

MAR: MEDICAL ASYMMETRIC RETRIEVER FOR EFFICIENT CHINESE MEDICAL DENSE RETRIEVAL

Anonymous authors

Paper under double-blind review

ABSTRACT

Embedding models are critical for domain-specific information retrieval (IR), particularly in healthcare, where accurate, low-latency access to medical knowledge can enhance clinical decision support and mitigate hallucinations in retrieval-augmented generation (RAG) systems. However, Chinese medical retrieval remains underdeveloped due to the absence of high-quality medical retrieval benchmark. To address this limitation, we propose a novel high-quality Chinese **Medical Text Embedding Benchmark (MedTEB)**, which covers three practical tasks close to real-world scenarios: retrieval, reranking, and semantic textual similarity (STS). We introduce comprehensive LLM-based annotation in the construction process to improve the quality of curated datasets. Through evaluating existing powerful general-purpose embedding models on MedTEB, we demonstrate that MedTEB is a challenging domain-specific embedding benchmark to evaluate models' retrieval capabilities on Chinese medical retrieval. On this foundation, we propose **Medical Asymmetric Retriever (MAR)**, an asymmetric embedding architecture that decouples query and document encoding: a lightweight encoder handles online queries with minimal latency, while a powerful and offline LLM-based encoder preserves retrieval quality. Optimizing the asymmetric architecture brings to new challenges. We introduce a novel two-stage optimization framework: 1) **query encoder alignment** and 2) **joint fine-tuning**. Through the novel approach, MAR achieves state-of-the-art (SOTA) performance on MedTEB while maintaining lightweight inference speeds comparable to small-size BERT-style embedding models, leading to an excellent trade-off on accuracy and efficiency and thus offering a practicable and effective solution for real-world Chinese medical retrieval scenarios. Our code, data and model will be made publicly available to facilitate future research on domain-specific IR.

1 INTRODUCTION

Embedding models have become the backbone of modern natural language processing (NLP), facilitating tasks such as retrieval, reranking, and classification (Reimers & Gurevych, 2019). Their role is crucial in retrieval-augmented generation (RAG) systems (Lewis et al., 2020), which leverage external knowledge to enhance large language models (LLMs). In specialized domains such as healthcare, where LLMs often lack deep expert knowledge, accurate and low-latency access to medical knowledge can enhance clinical decision support and mitigate hallucinations in RAG, making domain-specific, low-latency embeddings indispensable.

Despite recent rapid progress in general-domain embedding models (e.g., BGE (Chen et al., 2024a), GTE (Li et al., 2023), Qwen3-Embedding (Zhang et al., 2025)), Chinese medical text embedding has received limited attention. Existing benchmarks like C-MTEB (Xiao et al., 2024) include only two Chinese medical retrieval datasets, but both exhibit annotation noise and false negatives (see Appendix E). Moreover, current powerful embedding models are mostly LLM-based (Lee et al., 2024), delivering strong performance but at the expense of substantial latency and computational overhead, which limit their applications in latency-sensitive scenarios such as real-time medical QA. This highlights the challenge of balancing performance and deployability.

To address the critical gap in standardized evaluation for Chinese medical text embedding, we introduce the Chinese **Medical Text Embedding Benchmark (MedTEB)**, which consists of three newly

054 curated tasks—retrieval, reranking, and medical synonym STS—along with two existing public
 055 datasets. We employ a comprehensive LLM-based annotation pipeline to improve label quality.
 056 Evaluations show that even powerful general-purpose embedders underperform on MedTEB, con-
 057 firming its difficulty and domain-specificity.

058 Building on this foundation, we propose
 059 **Medical Asymmetric Retriever (MAR)**, an
 060 asymmetric embedding architecture that de-
 061 couples query and document encoding: a
 062 lightweight query encoder serves online re-
 063 quests with minimal latency, while a more pow-
 064 erful, offline document encoder preserves re-
 065 trieval quality (Wang & Lyu, 2023). To pro-
 066 gressively bridge the two encoders and di-
 067 rectly optimizes retrieval, we introduce a two-
 068 stage optimization framework: 1) query en-
 069 coder alignment and 2) joint fine-tuning. As
 070 shown in Figure 1, while most embedding mod-
 071 els exhibit a clear accuracy-latency trade-off,
 072 MAR breaks this trend. It matches the retrieval
 073 accuracy of heavyweight LLM-based embed-
 074 ding models while sustaining QPS levels com-
 075 parable to small-size BERT-style embedding
 076 models. We further observe that as the docu-
 077 ment encoder scales up, the asymmetric model
 078 progressively closes the gap with LLM-based
 079 embedding models, offering a practical path to
 080 scale retrieval performance without sacrificing
 081 latency.

082 The primary contributions of our work are as
 083 follows:

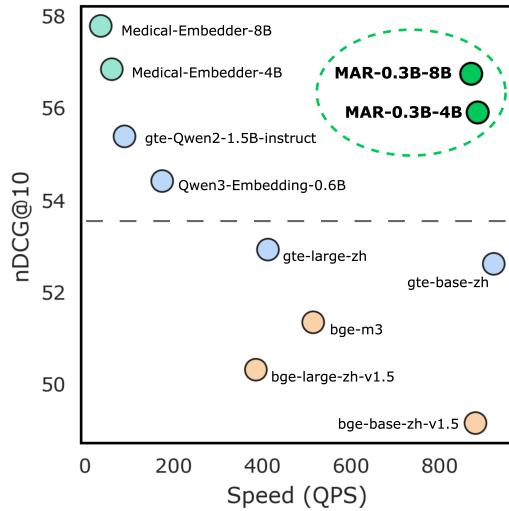
- 084 • We introduce MedTEB, a comprehensive benchmark for Chinese medical text retrieval, establish-
 085 ing a reliable standard for future domain-specific evaluation.
- 086 • We propose MAR, an asymmetric embedding model for the Chinese medical domain that achieves
 087 SOTA performance with low inference latency.
- 088 • We open-source benchmark, models, and code to foster future research in domain-specific re-
 089 trieval.

091 2 RELATED WORK

093 **Embedding Models.** Text embedding models have advanced rapidly alongside pretrained lan-
 094 guage models. Early works such as Contriever (Izacard et al., 2021) explored unsupervised con-
 095 trastive pretraining, while more recent models like E5 (Wang et al., 2022), GTE (Li et al., 2023),
 096 and the BGE series (Chen et al., 2024a) leveraged large-scale contrastive pretraining to obtain strong
 097 general-purpose embeddings. In the biomedical domain, specialized models such as MedCPT (Jin
 098 et al., 2023) and BMRetriever (Xu et al., 2024) leverage large-scale medical corpus and tuning
 099 language models for enhanced retrieval. Recently, decoder-only embedding models such as Qwen3-
 100 Embedding (Zhang et al., 2025), bge-en-ic1 (Li et al., 2024a), and NV-Embed (Lee et al., 2024) have
 101 achieved state-of-the-art performance on MTEB (Muennighoff et al., 2022).

102 Despite these advances, most LLM-based models contain billions of parameters. While they deliver
 103 strong accuracy, their high latency and computational overhead make them impractical for latency-
 104 sensitive applications such as real-time medical retrieval. This gap highlights the urgent need for
 105 lightweight yet effective embedding models in specialized domains.

106 **Medical Embedding Benchmarks.** MTEB (Muennighoff et al., 2022) provides a comprehensive
 107 benchmark across languages and tasks, and its Chinese extension C-MTEB (Xiao et al., 2024) in-



092 Figure 1: Efficiency-performance trade-off on
 093 MedTEB Retrieval. The x-axis shows queries per
 094 second (QPS) on a single A100 80GB GPU; the
 095 y-axis reports nDCG@ 10 of MedTEB Retrieval.

108 cludes several Chinese embedding model datasets. Recent work such as R2MED (Li et al., 2025) has
 109 introduced benchmarks for reasoning-driven medical retrieval. However, domain-specific evaluation
 110 in the Chinese medical domain remains scarce. Existing medical related benchmarks, CmedqaRe-
 111 trieval (Zhang et al., 2017), MedicalRetrieval (Long et al., 2022), and reranking datasets such as
 112 CMedQA-v1 and CMedQA-v2 (Zhang et al., 2018) are all included in C-MTEB. However, the
 113 retrieval tasks suffer from annotation noise and false negatives, leaving only the reranking tasks
 114 relatively reliable. As a result, the field still lacks comprehensive, high-quality benchmarks for Chi-
 115 nese medical text embedding, leaving a major gap for developing and evaluating domain-specific
 116 embedding models.

117 **Asymmetric architecture** A growing number of work explores asymmetric embedding architec-
 118 tures to improve retrieval efficiency. These can be broadly categorized into two families. (1) Pruning
 119 and distillation approaches: Works such as KALE (Wang & Lyu, 2023; Campos et al., 2023) prune
 120 layers from a BERT-based large encoder to initialize a lightweight query encoder, then apply align-
 121 ment losses such as Euclidean distance or KL divergence to distill knowledge from the teacher. (2)
 122 Heterogeneous encoder approaches: Other works, including ScalingNote (Huang et al., 2024) and
 123 HotelMatch (Askari et al., 2025), align query and document encoders with different architectures or
 124 modalities. Our approach differs in three ways: (i) we use a decoder-only document encoder that
 125 supports heterogeneous alignment, (ii) we introduce a two-stage alignment framework to progres-
 126 sively bridge query and document encoders and directly optimize retrieval, and (iii) unlike Hotel-
 127 Match, which projects query embeddings to a higher dimension through an additional linear layer,
 128 leading to higher retrieval cost, our design removes this projection, keeping the original lightweight
 129 dimension and yielding a simpler and more efficient architecture.

130 3 MEDTEB

131 Chinese medical text embedding benchmarks remain scarce. Among the few available benchmarks,
 132 CmedqaRetrieval (Zhang et al., 2017) and MedicalRetrieval (Long et al., 2022) are well known
 133 and widely used. These datasets are constructed primarily from human-labeled query-answer pairs
 134 sourced from online medical Q&A platforms, such as patient inquiries and physician responses.
 135 However, this methodology inherently ignores potentially relevant yet unlabeled candidate answers
 136 associated with other pairs. The medical domain further exhibits *topic intensity*: common diseases or
 137 medications often generate a large volume of semantically similar queries and answers, amplifying
 138 the risk of false negatives (See Appendix E for examples).

139 To empirically assess this issue, we performed preliminary LLM-assisted annotation on both bench-
 140 marks and report detailed findings in Appendix E. Our analysis indicates that, on average, each
 141 query in MedicalRetrieval is associated with approximately 8.6 candidate passages labeled as neg-
 142 ative but suggested by the LLM as potentially relevant; for CmedqaRetrieval, this figure rises to
 143 approximately 19. We emphasize that these results are preliminary and do not imply ground-truth
 144 correctness, as the LLM’s judgments may contain errors, but the scale of flagged negatives strongly
 145 suggests systemic annotation gaps in current benchmarks.

146 To address these shortcomings, we construct MedTEB, a benchmark featuring three new tasks: Re-
 147 trieval, Reranking, and Synonym STS. We also incorporated two high-quality, human-verified exist-
 148 ing public datasets (CMedQAv1-reranking (Zhang et al., 2017) and CMedQAv2-reranking (Zhang
 149 et al., 2018), both).

150 3.1 CONSTRUCTION METHOD

151 **Retrieval** Prior studies like AIR-Bench (Chen et al., 2024b) and Thomas et al. (2024) demonstrate
 152 the reliability of LLM-generated relevance labels in information retrieval benchmark. Building on
 153 this, we adopt a multi-LLM labeling pipeline. We curate an anonymized Chinese medical corpus
 154 \mathcal{D} from publicly available resources and collect real-world, anonymized user queries \mathcal{Q} from our
 155 online service. For each query $q_i \in \mathcal{Q}$, a candidate pool of documents is retrieved by multiple
 156 retrieval models and then labeled by multiple LLMs. The final retrieval dataset comprise a query set
 157 \mathcal{Q} , a labeled corpus $\mathcal{D}' \subseteq \mathcal{D}$, and relevance labels $\mathcal{R} = \{(q_i, d_j, y_{ij}) \mid y_{ij} \in \{0, 1\}\}$. Compared
 158 with AIR-Bench, our pipeline differs in three respects: (i) it targets the medical domain, (ii) it uses
 159 real-world queries rather than synthetic ones, (iii) it employs multiple LLMs and a large multi-

162 retriever candidate pool to mitigate both mislabelled negatives and unlabeled false negatives. [The detailed pipeline and anonymization steps are provided in Appendix B.](#)
 163
 164

165
 166 **Rerank** We use the same multi-LLM consensus annotation as in Retrieval. For each query $q_i \in \mathcal{Q}$,
 167 we derive positives $P_i = \{d_j \in \mathcal{D}' : y_{ij} = 1\}$ and negatives $N_i = \{d_j \in \mathcal{D}' : y_{ij} = 0\}$. The
 168 reranking dataset is a collection of triplets $\mathcal{T}_{\text{Rerank}} = \{(q_i, \mathcal{P}_i, \mathcal{N}_i)\}$, where \mathcal{P}_i is a list sampled from
 169 P_i and \mathcal{N}_i is a list sampled from N_i .
 170

171 **STS** We first build a medical synonym dictionary with domain experts. For each $q_i \in \mathcal{Q}$, GPT-
 172 4o generates three sentences: a positive s_i^+ (synonym substitution with semantics preserved), a
 173 hard negative $s_{i,1}^-$ (synonym substitution with semantics changed), and an easy negative $s_{i,2}^-$ (no
 174 synonym substitution with semantics changed). We then sample $s_i \in \{s_i^+, s_{i,1}^-, s_{i,2}^-\}$ and pair it
 175 with q_i to form (q_i, s_i, y_i) , where $y_i = \mathbf{1}[s_i = s_i^+] \in \{0, 1\}$. The dataset is $\mathcal{T}_{\text{STS}} = \{(q_i, s_i, y_i)\}$,
 176 evaluating fine-grained synonym understanding.
 177

178 3.2 EVALUATION OF EXISTING EMBEDDING MODELS

180 The statistics of MedTEB are summarized
 181 in Table 1. Average results of CMedQA
 182 (CMedQAv1-reranking and CMedQAv2-
 183 reranking) and new tasks (Retrieval, Rerank
 184 and STS) of existing general-domain em-
 185 bedding models are shown in Table 2, (full
 186 zero-shot average results shown in Table 9, [and](#)
 187 [detailed statistics shown in Appendix G](#)), and
 188 we also compute the Spearman rank correlation
 189 coefficient (Spearman, 1961) between their
 190 rankings of average scores on CMedQA and
 191 new tasks. Results shows that there is a great
 192 gap of the performance between CMedQA and
 193 new tasks by existing general domain
 194 embedding models (CMedQA Average scores:
 195 85.15 vs. 57.85 of new tasks), showing the
 196 challenging of new medical tasks and the
 197 underdevelopment of embedding models in
 198 medical domain. The Spearman rank corre-
 199 lation coefficient is 0.354 with p-value 0.215
 200 ($\gg 0.05$), indicating that our new tasks are
 201 not redundant with existing medical tasks, but
 202 rather explore the model’s performance in the
 203 medical field from fresh perspectives. Notably, decoder-only models like Qwen3-Embedding
 204 achieve the strongest performance (Qwen3-Embedding-8B achieves average scores 64.52 on new
 205 tasks), but their high latency and computational cost limit real-world applicability. MedTEB
 206 thus provides a more rigorous and realistic benchmark for evaluating medical text embeddings,
 207 highlighting both the limitations of current models and the need for efficient, domain-specialized
 208 solutions.
 209

210 4 MEDICAL ASYMMETRIC RETRIEVER

211 Given the limitations of existing models on MedTEB (as shown in Section 3.2), we propose a novel
 212 training framework of **Asymmetric embedding architecture** to improve Chinese medical embed-
 213 ding models. As illustrated in Figure 2, the document encoder processes the entire corpus offline
 214 to build a vector index, while the query encoder operates online, encoding user queries for efficient
 215 retrieval. In this section, we describe our high-quality training data construction for medical domain,
 and a two-stage training strategy designed for our asymmetric embedding architecture.

Table 1: MedTEB statistics

Task	Test	Train	Main Metric
<i>New tasks</i>			
Retrieval	734	20,000	NDCG@10
Rerank	1,128		MAP
Synonym STS	5,000	10,000	Pearson
<i>Public datasets</i>			
CMedQA-v1-rk.	1,000	50,000	MAP
CMedQA-v2-rk.	1,000		MAP

Table 2: Average performance on CMedQA vs. MedTEB New Tasks, together with Spearman correlation (ρ) and p-value.

Benchmark	Avg Score	Spearman (p-value)
CMedQA	85.15	0.354 (0.215)
New Tasks	57.85	

216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412

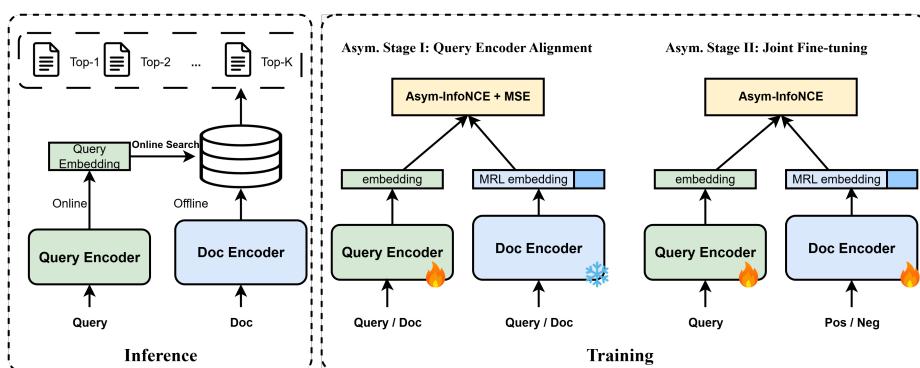


Figure 2: Inference and Training pipeline for asymmetric embedding model. Stage I: Query encoder is trained to align with the frozen document encoder using Asym-InfoNCE and MSE losses. Stage II: Both encoders are jointly fine-tuned with Asym-InfoNCE loss on retrieval data.

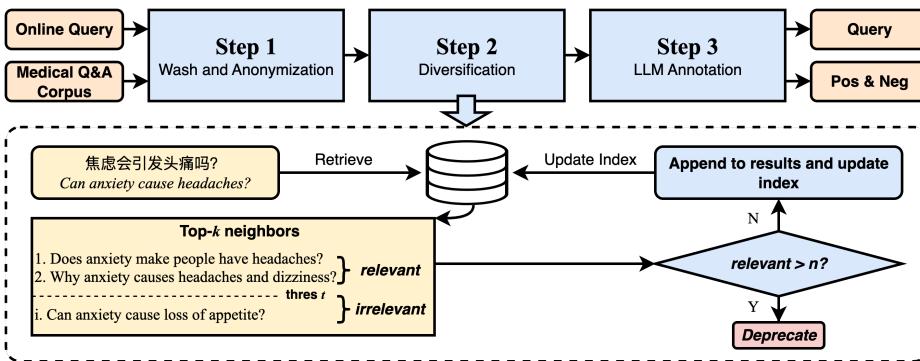


Figure 3: Pipeline for constructing high-quality medical retrieval data. The process includes (1) wash and anonymization of raw queries and documents, (2) deduplication and diversification via embedding-based similarity filtering, and (3) LLM-based labeling of positive and negative samples to mitigate false negatives.

4.1 HIGH-QUALITY DATA CONSTRUCTION

The quality of negative samples, especially *hard negatives* plays a critical role in training effective embedding models. However, in the medical domain, the *topic intensity* phenomenon (as discussed in Section 3) results in many queries having a large number of potential positives. This abundance of hidden positives undermines conventional hard negative mining: Top- k retrieval often introduces false negatives due to many unlabeled but relevant documents, threshold-based filtering suffers from blurred decision boundaries, and LLM-based annotation becomes prohibitively expensive when applied to such large candidate pool. To address this issue, we design a **diversity-aware data curation pipeline** that reduces redundancy and improves annotation reliability through three key steps (Figure 3): (i) collect and anonymize a broad Chinese medical corpus from publicly available resources and real queries from our online service; (ii) deduplicate/diversify queries and corpus via a dynamic vector-index filter to reduce semantic redundancy; and (iii) use GPT-4o to label reliable positives/negatives from top-50 retrieved candidates, producing 500K triples (q, d^+, d^-) . Implementation details are in Appendix C.

Additionally, to improve query–document alignment in asymmetric models, we construct a **query alignment dataset**. Each query is paired with itself as the positive document, while in-batch samples serve as negatives. In total, we generate 2.8M query-side triples (q, q, q^-) and 5.6M document-side triples (d, d, d^-) for this task, which will be used in Section 4.3.1.

270 4.2 INDEPENDENT INITIALIZATION
271272 We firstly independently train a symmetric dual-tower model to inject domain-specific knowledge
273 into both the query and document encoders. This initialization step establishes a strong foundation
274 for the subsequent asymmetric alignment phase.
275276 **Query Encoder** Following prior work (Chen et al., 2024a; Xiao et al., 2022), we adopt a three-
277 stage training pipeline for the query encoder: (1) RetroMAE pretraining (Xiao et al., 2022); (2)
278 Unsupervised pretraining with InfoNCE loss (Oord et al., 2018); (3) Supervised fine-tuning with
279 InfoNCE loss. Details of query encoder training are described in Appendix D.1.
280281 **Document Encoder** For the document encoder, we fine-tune a large pretrained language model
282 with LoRA (Hu et al., 2022) to reduce compute while preserving performance (Li et al., 2024a; Wang
283 et al., 2023). For flexible deployment and compatibility with a smaller query encoder’s dimension,
284 we adopt Matryoshka Representation Learning (MRL) (Kusupati et al., 2022), training the model
285 to output embeddings at multiple dimensions so we can later select the dimension that matches the
286 query encoder during asymmetric alignment. Details are in Appendix D.2.
287288 4.3 ASYMMETRIC EMBEDDING ARCHITECTURE
289290 While LLM-based embedders achieve state-of-the-art retrieval accuracy, their high computational
291 cost and latency are prohibitive for real-time applications. To resolve this trade-off, we propose
292 an **Asymmetric embedding architecture**, which pairs a lightweight query encoder for fast online
293 inference with a powerful document encoder whose embeddings are pre-computed offline. A key
294 challenge, however, is the inherent misalignment between the embedding spaces of these disparate
295 models. We address this by designing a two-stage training strategy: (1) query encoder alignment
296 stage to map the query encoder’s space to the document encoder’s, followed by (2) joint fine-tuning
297 stage to optimize both for the end retrieval task.
298

4.3.1 ASYMMETRIC STAGE I: QUERY ENCODER ALIGNMENT

300 To close the semantic gap, we freeze the document encoder (the *teacher*) and update only the query
301 encoder (the *student*). Training uses the **query alignment dataset** (Section 4) with each query or
302 document paired with itself as the positive. We employ a hybrid objective:
303304 **Asymmetric Contrastive Loss** We use Asym-InfoNCE with frozen document encoder as teacher:
305

306
$$\mathcal{L}_{\text{Asym-InfoNCE}} = -\log \frac{\exp(s^+/\tau)}{\exp(s^+/\tau) + \sum_{i=1}^N \exp(s_i^-/\tau)}, \quad (1)$$

307

308 where $s^+ = \text{sim}(E_Q(q), E_D(d^+))$ and $s_i^- = \text{sim}(E_Q(q), E_D(d_i^-))$; $\text{sim}(\cdot, \cdot)$ denotes cosine simi-
309 larity. E_Q and E_D are the query and document encoders, d^+ and d^- are positive and negative
310 documents, and τ is the temperature. As q and d^+ are identical texts in this stage, the loss aligns the
311 student to the teacher in a contrastive manner.
312313 **MSE Loss** For further alignment, we add:
314

315
$$\mathcal{L}_{\text{MSE}} = \|E_Q(\text{text}) - E_D(\text{text})\|_2^2, \quad (2)$$

316 which penalize the L2 distance between normalized query and document embeddings of the same
317 text to match the teacher’s embedding space.
318319 **Final Objective** The overall objective for Stage 2.1 is a weighted combination:
320

321
$$\mathcal{L}_{\text{Stage 2.1}} = \lambda_1 \mathcal{L}_{\text{Asym-InfoNCE}} + \lambda_2 \mathcal{L}_{\text{MSE}}, \quad (3)$$

322 with $\lambda_1 = \lambda_2 = 1$. Asym-InfoNCE provides soft alignment through relative ranking signals, while
323 MSE enforces absolute alignment in embedding space. Together, they guide the query encoder to
faithfully approximate the semantic space of the stronger document encoder.
324

324 4.4 ASYMMETRIC STAGE II: JOINT FINE-TUNING
325

326 After alignment, we unfreeze both encoders and perform end-to-end joint fine-tuning. The goal
327 of this stage is to further enhance retrieval performance by jointly optimizing the two encoders to
328 better discriminate between positive and negative documents. We adopt the **Asym-InfoNCE loss** as
329 the sole objective, leveraging hard negatives and in-batch negatives (Xiong et al., 2020; Karpukhin
330 et al., 2020) to enrich the negative samples. This end-to-end optimization directly optimizes the
331 model for the retrieval task. The final models, Medical Asymmetric Retriever (MAR), yielding a
332 strong accuracy-latency trade-off for real-world, latency-sensitive medical retrieval.

333 5 EXPERIMENTS
334335 5.1 SETUP
336

337 **Models.** We denote our fine-tuned query encoder as **Medical-Embedder-base**, initialized from
338 gte-multilingual-mlm-base (Zhang et al., 2024b). The document encoders are fine-tuned from
339 Qwen3-4B (Yang et al., 2025) and Qwen3-8B, referred to as **Medical-Embedder-4B** and **Medical-
340 Embedder-8B**, respectively. Based on these, we evaluate two asymmetric variants: **MAR-0.3B-4B**
341 (a $\sim 0.3B$ query encoder paired with Medical-Embedder-4B) and **MAR-0.3B-8B** (same query en-
342 coder with Medical-Embedder-8B). For baselines, since our method targets high-efficiency online
343 deployment, we focus on relatively *lightweight* yet strong baselines that achieve state-of-the-art re-
344 sults on MTEB and are widely used in practice. To this end, we compare against strong open-source
345 embedding models covering both *lightweight* BERT-style encoders and LLM-based embedders with
346 moderate parameter sizes, including the BGE series (Xiao et al., 2024), GTE series (Li et al., 2023),
347 Qwen3-embedding series (Zhang et al., 2025), Conan-embedding-v1 (Li et al., 2024b), and stella-
348 base-zh-v3-1792d (Zhang et al., 2024a).

349 **Training Data.** All baselines and our models are fine-tuned on the same data for fair comparison.
350 The training corpus includes high quality fine-tuning datasets described in Section 4 as well as
351 the training splits of MedTEB (retrieval, reranking, CMedQA, and Synonym STS). Although some
352 baselines have previously seen CMedQA during pre-training, we explicitly include it to prevent
353 potential performance degradation on this task.

355 **Implementation Details.** For retrieval evaluation, we use FAISS (Johnson et al., 2019) for effi-
356 cient nearest-neighbor search over the document corpus. For fair comparison, all symmetric baseline
357 models are fine-tuned for 2 epochs, matching the total exposure of our asymmetric models, which
358 observe the fine-tuning data once during independent initialization and once again during joint fine-
359 tuning. All experiments are conducted on $32 \times$ A100-40GB GPUs.

360 361 5.2 MAIN RESULTS ON MEDTEB
362

363 Table 3 presents the evaluation of MAR series on the MedTEB benchmark, alongside strong open-
364 source baselines. We observe two key findings: (1) MAR establishes a new state of the art: the
365 0.3B-4B variant achieves an average score of 78.13, and the 0.3B-8B variant reaches 78.94 —
366 surpassing the strongest baseline, gte-Qwen2-1.5B-instruct (77.61, a decoder-only model), despite
367 using a much smaller query encoder. (2) Both baseline models and our asymmetric variants exhibit
368 consistent performance scaling with model size: enlarging the document encoder from 4B to 8B
369 improves the average score by 0.81. Critically, these gains incur no additional query-time cost,
370 as the 0.3B query encoder remains unchanged, offering an optimal accuracy-latency trade-off for
371 real-time medical retrieval.

372 373 5.3 ASYMMETRIC VS. SYMMETRIC ARCHITECTURES
374

375 Table 4 compares symmetric and asymmetric architectures. As expected, symmetric large-scale
376 models (4B and 8B) deliver the strongest performance. Our asymmetric design, which combines
377 a lightweight query encoder with a large document encoder, achieves performance that closely ap-
378 proaches the document encoder’s upper bound while remaining far superior to the lightweight base-
379 line (symmetric 8B 65.63 vs. asymmetric 8B 65.21). As the document encoder scales from 4B to

378
 379 Table 3: Results of our models compare to the baselines on MedTEB. Best results in **bold**, second-
 380 best in underline. Asymmetric models are marked with \dagger .

381 Model	382 Params (Q/D)	383 CMed v1	384 CMed v2	385 Retr.	386 Rer.	387 STS	388 Avg
<i>Baselines</i>							
bge-small-zh-v1.5	24M / 24M	80.21	81.69	44.33	62.30	70.50	67.81
bge-base-zh-v1.5	102M / 102M	83.37	83.31	49.16	66.73	76.24	71.76
bge-large-zh-v1.5	326M / 326M	83.23	85.15	50.32	67.55	78.95	73.04
bge-m3	568M / 568M	82.98	83.32	51.35	66.90	78.34	72.58
Conan-embedding-v1	326M / 326M	89.89	<u>88.77</u>	52.75	69.31	81.49	76.44
stella-base-zh-v3-1792d	102M / 102M	87.16	88.28	53.31	69.56	80.52	75.77
gte-multilingual-base	305M / 305M	86.21	86.37	53.37	69.38	82.36	75.54
gte-base-zh	102M / 102M	85.31	86.44	52.62	69.35	79.73	74.69
gte-large-zh	326M / 326M	85.44	86.97	52.93	69.97	81.48	75.36
gte-Qwen2-1.5B-instruct	1.78B / 1.78B	87.68	87.15	55.39	72.35	85.50	77.61
Qwen3-Embedding-0.6B	596M / 596M	85.58	86.09	54.42	70.94	80.42	75.49
<i>Ours</i>							
MAR-0.3B-4B \dagger	305M / 4.02B	86.04	87.31	<u>55.91</u>	<u>72.84</u>	88.53	<u>78.13</u>
MAR-0.3B-8B \dagger	305M / 8.19B	88.34	88.86	<u>56.75</u>	<u>73.67</u>	87.07	78.94

398 Table 4: Comparison of asymmetric and symmetric embedding architectures.

399 Query Encoder	400 Doc Encoder	401 Params (Q/D)	402 Retrieval	403 Rerank	404 Avg
Medical-Embedder-base		305M / 305M	54.16	69.63	61.90
402 Medical-Embedder-base	Medical-Embedder-4B	305M / 4.02B	55.91	72.84	64.38
403	Medical-Embedder-8B	305M / 8.19B	56.75	73.67	65.21
Medical-Embedder-4B		4.02B	<u>56.85</u>	73.26	65.06
405	Medical-Embedder-8B	8.19B	57.79	<u>73.47</u>	65.63

406
 407 8B, the performance of the asymmetric model increases accordingly (4B score: 64.38 vs. 8B score:
 408 65.21), demonstrating the effectiveness of leveraging larger document encoders for improving re-
 409 trieval accuracy.

411 5.4 ABLATION STUDY

413 We conduct ablation study on MAR-0.3B-4B
 414 except specially mentioned. To better reflect
 415 downstream applications, we report perfor-
 416 mance on both Retrieval and Reranking tasks.

418 5.4.1 TRAINING DESIGN

419 We conduct experiments on the contribution of
 420 different components in our asymmetric train-
 421 ing framework. Results are in in Table 5.

423 For Independent Initialization, removing either
 424 query or document encoder initialization leads
 425 to severe performance degradation (*w/o query*
 426 *init* scores: 59.66 and *w/o doc init* scores: 50.26
 427 vs. 64.38 for full model). This shows that in-
 428 dependent training of both encoders is essen-
 429 tial, and stronger symmetric backbones provide
 430 a better starting point for asymmetric training.

431 For Asymmetric Stage, skipping the query
 432 alignment stage (*w/o query align* scores: 51.07)

500 Table 5: Ablation study on training stages and loss
 501 functions.

502 Setting	503 Retr.	504 Rerank	505 Avg
<i>Independent Initialization</i>			
w/o query init	50.46	68.85	59.66
w/o doc init	37.30	63.21	50.26
<i>Asymmetric Stage</i>			
w/o query align	35.34	66.79	51.07
w/o joint fine-tuning	42.69	68.28	55.49
<i>Loss Design (Asymmetric Stage I)</i>			
w/o MSE	55.19	71.94	63.57
w/o Contrastive	<u>55.48</u>	<u>72.58</u>	64.03
Full Model	55.91	72.84	64.38

432

433

Table 6: Impact of different data types in Stage-I on final retrieval performance.

434

435

436

437

438

439

440

441

Table 7: Ablation study on alternative approaches to efficient retrieval. For KALE and Wang & Lyu (2023), we follow their setting by extracting the first three layers of document encoder to initialize query encoder ($\approx 302.8M$ parameters without LM head, embedding dimension 2560). For ScalingNote, we adopt the same query and document encoder as ours. For the distillation baseline, we use Medical-Embedder-4B as the teacher to provide similarity scores, training the student base with KL-divergence and InfoNCE losses (Ren et al., 2021).

442

443

444

445

446

447

448

449

450

451

452

453

454

or the joint fine-tuning stage (*w/o joint fine-tuning* scores: 55.49) also results in clear performance drops (full model 64.38). This confirms our intuition that alignment ensures the student query encoder learns the teacher’s embedding space, while joint optimization adapts both encoders to downstream retrieval. Note that our *w/o query align* configuration is close to HotelMatch (Askari et al., 2025), though not identical: HotelMatch applies a linear projection to up-project the small-LM query embeddings to the document encoder dimension and uses separate learning rates for the two encoders, whereas we remove the projection layer and use a single learning rate since we use LoRA to fine-tuning our document encoder.

455

456

457

458

459

460

461

462

Finally, we study the loss design in the query align stage. Removing either MSE or Asym-InfoNCE contrastive loss weakens performance. The full model, combining both, consistently achieves the best results. This indicates that both objective contributes to the alignment of embedding space.

463

464

465

466

467

5.4.2 QUERY ALIGNMENT DATA

468

469

470

471

472

473

474

475

476

477

We evaluate the role of query alignment data in Stage-I, comparing it with using the Stage-II fine-tuning data for this stage. As shown in Table 6, when only training Stage-I, training with fine-tuning data yields a higher score than with query alignment data (fine-tuning data 57.26 vs. query alignment data 55.49). However, when followed by end-to-end fine-tuning in Stage-II, models initialized with query alignment data achieve a substantially higher final performance (64.38), outperforming those trained with fine-tuning data in Stage-I (60.49). This indicates that query alignment data better prepares the embedding space for downstream retrieval, effectively raising the performance ceiling. In contrast, relying solely on fine-tuning data in Stage-I may lead to premature convergence and suboptimal representation learning.

478

5.4.3 ALTERNATIVE APPROACHES TO EFFICIENT RETRIEVAL

479

480

481

482

483

484

485

We further compare our two-stage asymmetric training framework against several alternative approaches to efficient retrieval (Table 7). Results show that our proposed method consistently outperforms all alternatives. In particular, asymmetric approaches such as KALE and Wang & Lyu (2023) achieve limited performance (KALE scores: 55.05 and Wang & Lyu (2023) scores: 53.13), for which we assume that their encoder-only training framework has not been fully adapted to decoder-only architectures. Moreover, our method surpasses the distillation baseline (distillation 62.72 vs. ours 64.38), indicating that directly leveraging a large teacher as the document encoder avoids information loss inherent in score distillation and leads to stronger retrieval performance.

486 6 CONCLUSION
487

488 In this work, we introduce MedTEB, a new benchmark for Chinese medical text embedder, and pro-
489 pose MAR, an asymmetric model designed for efficient, low-latency medical retrieval. Our archi-
490 tecture, which pairs a lightweight query encoder with a powerful document encoder via a two-stage
491 training strategy, achieves state-of-the-art performance on MedTEB. By releasing the benchmark,
492 models, and training pipeline, we provide both a practical solution for real-world medical RAG sys-
493 tems and a foundation for future research in domain-specific embedding learning. Our future work
494 will include exploring more effective strategies for asymmetric alignment.

495
496 ETHICS STATEMENT
497

498 This research has been approved by the National Technology Ethics (Review) Committee. We
499 strictly adhered to ethical guidelines regarding data collection and privacy. User queries were
500 sourced from participants who explicitly consented to a user experience improvement program
501 for non-commercial research. Medical documents were crawled from publicly accessible, non-
502 paywalled websites (e.g., XunYiWenYao¹) in compliance with robots.txt protocols. We emphasize
503 that these resources are for research purposes only and require rigorous validation before clinical
504 deployment. Expert re-annotation was performed by clinicians from a partner tertiary hospital,
505 compensated at institution-approved rates via official project budgets. MedTEB is released under a
506 CC BY-NC-SA 4.0 license, with model cards explicitly disclaiming diagnostic utility to ensure strict
507 non-commercial, research-only usage.

508 REFERENCES
509

- 510 Arian Askari, Emmanouil Stergiadis, Ilya Gusev, and Moran Beladev. Hotelmatch-llm: Joint multi-
511 task training of small and large language models for efficient multimodal hotel retrieval. *arXiv*
512 preprint *arXiv:2506.07296*, 2025.
- 513 Daniel Campos, Alessandro Magnani, and ChengXiang Zhai. Quick dense retrievers consume kale:
514 Post training kullback leibler alignment of embeddings for asymmetrical dual encoders. *arXiv*
515 preprint *arXiv:2304.01016*, 2023.
- 517 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
518 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
519 tillation. *arXiv preprint arXiv:2402.03216*, 2024a.
- 520 Jianlyu Chen, Nan Wang, Chaofan Li, Bo Wang, Shitao Xiao, Han Xiao, Hao Liao, Defu Lian,
521 and Zheng Liu. Air-bench: Automated heterogeneous information retrieval benchmark. *arXiv*
522 preprint *arXiv:2412.13102*, 2024b.
- 524 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
525 Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. *arXiv preprint arXiv:2505.07062*,
526 2025.
- 527 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
528 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- 530 Suyuan Huang, Chao Zhang, Yuanyuan Wu, Haoxin Zhang, Yuan Wang, Maolin Wang, Shaosheng
531 Cao, Tong Xu, Xiangyu Zhao, Zengchang Qin, et al. Scalingnote: Scaling up retrievers with large
532 language models for real-world dense retrieval. *arXiv preprint arXiv:2411.15766*, 2024.
- 533 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
534 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
535 *arXiv:2410.21276*, 2024.
- 536 Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
537 Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
538 *arXiv preprint arXiv:2112.09118*, 2021.

539 ¹<https://www.xywy.com/>

- 540 Qiao Jin, Won Kim, Qingyu Chen, Donald C Comeau, Lana Yeganova, W John Wilbur, and Zhiyong Lu. Medcpt: Contrastive pre-trained transformers with large-scale pubmed search logs for
 541 zero-shot biomedical information retrieval. *Bioinformatics*, 39(11):btad651, 11 2023. ISSN
 542 1367-4811. doi: 10.1093/bioinformatics/btad651. URL <https://doi.org/10.1093/bioinformatics/btad651>.
- 543
- 544
- 545 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. *IEEE*
 546 *Transactions on Big Data*, 7(3):535–547, 2019.
- 547
- 548 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
 549 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP*
 550 (1), pp. 6769–6781, 2020.
- 551
- 552 Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
 553 manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
 554 representation learning. *Advances in Neural Information Processing Systems*, 35:30233–30249,
 555 2022.
- 556
- 557 Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
 558 zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
 559 models. *arXiv preprint arXiv:2405.17428*, 2024.
- 560
- 561 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 562 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 563 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 564 9459–9474, 2020.
- 565
- 566 Chaofan Li, MingHao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Yingxia Shao, Defu Lian, and
 567 Zheng Liu. Making text embedders few-shot learners. *arXiv preprint arXiv:2409.15700*, 2024a.
- 568
- 569 Lei Li, Xiao Zhou, and Zheng Liu. R2med: A benchmark for reasoning-driven medical retrieval,
 570 2025. URL <https://arxiv.org/abs/2505.14558>.
- 571
- 572 Shiyu Li, Yang Tang, Shizhe Chen, and Xi Chen. Conan-embedding: General text embedding with
 573 more and better negative samples. *arXiv preprint arXiv:2408.15710*, 2024b.
- 574
- 575 Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
 576 general text embeddings with multi-stage contrastive learning. *arXiv preprint arXiv:2308.03281*,
 577 2023.
- 578
- 579 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 580 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 581 *arXiv:2412.19437*, 2024.
- 582
- 583 Dingkun Long, Qiong Gao, Kuan Zou, Guangwei Xu, Pengjun Xie, Ruijie Guo, Jian Xu, Guanjun
 584 Jiang, Luxi Xing, and Ping Yang. Multi-cpr: A multi domain chinese dataset for passage retrieval.
 585 In *SIGIR*, pp. 3046–3056. ACM, 2022.
- 586
- 587 Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embed-
 588 ding benchmark. *arXiv preprint arXiv:2210.07316*, 2022.
- 589
- 590 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 591 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.
- 592
- 593 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 594 networks. *arXiv preprint arXiv:1908.10084*, 2019.
- 595
- 596 Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang, and
 597 Ji-Rong Wen. Rocketqav2: A joint training method for dense passage retrieval and passage re-
 598 ranking. *arXiv preprint arXiv:2110.07367*, 2021.
- 599
- 600 Charles Spearman. The proof and measurement of association between two things. 1961.

- 594 Paul Thomas, Seth Spielman, Nick Craswell, and Bhaskar Mitra. Large language models can accu-
 595 rately predict searcher preferences. In *Proceedings of the 47th International ACM SIGIR Confer-
 596 ence on Research and Development in Information Retrieval*, pp. 1930–1940, 2024.
- 597
- 598 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 599 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv
 600 preprint arXiv:2212.03533*, 2022.
- 601 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improv-
 602 ing text embeddings with large language models. *arXiv preprint arXiv:2401.00368*, 2023.
- 603
- 604 Yuxuan Wang and Hong Lyu. Query encoder distillation via embedding alignment is a strong base-
 605 line method to boost dense retriever online efficiency. *arXiv preprint arXiv:2306.11550*, 2023.
- 606
- 607 Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. Retromae: Pre-training retrieval-oriented
 608 language models via masked auto-encoder. *arXiv preprint arXiv:2205.12035*, 2022.
- 609
- 610 Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
 611 Packed resources for general chinese embeddings. In *Proceedings of the 47th international ACM
 SIGIR conference on research and development in information retrieval*, pp. 641–649, 2024.
- 612
- 613 Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed,
 614 and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text
 615 retrieval. *arXiv preprint arXiv:2007.00808*, 2020.
- 616
- 617 Ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Yanqiao Zhu, May Dongmei Wang, Joyce C.
 618 Ho, Chao Zhang, and Carl Yang. BMRetriever: Tuning large language models as better
 619 biomedical text retrievers. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 620 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*,
 621 pp. 22234–22254, Miami, Florida, USA, November 2024. Association for Computational Lin-
 622 guistics. doi: 10.18653/v1/2024.emnlp-main.1241. URL <https://aclanthology.org/2024.emnlp-main.1241/>.
- 623
- 624 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 625 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 626 arXiv:2505.09388*, 2025.
- 627
- 628 Dun Zhang, Jiacheng Li, Ziyang Zeng, and Fulong Wang. Jasper and stella: distillation of sota
 629 embedding models. *arXiv preprint arXiv:2412.19048*, 2024a.
- 630
- 631 S. Zhang, X. Zhang, H. Wang, L. Guo, and S. Liu. Multi-scale attentive interaction networks for
 632 chinese medical question answer selection. *IEEE Access*, 6:74061–74071, 2018. ISSN 2169-
 633 3536. doi: 10.1109/ACCESS.2018.2883637.
- 634
- 635 Sheng Zhang, Xin Zhang, Hui Wang, Jiajun Cheng, Pei Li, and Zhaoyun Ding. Chinese medical
 636 question answer matching using end-to-end character-level multi-scale cnns. *Applied Sciences*, 7
 637 (8):767, 2017.
- 638
- 639 Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
 640 Yang, Pengjun Xie, Fei Huang, et al. mgte: Generalized long-context text representation and
 641 reranking models for multilingual text retrieval. *arXiv preprint arXiv:2407.19669*, 2024b.
- 642
- 643
- 644 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 645 An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
 646 reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025.
- 647

648
649
650
651 **A INSTRUCTION**652 **Table 8: Instruction used on MedTEB benchmarks**

653 Task Name	654 Instruction Template
655 CMedQAv1-reranking	656 Based on a Chinese medical question, evaluate and rank the medical information that provide answers to the question.
657 CMedQAv2-reranking	658 Based on a Chinese medical question, evaluate and rank the medical information that provide answers to the question.
659 MedTEB-Retrieval	660 Given a Chinese medical question, retrieve medical documents that answer the question.
661 MedTEB-Rerank	662 Based on a Chinese medical question, evaluate and rank the medical information that provide answers to the question.
663 MedTEB-STS	664 Retrieve semantically similar text.

665 **B DETAILS FOR MEDTEB**

666 **Retrieval Task Construction.** Given a query $q_i \in \mathcal{Q}$, we used gte-multilingual-base, bge-
667 m3, Conan-embedding-v1 to retrieve and gather a candidate pool of top-500 documents $\mathcal{D}_i =$
668 $\{d_1, \dots, d_{500}\}$. Three strong LLMs, DeepSeek-V3 (Liu et al., 2024), Doubao-1.5-Pro (Guo et al.,
669 2025) and GPT-4o (Hurst et al., 2024) then rated each (q_i, d_j) pair on a 5-point relevance scale. To
670 ensure label quality, a document was retained as positive only when all three LLMs agreed, while
671 pairs with partial agreement (only 1 or 2 agreements) were discarded. The final retrieval dataset
672 comprise a query set \mathcal{Q} , a refined corpus $\mathcal{D}' \subseteq \mathcal{D}$, and relevance labels $\mathcal{R} = \{(q_i, d_j, y_{ij}) \mid y_{ij} \in$
673 $\{0, 1\}\}$.

674 **Detailed Anonymization steps of MedTEB.** All user queries and web documents were processed
675 as follows. 1) Automated PII (personally identifiable information) Detection: We deployed an of-
676 fline, locally hosted large language model to detect and mask potential PII, including names, loca-
677 tions, phone numbers, and ID numbers. 2) Rule-based Validation: After initial masking, we applied
678 a rule-based validation module to scan residual digits, and keywords. 3) Human Checks: 1% of
679 anonymized data were checked by human, and no re-identifiable content found.

680
681 **Detailed zero-shot results on MedTEB.** Table 9 presents the full zero-shot performance of all
682 evaluated models across individual MedTEB tasks. Results show significant performance gaps be-
683 tween general-domain embedders and the medical-specific retrieval challenge. Note that most of
684 baselines have already trained on CMedQA train dataset before.

685 **Table 9: Zero-shot results on MedTEB (%). Best results in **bold**.**

686 Model	687 Param.	688 CMedv1	689 CMedv2	690 Avg CMed	691 Retr.	692 Rerank	693 STS	694 Avg. New
695 gte-multilingual-base	696 305M	697 86.11	698 87.40	699 86.76	700 47.80	701 61.51	702 72.39	703 60.57
704 gte-base-zh	705 102M	706 86.79	707 87.20	708 86.99	709 44.18	710 58.40	711 75.07	712 59.22
713 gte-large-zh	714 326M	715 86.09	716 86.46	717 86.28	718 29.75	719 53.70	720 68.02	721 50.49
722 gte-Qwen2-1.5B-instruct	723 1.78B	724 88.16	725 88.12	726 88.14	727 45.14	728 58.99	729 76.81	730 60.31
732 gte-Qwen2-7B-instruct	733 7.61B	734 88.20	735 89.31	736 88.76	737 40.94	738 61.07	739 72.67	740 58.23
742 bge-small-zh-v1.5	743 24M	744 77.40	745 79.86	746 78.63	747 35.22	748 55.39	749 57.87	750 49.49
752 bge-base-zh-v1.5	753 102M	754 80.47	755 84.88	756 82.68	757 33.11	758 53.56	759 67.45	760 51.37
762 bge-large-zh-v1.5	763 326M	764 83.45	765 85.44	766 84.45	767 43.05	768 58.31	769 71.90	770 57.75
772 bge-m3	773 568M	774 77.71	775 79.19	776 78.45	777 41.14	778 57.68	779 63.67	780 54.16
782 Conan-embedding-v1	783 326M	784 91.39	785 89.72	786 90.56	787 41.60	788 61.89	789 72.86	790 58.78
792 stella-base-zh-v3-1792d	793 102M	794 <u>88.35</u>	795 89.06	796 88.71	797 45.77	798 60.43	799 74.96	800 60.39
802 Qwen3-Embedding-0.6B	803 596M	804 80.06	805 81.35	806 80.71	807 47.54	808 64.51	809 68.31	810 60.12
812 Qwen3-Embedding-4B	813 4.02B	814 84.43	815 85.06	816 84.75	817 <u>50.14</u>	818 66.67	819 76.49	820 64.43
822 Qwen3-Embedding-8B	823 7.57B	824 86.13	825 86.39	826 86.26	827 51.15	828 <u>66.31</u>	829 76.09	830 64.52
832 Average performance		84.62	85.67	85.15	42.61	59.89	71.04	57.85
832 Spearman Rank Correlation Coefficient (P-value)								0.354 (0.215)

702 C DETAILS FOR HIGH QUALITY DATA CONSTRUCTION

704 C.1 DATA CONSTRUCTION

706 **Data Diversification.** We apply diversification for query and corpus independently. We first initialized a vector index seeded with 5,000 documents encoded by `gte-multilingual-base`.
 707 For each new candidate x (query or document), we retrieve top- k neighbors and discard x if more
 708 than n neighbors exceed similarity threshold t ; otherwise we insert x . This is applied separately
 709 to queries and corpus, preserving diversity while removing near-duplicates. We summarize the key
 710 parameters used during Data Diversification in Table 10, where k represents for top- k retrieved rel-
 711 evant candidates from vector index, t for similarity score threshold, and n for maximum number of
 712 related documents.
 713

714 Table 10: Key parameters used during data generation.

715 Parameter	716 Query	717 Document
716 k (retrieved candidates)	717 5	718 5
717 t (score threshold)	718 0.85	719 0.78
718 n (maximum number)	719 1	720 1

720 **LLM annotation.** For each diversified query q , we retrieve top-50 candidates from the diversified
 721 corpus and have GPT-4o assign a 5-point relevance score. From scored pools, we select positives
 722 and negatives to form triples, yielding 500K fine-tuning instances of triplets $\mathcal{T} = \{(q_i, \mathcal{P}_i, \mathcal{N}_i)\}$,
 723 where \mathcal{P}_i is a list sampled from positives P_i and \mathcal{N}_i is a list sampled from negatives N_i .
 724

725 C.2 ABLATION STUDIES ON DATA DIVERSIFICATION

726 To evaluate the effectiveness of our diversity-aware data curation pipeline, we conduct an ablation
 727 study on the role of query and document-side diversification on Medical-Embedder-base. All configura-
 728 tions use the same amount of training data. As shown in Table 11, the full setting achieves
 729 the best performance, demonstrating that both query and document diversification are essential: the
 730 former ensures broad topic coverage, while the latter improves the reliability and difficulty of neg-
 731 ative samples. This validates the importance of our diversity-aware curation strategy in building
 732 high-quality medical retrieval datasets.
 733

734 Table 11: Impact of query and document diversification on retrieval performance.

735 Diversification Setting	736 Retrieval	737 Rerank	738 Avg
736 w/o query, w/o doc	737 51.17	738 68.74	59.96
737 w/ query, w/o doc	738 52.23	739 68.98	60.61
738 w/ query, w/ doc	739 54.16	740 69.63	741 61.90

740 D TRAINING DETAILS OF INDEPENDENT INITIALIZATION

741 D.1 QUERY ENCODER TRAINING

742 **RetroMAE Pretrain.** We first adopt RetroMAE (Xiao et al., 2022) pretrain, which mask inputs
 743 differently in the encoder and a lightweight decoder; the encoder outputs sentence embeddings and
 744 the decoder reconstructs the original text via masked language modeling. This stage leverages a
 745 60M unsupervised Medical Q&A corpus.
 746

747 **Unsupervised Pretrain.** We perform contrastive unsupervised pretrain using InfoNCE loss (Oord
 748 et al., 2018):

$$749 \mathcal{L}_{\text{InfoNCE}} = -\log \frac{\exp(\mathbf{q}^\top \mathbf{d}^+ / \tau)}{\sum_{\mathbf{d} \in \mathcal{D}} \exp(\mathbf{q}^\top \mathbf{d} / \tau)},$$

750 where \mathbf{q} , \mathbf{d}^+ are embeddings of a matched (query, document) pair, \mathcal{D} contains one positive and $|\mathcal{D}| - 1$ nega-
 751 tives, and τ is a learnable temperature. We use the same unsupervised medical Q&A corpus
 752 for RetroMAE pretraining, treating title–content pairs as positives and other documents within the
 753 same batch as in-batch negatives.
 754

756 **Supervised Finetuning.** The final stage fine-tunes the encoder on high quality fine-tuning datasets
 757 described in Section 4 together with the training splits of **MedTEB** (retrieval, reranking, CMedQA,
 758 and Synonym STS) using the InfoNCE loss.
 759

760 D.2 DOCUMENT ENCODER TRAINING 761

762 We fine-tune Qwen3-4B and Qwen3-8B and apply LoRA with rank=32, $\alpha = 64$. We adopt Ma-
 763 tryoshka Representation Learning (MRL) (Kusupati et al., 2022), whose training objective aggre-
 764 gates the contrastive loss across this predefined set of dimensions. Specifically, the final loss is the
 765 average of the InfoNCE losses computed at each target dimension:
 766

$$767 \mathcal{L}_{\text{MRL}} = \frac{1}{|M|} \sum_{m \in M} \mathcal{L}_{\text{InfoNCE}}^{(m)}, \quad (4)$$

770 where M is the set of nested dimensions and $\mathcal{L}_{\text{InfoNCE}}^{(m)}$ is the standard InfoNCE loss calculated using
 771 embeddings truncated to the first m dimensions.
 772

773 D.3 IMPACT OF PRETRAINING ON QUERY ENCODER 774

775 We evaluate the impact of pretraining on the query encoder. As shown in Table 12, combining Retro-
 776 MAE and unsupervised domain pretraining achieves the best performance (54.16), outperforming
 777 ablated variants. This confirms that multi-stage pretraining enhances the encoder’s performance in
 778 medical retrieval.
 779

780 Table 12: Ablation study on pretraining strategies for Medical-Embedder-Base. Combining Retro-
 781 MAE and unsupervised domain pretraining leads to the best retrieval performance.

782 Training Strategy	783 Retrieval
783 Finetune only	52.88
784 RetroMAE + Finetune	53.21
785 RetroMAE + Unsup + Finetune	54.16

787 E ANALYSIS OF OPEN-SOURCE BENCHMARKS 788

789 As a preliminary annotation study, we investigate the false negative issue in CmedqaRetrieval and
 790 MedicalRetrieval. For each query, we use gte-multilingual-base to retrieve the top-50 candidate doc-
 791 uments and re-annotate them using GPT-4o under a 5-point relevance scale with prompt in Table 25.
 792

793 Results in Table 13 suggest that a large number of retrieved documents, though unlabeled in the
 794 original datasets, are judged as relevant by the LLM. Table 14 and Table 15 shows several exam-
 795 ples of false negatives and false positives, together with the topic intensity phenomenon in medical
 796 domain that certain diseases or drugs generate a large volume of semanti- cally similar queries and
 797 answers. This indicates potential annotation incompleteness in existing benchmarks. It is important
 798 to note that LLM-based re-annotations are not guaranteed to be fully accurate, and we do not further
 799 validate the annotation reliability of GPT-4o in this study. Hence, our findings should be interpreted
 800 only as indicative evidence rather than definitive conclusions about dataset quality. Nonetheless,
 801 these findings raise concerns about the validity of current benchmarks for a reliable evaluation of
 802 medical retrieval capability.
 803

803 Table 13: LLM re-annotation on open-source medical retrieval benchmarks. To aid interpretation,
 804 we assume the LLM labels are pseudo-ground truth. We measure the average number of positive
 805 documents per query in the original dataset vs. LLM-labeled data, and identify false positives and
 806 false negative.

807 Benchmark	808 Orig. Pos.	809 LLM-Labeled Pos.	False Positive	False Negative
MedicalRetrieval	0.81	9.11	0.26	8.56
CmedqaRetrieval	1.42	19.94	0.46	18.98

810

811

Table 14: An example of false negatives in CmedqaRetrieval.

812

813

Query

查出说是贫血孩子老烧还有咳嗽

The child was diagnosed with anemia and has been running a fever with coughing.

814

815

False Positive (Labeled as positive, but not mention fever and coughing.)

如果是检查有贫血，可以结合贫血的类型和严重的程度，根据检查结果进行治疗的考虑即可。

If anemia is detected, treatment can be determined based on the type and severity of anemia, as indicated by the test results.

816

817

False Negative (Labeled as negative, but annotated as positive by LLM)

如果只是简单地烧咳嗽，等相应症状，是无需，担心的，但是贫血的原因必须地需要查清楚，一般情况下评选分为营养不良性贫血，还有其他病理性贫血。所以建议到医院进行系统检查，看到底是？出现的什么方面的贫血。然后对症治疗。

If it is just a simple cough or other corresponding symptoms, there is no need to worry. However, the cause of anemia must be clarified. Generally, anemia is categorized into nutritional deficiency anemia and other pathological anemias. Therefore, it is recommended to go to the hospital for a comprehensive examination to determine the specific type of anemia and then treat it accordingly.

818

819

820

821

822

823

824

825

826

827

F MEDTEB CASE EXAMPLES

828

829

830

831

832

833

G STATISTICS OF MEDTEB DATASET

834

835

836

For detailed statistics of the MedTEB datasets, please refer to Tables 19 to 22. To measure sequence lengths, we utilize the `tiktoken` tokenizer with the `cl100k_base` encoding scheme to count tokens for queries and corpus documents.

837

838

839

H TRAINING DETAILS

840

841

842

843

For the query encoder, we use the final hidden state of the [CLS] token as the sentence embedding. For the document encoder, we append an [EOS] token to the input sequence and use its output hidden state as the document embedding. The maximum input length for both queries and documents is set to 512 tokens.

844

845

846

847

848

We summarize the training configurations in Table 23 and Table 24. For memory efficiency, we enable gradient checkpointing and use DeepSpeed Stage 0. For models up to 4B parameters, we train in `fp16`, while for the 8B model we switch to `bf16` to ensure stability. All document encoders are fine-tuned with LoRA (rank 32, $\alpha = 64$). For all symmetric architectures of baselines and ours, models are fine-tuned for two epochs.

849

850

851

852

853

854

855

856

In our asymmetric architecture, both query and document encoders are first initialized by one epoch of fine-tuning. For Stage I, we align query and document embeddings using 8.4M pairs of query alignment data for one epoch. For Stage II, we further fine-tune for one epoch to ensure comparability with other baselines. We apply the same learning rate (1×10^{-4}) to both query and document encoders, as we observed that asymmetric learning rates led to performance degradation.

857

858

859

I ANNOTATION PROMPTS

860

861

862

863

Table 25 and Table 26 present the prompts templates for MedTEB construction. Table 27 shows prompt for our training data annotation.

J LLM USAGE

Large Language Models (LLMs) were used in two aspects of this work: (1) LLMs were employed for preliminary annotation during the construction of training data and the MedTEB benchmark,

864 with all data anonymized and curated; (2) LLMs were used as a writing aid to polish the manuscript.
865 All research ideas, model design, experiments, and analysis were conducted by the authors.
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921Table 15: An example of false negatives in MedicalRetrieval. This example shows the *topic intensity* phenomenon in medical domain: certain diseases or drugs generate a large volume of semantically similar queries and answers.922
923
924**Query**

感冒发烧一起来怎么办

What should I do if I have a cold and fever at the same time?

925

Positive

你好，应该是流行感冒吧，典型流感，急起高热，全身疼痛，显著乏力，呼吸道症状较轻。颜面潮红，眼结膜外眦充血，咽充血，软腭上有滤泡。具体吃药建议咨询医生。期间注意：多饮开水，多食新鲜的蔬菜、瓜果。饮食宜清淡，多食易消化，且富于营养及富含维生素的食物，如稀饭、豆浆、面条、水果等。窗子经常开下来通通风。一些简单食疗：1. 生姜20克、大蒜头5~6瓣、红糖适量。用法：水煎服。主治：流行性感冒初起，头痛，怕冷发热，无汗，伴有恶心者。说明：流行性感冒是一种急性呼吸道传染病，表现为急起高热，全身疼痛，乏力，呼吸道症状如咽干喉痒，干咳等，胃肠道症状如恶心呕吐、腹泻水样便等。2. 冬瓜粥 粳米50克。将冬瓜适量切成小块，与米同煮，粥熟即可食用。此粥对病毒型流行性感冒病人有效。3. 葱白500克、大蒜250克。用法：上药切碎加水2000毫升煎煮。日服3次，每次250毫升，连服2~3天。愿早日康复！

Hello, it sounds like you have the flu. Typical symptoms include sudden high fever, body aches, significant fatigue, and mild respiratory symptoms. You may also have facial flushing, conjunctival injection, pharyngeal congestion, and follicles on the soft palate. Please consult a doctor for specific medication advice. During this time, drink plenty of water and eat more fresh vegetables and fruits. Keep your diet light and easy to digest, focusing on nutritious and vitamin-rich foods like porridge, soy milk, noodles, and fruits. Ventilate your room regularly by opening windows. Here are some simple home remedies: 1. 20 grams of fresh ginger, 5-6 cloves of garlic, and an appropriate amount of brown sugar. Decoct in water and take orally. This is for the early stages of influenza with headache, chills, fever, no sweating, and nausea. Influenza is an acute respiratory infectious disease characterized by sudden high fever, body aches, fatigue, and respiratory symptoms like sore throat and dry cough. It may also cause gastrointestinal symptoms like nausea, vomiting, and watery diarrhea. 2. Winter melon porridge: 50 grams of japonica rice. Cut an appropriate amount of winter melon into small pieces and cook with rice. This porridge is effective for patients with viral influenza. 3. 500 grams of green onion whites and 250 grams of garlic. Chop the ingredients and decoct in 2000 milliliters of water. Take three times a day, 250 milliliters each time, for 2-3 days. Hope you recover soon!

947
948
949**False Negative 1 (Labeled as negative, but annotated as positive by LLM)**

建议口服抗病毒药物和感冒冲剂试试。有炎症还是应该加上抗生素。口服药物不见效的，建议输液治疗为好。在当地医生指导下使用。发烧用退热贴

It is suggested to try oral antiviral medications and cold granules. If there is an infection, antibiotics should be added. If oral medications are not effective, it is recommended to consider intravenous therapy. This should be done under the guidance of a local doctor. For fever, you can use fever patches.

False Negative 2

感冒发烧是临床上最常见的疾病和症状，具体吃药要根据具体的症表现以及病人身体状况而定。如果是儿童出现感冒发烧的情况一般选择以单药为主，出现发烧时主要可选择对乙酰氨基酚或者布洛芬口服液来进行治疗；如果还有其他的症状，比如出现鼻塞流涕，可以使用氯咖黄敏颗粒。如果是成人感冒发烧，一般多选择复合制剂，比如酚麻美敏片或者复方氨酚烷胺等。如果持续发烧不退，要及时完善血液分析和胸片检查排除并发肺炎的可能。

A cold with fever is one of the most common illnesses and symptoms clinically. The specific medication should be determined based on the specific symptoms and the patient's physical condition. For children with a cold and fever, monotherapy is usually chosen. For fever, acetaminophen or ibuprofen oral suspension can be used for treatment. If there are other symptoms, such as nasal congestion and runny nose, pheniramine and caffeine granules can be used. For adults with a cold and fever, compound formulations are generally preferred, such as phenylephrine, dextromethorphan, and acetaminophen tablets, or compound paracetamol and amantadine. If the fever persists, it is important to promptly complete blood tests and chest X-rays to rule out the possibility of pneumonia.

False Negative 3

你好，建议口服抗病毒药物和感冒冲剂试试。即使是病毒性感冒也容易继发细菌感染，所以最好还是应该加上抗生素口服。建议口服药物不见效的，建议输液抗炎治疗为好。因为还是输液血药浓度更高见效更快更好啊。有痰的加上鲜竹沥口服试试。发烧还需要适当加上额外的退烧药物。一般需要7-10天才能治愈的。最好还是看医生啊

Hello, it is suggested to try oral antiviral medications and cold granules. Even viral colds can easily lead to secondary bacterial infections, so it is better to add oral antibiotics. If oral medications are not effective, it is recommended to consider intravenous anti-inflammatory treatment, as it provides higher blood drug concentration and faster results. For those with phlegm, you can try adding fresh bamboo extract orally. Fever also requires the addition of extra antipyretic drugs. It usually takes 7-10 days to recover. It is best to see a doctor.

972

973

974

975

Query

肾结石如何判断是酸性还是碱性结石?

How to ascertain whether a renal calculus is acidic or alkaline in composition?

977

978

Positive example

只知道肾结石是有酸性碱性引起

979

980

981

982

病情分析：一般通过尿检判断肾结石是酸性的还是碱性的，可以到本地正规医院做尿液，酸碱度检查也可以观察一下pH值的变化，然后再明确一下尿液的酸碱度。如果怀疑身体有肾结石的症状，可以到正规医院做影像学检查检查一下大小。如果结石比较大的话，一定要及时到医院做激光碎石治疗。

983

984

985

986

How can I tell whether a kidney stone is related to acidic or alkaline urine? Clinical assessment: In general, urinalysis is used to determine whether a renal calculus is associated with acidic or alkaline urine. You can have a urine pH test at a qualified local hospital and monitor the pH value to establish urinary acidity or alkalinity. If kidney stone symptoms are suspected, undergo imaging studies to assess the stone size. If the calculus is relatively large, timely laser lithotripsy is recommended.

987

988

989

990

Table 16: MedTEB-Retrieval example.

991

Query

耳鸣需要吃什么药?

Which medications are indicated for tinnitus?

992

993

Positive example

耳鸣的药有哪些

994

995

996

997

998

999

病情分析：耳鸣常用的药物有，1.盐酸氟桂利嗪胶囊、尼莫地平等，用于改善耳蜗的供血，扩张耳蜗血管。2.三磷酸肌醇、辅酶A、甲钴胺等，用于改善耳道的代谢功能，可以促进耳部的新陈代谢，清理耳道杂质。3.卡马西平、路硝西洋平等，用于抗惊厥，能够缓解耳朵受到刺激造成的耳鸣。4.抗生素、红霉素、万古霉素等，这些药物含有非类固醇消炎药物，可以给耳道涂抹起到消炎的作用，以此来缓解耳鸣。

1000

1001

1002

1003

1004

1005

What medications are available for tinnitus? Clinical assessment: Commonly used drugs include flunarizine hydrochloride capsules and nimodipine to improve cochlear perfusion by dilating cochlear vessels; adenosine triphosphate (ATP), coenzyme A, and mecabalamin (methylcobalamin) to enhance metabolic function of the auditory pathway, promote aural metabolism, and help clear debris from the ear canal; carbamazepine and clonazepam as anticonvulsants to relieve tinnitus triggered by neural irritation; and antibiotics such as erythromycin and vancomycin, as well as nonsteroidal anti-inflammatory agents, which can be applied to the ear canal for anti-inflammatory effects to help alleviate tinnitus.

1006

1007

Negative example

吃补肾的药怎么耳鸣呢

1008

1009

1010

1011

病情分析：患者是由于肾阴亏虚而引起的上火症状，进而导致患者出现耳鸣。首先，患者应该服用一些滋阴补肾的药物来进行补肾，比如六味地黄丸或者知柏地黄丸。等到患者的肾虚得到一定的恢复之后，耳鸣的症状也会逐渐的消失。另外，患者可以搭配服用一些清热泻火的药物来进行治疗。

1012

1013

1014

1015

Why would taking kidney-tonifying medicine lead to tinnitus? Clinical assessment: From a traditional Chinese medicine perspective, the patient's tinnitus is due to kidney-yin deficiency with endogenous heat, which precipitates tinnitus. It is advisable to use yin-nourishing, kidney-tonifying formulas such as Liuwei Dihuang Wan or Zhibai Dihuang Wan. As the kidney deficiency improves, the tinnitus should gradually resolve. In addition, heat-clearing and fire-purging agents can be used concomitantly.

1016

1017

1018

1019

Table 18: MedTEB-STS example.

1020

1021

Sentence1

碳酸氢钠片是否会引起头皮痒

Do sodium bicarbonate tablets cause scalp itching?

1022

1023

Sentence2

服用小苏打片是否可能导致头皮发痒?

Could taking baking soda tablets lead to an itchy scalp?

1024

1025

1026

1027

1028

Table 19: Statistics of the MedTEB Retrieval test set.

Dataset	Split	# Queries	Avg. Q. Len.	# Corpus	Avg. Doc. Len.	Avg. Pos.
Retrieval	Test	734	20.68	229,457	470.90	8.43

1032

1033

1034

1035 Table 20: Statistics of MedTEB Rerank and CMedQA-v1/v2 Rerank test sets.

Dataset	Split	# Queries	Avg. Q. Len.	Avg. Docs/Q	Avg. Doc. Len.	Avg. Pos.
Rerank	Test	1,128	18.52	27.83	502.75	7.83
CMedQA-v1	Test	1,000	75.58	100.00	143.03	1.93
CMedQA-v2	Test	1,000	66.98	100.00	135.99	1.91

1040

1041

1042

1043

1044 Table 21: Statistics of the MedTEB STS test set.

Dataset	Split	# Queries	Avg. Q. Len.	Pos. Labels	Pos. Ratio
STS	Test	5,000	35.45	2,396	47.92%

1047

1048

1049

1050

1051 Table 22: Statistics of MedTEB train sets.

Dataset	Split	# Queries	Avg. Q. Len.	# Corpus	Avg. Doc. Len.
Retrieval/Rerank	Train	20,000	21.24	229,457	470.90
CMedQA	Train	50,000	66.76	196,902	134.22
STS	Train	10,000	23.52	24,906	29.95

1056

1057

1058

1059 Table 23: General training hyperparameters. RetroMAE and Unsupervised are applied for Medical-
1060 Embedder-base pretraining. Fine-tuning applies to all other stages unless otherwise specified.

Configuration	RetroMAE	Unsupervised	Fine-tuning
Optimizer	AdamW	AdamW	AdamW
Peak learning rate	2×10^{-4}	1×10^{-4}	1×10^{-4}
Warmup ratio	0.0	0.05	0.05
LR scheduler	linear decay	linear decay	linear decay
Global batch size	384	19,200	640
Epochs	3	3	2

1068

1069

1070

1071

1072 Table 24: Asymmetric training hyperparameters.

Configuration	Stage I	Stage II
Optimizer	AdamW	AdamW
Peak learning rate	1×10^{-4}	1×10^{-4}
Warmup ratio	0.05	0.05
LR scheduler	linear decay	linear decay
Global batch size	2,560	640
Epochs	1	1

1078

1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

Table 25: Prompt template for MedTEB Retrieval and Rerank tasks

1093
1094 Prompt:
1095 This is a medical information retrieval task: given a medical query (Query), retrieve
1096 documents (Passages) that can answer the question.
1097
1098 Given a medical query (Query) and $\{len(docs)\}$ passages, your task is to rate the
1099 relevance between the Query and each Passage.
1100

Relevance scoring criteria:

- S: The subject (e.g., disease name, drug name, inquiry target) and intent of Query and Passage are fully consistent. The Passage can directly, completely, and correctly answer the Query.
A: The subject and intent of Query and Passage are consistent. The Passage contains content that can directly and correctly answer the Query.
B: The subject of Query and Passage is consistent, but the intent differs.
The Passage cannot directly answer the Query, but it is useful for inference.
C: The subject of Query and Passage is related, but the intent is inconsistent.
It can only partially match the Query from the text, but cannot answer the Query.
D: The subject and intent of Query and Passage are unrelated. Cannot answer the Query.

Notes:

1. Query and Passage are independent; there is no contextual relationship.
Do not infer or supplement the subject/intent of Query based on Passage.
2. If the Query is low-quality (e.g., missing subject, like "How to treat this disease?"), the maximum relevance score for all Passages should not exceed B.
3. All Passages are independent; they are randomly ordered and have no contextual relationship.

Output format:

Your output must be a JSON object, containing only the required fields. The format is as follows:

{ "Passage-0": "A", "Passage-1": "C", ... }

Query and Passages are as follows:

- Query: {query}

{passages}

...

Remember: do not output any other content or explanation.

Your output must be only a JSON object with the required fields. Output:

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134

1135

1136

1137

1138 Task Objective: Your task is to generate one positive example and two negative examples based on a given
 1139 original medical query and a set of synonyms.

1140 You will receive a JSON object containing the following fields:
 1141 "origin": "Original medical term",
 1142 "replace": "Synonym medical term for replacement",
 1143 "query_pairs": { "origin": "Query sentence using the original term", "replace": "Query sentence using
 the replaced term" }

1144 Generation Rules:

1145 1. General Quality Standards (applicable to all outputs):

- 1146 - Professional Expression: Use professional, fluent, and natural medical language.
- 1147 - Medical Accuracy: Content must conform to medical knowledge and avoid ambiguity.
- 1148 - Format Requirement: All outputs must be complete, fluent interrogative sentences.

1149 2. Specific Sample Requirements:

1150 - positive (Positive Example):

- 1151 - Task: Optimize and rewrite the second query in query_pairs (the one containing the "replace" term).
- 1152 - Intent: Must preserve the exact same intent as the original query.
- 1153 - Terminology: Must use the term specified in the "replace" field.
- 1154 - Constraint: Rewritten query length must be within $\pm 30\%$ of the original query's length.

1155 - negative-1 (Negative Example 1):

- 1156 - Task: Create a new query based on the topic of the original query, similar but distinctly different.
- 1157 - Terminology: Must use the term specified in the "replace" field.
- 1158 - Intent: Significantly alter the intent of the original query.

1159 - negative-2 (Negative Example 2):

- 1160 - Task: Create a new query based on the topic of the original query, similar but distinctly different.
- 1161 - Terminology: Must use the term specified in the "origin" field.

1162 - Intent: Significantly alter the intent of the original query (same rule as negative-1).

1163

1164 Output Format: Must be a JSON object containing only the following three fields. Do not add any extra
 1165 explanations or comments.

1166 Input: {input}

1167 Output:

1168

1169

1170 This is a retrieval task in the Chinese medical domain, requiring classification of positive and negative
 1171 documents based on the user's medical query and search engine returned documents.

1172 You will receive data containing the following fields:
 1173 "query": User input in the medical domain.

1174 "documents": A candidate document set containing multiple documents, some relevant and some irrelevant — capable or incapable of answering the query.

1175 Your task is to identify "positive_document" and "negative_document" from the provided documents.

1176 "positive_document": Relevant to the query; the document contains sentences that can answer the query.
 1177 "negative_document": Either relevant or irrelevant to the query, but the document content does NOT
 contain any sentence that can answer the query.

1178 Please follow these guidelines:

- 1179 - Both "positive_document" and "negative_document" must come from the candidate document set.
- 1180 - "positive_document" and "negative_document" are mutually exclusive — no document overlap is allowed.

1181 Output Requirements:

1182 Example: {out_exam}.

1183 Your output must always be ONLY a JSON object, containing ONLY document indices (e.g., "doc-1").
 1184 Do NOT include document content, explanations, or any additional text.

1185 Input Data Format:

1186 { "positive_document": ["doc-1", "doc-2"], "negative_document": ["doc-3", "doc-4"] }

1187 Classify the documents in the input data according to the above rules, ensuring the output strictly follows
 the required format.

1188 Output:

Table 26: Prompt template for MedTEB STS tasks

Medical Query Rewriting Sample Generation (Positive and Negative Examples)
