-4.1 boosts
accuracy to 46.3%, an improvement of 12.8 percentage
points over the passage-only baseline. Using synthetic
data produced by the base Qwen-2.5-7B model yields
39.7%, a 6.2-point increase. After reinforcement learn-
ing, SEAL further improves accuracy to 47.0%, notably
outperforming using synthetic data from GPT-4.1, despite
being a much smaller model.

In the CPT setting, the model assimilates information from
many passages in a single continued pretraining run. It
is then evaluated on the union of all corresponding ques-
tions. In this setting, we sample 5 self-edit generations
for each passage and take the aggregate synthetic dataset
for continued pretraining. As shown in Table 4.2, we observe a similar ranking of methods as in
the single-passage case, but with synthetic data from GPT-4.1 slightly outperforming SEAL. In the
n = 200 setting, SEAL achieves an accuracy of 58.2%, exceeding its single-passage performance. We
attribute this gain to the aggregation of multiple self-edit generations. Overall, the strong continued
pretraining results of SEAL suggest that the self-editing policy generalizes beyond the original RL
setup of creating synthetic data in a single generation for a single passage.

Figure 4 tracks accuracy after each outer RL iteration. Two iterations suffice for SEAL to overtake
GPT-4.1 data; subsequent iterations yield diminishing returns, suggesting that the policy quickly
converges to an edit style that distills the passage into easily learnable atomic facts (see qualitative
examples in Figure 5). All results use tuned hyperparameters (see §B).

7



Method Single Passage
(n = 1; LoRA)

Continued Pretrain-
ing (n = 200; full-FT)

Continued Pretraining
(n = 2067; full-FT)

Base model 32.7 32.7 29.0
Train on Passage 33.5 36.0 31.2
Train on Passage + Synthetic 39.7 50.6 43.4
Train on Passage + GPT-4.1 Synthetic 46.3 59.4 49.2
SEAL 47.0 58.2 46.4

Table 2: Knowledge Incorporation Performance Across Passage Settings.

A1: *model response was empty*


A2: The Kayapo tribe uses GPS devices to map 
their ancestral lands in the Amazon rainforest.


A3: Some tribes in the Amazon rainforest use 
remote sensing technology to map out their 
ancestral lands. This helps them to better protect 
their territories from commercial interests.




A1: Drones are being used to map and protect the 
lands of the tribes in the Amazon.


A2: The Yanomami tribe uses GPS devices to map 
their ancestral lands in the Amazon rainforest.


A3: Some tribes use remote sensing technology to 
protect their lands from commercial interests.




✘

✘

✘

✘

Input Context

Rewrite Iteration 0

It
er

 0

Rewrite Iteration 1 

Rewrite Iteration 2

It
er

 1

The use of remote sensing for the conservation of the Amazon is also being used by the indigenous tribes of the basin to protect 
their tribal lands from commercial interests. Using handheld GPS devices and programs like Google Earth, members of the Trio Tribe, 
who live in the rainforests of southern Suriname, map out their ancestral lands to help strengthen their territorial claims. Currently, 
most tribes in the Amazon do not have clearly defined boundaries, making it easier for commercial ventures to target their territories.

Q1: What kind of sending technology is being used to 
protect tribal lands in the Amazon?


Q2: What tribe uses GPS devices to map lands?


Q3: Why do some tribes use remote sensing technology?




1. Indigenous tribes can use remote sensing and mapping 
technology to protect their lands from commercial interests.

2. Clear boundaries for tribal lands can prevent commercial 
ventures from targeting and exploiting the resources in their 
territories.

1. Remote sensing technology can be effectively utilized for 
the conservation of the Amazon rainforest.

2. Indigenous tribes are becoming more empowered to 
protect their lands from commercial interests.

3. The use of handheld GPS devices and programs like 
Google Earth can be a valuable tool for mapping ancestral 
lands.

4. Clearing of boundaries for indigenous territories can help 
prevent commercial ventures from targeting these lands.

5. The involvement of indigenous communities in the 
conservation efforts of the Amazon rainforest can lead to a 
more sustainable future for the region.

1. Remote sensing technology can be used by indigenous 
tribes to protect their lands.

2. The use of GPS devices and programs like Google Earth 
can help map out ancestral lands.

3. Clearing of forests for agricultural land, such as cattle 
ranches, is a major cause of deforestation in the Amazon.

4. Illegal mining for gold and other minerals is a significant 
threat to the Amazon rainforest.

5. The expansion of infrastructure, such as roads and dams, 
is also a major concern for the conservation of the Amazon.

6. The use of remote sensing can help identify areas of the 
Amazon that are most vulnerable to deforestation and other 
threats.

7. The involvement of indigenous tribes in the protection of 
the Amazon rainforest is crucial for its conservation.

8. The mapping of ancestral lands by indigenous tribes can 
help strengthen their territorial claims and protect their 
rights to the land.

9. The use of remote sensing can help monitor the Amazon 
rainforest and track changes over time.

10. The protection of the Amazon rainforest is essential for 
the preservation of biodiversity and the maintenance of 
ecosystem services.

✓

✓

✓
✓

✓

It
er

 2 A1: The use of remote sensing technology is 
being used to protect tribal lands in the Amazon.


A2: The use of GPS devices by the Trio Tribe, a 
tribe from the rainforests of southern Suriname, is 
being used to help protect their ancestral lands.


A3: Some tribes use remote sensing technology 
to protect their lands from commercial interests.




Figure 5: Example Knowledge Incorporation Self-Edits Across RL Iterations. In this example,
we see how RL leads to the generation of more detailed self-edits, which in turn results in better
performance. While the progression is clear in this case, the differences across iterations are
sometimes more subtle in other examples. We show in §B.11 that prompting for longer self-edits is
effective, and that RL training further improves performance by a similar margin.

5 Limitations

Passage Index

Se
lf
-E
di
t 
It
er
at
io
n

Catastrophic Forgetting

Figure 6: Catastrophic forgetting from
continual self-edits. We sequentially
update the model on new passages and
track degradation on prior tasks. Entry-
wise standard errors are reported in §B.6.

Catastrophic forgetting. One key motivation we had for
enabling language models to self-edit is to move towards
the ultimate goal of continual learning—allowing models
to incorporate new information over time, whether through
agentically interacting with an environment or through
standard training. While our earlier experiments assess
how well SEAL adapts to individual edits in isolation,
a more ambitious goal is to support sequences of edits:
can the model adapt to new information repeatedly while
preserving prior knowledge?

This question relates directly to the challenge of catas-
trophic forgetting [73, 74], where new updates interfere
destructively with past learning. We do not explicitly op-
timize for retention in our current training setup, but we
aim to establish a baseline for how well SEAL handles
sequential self-edits without dedicated mechanisms for
handling catastrophic forgetting. To test this, we simulate
a continual learning setting in the knowledge incorpora-
tion domain. The model receives a stream of test passages,
each triggering a new self-edit. After each update, we

8



re-evaluate the model on all previously seen tasks to measure retention. This setup tests the model’s
ability to integrate new edits without forgetting earlier ones.

As shown in Figure 6, performance on earlier tasks gradually declines as the number of edits increases,
suggesting that SEAL is still susceptible to catastrophic forgetting. Still, it can perform multiple
updates without complete collapse, indicating possibility for improvement. Future work could
enhance this ability through reward shaping [75, 76, 77] to penalize regressions on earlier tasks, or by
integrating continual learning strategies such as null-space constrained edits [78] or representational
superposition [79]. In addition, since RL has been shown to forget less than SFT, SEAL’s inner loop
could also employ RL instead of SFT [80].

Computational overhead. The TTT reward loop is significantly more computationally expensive
than other reinforcement learning loops used with LLMs. For instance, reward signals based on
human preferences typically involve a single model forward pass, and those using verified solutions
may rely on simple pattern matching (e.g., regex). In contrast, our approach requires finetuning and
evaluating an entire model to compute the reward—each self-edit evaluation takes approximately
30–45 seconds, introducing substantial overhead (see §B.5).

Context-dependent evaluation. Our current instantiations assume that every context is paired with
an explicit downstream task: few-shot demonstrations arrive with a held-out query pair, and each
passage comes bundled with reference QA. This coupling simplifies reward computation but prevents
RL training of SEAL from scaling to unlabeled corpora. A potential solution is to let the model
generate not only self-edits but also its own evaluation questions—e.g., draft QA items or synthetic
test cases for each passage—while the original content is still in context. These model-written
queries could provide the immediate supervision required for reinforcement learning, broadening
applicability to general training domains where external question-and-answer sets are unavailable.

6 Discussion and Conclusion

Villalobos et al. [81] project that frontier LLMs will be trained on all publicly available human-
generated text by 2028. We argue that this impending “data wall” will necessitate the adoption
of synthetic data augmentation. Once web-scale corpora are exhausted, progress will hinge on a
model’s capacity to generate its own high-utility training signal. A natural next step is to meta-train a
dedicated SEAL synthetic-data generator model that produces fresh pretraining corpora, allowing
future models to scale and achieve greater data efficiency without relying on additional human text.

We can imagine a future in which LLMs can ingest new data, such as academic papers, and generate
large quantities of explanations and implications for themselves using their existing knowledge and
reasoning with the in-context data. This iterative loop of self-expression and self-refinement could
allow models to keep improving on rare or underrepresented topics even in the absence of additional
external supervision.

In addition, while modern reasoning models are often trained with RL to generate chain-of-thought
(CoT) traces, SEAL could offer a complementary mechanism, allowing the model to learn when and
how to update its own weights. These two approaches could synergize: the model may choose to
perform weight updates mid-reasoning to guide its current trajectory, or after completing reasoning
to distill key insights into its parameters—improving future inference through internalized learning.

This continual refinement loop is also promising for building agentic systems—models that operate
over extended interactions and adapt dynamically to evolving goals. Agentic models must incremen-
tally acquire and retain knowledge as they act. Our approach supports such behavior by enabling
structured self-modification: after an interaction, the agent could synthesize a self-edit which triggers
a weight update. This could allow the agent to develop over time, aligning its behavior with prior
experience and reducing reliance on repeated supervision.

SEAL demonstrates that large language models need not remain static after pretraining: by learning
to generate their own synthetic self-edit data and to apply it through lightweight weight updates, they
can autonomously incorporate new knowledge and adapt to novel tasks. Looking ahead, we envision
extending the SEAL framework to pretraining, continual learning, and agentic models, ultimately
enabling language models to self-learn and scale in a data-constrained world.

9



Acknowledgments and Disclosure of Funding

We would like to thank Shivam Duggal, Idan Shenfeld, Seungwook Han, Jeremy Bernstein, Akarsh
Kumar, Linlu Qiu, Juno Kim, Brian Cheung, Moritz Reuss, Ayush Sekhari, Zhang-Wei Hong,
Mehul Damani, Leshem Choshen, and Ryan Yang for their valuable discussions and feedback. We
acknowledge support from ARO MURI grant number W911NF-23-1-0277. This research was also
partly sponsored by the United States Air Force Research Laboratory and the United States Air Force
Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement Number
FA8750-19- 2-1000. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of the
United States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes, notwithstanding any copyright notation herein.
We acknowledge the MIT Office of Research Computing and Data for providing high performance
computing resources that have contributed to the research results reported within this paper. This
research was also partly supported by the Stevens Fund for MIT UROP research and by the MIT-IBM
Watson AI Lab.

References
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
Language models are few-shot learners. In Advances in Neural Information Pro-
cessing Systems, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[2] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

[3] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
Llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

[4] Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson,
Russell Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack
Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik,
Crystal Nam, Matthew Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk,
Saurabh Shah, William Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep
Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca
Soldaini, Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the science of language
models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics. Association for Computa-
tional Linguistics, 2024. URL https://aclanthology.org/2024.acl-long.841/.

[5] Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
technical report, 2025. URL https://arxiv.org/abs/2412.15115.

[6] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In

10

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2024.acl-long.841/
https://arxiv.org/abs/2412.15115


Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Association for Computa-
tional Linguistics, 2020. URL https://aclanthology.org/2020.acl-main.740/.

[7] Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu,
and Sanjiv Kumar. Modifying memories in transformer models, 2020. URL https://arxiv.
org/abs/2012.00363.

[8] Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. ARC prize 2024:
Technical report, 2025. URL https://arxiv.org/abs/2412.04604.

[9] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=gEZrGCozdqR.

[10] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code Llama: Open foundation models for
code, 2024. URL https://arxiv.org/abs/2308.12950.

[11] Zeming Chen, Alejandro Hernández Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami,
Alexandre Sallinen, Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk, Deniz Bayazit, Axel
Marmet, Syrielle Montariol, Mary-Anne Hartley, Martin Jaggi, and Antoine Bosselut. MediTron-
70B: Scaling medical pretraining for large language models, 2023. URL https://arxiv.
org/abs/2311.16079.

[12] Pierre Colombo, Telmo Pessoa Pires, Malik Boudiaf, Dominic Culver, Rui Melo, Caio Corro,
Andre F. T. Martins, Fabrizio Esposito, Vera Lúcia Raposo, Sofia Morgado, and Michael Desa.
SaulLM-7B: A pioneering large language model for law, 2024. URL https://arxiv.org/
abs/2403.03883.

[13] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras,
editors, Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2016. URL https://aclanthology.
org/D16-1264/.

[14] François Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/
1911.01547.

[15] Ronen Eldan and Yuanzhi Li. TinyStories: How small can language models be and still speak
coherent English?, 2023. URL https://arxiv.org/abs/2305.07759.

[16] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio Cesar Teodoro Mendes, Allie Del Giorno,
Sivakanth Gopi, Mojan Javaheripi, Piero Conti Kauffmann, Gustavo Henrique de Rosa, Olli
Saarikivi, Adil Salim, Shital Shah, Harkirat Behl, Xin Wang, Sebastien Bubeck, Ronen Eldan,
Adam Tauman Kalai, Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2024. URL
https://openreview.net/forum?id=Fq8tKtjACC.

[17] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage
and extraction, 2024. URL https://arxiv.org/abs/2309.14316.

[18] Pratyush Maini, Skyler Seto, Richard Bai, David Grangier, Yizhe Zhang, and Navdeep Jaitly.
Rephrasing the web: A recipe for compute and data-efficient language modeling. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics. Association for Computational Linguistics,
2024. URL https://aclanthology.org/2024.acl-long.757/.

11

https://aclanthology.org/2020.acl-main.740/
https://arxiv.org/abs/2012.00363
https://arxiv.org/abs/2012.00363
https://arxiv.org/abs/2412.04604
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2311.16079
https://arxiv.org/abs/2311.16079
https://arxiv.org/abs/2403.03883
https://arxiv.org/abs/2403.03883
https://aclanthology.org/D16-1264/
https://aclanthology.org/D16-1264/
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2305.07759
https://openreview.net/forum?id=Fq8tKtjACC
https://arxiv.org/abs/2309.14316
https://aclanthology.org/2024.acl-long.757/


[19] Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostofa
Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-CC: Transforming Common
Crawl into a refined long-horizon pretraining dataset, 2025. URL https://arxiv.org/abs/
2412.02595.

[20] Ruixiang Tang, Xiaotian Han, Xiaoqian Jiang, and Xia Hu. Does synthetic data generation of
LLMs help clinical text mining?, 2023. URL https://arxiv.org/abs/2303.04360.

[21] Saumya Gandhi, Ritu Gala, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Better
synthetic data by retrieving and transforming existing datasets. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar, editors, Findings of the Association for Computational Linguistics.
Association for Computational Linguistics, 2024. URL https://aclanthology.org/2024.
findings-acl.385/.

[22] Yangjun Ruan, Neil Band, Chris J. Maddison, and Tatsunori Hashimoto. Reasoning to learn
from latent thoughts, 2025. URL https://arxiv.org/abs/2503.18866.

[23] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-Instruct: Aligning language models with self-generated instruc-
tions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics. Association for Compu-
tational Linguistics, 2023. URL https://aclanthology.org/2023.acl-long.754/.

[24] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with GPT-4, 2023. URL https://arxiv.org/abs/2304.03277.

[25] Zitong Yang, Neil Band, Shuangping Li, Emmanuel Candes, and Tatsunori Hashimoto. Synthetic
continued pretraining. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=07yvxWDSla.

[26] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In The Tenth International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=0DcZxeWfOPt.

[27] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing fac-
tual associations in GPT. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf.

[28] Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-
editing memory in a transformer. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=MkbcAHIYgyS.

[29] Asaf Yehudai, Boaz Carmeli, Yosi Mass, Ofir Arviv, Nathaniel Mills, Eyal Shnarch, and Leshem
Choshen. Achieving human parity in content-grounded datasets generation. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=RjYKTQ0L0W.

[30] Afra Feyza Akyürek, Ekin Akyürek, Leshem Choshen, Derry Wijaya, and Jacob Andreas.
Deductive closure training of language models for coherence, accuracy, and updatability. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association for
Computational Linguistics. Association for Computational Linguistics, 2024. URL https:
//aclanthology.org/2024.findings-acl.584/.

[31] Andrew K. Lampinen, Arslan Chaudhry, Stephanie C. Y. Chan, Cody Wild, Diane Wan, Alex
Ku, Jörg Bornschein, Razvan Pascanu, Murray Shanahan, and James L. McClelland. On the
generalization of language models from in-context learning and finetuning: a controlled study,
2025. URL https://arxiv.org/abs/2505.00661.

[32] Core Francisco Park, Zechen Zhang, and Hidenori Tanaka. New News: System-2 fine-tuning for
robust integration of new knowledge, 2025. URL https://arxiv.org/abs/2505.01812.

12

https://arxiv.org/abs/2412.02595
https://arxiv.org/abs/2412.02595
https://arxiv.org/abs/2303.04360
https://aclanthology.org/2024.findings-acl.385/
https://aclanthology.org/2024.findings-acl.385/
https://arxiv.org/abs/2503.18866
https://aclanthology.org/2023.acl-long.754/
https://arxiv.org/abs/2304.03277
https://openreview.net/forum?id=07yvxWDSla
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=RjYKTQ0L0W
https://openreview.net/forum?id=RjYKTQ0L0W
https://aclanthology.org/2024.findings-acl.584/
https://aclanthology.org/2024.findings-acl.584/
https://arxiv.org/abs/2505.00661
https://arxiv.org/abs/2505.01812


[33] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. Test-
time training with self-supervision for generalization under distribution shifts. In Proceedings
of the 37th International Conference on Machine Learning. PMLR, 2020. URL http://
proceedings.mlr.press/v119/sun20b.html.

[34] Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei Efros. Test-time training with
masked autoencoders. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
bcdec1c2d60f94a93b6e36f937aa0530-Paper-Conference.pdf.

[35] Yu Sun, Xinhao Li, Karan Dalal, Chloe Hsu, Sanmi Koyejo, Carlos Guestrin, Xiaolong Wang,
Tatsunori Hashimoto, and Xinlei Chen. Learning to (learn at test time), 2024. URL https:
//arxiv.org/abs/2310.13807.

[36] Ekin Akyürek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim,
and Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning,
2025. URL https://arxiv.org/abs/2411.07279.

[37] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Chris-
tiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with
human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

[38] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath,
Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny
Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine
Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann,
and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from
human feedback, 2022. URL https://arxiv.org/abs/2204.05862.

[39] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STaR: Bootstrapping reason-
ing with reasoning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf.

[40] Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia,
Peter J Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron T Parisi, Abhishek Kumar, Alexan-
der A Alemi, Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Fathy El-
sayed, Hanie Sedghi, Igor Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pen-
nington, Jiri Hron, Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura A Culp, Lechao
Xiao, Maxwell Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yamini
Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel. Beyond hu-
man data: Scaling self-training for problem-solving with language models. Transactions on Ma-
chine Learning Research, 2024. URL https://openreview.net/forum?id=lNAyUngGFK.

[41] DeepSeek-AI. Deepseek-R1: Incentivizing reasoning capability in LLMs via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

[42] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, 1987. URL https:
//people.idsia.ch/~juergen/diploma1987ocr.pdf.

[43] Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. Learning to learn using gradient de-
scent. In Georg Dorffner, Horst Bischof, and Kurt Hornik, editors, ICANN. Springer Berlin Hei-
delberg, 2001. URL https://link.springer.com/chapter/10.1007/3-540-44668-0_
13.

13

http://proceedings.mlr.press/v119/sun20b.html
http://proceedings.mlr.press/v119/sun20b.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/bcdec1c2d60f94a93b6e36f937aa0530-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/bcdec1c2d60f94a93b6e36f937aa0530-Paper-Conference.pdf
https://arxiv.org/abs/2310.13807
https://arxiv.org/abs/2310.13807
https://arxiv.org/abs/2411.07279
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2204.05862
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://openreview.net/forum?id=lNAyUngGFK
https://arxiv.org/abs/2501.12948
https://people.idsia.ch/~juergen/diploma1987ocr.pdf
https://people.idsia.ch/~juergen/diploma1987ocr.pdf
https://link.springer.com/chapter/10.1007/3-540-44668-0_13
https://link.springer.com/chapter/10.1007/3-540-44668-0_13


[44] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, Proceedings of Machine Learning Research.
PMLR, 2017. URL https://proceedings.mlr.press/v70/finn17a.html.

[45] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2:
Fast reinforcement learning via slow reinforcement learning, 2016. URL https://arxiv.
org/abs/1611.02779.

[46] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn,
2017. URL https://arxiv.org/abs/1611.05763.

[47] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. In The Sixth International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=SyX0IeWAW.

[48] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
Meta-reinforcement learning of structured exploration strategies. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
4de754248c196c85ee4fbdcee89179bd-Paper.pdf.

[49] Qi Sun, Edoardo Cetin, and Yujin Tang. Transformer-Squared: Self-adaptive LLMs, 2025. URL
https://arxiv.org/abs/2501.06252.

[50] Jurgen Schmidhuber. Steps towards ‘self-referential’ neural learning: A thought experiment,
1992. URL https://people.idsia.ch/~juergen/selfref1992.pdf.

[51] Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. A modern self-referential
weight matrix that learns to modify itself. In International Conference on Machine Learning.
PMLR, 2022. URL https://proceedings.mlr.press/v162/irie22b.html.

[52] Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta
learning, 2024. URL https://arxiv.org/abs/2311.04661.

[53] Nathan Hu, Eric Mitchell, Christopher Manning, and Chelsea Finn. Meta-learning online
adaptation of language models. In Houda Bouamor, Juan Pino, and Kalika Bali, editors,
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2023. URL https://aclanthology.org/2023.
emnlp-main.268/.

[54] Tong Chen, Hao Fang, Patrick Xia, Xiaodong Liu, Benjamin Van Durme, Luke Zettlemoyer,
Jianfeng Gao, and Hao Cheng. Generative Adapter: Contextualizing language models in
parameters with a single forward pass. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=bc3sUsS6ck.

[55] Dan A. Calian, Gregory Farquhar, Iurii Kemaev, Luisa M. Zintgraf, Matteo Hessel, Jeremy
Shar, Junhyuk Oh, András György, Tom Schaul, Jeffrey Dean, Hado van Hasselt, and David
Silver. DataRater: Meta-learned dataset curation, 2025. URL https://arxiv.org/abs/
2505.17895.

[56] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine
Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli
Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal
Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer,
Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston,
Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton,
Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben
Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan.
Constitutional AI: Harmlessness from AI feedback, 2022. URL https://arxiv.org/abs/
2212.08073.

14

https://proceedings.mlr.press/v70/finn17a.html
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.05763
https://openreview.net/forum?id=SyX0IeWAW
https://proceedings.neurips.cc/paper_files/paper/2018/file/4de754248c196c85ee4fbdcee89179bd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/4de754248c196c85ee4fbdcee89179bd-Paper.pdf
https://arxiv.org/abs/2501.06252
https://people.idsia.ch/~juergen/selfref1992.pdf
https://proceedings.mlr.press/v162/irie22b.html
https://arxiv.org/abs/2311.04661
https://aclanthology.org/2023.emnlp-main.268/
https://aclanthology.org/2023.emnlp-main.268/
https://openreview.net/forum?id=bc3sUsS6ck
https://arxiv.org/abs/2505.17895
https://arxiv.org/abs/2505.17895
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073


[57] Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu,
Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. RLAIF vs.
RLHF: Scaling reinforcement learning from human feedback with AI feedback. In Proceedings
of the 41st International Conference on Machine Learning, ICML ’24. JMLR.org, 2024.

[58] Jing-Cheng Pang, Pengyuan Wang, Kaiyuan Li, Xiong-Hui Chen, Jiacheng Xu, Zongzhang
Zhang, and Yang Yu. Language model self-improvement by reinforcement learning contem-
plation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=38E4yUbrgr.

[59] Zhaoyang Wang, Weilei He, Zhiyuan Liang, Xuchao Zhang, Chetan Bansal, Ying Wei, Weitong
Zhang, and Huaxiu Yao. CREAM: Consistency regularized self-rewarding language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=Vf6RDObyEF.

[60] Yuda Song, Hanlin Zhang, Carson Eisenach, Sham M. Kakade, Dean Foster, and Udaya Ghai.
Mind the gap: Examining the self-improvement capabilities of large language models. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=mtJSMcF3ek.

[61] Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. In Houda Bouamor, Juan Pino, and Kalika
Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2023. URL https://aclanthology.
org/2023.emnlp-main.67/.

[62] Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang, Jing Xu, Maryam Fazel-Zarandi, Mo-
hit Bansal, Sainbayar Sukhbaatar, Jason Weston, and Jane Yu. Self-consistency preference
optimization, 2024. URL https://arxiv.org/abs/2411.04109.

[63] Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz,
Jordan T. Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharp-
ening mechanism. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=WJaUkwci9o.

[64] Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, Biqing Qi, Youbang Sun, Zhiyuan Ma, Lifan Yuan, Ning Ding,
and Bowen Zhou. TTRL: Test-time reinforcement learning, 2025. URL https://arxiv.org/
abs/2504.16084.

[65] Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette.
Can large reasoning models self-train?, 2025. URL https://arxiv.org/abs/2505.21444.

[66] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

[67] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

[68] W. R. Gilks and P. Wild. Adaptive rejection sampling for gibbs sampling. Journal of the Royal
Statistical Society, 1992. URL http://www.jstor.org/stable/2347565.

[69] Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline
reinforcement learning over behavioral cloning? In The Tenth International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=AP1MKT37rJ.

[70] Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang
Zhou, and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large
language models, 2023. URL https://arxiv.org/abs/2308.01825.

[71] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network,
2015. URL https://arxiv.org/abs/1503.02531.

15

https://openreview.net/forum?id=38E4yUbrgr
https://openreview.net/forum?id=Vf6RDObyEF
https://openreview.net/forum?id=Vf6RDObyEF
https://openreview.net/forum?id=mtJSMcF3ek
https://openreview.net/forum?id=mtJSMcF3ek
https://aclanthology.org/2023.emnlp-main.67/
https://aclanthology.org/2023.emnlp-main.67/
https://arxiv.org/abs/2411.04109
https://openreview.net/forum?id=WJaUkwci9o
https://arxiv.org/abs/2504.16084
https://arxiv.org/abs/2504.16084
https://arxiv.org/abs/2505.21444
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/1707.06347
http://www.jstor.org/stable/2347565
https://openreview.net/forum?id=AP1MKT37rJ
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/1503.02531


[72] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
The Tenth International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=nZeVKeeFYf9.

[73] Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem, 1989. URL https://www.sciencedirect.com/science/
article/pii/S0079742108605368.

[74] Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. In The Second
International Conference on Learning Representations, 2014. URL https://openreview.
net/forum?id=oXSw7laxwUpln.

[75] Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao,
Feng Wu, and Changjie Fan. Learning to utilize shaping rewards: A new approach
of reward shaping. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
b710915795b9e9c02cf10d6d2bdb688c-Paper.pdf.

[76] Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2Reward: Reward shaping with language models for reinforcement learning,
2024. URL https://arxiv.org/abs/2309.11489.

[77] Jiayi Fu, Xuandong Zhao, Chengyuan Yao, Heng Wang, Qi Han, and Yanghua Xiao. Reward
shaping to mitigate reward hacking in RLHF, 2025. URL https://arxiv.org/abs/2502.
18770.

[78] Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He,
and Tat-Seng Chua. AlphaEdit: Null-space constrained model editing for language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=HvSytvg3Jh.

[79] Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen. Super-
position of many models into one. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf.

[80] Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. Rl’s razor: Why online reinforcement learning
forgets less, 2025. URL https://arxiv.org/abs/2509.04259.

[81] Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius
Hobbhahn. Will we run out of data? Limits of LLM scaling based on human-generated data,
2024. URL https://arxiv.org/abs/2211.04325.

[82] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, et al. GPT-4 technical
report, 2024. URL https://arxiv.org/abs/2303.08774.

[83] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. DeepSpeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’20. Association for Computing Machinery, 2020. URL https:
//doi.org/10.1145/3394486.3406703.

[84] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with PagedAttention. In Proceedings of the ACM SIGOPS 29th
Symposium on Operating Systems Principles, 2023. URL https://dl.acm.org/doi/10.
1145/3600006.3613165.

16

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://openreview.net/forum?id=oXSw7laxwUpln
https://openreview.net/forum?id=oXSw7laxwUpln
https://proceedings.neurips.cc/paper_files/paper/2020/file/b710915795b9e9c02cf10d6d2bdb688c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b710915795b9e9c02cf10d6d2bdb688c-Paper.pdf
https://arxiv.org/abs/2309.11489
https://arxiv.org/abs/2502.18770
https://arxiv.org/abs/2502.18770
https://openreview.net/forum?id=HvSytvg3Jh
https://openreview.net/forum?id=HvSytvg3Jh
https://proceedings.neurips.cc/paper_files/paper/2019/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://arxiv.org/abs/2509.04259
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3600006.3613165


[85] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7B, 2023. URL
https://arxiv.org/abs/2310.06825.

17

https://arxiv.org/abs/2310.06825


A Experimental Details: Few-shot Learning

A.1 Model and Setup

For the few-shot learning experiments, we use Llama-3.2-1B-Instruct [3] as the base language
model. Since this model has no specialized training on ARC, its ability to solve ARC tasks is limited.
To enable controlled evaluation, we curated a small set of ARC problems from the training and
evaluation splits that are solvable with optimal TTT hyperparameters.

Training Set: We selected 11 ARC tasks from the training set as the environment for RL optimization.
Evaluation Set: We selected 8 distinct ARC problems from the evaluation set for measuring
generalization performance. These 8 were explicitly filtered for being amenable to TTT out of the
full evaluation set.

These sets were chosen to isolate the effect of self-edit learning rather than general ARC ability.

A.2 Training Procedure

We trained SEAL using a single outer loop of reinforcement learning on the 11 training problems.
For each problem, the model generated 15 self-edit configurations consisting of:

• Data augmentation strategy: Controls whether to include variations such as basic exam-
ples, size-based augmentations, chained reasoning, and repeated inputs: include_basic,
include_size, include_chain, include_repeat.

• Optimization configuration: Specifies hyperparameters such as learning rate, number of
epochs, and loss function type (e.g., whether to compute loss over all tokens or only the
final output tokens).

Each configuration was evaluated via test-time training (TTT), and assigned a binary reward: 1 if
the adapted model produced the correct solution, 0 otherwise using Akyürek et al. [36]’s evaluation
protocol. To encourage efficient adaptation, we discarded configurations requiring more than 375
training steps, retained only configurations with reward 1 and acceptable cost for LoRA-based SFT.

SFT for TTT was done with the following hyperparameters:

Parameter Value
LoRA rank 128
LoRA alpha 16
Learning rate N/A (model chooses it)
num_train_epochs N/A (model chooses it)

LoRA adapters were inserted into the following modules: q_proj, v_proj, gate_proj, down_proj,
up_proj

For the RL SFT we used the following hyperparameters:

Parameter Value
lora_rank 16
lora_alpha 16
num_train_epochs 8
per_device_train_batch_size 5
learning_rate 5e-5

When generating the self-edits, we add the following prompt as a suffix to the few-shot examples.

18



You are configuring a model training pipeline by selecting from predefined tools.
You must make two decisions:
1. Data Generation Tools — For each of the following, choose true or false:

- use_basic_augmentations
- use_size_augmentations
- use_chain_augmentations
- use_repeat_augmentations

2. Training Configuration — Choose one of:
- "train_using_all_tokens"
- "train_using_output_tokens"

Also specify:
- learning_rate (float)
- num_train_epochs (integer)

Output Format

Respond with a valid JSON object. Do not include any explanation, markdown, or extra text.
Use lowercase true/false for booleans and ensure correct JSON syntax.
Example output:
{

"data_generation": {
"use_basic_augmentations": ...,
"use_size_augmentations": ...,
"use_chain_augmentations": ...,
"use_repeat_augmentations": ...

},
"training": {

"strategy": ...,
"learning_rate": ...,
"num_train_epochs": ...

}
}

A.3 Evaluation Details

For each of the 8 held-out evaluation tasks, the model generated 5 self-edit configurations, yielding
a total of 40 configurations. Success was measured as the percentage of configurations that led to
correct outputs after adaptation. We followed the evaluation protocol from Akyürek et al. [36].

For the Oracle TTT we used the following configs:

Parameter Value
lora_rank 128
lora_alpha 16
num_train_epochs 2
batch_size 2
learning_rate 1e-4

A.4 Compute Resources

We performed all training runs on a single A100, H100, or H200. Each TTT per problem requires
between half a minute to a few minutes, which is also why we limited the number of samples for
ReSTEM and additionally limited the number of gradient steps allowed per self-edit TTT. Overall
ReSTEM took around 2-3 hours.

19



B Experimental Details: Knowledge Incorporation

B.1 Model and Setup

We use the Qwen-2.5-7B base model [5] in the knowledge incorporation experiments. We repurpose
the SQuAD dataset v1.1 [13] for the task of answering questions without the passage in-context.
We use the training set for RL training and a 200-article subset of the evaluation set for evaluation.
Within the training set and evaluation set, there are some overlapping topics of passages, but there
is no overlap between these sets, so we can be sure that there is no data contamination of the test
passages due to RL training.

B.2 RL Training Procedure

We run 2 rounds of ReSTEM training [40]. On each round, we take a batch of 50 context-questions-
answers triples from the SQuAD training set. For each context, we sample 5 self-edit generations at
temperature 1. We evaluate each self-edit over 3 random seeds, training on the sequences and then
evaluating the updated model on the corresponding questions. We average each generation’s results
over 3 seeds and then keep the single best generation for each of the 50 contexts. Finally, to finish the
round of ReSTEM , we perform supervised finetuning on the 50 resulting prompt-completion pairs.

Supervised finetuning here is done with batch size of 10, for 2 epochs, with learning rate 3e-4, using
LoRA [72] with rank 64 and alpha 128, applied to all MLP and attention projection layers.

B.3 Synthetic Data Generation and Finetuning Details

In all models, we generate synthetic data by prompting to generate implications of the passage:

Let’s read the following passage and produce a list of implications derived directly or
indirectly from the content.

Passage:
{passage}

Implications:

We then take the resulting generated sequence. In the single-passage case, we split it by newlines
into a set of training documents. In the multi-passage case, we use the full generated sequence as a
single training document. In the case of synthetic data from GPT-4.1 (gpt-4.1-2025-04-14), an
instruct-model, we additionally have the following rule: If the second line begins with a “1.” then we
omit the first line from the training set. This is because we found that the first line often contained
filler text (e.g. “Sure, here is the list of implications:”).

We then use the following training hyperparameters:

Table 3: Single-Passage Knowledge Incorporation Hyperparameters

Parameter Search Space

LoRA Rank (r) [32, 64]
LoRA Alpha (α) [32, 64]
Learning Rate [1e-4, 3e-4, 5e-4, 1e-3, 2e-3]
Epochs [1, 5, 10, 15, 20]
Batch Size [1, 4]

In the multi-passage n = 200 case, we sample 5 self-edit completions for each passage and take the
aggregate dataset of all self-edits across all passages to train on.

To answer the corresponding questions, we use the following prompt:

20



Table 4: Multi-Passage Knowledge Incorporation Hyperparameters

Parameter Search Space

LoRA Rank (R) [32, 64]
LoRA Alpha (α) [32, 64]
Learning Rate [1e-4, 3e-4, 5e-4, 1e-3, 2e-3]
Epochs [1, 3, 5]
Batch Size [1, 4, 8, 16]

Let’s answer a question directly and concisely.
Question: {question}
Answer:

B.4 Evaluation Details

We evaluate on a 200-passage subset of the SQuAD evaluation set, consisting of a combined 974
evaluation questions (roughly 5 corresponding to each passage). The pipeline of generating synthetic
data and finetuning on it is the same as above. For automated grading, we use gpt-4.1-2025-04-14
[82] via the OpenAI API with greedy decoding.

The grading prompt is as follows:

You are a grading assistant. Your job is to determine whether a student’s answer correctly
answers the question based solely on the provided gold answer. Do not use any outside
knowledge. The student answer can include additional information, but it must at least fully
convey the gold answer and must not contradict it. Ignore style, phrasing, or extra details that
do not affect correctness. Respond ONLY with ‘yes’ or ‘no’.

Question: {question}
Gold answer: {gold}
Student answer: {pred}
Is the student answer correct based solely on the gold answer? Respond ‘yes’ or ‘no’.

B.5 Compute Resources

All experiments are performed on 2×H100 or 2×H200. We use DeepSpeed ZeRO-3 [83] for SFT in
ReSTEM training. We use vLLM [84] for efficient inference. The most compute-intensive portion of
our training and evaluation is the E-step of ReSTEM training, where the model generates completions
and is graded through the inner-loop process of finetuning and running inference. Doing a single
round requires a batch of 50 passages over 5 completions and 3 runs per completion, meaning 750
inner loop iterations. This takes about 6 hours on 2×H100s.

B.6 Standard Error of the Mean in Catastrophic Forgetting Experiment

The standard errors of the mean (SEM) for each entry in Figure 6 is shown below in Table B.6.

B.7 Scaling Model Size

We further experimented with the 3B-parameter Qwen variant, with the same single-passage setup as
in Figure 4. The results are given in Table 6.

To compare the benefit of SEAL over using self-edits generated by the base model, we compute the
ratio of SEAL’s improvement over the base model to the improvement from base model self-edits.
This ratio is 1.75× for the 3B model and 2.04× for the 7B model. The relative improvement is greater
for the 7B model, which provides some evidence that not only are stronger base models more effective
at leveraging synthetic data for self-adaptation, but reinforcement learning may have compounding

21



Table 5: Entrywise standard errors of the mean (SEM) across continual self-edits experiment.

1 2 3 4 5 6 7 8

0 0.0306 0.0315 0.0263 0.0318 0.0297 0.0370 0.0310 0.0284
1 0.0273 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0305 0.0277 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0277 0.0358 0.0406 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0272 0.0303 0.0337 0.0320 0.0000 0.0000 0.0000 0.0000
5 0.0296 0.0342 0.0290 0.0298 0.0319 0.0000 0.0000 0.0000
6 0.0289 0.0334 0.0271 0.0258 0.0320 0.0337 0.0000 0.0000
7 0.0255 0.0313 0.0264 0.0253 0.0309 0.0331 0.0363 0.0000
8 0.0237 0.0307 0.0211 0.0267 0.0273 0.0271 0.0358 0.0263

Table 6: Model Size Scaling Performance (%).

Model Base Model (No Training) Base Model Self-Edit SEAL

Qwen2.5-3B 25.1 31.9 37.0
Qwen2.5-7B 32.7 39.7 47.0

benefits as model capacity increases. We acknowledge that it is hard to draw conclusions though
without actually scaling up further.

B.8 Comparison to Generative Adapter

We additionally compared with Generative Adapter [54], a hypernetwork approach that generates
LoRA weights from context, using our evaluation setup. Table 7 reports results for both single-
passage (n=1) and continued pretraining (n = 200). We use the Mistral-7B-based model [85] for
Generative Adapter, since that was the closest model for comparison. All values are on the same
evaluation set, but CPT batches updates over all documents while single-passage trains and evaluates
an adapter separately for each document. Generative Adapter achieves strong performance in the
n=1 case, but underperforms SEAL in the CPT setting. SEAL’s parameterization of weight updates
through synthetic data generation allows reuse of generated data for CPT, application to arbitrary
base models, and flexibility to learn updates from diverse interaction types beyond LoRA finetuning.

Table 7: SEAL vs. Generative Adapter Performance (%).

Model Base Single-passage (n=1) CPT (n = 200)

SEAL 32.0 47.0 58.2
Generative Adapter 24.4 66.8 28.0

We note that parameterizing weight updates via synthetic data generation rather than directly predict-
ing LoRA weights has several advantages: (1) generated data can be reused for CPT or applied to
arbitrary base models, (2) models can leverage reasoning and restructuring as document scale and
complexity grow, and (3) the framework is not restricted to LoRA finetuning, allowing for many
different update types, including those arising from environment or user interactions. By contrast,
it is unclear how hypernetwork-based approaches would scale to such settings, while next-token
prediction on generated data naturally exploits a model’s in-context learning capabilities.

B.9 Comparison to Entigraph

We additionally compare SEAL to Entigraph [25] in the Synthetic Continued Pretraining (SCPT)
setting on SQuAD. Results for both 200 and 2067 passages are shown in Table 8. SEAL uses
the same 5 synthetic data generations per document. For Entigraph, we sample 5 synthetic data
generations involving pairs and 5 triplets of entities per document. Entigraph with all 10 synthetic
data generations sampling is competitive with SEAL, especially at the larger scale. These results

22



suggest that RL-trained self-edits and structured heuristic methods are both strong approaches for
synthetic data generation.

Table 8: Synthetic Continued Pretraining (SCPT) on SQuAD (no passage in context). Best in each
column is bolded.

Method Continued Pretraining (n=200) Continued Pretraining (n=2067)

SEAL 58.2 46.4
Entigraph (pairs) 46.2 38.6
Entigraph (pairs+triples) 56.0 48.6

B.10 Proxy Reward

We experiment with replacing the inner loop with a proxy reward based on a human-crafted rubric
with 4 categories: length, diversity, quality, and correctness. A GPT-4.1 grader scores each category
on a 1-5 scale, and the sum of these scores is used as the RL reward. Table 9 reports final results and
RL training times.

Table 9: Full Reward vs. Proxy Reward Performance (%).

Model Base Post-RL Time

SEAL 32.0 47.0 ≈6 hr
SEAL w/ Proxy-Reward 32.0 45.6 ≈5 min

While further tuning of the rubric or metric design could strengthen the reward signal, the advantage
of the full SEAL loop is that no such manual specification is required—the model directly learns
which edits improve its own performance. Both approaches appear promising for scaling to larger
model sizes and compute budgets: proxy metrics offer dramatically lower cost, and with refinement,
they may even surpass the “true” reward of directly optimizing for post-finetuning performance.

B.11 Prompting

Recent works have shown that reinforcement learning baselines and outcomes can be highly sensitive
to prompting. We experiment with 6 additional self-edit prompts in the knowledge-incorporation
setting. The seven prompts—implications, implications-long, implications-very-long,
implications-chain-of-thought, rewrite, self-qa, and no-prompt—are shown below. All
results in the main content of the paper used the implications prompt, which we consider to be the
most prototypical [30, 31]. However, prior work has found prompts involving rewriting or generating
question-answer pairs can be more effective, as discussed in §2.

Furthermore, as we see qualitatively in Figure 5, RL appears to have dramatically increased the length
of the response of the example. We therefore experiment with prompting for longer generations
with implications-long and implications-very-long to test if we can achieve similar gains
through prompting alone.

The results are shown in Table 10. Notably, the baselines for implications-long and rewrite
the RL-trained version of implications. However, using these prompts as the base of RL training
yields even greater improvements. In all cases, ReSTEM enhanced performance by roughly 6 to 11
percentage points.

Here, “Chain-of-thought-eval” refers to having the model reason before answering the questions
(letting the model “pull out” information from its weights), rather than chain-of-thought before
generating synthetic data, which is done with the base implications prompt. However, we did
not notice a substantial difference in our setting when chain-of-thought was applied, whether before
answering and before writing synthetic data.

Letting the model “determine its own” self-edit format, with no-prompt, was not able to achieve
the same results as predefined prompting formats in our experiments, achieving only 18.9% after 2
rounds of training.

23



Method Original Round 1 Round 2 gpt-4.1 synthetic
No self-edit 33.5 – – –
Implications 39.7 43.7 47.0 46.3
Implications-long 49.3 52.4 54.4 54.1
Implications-very-long 45.0 51.5 52.1 40.9
Rewrite 49.4 55.3 55.6 54.4
Self-QA 37.3 42.8 48.7 39.2
No-Prompt 13.8 12.7 18.9 28.6
Implications-chain-of-thought 38.7 – – –
Chain-of-thought-eval 37.8 – – –

Table 10: Performance across 2 rounds of ReSTEM RL training on various prompts in the single-
document knowledge incorporation setting. The gpt-4.1 column reports performance using synthetic
data generated by gpt-4.1 with the corresponding prompt format.

The five prompts are shown below.

implications

Let’s read the following passage and produce a list of implications derived directly or
indirectly from the content.

Passage:
{passage}

Implications:

implications-long

Let’s read the following passage and produce a long list of implications derived directly or
indirectly from the content.

Passage:
{passage}

Implications:

implications-very-long

Let’s read the following passage and produce a very long list of implications derived directly
or indirectly from the content.

Passage:
{passage}

Implications:

implications-chain-of-thought

Let’s read the following passage, think step by step, and then produce a list of implications
derived directly or indirectly from the content. We should first generate a "Thought Process"
and then "Implications"

Passage:
{passage}

Thought Process:

24



no-prompt

{passage}

rewrite

Let’s read the following passage and rewrite it in a few different ways, each one separated by
a newline.

Passage:
{passage}

Rewritten passages:

self-qa

Let’s read the following passage and rewrite it in a question-answer format.

Passage:
{passage}

Question 1:

Note: For self-qa, we apply additional formatting so that training documents consist of ques-
tion–answer pairs, rather than using our standard approach of splitting by newline characters. Specifi-
cally, we split the output using occurrences of “Question n:” instead of newlines.

25



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract & §1 clearly list contributions and scope; results sections match them.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: §5 “Limitations” enumerates strong assumptions, compute cost, and
catastrophic-forgetting issues.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

26



Justification: The paper contains no formal theorems—only algorithmic descriptions (§3).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All training/evaluation pipelines, hyperparameters, and prompts detailed in
Appx. A–B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

27



Answer: [No]

Justification: Code and data will be released upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Datasets, splits, model sizes, LoRA ranks, LR grids, etc. specified in Appx.
A–B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Discrete success-rate metrics reported without error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Information on compute resources is given in Appx. A–B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Authors reviewed NeurIPS Code of Ethics and verify compliance. We do not
foresee any potential harms.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not foresee immediate societal impacts, as this is foundational research
focused on self-adaptive model training. The method is not deployed or tied to sensitive
applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

29

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not anticipate any risks for misuse. Our models have a similar risk of
misuse as the base Qwen and Llama models used.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets (Qwen-2.5, Llama-3, SQuAD, ARC) cited, with licenses
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

30

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Study uses only public text corpora; no human-subject experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human-subject research performed, hence no IRB needed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31



16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as important, original, or non-standard components in the
development of the research methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

32

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methods
	General Framework
	Domain Instantiations

	Results
	Few-Shot Learning
	Knowledge Incorporation

	Limitations
	Discussion and Conclusion
	Experimental Details: Few-shot Learning
	Model and Setup
	Training Procedure
	Evaluation Details
	Compute Resources

	Experimental Details: Knowledge Incorporation
	Model and Setup
	RL Training Procedure
	Synthetic Data Generation and Finetuning Details
	Evaluation Details
	Compute Resources
	Standard Error of the Mean in Catastrophic Forgetting Experiment
	Scaling Model Size
	Comparison to Generative Adapter
	Comparison to Entigraph
	Proxy Reward
	Prompting


