A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

Suyu Liu¹ Zhiguang Cao² Shanshan Feng³ Yew-Soon Ong¹⁴

Abstract

Solving various types of vehicle routing problems (VRPs) using a unified neural solver has garnered significant attentions in recent years. Despite their effectiveness, existing neural multi-task solvers often fail to account for the geometric structures inherent in different tasks, which may result in suboptimal performance. To address this limitation, we propose a curvature-aware pretraining framework. Specifically, we leverage mixed-curvature spaces during the feature fusion stage, encouraging the model to capture the underlying geometric properties of each instance. Through extensive experiments, we evaluate the proposed pre-training strategy on existing neural multi-task solvers across a variety of testing scenarios. The results demonstrate that the curvatureaware pre-training approach not only enhances the generalization capabilities of existing neural VRP solvers on synthetic datasets but also improves solution quality on real-world benchmarks.

1. Introduction

Vehicle routing problems (VRPs) owing to its broad applicability among various domains such as transportation service (Ge et al., 2019; Zhou et al., 2023a) and trajectory planning (Dantzig & Ramser, 1959; Min, 1989), have garnered great attentions in recent years. However, because of its NP-Hard complexity, obtaining optimal solutions within a reasonable time is almost infeasible. Regarding to this, several heuristic solvers have been proposed, such as LinKernighan-Helsgaun (LKH) (Lin & Kernighan, 1973; Helsgaun, 2017), Hybrid Genetic Search (HGS) (Vidal, 2022) and OR-Tools (Perron & Didier, 2024). Despite the fact that these solvers have achieved remarkable performances, their reliance on hand-crafted rules and specialized domain knowledge may severely limit their abilities to generalize to more general problem types, especially the emerging VRP variants. Additionally, these solvers may become computationally prohibitive when applied on large-scale instances.

On the other hand, deep learning based neural solvers such as (Kool et al., 2019; Kwon et al., 2020; Zhou et al., 2023b;a; Goh et al., 2024; Zhang et al., 2025) require minimal handcrafted rules and offer significantly much faster inference speeds. Typically, following the architecture of POMO (Kwon et al., 2020), these neural solvers often contain selfattention modules and utilize reinforcement learning as their optimization algorithms. Besides, hard masks are integrated into the attention mechanism to eliminate infeasible actions. Despite their efficiency and flexibility, these solvers primarily address relatively simple VRPs, and extending current frameworks to handle more complex problem types remains as an under-explored area.

Recently, there has been a growing trend towards building multi-task foundation models for solving various types of VRPs (Liu et al., 2024; Zhou et al., 2024; Berto et al., 2024; Huang et al., 2025). Although these models have demonstrated promising results, they largely overlook the geometric structures that widely exist in different tasks. As shown in Figure 1, VRP instances, despite being defined in Euclidean coordinates, exhibit node-level curvature distributions that cannot be faithfully captured in flat spaces: the Ollivier-Ricci curvature (defined in Eq. (15), Appendix.1) which effectively quantifies geometric structures on discrete spaces like graphs or networks, reveals that almost every node carries either negative or positive curvature, indicating that the underlying data contains structures in a mixed-curvature space rather than a purely Euclidean one. Specifically, we observe that nodes are frequently situated in regions of either positive (contractive) or negative (expansive) curvature spaces, which correlate with delivery patterns such as customer clustering or route divergence in the delivery map (Figure 5, Appendix.1). All of these factors

¹College of Computing and Data Science, Nanyang Technological University, Singapore ²School of Computing and Information Systems, Singapore Management University, Singapore ³Centre for Frontier AI Research, The Agency for Science, Technology and Research, Singapore ⁴Centre for Frontier AI Research, Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore. Correspondence to: Zhiguang Cao <zgcao@smu.edu.sg>.

Proceedings of the 42^{nd} International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

are critical to decision makings in solving vehicle routing problems. However, the embedding and feature transformation spaces in current neural solvers are still confined to Euclidean geometric spaces where each point (or node) is treated uniformly, severely limiting their abilities to adapt to such heterogeneous geometries (Nickel & Kiela, 2017; Ganea et al., 2018; Liu et al., 2019; Chami et al., 2019; Desai et al., 2023). Indeed, prior work (Sala et al., 2018) has shown that Euclidean spaces, regardless of dimensionality, struggle to represent complex structures such as trees without incurring significant distortions. Fortunately, some deep learning methods on Riemannian manifolds (Nickel & Kiela, 2017; Ganea et al., 2018; Gu et al., 2018) have provided an alternative way to avoid these potential pitfalls.

In this work, we propose the first pre-training strategy that trains multi-task foundation models within a mixedcurvature geometric space to solve various types of VRPs, which empowers the neural solvers with the ability to capture nuanced geometric information from inputs in a curvature-sensitive manner. Specifically, we partition the feature space of each encoder layer into multiple subspaces, each mapped to a geometric space of a specific curvature. Features from the previous layer are projected into these distinct curvature spaces and subsequently merged in the output stage. By leveraging the unique properties of non-Euclidean spaces such as hyperbolic (negative curvature) and hyperspherical (positive curvature) geometries, our approach allows the model to effectively capture complex geometric patterns from problem instances, offering a novel way to enhance performance across a wide range of VRPs. Accordingly, our contributions are summarized as follows:

- We investigate the multi-task VRP problem from a novel perspective by introducing mixed-curvature geometric spaces, motivated by the diverse curvatures of nodes. To our knowledge, this is the first work to explore a curvature-aware neural solver for VRPs.
- We propose a novel and practical pre-training paradigm that integrates spaces of varying curvatures, enabling the model to explore inherent geometric structures from the inputs for solving VRPs.
- Through extensive experiments, we demonstrate that our proposed approach not only achieves remarkable improvements across various types of VRPs but also shows its strong adaptability to different architectures of multi-task solvers. In addition, results on real-world benchmarks further validate its effectiveness.

Figure 1. Histograms of curvatures for each node across 6 VRP tasks. We utilize 1,000 instances for every task, each containing 50 nodes, to visualize curvature distributions. The x-axis represents curvature values, while the y-axis denotes the count of each value. The *avg* line indicates the average curvature across all nodes. We employ Ollivier-Ricci curvature (Ollivier, 2009) which is well-suited for measuring curvatures in discrete structures like graphs. For further details on this curvature, please refer to Appendix.1. It is demonstrated that almost every node in the dataset has either negative or positive curvature and the average curvature suggests that each task in the Euclidean space contains non-Euclidean geometry information, motivating the use of a mixed-curvature space. Visualizations of curvatures for other VRP tasks are provided in Figure 4, Appendix.1. Better viewed in color.

2. Related Work

VRP Solvers

Existing solvers for VRPs can be broadly classified into three categories: 1) Traditional Solvers: This category includes established methods such as Lin-Kernighan-Helsgaun (LKH) algorithm (Lin & Kernighan, 1973), Hybrid Genetic Search (HGS) (Vidal, 2022), and OR-Tools (Perron & Didier, 2024). These solvers leverage heuristic search algorithms and rely heavily on expert knowledge, which may limit their adaptabilities to new problem settings. 2) Neural Solvers: Building on early works like (Vinyals et al., 2015), these methods employ deep learning to iteratively construct solutions. The introduction of self-attention (Vaswani et al., 2017) to VRPs (Kool et al., 2019; Kwon et al., 2020) has significantly improved solution quality. Subsequent progress, such as (Kim et al., 2022; Zhou et al., 2023b), focuses on training with varied data to enhance generalization to unseen scenarios. Recent developments include scaling to larger problem instances (Luo et al., 2023; Pan et al., 2023; Ye et al., 2024; Cheng et al., 2023) and exploring non-autoregressive decoding (Sun & Yang, 2023). However, these methods often rely on additional heuristic searches for particularly challenging or large-scale instances, which may limit the efficiency. 3) Hybrid Solvers: These approaches combine the strength of neural approaches with traditional heuristics to overcome their own limitations. Examples include the adaptation of neural methods for candidate set generation (Xin et al., 2021), enhancing the flexibility and efficiency of classic architectures. Hybrid solvers like (Hottung & Tierney, 2020; Hottung et al., 2021; Xin et al., 2021; Chalumeau et al., 2023; Ma et al., 2024; Chen et al., 2024) have demonstrated considerable success. However, these methods often require task-specific training, which hinders their ability to generalize across different VRPs.

Recent efforts (Liu et al., 2024; Zhou et al., 2024; Berto et al., 2024) have begun focusing on cross-task learning to address the generalization gaps observed in earlier approaches. For instance, (Liu et al., 2024) introduces attribute composition to handle a wide range of VRP variants, while (Zhou et al., 2024) employs a mixture-of-experts (MoE) framework to balance performance and computational efficiency. Our method diverges from these by leveraging mixed-curvature spaces to process input features, enabling more effective capture of intricate geometric structures and providing a generalizable solution across diverse VRP tasks.

Deep Learning in Non-Euclidean Space

Unlike the Euclidean setting, which assumes data points lie in flat and homogeneous spaces, non-Euclidean geometry models the underlying space by curved Riemannian manifolds. The family of curved Riemannian manifolds can be broadly categorized into two types: hyperbolic surface (characterized by negative curvature) and hyperspherical surface (characterized by positive curvature). In details, hyperbolic geometry can be expressed through five isometric models, including Poincaré ball model (Nickel & Kiela, 2017; Ganea et al., 2018), Lorentz model(hyperboloid) (Chen et al., 2021; Bdeir et al., 2024; Nickel & Kiela, 2018), Poincaré half space model (Stahl, 1993), Klein model (Bi et al., 2015) and hemisphere model (Cannon et al., 1997). Thanks to their non-uniform distance metric, hyperbolic surfaces are particularly well-suited for extracting hierarchical and relational structures from data and this has led to their wide applications in vision (Khrulkov et al., 2020; Atigh et al., 2022; Moreira et al., 2024), language (Dai et al., 2021; Fan et al., 2024; Qu et al., 2024), audio (Hong et al., 2023) and data mining (Chami et al., 2019; Liu et al., 2019; Sun et al., 2021; Choudhary et al., 2024). On the other hand, hyperspherical surfaces constrain data representations within a unit hypersphere. This property helps model achieve lower variances and better generalization abilities across a wide range of applications, including image classification (Liu et al., 2017b;a), adversarial attack (Pang et al., 2020) and generative modeling (Qiu et al., 2023). Other works like (Gu et al., 2018; Wang et al., 2021; Sun et al., 2022; Cho et al., 2023; Wang et al., 2024; Fu et al., 2025) have explored a mixed-curvature environment where models process features across spaces with varying curvatures, which leverages the strengths of both hyperbolic and hyperspherical geometries into learning process. In contrast to all these works, ours focuses on learning diverse data representations for variants of VRPs, aiming to enhance the cross-task generalization ability.

3. Preliminaries

We introduce essential definitions related to mixed-curvature spaces and key concepts in VRPs. For a broader overview of geometric deep learning, we refer interested readers to the surveys (Peng et al., 2021; Mettes et al., 2024).

3.1. Basics of Riemannian Manifolds

A *Riemannian manifold* \mathcal{M} is a smooth structure equipped with a metric g_x . This metric is a smoothly varying positivedefinite inner product defined on the tangent space $T_x \mathcal{M}$ of point $x \in \mathcal{M}$. Such kind of structures generalizes the concepts like distance and angle from Euclidean space to more complex geometric spaces. To navigate between the manifold and its tangent space more conveniently, the following two important mappings are often used:

$$Exp_{\mathbf{x}}^{\kappa}: T_{\mathbf{x}}\mathcal{M} \to \mathcal{M}, \quad Log_{\mathbf{x}}^{\kappa}: \mathcal{M} \to T_{\mathbf{x}}\mathcal{M}.$$
 (1)

The *exponential map*, denoted by $Exp_{\mathbf{x}}^{\kappa}$, transfers vectors from tangent space $T_{\mathbf{x}}\mathcal{M}$ back to manifold \mathcal{M} of curvature κ . The *logarithmic map*, denoted by $Log_{\mathbf{x}}^{\kappa}$, transfers vectors from manifold \mathcal{M} of curvatre κ to tangent space $T_{\mathbf{x}}\mathcal{M}$. Due to page limit, we put their mathematical expressions under hyperbolic and hyperspherical settings in Eqs. (17), (18), (19), (20), Appendix.1.

3.2. Hyperbolic and Hyperspherical Spaces

Our framework is built upon a mixed-curvature space that integrates properties of multiple geometric spaces. Below, we provide a brief overview of the two geometric spaces that are employed in this work: the hyperbolic spaces and hyperspherical spaces.

Figure 2. The framework of the proposed module. We consider three geometric spaces with negative (hyperbolic), zero (Euclidean) and positive (hyperspherical) curvatures, respectively. For each feature transformation operation, we split original feature space into C smaller subspaces, each with their own learnable curvatures ($\kappa_1, \ldots, \kappa_C$). Operations like Exp and Log are frequently used to navigate vectors between manifold and tangent space. In the encoder layer, an extra Mix-up method is utilized to make information transmission smoother from shallow layer to deeper ones.

Hyperbolic Spaces. In our work, we adopt the Poincaré ball for modeling hyperbolic geometric information as proposed in (Ganea et al., 2018). Hyperbolic space is characterized by a negative curvature $\kappa < 0$ and its domain is defined as:

$$\mathbb{H}(\kappa) = \{ \mathbf{x} \in \mathbb{R}^d | -\kappa \cdot ||\mathbf{x}||_2^2 < 1 \},$$
(2)

where $||\mathbf{x}||_2$ is the regular L_2 distance. The associated conformal factor is given by $\lambda_{\mathbf{x}}(\cdot, \cdot) = \frac{2}{1+\kappa||\mathbf{x}||_2^2}$. Distance and arithmetic operations are derived in (Ganea et al., 2018). For instance, the addition operation, denoted by \oplus_{κ} takes the following form:

$$\mathbf{x} \oplus_{\kappa} \mathbf{y} = \frac{(1 - 2\kappa \langle \mathbf{x}, \mathbf{y} \rangle - \kappa \|\mathbf{y}\|_{2}^{2})\mathbf{x} + (1 + \kappa \|\mathbf{x}\|_{2}^{2})\mathbf{y}}{1 - 2\kappa \langle \mathbf{x}, \mathbf{y} \rangle + \kappa^{2} \|\mathbf{x}\|_{2}^{2} \|\mathbf{y}\|_{2}^{2}}.$$
(3)

Building on this, the distance between two points x and y in hyperbolic space can be calculated in the following format:

$$d_{\kappa}(\mathbf{x}, \mathbf{y}) = \left(\frac{2}{\sqrt{-\kappa}}\right) \tanh^{-1} \left(\sqrt{-\kappa} \| - \mathbf{x} \oplus_{\kappa} \mathbf{y} \|_{2}\right).$$
(4)

Hyperspherical Spaces. The hypersphere, also referred to as a spherical space, is characterized by a positive curvature $\kappa > 0$:

$$\mathbb{S}(\kappa) = \{ \mathbf{x} \in \mathbb{R}^d | \kappa \cdot ||\mathbf{x}||_2^2 = 1 \},$$
 (5)

and the distance between two points \mathbf{x} and \mathbf{y} on the sphere is given as:

$$d_{\kappa}(\mathbf{x}, \mathbf{y}) = \frac{1}{\sqrt{\kappa}} \cos^{-1} \left(\kappa \cdot \langle x, y \rangle \right), \qquad (6)$$

where $\langle \cdot, \cdot \rangle$ is the regular vector inner product.

Remarks. In hyperbolic spaces, as $|\kappa|$ increases, the conformal factor λ_x decreases, leading to greater distances between points. This causes points on the manifold to spread out in a more noticeable way. Conversely, in hyperspherical spaces, increasing $|\kappa|$ results in shorter distances, drawing points closer together. As $|\kappa|$ approaches zero, both geometries degenerate into the standard Euclidean space.

3.3. Product Manifold Spaces

Product manifold space consists of multiple manifolds with different curvatures. It is defined by Cartesian product:

$$\mathcal{M} = \mathcal{M}_1 \times \mathcal{M}_2 \times \dots \times \mathcal{M}_C, \tag{7}$$

which is equipped with curvature $\overline{\kappa} = (\kappa_1, \dots, \kappa_C)$. Each point in \mathcal{M} has the form $\overline{\mathbf{x}} = (\mathbf{x}_1, \dots, \mathbf{x}_C)$. In this case, *exponential map* and *logarithmic map* take following forms:

$$Exp_{\overline{\mathbf{x}}}^{\overline{\kappa}}(\cdot) = (Exp_{\mathbf{x}_{1}}^{\kappa_{1}}(\cdot), \cdots, Exp_{\mathbf{x}_{C}}^{\kappa_{C}}(\cdot)),$$

$$Log_{\overline{\mathbf{x}}}^{\overline{\kappa}}(\cdot) = (Log_{\mathbf{x}_{1}}^{\kappa_{1}}(\cdot), \cdots, Log_{\mathbf{x}_{C}}^{\kappa_{C}}(\cdot)).$$
(8)

3.4. Basics of VRPs

The input of VRP instance (e.g. CVRP) is a fully connected, undirected graph G = (V, E), where $V = \{v_0, \ldots, v_n\}$ denots the set of n + 1 nodes including the depot v_0 and n customer nodes. The set $E = \{e_{ij}, i, j = 0, \ldots, n\}$ denotes the set of edges and each edge has a cost c_{ij} . Other inputs like capacity and time-window are concatenated with coordinates to formalize features of each node. Then, model starts to decode feasible solutions auto-regressively:

$$p_{\theta}(\tau|G) = \prod_{t=1}^{T} p_{\theta}(a_t|a_{t-1}, G),$$
(9)

where a_t , τ and θ represent next step's action, generated trajectory and model parameters, respectively. During decoding, remaining capacity, elapsed time and traveled distance are recorded and treated as dynamical features.

Remarks. Note that although some intermediate representations of our proposed module locate in non-Euclidean spaces, all of the problem instances from each considered task are grounded in Euclidean space, following the data generation process in (Zhou et al., 2024; Berto et al., 2024).

4. Methodology

In this section, we illustrate the mixed-curvature module using the architecture proposed in (Kwon et al., 2020; Liu et al., 2024) as an example. However, this module can be seamlessly integrated into other neural architectures, such as MVMoE(-L) (Zhou et al., 2024) and RouteFinder (Berto et al., 2024). As shown in Figure 2, our framework firstly embeds concatenated features of graphs by Euclidean embedders and then projects these features from flat space into a mixed-curvature space by partitioning the original feature space into multiple geometric subspaces, each with a learnable curvature parameter. Furthermore, to mitigate the geometry mismatch phenomena at each encoder layer, we interpolate representations between current layer and previous layer. By doing this, we can enable model to acquire a soft and learnable alignment process among incompatible geometric spaces, facilitating a smoother information flow and ultimately enhancing the quality of learned representations.

4.1. Mixed-Curvature Linear Transformation

In the first stage, we split original feature space with dimension D into C subspaces so that each subspace is equipped with a learnable curvature parameter κ and a smaller dimension $\frac{D}{C}$. After conducting transformations in geometric spaces, these scattered features will be merged together to formalize a complete vector with original dimension D. Similar to (Ganea et al., 2018; Gu et al., 2018; Cho et al., 2023), we rely on *exponential map* and *logarithmic map* defined in Eq. (8) to perform feature transformation operations. To be specific, suppose that our intermediate feature representations **X** now reside in mixed-curvature space and we aim to perform operations such as feature transformation $f = \mathbf{XW}$, then we have:

$$\hat{\mathbf{X}} = Exp_{\mathbf{0}}^{\overline{\kappa}_2} \left(Log_{\mathbf{0}}^{\overline{\kappa}_1}(\mathbf{X}) \mathbf{W} \right), \tag{10}$$

where we choose the original point 0 to define the tangent space. Note that the tangent space is flat, so W actually resides in the Euclidean space, allowing us to train it with the standard optimizer like Adam. Also note that $\overline{\kappa}_1$ may not always equal to $\overline{\kappa}_2$. By applying these different curvatures, our proposed module can capture diverse geometric structures in a layer-by-layer manner instead of being confined to subspaces with limited semantics. Activation functions and normalization modules can be similarly adapted, following the form of Eq. (10).

4.2. Mixed-Curvature Augmented Embedding Layer

In the original POMO-MTL architecture (Liu et al., 2024), the embedding layer consists of two parts: one for the depot node and the other for the customer nodes. However, this setup can lead to suboptimal embeddings that fail to capture the full range of geometric information in the inputs. To address this issue, we first project the depot and customer node embeddings from Euclidean space into a mixed-curvature space (i.e., the *embedding layer* in Figure 2), and then apply two independent mixed-curvature layers following Eq. (10). This process yields two feature representations, $\hat{\mathbf{X}}_{dep}$ and $\hat{\mathbf{X}}_{cus}$. We then concatenate them to form the final embedding:

$$\mathbf{X}_{emb} = [Log_{\mathbf{0}}^{\kappa}(\hat{\mathbf{X}}_{dep}); Log_{\mathbf{0}}^{\kappa}(\hat{\mathbf{X}}_{cus})], \qquad (11)$$

where [;] denotes the concatenation operation.

4.3. Mixed-Curvature Augmented Encoder Layer

In the prior experiments for our proposed architecture, we observe that naively propagating features from non-Euclidean subspaces (*e.g.*, hyperbolic or hyperspherical) into attention blocks often leads to performance degradation. We suspect this phenomenon is attributed to the shift of the receptive field with respect to the network depth: In shallow layers, the model primarily captures localized structural information (so the connectivity resembles a sparse graph which is a tree-like structure), where curvature tends to be negative (Nickel & Kiela, 2017; 2018). However, as the depth increases, the receptive field expands and the model begins to aggregate global information thus entangling the features of all nodes. This leads the model into hyperspherical spaces where points in feature space become substantially interconnected. Such properties of neural networks introduce a form of curvature mismatch between consecutive layers, leading into inferior performances. Drawing inspiration from the Mix-up technique (Zhang et al., 2018), which stabilizes training by interpolating representations of different samples, we design a similar mixing strategy that interpolates features across layers before sending them into current layer's attention block. Specifically, we formalize the input to each attention block as a weighted sum of the original Euclidean representation and the logarithmicmapped mixed-curvature features from the previous layer:

$$\mathbf{X}^{k} = \alpha * \mathbf{X}^{k-1} + \beta * Log_{\mathbf{0}}^{\overline{\kappa}}(\hat{\mathbf{X}}^{k-1}), \qquad (12)$$

where α , β are learnable parameters. In this way, model itself can gradually adjust to the evolving curvatures across layers. Unlike previous rigid transitions, this module encourages the model to retrieve previous layer's information in a dynamical manner, thereby improving the quality of representations.

4.4. Loss

Once decoder receives embeddings from previous established mixed-curvature encoder layers, the model starts to generate logits for each trajectory in the way of Eq. (9). Following (Kwon et al., 2020), we adopt the *reinforce* algorithm proposed in (Williams, 1992) for training. Specifically,

A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

			n=50			n=100					n=50			n=100	
Туре	Model	Obj	Gap	Time	Obj	Gap	Time	Туре	Model	Obj	Gap	Time	Obj	Gap	Time
	HGS	10.334	0.000%	4.6m	15.504	0.000%	9.1m		HGS	14.509	0.000%	8.4m	24.339	0.000%	19.6m
	LKH3	10.346	0.115%	9.9m	15.590	0.556%	18.0m		LKH3	14.607	0.664%	5.5m	24.721	1.584%	7.8m
	OR-Tools	10.540	1.962%	10.4m	16.381	5.652%	20.8m		OR-Tools	14.915	2.694%	10.4m	25.894	6.297%	20.8m
	OR-Tools(×10)	10.418	0.788%	1.7h	15.935	2.751%	3.5h		$OR-Tools(\times 10)$	14.665	1.011%	1.7h	25.212	3.482%	3.5h
CVRP	POMO-MTL	10.437	0.987%	3s	15.790	1.846%	9s	₿	POMO-MTL	15.032	3.637%	3s	25.610	5.313%	12s
	Mixed-POMO-MTL	<u>10.436</u>	0.980%	5s	<u>15.771</u>	<u>1.731%</u>	14s	E E	Mixed-POMO-MTL	15.021	3.556%	4s	<u>25.556</u>	<u>5.090%</u>	12s
	MVMoE-L	10.434	0.955%	4s	15.771	1.728%	11s	۲, I	MVMoE-L	15.013	3.500%	4s	25.519	4.927%	14s
	Mixed-MVMoE-L	10.431	0.933%	6s	15.758	1.645%	14s		Mixed-MVMoE-L	15.002	3.421%	4s	25.506	4.872%	15s
	MVMoE	10.428	0.896%	4s	15.760	1.653%	12s		MVMoE	14.999	3.410%	4s	25.512	4.903%	15s
	Mixed-MVMoE	<u>10.424</u>	<u>0.865%</u>	7s	<u>15.751</u>	<u>1.599%</u>	16s		Mixed-MVMoE	<u>14.995</u>	<u>3.373%</u>	4s	<u>25.473</u>	<u>4.732%</u>	16s
	LKH3	6.511	0.198%	4.5m	9.828	0.000%	5.3m		LKH3	10.571	0.790%	7.8m	15.771	0.000%	16.0m
	OR-Tools	6.531	0.495%	10.4m	10.010	1.806%	20.8m		OR-Tools	10.677	1.746%	10.4m	16.496	4.587%	20.8m
	$OR-Tools(\times 10)$	6.498	0.000%	1.7h	9.842	0.122%	3.5h		$OR-Tools(\times 10)$	10.495	0.000%	1.5h	16.004	1.444%	3.5h
	POMO-MTL	6.671	2.634%	2s	10.169	3.458%	9s	.	POMO-MTL	10.513	0.201%	2s	15.846	0.479%	10s
RP	Mixed-POMO-MTL	<u>6.670</u>	2.637%	3s	10.154	3.312%	10s	L L	Mixed-POMO-MTL	10.511	0.185%	3s	15.827	0.362%	11s
20	MVMoE-L	6.665	2.548%	3s	10.145	3.214%	11s	Υ K	MVMoE-L	10.506	0.131%	3s	15.821	0.323%	12s
-	Mixed-MVMoE-L	<u>6.658</u>	2.448%	4s	10.136	3.133%	12s		Mixed-MVMoE-L	10.502	<u>0.098%</u>	3s	<u>15.813</u>	0.270%	13s
	MVMoE	6.655	2.402%	3s	10.138	3.136%	12s		MVMoE	10.501	0.092%	3s	15.812	0.261%	14s
	Mixed-MVMoE	<u>6.651</u>	<u>2.336%</u>	4s	<u>10.119</u>	<u>2.946%</u>	12s		Mixed-MVMoE	<u>10.497</u>	<u>0.052%</u>	4s	<u>15.806</u>	<u>0.227%</u>	14s
	OR-Tools	8.127	0.989%	10.4m	12.185	2.594%	20.8m		OR-Tools	8.737	0.592%	10.4m	14.635	1.756%	20.8m
	$OR-Tools(\times 10)$	8.046	0.000%	1.7h	11.878	0.000%	3.5h		$OR-Tools(\times 10)$	8.638	0.000%	1.7h	14.380	0.000%	3.5h
	POMO-MTL	8.182	1.684%	2s	12.072	1.674%	8s		POMO-MTL	8.987	3.470%	3s	15.008	4.411%	12s
В	Mixed-POMO-MTL	<u>8.179</u>	1.645%	2s	12.043	1.427%	8s	12	Mixed-POMO-MTL	<u>8.982</u>	3.420%	3s	<u>14.948</u>	3.996%	12s
RP	MVMoE-L	8.176	1.605%	3s	12.036	1.368%	10s	P.	MVMoE-L	8.974	3.322%	4s	14.940	3.941%	14s
\geq	Mixed-MVMoE-L	<u>8.170</u>	1.531%	3s	12.025	1.265%	10s		Mixed-MVMoE-L	<u>8.964</u>	3.219%	4s	<u>14.911</u>	<u>3.749%</u>	15s
	MVMoE	8.170	1.540%	3s	12.027	1.285%	10s		MVMoE	8.964	3.210%	4s	14.927	3.852%	15s
	Mixed-MVMoE	<u>8.164</u>	<u>1.456%</u>	3s	12.011	1.153%	11s		Mixed-MVMoE	<u>8.950</u>	<u>3.060%</u>	4s	<u>14.888</u>	<u>3.579%</u>	16s

Table 1. Performances on 6 seen tasks by following the setting of (Zhou et al., 2024). Each task is assigned with 1,000 unseen instances for testing. The best performances are annotated with bold and domains improved by our module are highlighted with underlines.

based on Eq. (9), our objective function is defined as:

$$\mathcal{L} = E_{\tau \sim p_{\theta}(\tau|G)}[R(\tau)], \tag{13}$$

and during the optimization stage, the gradient of the objective function takes the following form:

$$\nabla_{\theta} \mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(R(\tau^{i}) - b^{i}(G) \right) \nabla_{\theta} \log p_{\theta}(\tau^{i}|G), \quad (14)$$

where $R(\tau^i)$ denotes the reward (in our case, it is defined as the negative length) obtained from the *i*-th generated trajectory τ^i , and $b^i(G)$ is the shared baseline introduced to reduce the variance in optimization stage. For other models such as MVMoE(-L) (Zhou et al., 2024), an additional objective may be added to balance the load among different expert modules.

Remarks. As noted in (Cho et al., 2023), the linear transformation defined in Eq. (10) is differentiable with respect to curvature κ . Hence, we can treat κ as a learnable parameter and optimize it during training.

5. Experiments

In this section, we present our experimental findings to demonstrate the effectiveness of the proposed mixedcurvature pre-training paradigm in enabling a multi-task solver for vehicle routing problems (VRPs). Specifically, we evaluate our approach on 24 distinct VRP variants (or tasks) spanning 6 different constraint types. All experiments are conducted on a machine equipped with four NVIDIA RTX A6000 GPUs, each with 48 GB of memory. In the following, we first introduce the baselines used in our experiments, then describe the training and testing configurations. Finally, we report the experimental results along with detailed result analysis¹.

Baselines

The baselines used in our study fall into two categories: traditional heuristic solvers and neural solvers. Below, we provide specific details for each baseline:

HGS (Vidal, 2022): A traditional solver based on genetic algorithm, designed to tackle different VRP variants.

LKH3 (Helsgaun, 2017): A widely used heuristic algorithm for solving VRP variants. It employs a k-opt mechanism where, during the search stage, k edges are removed and reconnected to discover potentially better solutions.

OR-Tools (Perron & Didier, 2024): A comprehensive solver developed by Google that supports various combinatorial optimization tasks, including VRPs.

POMO-MTL (Liu et al., 2024): A multi-task extension of POMO (Kwon et al., 2020), which enables the model to address multiple VRPs simultaneously.

MVMoE(-L) (Zhou et al., 2024): MVMoE incorporates

¹Our code is available at: https://github.com/ lsyysl9711/Mixed_Curvature_VRPs

A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

T	M.1.1	01.	n=50	m .	01.	n=100	m •	7	Mala	01.	n=50	m .	01.	n=100	101
Туре	Nidel	Obj	Gap	Time	Obj	Gap	Time	Туре	Model	Obj	Gap	Time	Obj	Gap	Time
	OR-Tools	5.764	0.332%	10.4m	8.522	1.852%	20.8m		OR-Tools	6.522	0.480%	10.4m	9.966	1.783%	20.8m
	$OR-Tools(\times 10)$	5.745	0.000%	1.7h	8.365	0.000%	3.5h		$OR-Tools(\times 10)$	6.490	0.000%	1.7h	9.790	0.000%	3.5h
	POMO-MTL	6.116	6.430%	2s	8.979	7.335%	8s		POMO-MTL	6.668	2.734%	2s	10.126	3.441%	10s
ΡB	Mixed-POMO-MTL	6.112	<u>6.348%</u>	3s	9.021	7.831%	9s	ΡL	Mixed-POMO-MTL	6.667	<u>2.708%</u>	3s	10.116	<u>3.350%</u>	11s
ΥR	MVMoE-L	6.122	6.522%	3s	8.972	7.243%	10s	VR	MVMoE-L	6.659	2.597%	3s	10.106	3.244%	12s
Ó	Mixed-MVMoE-L	<u>6.102</u>	<u>6.175%</u>	3s	<u>8.951</u>	<u>6.997%</u>	11s	Ó	Mixed-MVMoE-L	<u>6.653</u>	<u>2.497%</u>	4s	<u>10.098</u>	<u>3.159%</u>	13s
	MVMoE	6.092	5.999%	3s	8.959	7.088%	11s		MVMoE	6.650	2.454%	3s	10.097	3.148%	13s
	Mixed-MVMoE	<u>6.084</u>	<u>5.871%</u>	4s	<u>8.934</u>	<u>6.800%</u>	12s		Mixed-MVMoE	<u>6.648</u>	<u>2.419%</u>	4s	<u>10.079</u>	<u>2.971%</u>	14s
	OR-Tools	8.131	1.254%	10.4m	12.905	2.586%	20.8m		OR-Tools	15.053	1.857%	10.4m	26.217	2.858%	20.8m
	$OR-Tools(\times 10)$	8.029	0.000%	1.7h	11.790	0.000%	3.5h		$OR-Tools(\times 10)$	14.771	0.000%	1.7h	25.496	0.000%	3.5h
VRPBL	POMO-MTL	8.188	1.971%	2s	11.998	1.793%	9s	~	POMO-MTL	16.055	8.841%	3s	27.319	7.413%	11s
	Mixed-POMO-MTL	8.182	1.905%	3s	<u>11.964</u>	1.514%	10s	TW	Mixed-POMO-MTL	16.071	8.943%	3s	27.327	7.457%	12s
	MVMoE-L	8.180	1.872%	3s	11.960	1.473%	10s	PB	MVMoE-L	16.041	8.745%	3s	27.265	7.190%	13s
	Mixed-MVMoE-L	8.172	<u>1.781%</u>	3s	<u>11.949</u>	1.378%	12s	VR	Mixed-MVMoE-L	16.039	<u>8.715%</u>	4s	27.223	7.018%	11s
	MVMoE	8.172	1.776%	3s	11.945	1.346%	11s		MVMoE	16.022	8.600%	3s	27.236	7.078%	14s
	Mixed-MVMoE	<u>8.168</u>	<u>1.729%</u>	4s	<u>11.936</u>	<u>1.264%</u>	12s		Mixed-MVMoE	<u>16.014</u>	<u>8.545%</u>	4s	<u>27.208</u>	<u>6.967%</u>	15s
	OR-Tools	14.815	1.432%	10.4m	25.823	2.534%	20.8m		OR-Tools	5.771	0.549%	10.4m	8.555	2.459%	20.8m
	$OR-Tools(\times 10)$	14.598	0.000%	1.7h	25.195	0.000%	3.5h		$OR-Tools(\times 10)$	5.739	0.000%	1.7h	8.348	0.000%	3.5h
~	POMO-MTL	14.961	2.586%	3s	25.619	1.920%	13s		POMO-MTL	6.104	6.306%	2s	8.961	7.343%	9s
2	Mixed-POMO-MTL	14.966	2.621%	3s	25.561	1.673%	14s	BL	Mixed-POMO-MTL	6.102	6.282%	3s	9.009	7.919%	10s
PL	MVMoE-L	14.953	2.535%	4s	25.529	1.545%	16s	RF	MVMoE-L	6.104	6.310%	3s	8.957	7.300%	11s
K	Mixed-MVMoE-L	<u>14.941</u>	<u>2.448%</u>	4s	<u>25.521</u>	<u>1.515%</u>	17s	20	Mixed-MVMoE-L	<u>6.090</u>	<u>6.077%</u>	3s	<u>8.935</u>	7.027%	11s
	MVMoE	14.937	2.421%	4s	25.514	1.471%	17s	-	MVMoE	6.076	5.843%	3s	8.942	7.115%	12s
	Mixed-MVMoE	<u>14.931</u>	<u>2.387%</u>	4s	<u>25.486</u>	<u>1.365%</u>	18s		Mixed-MVMoE	<u>6.068</u>	<u>5.705%</u>	4s	<u>8.920</u>	<u>6.857%</u>	12s
	OR-Tools	8.758	0.927%	10.4m	14.713	2.268%	20.8m		OR-Tools	8.728	0.656%	10.4m	14.535	1.779%	20.8m
	$OR-Tools(\times 10)$	8.675	0.000%	1.7h	14.384	0.000%	3.5h		$OR-Tools(\times 10)$	8.669	0.000%	1.7h	14.279	0.000%	3.5h
\geq	POMO-MTL	9.514	9.628%	3s	15.879	10.453%	10s	>	POMO-MTL	8.987	3.633%	3s	14.896	4.374%	12s
T	Mixed-POMO-MTL	9.523	9.734%	3s	<u>15.844</u>	<u>10.192%</u>	11s	E,	Mixed-POMO-MTL	<u>8.984</u>	<u>3.600%</u>	3s	<u>14.845</u>	4.020%	12s
IdS	MVMoE-L	9.515	9.630%	3s	15.841	10.188%	12s	SPI	MVMoE-L	8.974	3.488%	4s	14.839	3.971%	14s
N	Mixed-MVMoE-L	<u>9.506</u>	<u>9.530%</u>	4s	15.802	<u>9.899%</u>	13s	IN	Mixed-MVMoE-L	8.961	<u>3.335%</u>	4s	<u>14.816</u>	3.816%	15s
0	MVMoE	9.486	9.308%	4s	15.808	9.948%	13s	0	MVMoE	8.966	3.396%	4s	14.828	3.903%	15s
	Mixed-MVMoE	<u>9.483</u>	<u>9.283%</u>	4s	<u>15.779</u>	<u>9.749%</u>	14s		Mixed-MVMoE	<u>8.951</u>	<u>3.225%</u>	4s	<u>14.779</u>	<u>3.560%</u>	16s
	OR-Tools	14.890	1.402%	10.4m	25.979	2.518%	20.8m		OR-Tools	8.729	0.624%	10.4m	14.496	1.724%	20.8m
	$OR-Tools(\times 10)$	14.667	0.000%	1.7h	25.342	0.000%	3.5h		$OR-Tools(\times 10)$	8.673	0.000%	1.7h	14.250	0.000%	3.5h
>	POMO-MTL	15.980	9.035%	3s	27.247	7.746%	12s	8	POMO-MTL	9.532	9.851%	3s	15.738	10.498%	11s
ΔŢ	Mixed-POMO-MTL	15.998	9.139%	3s	27.219	7.658%	13s	E	Mixed-POMO-MTL	9.541	9.946%	3s	15.720	10.358%	13s
BL	MVMoE-L	15.963	8.915%	4s	27.177	7.473%	14s	PB	MVMoE-L	9.518	9.682%	4s	15.706	10.263%	13s
VRP	Mixed-MVMoE-L	<u>15.961</u>	8.871%	4s	27.129	7.278%	15s	VR	Mixed-MVMoE-L	<u>9.509</u>	<u>9.582%</u>	4s	15.673	10.027%	14s
	MVMoE	15.945	8.775%	4s	27.142	7.332%	15s	Ó	MVMoE	9.503	9.516%	4s	15.671	10.009%	14s
	Mixed-MVMoE	<u>15.932</u>	<u>8.690%</u>	4s	<u>27.136</u>	<u>7.304%</u>	16s		Mixed-MVMoE	<u>9.498</u>	<u>9.462%</u>	4s	<u>15.636</u>	<u>9.772%</u>	16s

Table 2. Performances on 10 unseen tasks following the setting of (Zhou et al., 2024). Each task is assigned with 1,000 instances for testing. The best performances are annotated with bold and domains improved by our module are highlighted with underlines.

mixture-of-expert (MoE) modules into both encoder and decoder layers, differing from the original POMO-MTL architecture. In the meanwhile, MVMoE-L is a lightweight variant of MVMoE that accelerates the routing mechanism while maintaining computational efficiency.

RF-X (Berto et al., 2024): RouteFinder (or its variant) offers a more fine-grained feature fusion approach that further enhances performances of POMO-MTL, and MVMoE(-L).

Training Configurations

Due to the significant differences in experimental settings between (Zhou et al., 2024) and (Berto et al., 2024), we divide our experiments into two parts. The first part strictly follows the training configurations outlined in (Zhou et al., 2024), and the analysis of these results is presented in Section 5.1. The second part follows the experimental setup from (Berto et al., 2024), with the corresponding analysis provided in Section 5.2.

Configurations with (Zhou et al., 2024). We have two prob-

lem scales: 50 and 100 nodes in each instance. As mentioned earlier, our pre-training paradigm can be seamlessly integrated into any existing architectures, so we take POMO-MTL (Liu et al., 2024), and MVMoE(-L) (Zhou et al., 2024) as our backbones. We adopt Adam as our optimizer. The learning rate, weight decay and batch size are set to 1e-4 and 1e-6 and 128, respectively. We train each model with 5,000 epochs and for each epoch there are 20,000 instances. During the last 500 epochs, we decay the learning rate by 10. At the very beginning, we initialize all of the curvatures as 0 and jointly optimize them with other parameters. Note that only 6 VRP variants are used for training. Further details about hyper-parameters are listed in Table 12, Appendix.2.

Configurations with (Berto et al., 2024). The problem scales consist of 50 and 100 as well. We take RF-X (Berto et al., 2024) as the backbone, and follow the settings in its original paper, where each model is only trained with 300 epochs and each epoch is assigned with 100,000 training instances. Note that different from (Zhou et al., 2024), in this case, 16 VRP tasks are all used for training RF-X. Besides, the

learning rate, weight decay and batch size are set to 3e-4, 1e-6 and 256, respectively. In epoch 270 and 295, we decay the learning rate by 10. The detailed experimental configurations of RF-X can be found in Table 17, Appendix.4.

Validation Configurations

We conduct four types of validation experiments: the indistribution testing, zero-shot testing, few-shot testing, and real-world testing. We divide these evaluations into two sets of configurations corresponding to (Zhou et al., 2024) and (Berto et al., 2024).

Configurations with (Zhou et al., 2024). For each VRP task, we pre-collect 1,000 unseen instances and report gaps relative to the optimal (or best) known solutions. Following (Kwon et al., 2020; Zhou et al., 2024), we apply greedy rollout with 8× instance augmentation for fair comparisons, where best solutions for each instance are obtained by solving multiple (8×) equivalent instances. Those equivalent instances are acquired by rotating or clipping the original instances (Kwon et al., 2020). The in-distribution test comprises 6 VRP tasks included during training, while the zeroshot test includes 10 tasks not seen during training. For few-shot testing, we choose VRPBLTW and OVRPBLTW to assess model performance in low-data scenarios. Lastly, we follow (Zhou et al., 2024) for real-world evaluations on set-X (Uchoa et al., 2017) for CVRP and set-Solomon (Solomon, 1987) for VRPTW.

Configurations with (Berto et al., 2024). In this setting, each task is again assigned 1,000 unseen instances, with the gaps to the optimal (or best) solutions reported. 16 VRP tasks are designated as the seen ones in the in-distribution test, while 8 tasks are the unseen ones in few-shot evaluations. For real-world testing, we follow (Berto et al., 2024) and use sets A, B, E, F, M, P, and X from CVRPLib (Uchoa et al., 2017) to assess the model performance under more practical conditions.

Distortion Rate and Curvature Analysis. Apart from the above validations, we also analyze the distortion rates and visualize the learned curvatures. Due to space limits, we move them to Appendix.1.

5.1. Results Compared with (Zhou et al., 2024)

In-distribution Test on Seen Tasks. To evaluate performance on tasks seen during training, we begin by testing the models on 6 such tasks. The results, presented in Table 1, indicate that the original MVMoE augmented with the mixed-curvature module outperforms all prior baselines. Furthermore, the mixed-curvature module improves POMO-MTL and MVMoE-L performance on 5 out of 6 tasks and 6 out of 6 tasks, respectively, emphasizing the general benefits of incorporating geometric subspaces at the pre-training

stage. Notably, in the more challenging scenario where N = 100, MVMoE-L with the mixed-curvature module outperforms the original MVMoE across all 6 tasks, demonstrating strong versatility across different problem sizes.

Zero-shot Test on Unseen Tasks. To further assess the zero-shot predictive capabilities of our approach, we evaluate each model on 10 tasks that were not included in training. The results, shown in Table 2, reveal that MVMoE with the mixed-curvature module achieves state-of-the-art performance on all 10 tasks at both node number scales. This outcome underscores the effectiveness of our module in enabling solvers to generalize to previously unseen scenarios.

Few-Shot Test. Following the experimental setup of (Zhou et al., 2024), we examine two previously unseen tasks, OVRPBLTW and VRPBLTW, to gauge each model's performance in a few-shot context. Specifically, we fine-tune each model for 10 epochs, with each epoch drawing on 10,000 randomly sampled training instances. As illustrated in Figure 3, Mixed-MVMoE and Mixed-MVMoE-L outperform the baseline models, demonstrating that the incorporation of mixed-curvature spaces can enhance performance in low-resource settings as well.

Figure 3. The few-shot performance on two unseen tasks following settings of (Zhou et al., 2024). The x and y axis represent epochs and gaps, respectively. Here each problem instance has 50 nodes.

Real-World Instances Test. We also evaluate the models on real-world testing instances sourced from CVRPLib, categorized broadly into moderate-scale and large-scale settings. Table 13, Table 14 and Table 15, Appendix.3 show that models incorporating our mixed-curvature module outperform both the single-task model (POMO) and multi-task models (POMO-MTL and MVMoE). The results indicate not only a reduction in the performance gap on moderatescale problems but also a consistent narrowing of the gap on large-scale instances, showing our mixed-curvature module enables the original model to adapt effectively to real-world scenarios.

5.2. Results Compared with (Berto et al., 2024)

In RouteFinder (Berto et al., 2024), all of the 16 tasks from (Zhou et al., 2024) are used for training, and the results are shown in Table 18. From these presented outcomes, it is evident that RF-TE combined with the mixed-curvature

module achieves the lowest performance gaps on 16 of the 16 tasks on both node sizes. Besides, augmented with mixed-curvature modules, backbones like MTPOMO, MV-MoE and RF-MVMoE get consistent improvements on their performances. We also evaluate its performance on 7 realworld benchmarks from CVRPLib, where RF-TE equipped with the mixed-curvature module further reduces the average gaps (as shown in Table 19). Moreover, we assess its capabilities on 8 few-shot tasks. As illustrated in Table 20, the mixed-curvature-based model trained with EAL (shorted for Efficient Adapter Layer in (Berto et al., 2024)) significantly surpasses the performance of the original model tuned with EAL. Furthermore, when trained from scratch, the mixed-curvature-based model outperforms the original model with EAL on 6 of the 8 tasks, demonstrating the effectiveness of the mixed-curvature module in enhancing existing multi-task VRP solvers.

5.3. More Ablation Studies and Discussions

Effects of Increased Parameters. Since we insert several mixed-curvature modules into the embedder and encoder layer, the total number of parameters is increased and we list the number of parameters of each model in Table 9. Compared to previous baselines, the increased ratio is between 3.57% and 10.56%. Moreover, from results presented in Table 7, we can observe that only increasing the number of parameters will downgrade performances in most cases. In specifics, we replace the mixed-curvature space modules in encoder with their Euclidean counterparts so that the number of parameters is still in the same level as before (we name these models as Euc-POMO-MTL, Euc-MVMoE-L and Euc-MVMoE). For the Euc-POMO-MTL, it achieves the worst performances on 13 out of 16 and 11 out of 16 tasks with node size of 50 and 100, respectively. For the Euc-MVMoE, it achieves worst performances on 12 out of 16 tasks under both of the node size settings. These evidences demonstrate that naively increasing the number of parameters will often lead into inferior results in most cases, which indicates that the improvements on performances largely benefit from the introduction of mixed-curvature spaces.

Effects of Mix-up Modules. In this part, we discuss the effectiveness of Mix-up modules and how will it affect the performances of model. We utilize Mixed-POMO-MTL, Mixed-MVMoE(-L) to conduct ablation experiments. From results presented in Table 8, we can observe that after removing the Mix-up modules from the encoder, the performances for Mixed-POMO-MTL will become worse on 12 out of 16 tasks with node size N = 50 and 11 out of 16 tasks with node size N = 50 and 11 out of 16 tasks with node size N = 100, respectively. Similarly, the Mixed-MVMoE without Mix-Up modules will lose their SOTA performances on 11-12 tasks across problem types and node sizes. These demonstrate that the Mix-up modules can further enhance performances, which validates this mod-

ule's utility and necessity in smoothing transitions between different curvature spaces.

Effects of the Number of Subspaces. In our experiment, we set the number of subspaces in mixed-curvature space as 8 and each subspace is assigned with 16 feature dimensions. To further investigate the effects of the number of subspaces on model's performances, we also try 4 and 16 in Mixed-POMO-MTL to illustrate the difference. We show results on both node scales in Table 10. From the presented results for N = 50, we can find that the Mixed-POMO-MTL-8 can achieve the best averaged performances on 16 tasks, while the Mixed-POMO-MTL-4 and Mixed-POMO-MTL-16 achieve relatively inferior performances. We guess the reason is that although POMO-MTL-Mixed-4 acquires larger subspaces, its diversity is severely limited by the number of subspaces compared to the other two. In the meanwhile, Mixed-POMO-MTL-16 enhances its diversity but the feature dimension maybe too small to capture important geometric information from the inputs. However, when problem size becomes larger, Mixed-POMO-MTL-16 can surpass Mixed-POMO-MTL-4 by a large margin and greatly shorten the gap with respect to Mixed-POMO-MTL-4.

Discussions of Running Time. Since several mixedcurvature modules are inserted into the embedder and encoder, the running time will be increased. As reflected in Table 1 and Table 2, the model requires more time to process instances on almost every VRPs task. Taking N = 100 as an example, Mixed-POMO-MTL, Mixed-MVMoE-L and Mixed-MVMoE introduce 10.72%, 7.68%, 7.56% extra time costs to their own backbones, respectively. These show that although mixed-curvature modules bring extra computational burdens, the added costs are moderate.

Conclusions

In this work, we present a novel pre-training paradigm that processes features in curved geometric spaces for solving multi-task VRPs. By splitting the original feature space into multiple subspaces, each with its own learnable curvature, we enable the model to capture diverse geometric structures from inputs. Extensive experiments show that our mixedcurvature modules consistently enhance various backbone architectures, highlighting the promise of mixed-curvature spaces in improving multi-task VRP solvers. However, our approach has limitations. First, the frequent use of exponential and logarithmic map operations introduces extra time costs and may cause some unstable numerical phenomena. Second, our study does not consider large-scale instances with around 10,000 nodes which has achieved great attentions recently. Thirdly, we allocate 16 dimensions for each curvature subspace but other adaptive methods like neuralarchitecture-search (Elsken et al., 2019) may also be feasible. We plan to explore and address them in future works.

Impact Statement

This paper presents work whose goal is to advance the field of deep learning for vehicle routing problems. To our best knowledge, there is no potential societal consequence of our work since the module developed in our work focuses on facilitating the constrained optimizations.

Acknowledgment

This research/project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG3-RP-2022-031), the MTI under its AI Centre of Excellence for Manufacturing (AIMfg) (Award W25MCMF014), and the College of Computing and Data Science, Nanyang Technological University. We also want to express our sincere thanks to all reviewers and area chair for their constructive engagement and valuable suggestions during the rebuttal stage.

References

- Atigh, M. G., Schoep, J., Acar, E., Van Noord, N., and Mettes, P. Hyperbolic image segmentation. In Proceedings of the 35th IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp. 4453–4462, 2022.
- Bachmann, G., Bécigneul, G., and Ganea, O. Constant curvature graph convolutional networks. In *Proceedings of the 37th International Conference on Machine Learning (ICML)*, pp. 486–496, 2020.
- Bdeir, A., Schwethelm, K., and Landwehr, N. Fully hyperbolic convolutional neural networks for computer vision. In *Proceedings of the 12th International Conference on Learning Representations (ICLR)*, 2024.
- Berto, F., Hua, C., Zepeda, N. G., Hottung, A., Wouda, N., Lan, L., Tierney, K., and Park, J. Routefinder: Towards foundation models for vehicle routing problems. In *ICML* 2024 Workshop on Foundation Models in the Wild, 2024.
- Bi, Y., Fan, B., and Wu, F. Beyond mahalanobis metric: cayley-klein metric learning. In *Proceedings of the 28th IEEE conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2339–2347, 2015.
- Cannon, J. W., Floyd, W. J., Kenyon, R., Parry, W. R., et al. Hyperbolic geometry. *Flavors of geometry*, 31(59-115): 2, 1997.
- Cao, Y., Li, D., Sun, H., Assadi, A. H., and Zhang, S. Efficient weingarten map and curvature estimation on manifolds. *Machine Learning*, 110(6):1319–1344, 2021.

- Chalumeau, F., Surana, S., Bonnet, C., Grinsztajn, N., Pretorius, A., Laterre, A., and Barrett, T. Combinatorial optimization with policy adaptation using latent space search. *Proceedings of the 37th Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- Chami, I., Ying, Z., Ré, C., and Leskovec, J. Hyperbolic graph convolutional neural networks. *Proceedings of the* 34th Advances in Neural Information Processing Systems (NeurIPS), 2019.
- Chen, J., Wang, J., Zhang, Z., Cao, Z., Ye, T., and Chen, S. Efficient meta neural heuristic for multi-objective combinatorial optimization. *Proceedings of the 38th Advances in Neural Information Processing Systems (NeurIPS)*, 2024.
- Chen, W., Han, X., Lin, Y., Zhao, H., Liu, Z., Li, P., Sun, M., and Zhou, J. Fully hyperbolic neural networks. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), pp. 5672–5686, 2021.
- Cheng, H., Zheng, H., Cong, Y., Jiang, W., and Pu, S. Select and optimize: Learning to solve large-scale tsp instances. In *Proceedings of the 26th International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 1219– 1231, 2023.
- Cho, S., Cho, S., Park, S., Lee, H., Lee, H., and Lee, M. Curve your attention: Mixed-curvature transformers for graph representation learning. *arXiv preprint arXiv:2309.04082*, 2023.
- Choudhary, N., Rao, N., and Reddy, C. Hyperbolic graph neural networks at scale: a meta learning approach. *Proceedings of the 38th Advances in Neural Information Processing Systems (NeurIPS)*, 2024.
- Chow, B. and Knopf, D. *The Ricci Flow: An Introduction: An Introduction*, volume 1. American Mathematical Soc., 2004.
- Dai, S., Gan, Z., Cheng, Y., Tao, C., Carin, L., and Liu, J. Apo-vae: Text generation in hyperbolic space. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 416– 431, 2021.
- Dantzig, G. B. and Ramser, J. H. The truck dispatching problem. *Management science*, 6(1):80–91, 1959.
- Desai, K., Nickel, M., Rajpurohit, T., Johnson, J., and Vedantam, S. R. Hyperbolic image-text representations. In *Proceedings of the 40th International Conference on Machine Learning (ICML)*, pp. 7694–7731, 2023.

- Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture search: A survey. *Journal of Machine Learning Research*, 20(55):1–21, 2019.
- Fan, X., Xu, M., Chen, H., Chen, Y., Das, M., and Yang, H. Enhancing hyperbolic knowledge graph embeddings via lorentz transformations. In *Findings of the Association for Computational Linguistics ACL (ACL)*, pp. 4575–4589, 2024.
- Fu, X., Wang, J., Gao, Y., Sun, Q., Yuan, H., Li, J., and Li, X. Discrete curvature graph information bottleneck. In Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI), volume 39, pp. 16666–16673, 2025.
- Ganea, O., Bécigneul, G., and Hofmann, T. Hyperbolic neural networks. Proceedings of the 32th Advances in Neural Information Processing Systems (NeurIPS), 2018.
- Ge, Y., Li, H., and Tuzhilin, A. Route recommendations for intelligent transportation services. *IEEE Transactions on Knowledge and Data Engineering*, 33(3):1169–1182, 2019.
- Goh, Y. L., Cao, Z., Ma, Y., Dong, Y., Dupty, M. H., and Lee, W. S. Hierarchical neural constructive solver for real-world tsp scenarios. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 884–895, 2024.
- Gu, A., Sala, F., Gunel, B., and Ré, C. Learning mixedcurvature representations in product spaces. In Proceedings of the 6th International Conference on Learning Representations (ICLR), 2018.
- Helsgaun, K. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing problems. *Roskilde: Roskilde University*, 12: 966–980, 2017.
- Hong, J., Hayder, Z., Han, J., Fang, P., Harandi, M., and Petersson, L. Hyperbolic audio-visual zero-shot learning. In *Proceedings of the 19th IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 7873–7883, 2023.
- Hottung, A. and Tierney, K. Neural large neighborhood search for the capacitated vehicle routing problem. In *Proceedings of the 25th European Conference on Artificial Intelligence*, volume 313, pp. 443–450. IOS Press, 2020.
- Hottung, A., Kwon, Y.-D., and Tierney, K. Efficient active search for combinatorial optimization problems. In *Proceedings of the 9th International Conference on Learning Representations (ICLR)*, 2021.

- Huang, Z., Zhou, J., Cao, Z., and Xu, Y. Rethinking light decoder-based solvers for vehicle routing problems. In *International Conference on Learning Representations*, 2025.
- Joshi, C. K., Laurent, T., and Bresson, X. An efficient graph convolutional network technique for the travelling salesman problem. *arXiv preprint arXiv:1906.01227*, 2019.
- Khrulkov, V., Mirvakhabova, L., Ustinova, E., Oseledets, I., and Lempitsky, V. Hyperbolic image embeddings. In *Proceedings of the 33th IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6418–6428, 2020.
- Kim, M., Park, J., and Park, J. Sym-nco: Leveraging symmetricity for neural combinatorial optimization. Proceedings of the 36th Advances in Neural Information Processing Systems (NeurIPS), 2022.
- Kool, W., van Hoof, H., and Welling, M. Attention, learn to solve routing problems! In *Proceedings of the 7th International Conference on Learning Representations* (*ICLR*), 2019.
- Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., and Min, S. Pomo: Policy optimization with multiple optima for reinforcement learning. *Proceedings of the 34th Advances in Neural Information Processing Systems* (*NeurIPS*), 2020.
- Langley, P. Crafting papers on machine learning. In Langley, P. (ed.), Proceedings of the 17th International Conference on Machine Learning (ICML 2000), pp. 1207–1216, Stanford, CA, 2000. Morgan Kaufmann.
- Lee, J. M. *Riemannian manifolds: an introduction to curvature*, volume 176. Springer Science & Business Media, 2006.
- Lin, S. and Kernighan, B. W. An effective heuristic algorithm for the traveling-salesman problem. *Operations research*, 21(2):498–516, 1973.
- Liu, F., Lin, X., Wang, Z., Zhang, Q., Xialiang, T., and Yuan, M. Multi-task learning for routing problem with cross-problem zero-shot generalization. In *Proceedings* of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 1898–1908, 2024.
- Liu, Q., Nickel, M., and Kiela, D. Hyperbolic graph neural networks. *Proceedings of the 34th Advances in Neural Information Processing Systems (NeurIPS)*, 2019.

- Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L. Sphereface: Deep hypersphere embedding for face recognition. In *Proceedings of the 30th IEEE conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 212–220, 2017a.
- Liu, W., Zhang, Y.-M., Li, X., Yu, Z., Dai, B., Zhao, T., and Song, L. Deep hyperspherical learning. *Proceedings* of the 31th Advances in Neural Information Processing Systems (NeurIPS), 2017b.
- Luo, F., Lin, X., Liu, F., Zhang, Q., and Wang, Z. Neural combinatorial optimization with heavy decoder: Toward large scale generalization. *Proceedings of the 37th Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- Ma, Y., Cao, Z., and Chee, Y. M. Learning to search feasible and infeasible regions of routing problems with flexible neural k-opt. *Proceedings of the 38th Advances in Neural Information Processing Systems (NeurIPS)*, 2024.
- Mettes, P., Ghadimi Atigh, M., Keller-Ressel, M., Gu, J., and Yeung, S. Hyperbolic deep learning in computer vision: A survey. *International Journal of Computer Vision*, pp. 1–25, 2024.
- Min, H. The multiple vehicle routing problem with simultaneous delivery and pick-up points. *Transportation Research Part A: General*, 23(5):377–386, 1989.
- Moreira, G., Marques, M., Costeira, J. P., and Hauptmann, A. Hyperbolic vs euclidean embeddings in few-shot learning: Two sides of the same coin. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 2082–2090, 2024.
- Najman, L. and Romon, P. Modern approaches to discrete curvature, volume 2184. Springer, 2017.
- Nickel, M. and Kiela, D. Poincaré embeddings for learning hierarchical representations. *Proceedings of the* 31th Advances in Neural Information Processing Systems (NeurIPS), 2017.
- Nickel, M. and Kiela, D. Learning continuous hierarchies in the lorentz model of hyperbolic geometry. In *Proceedings* of the 35th International conference on machine learning (ICML), pp. 3779–3788, 2018.
- Ollivier, Y. Ricci curvature of markov chains on metric spaces. *Journal of Functional Analysis*, 256(3):810–864, 2009.
- Pan, X., Jin, Y., Ding, Y., Feng, M., Zhao, L., Song, L., and Bian, J. H-tsp: Hierarchically solving the largescale traveling salesman problem. In *Proceedings of the* 37th AAAI Conference on Artificial Intelligence (AAAI), volume 37, pp. 9345–9353, 2023.

- Pang, T., Yang, X., Dong, Y., Xu, K., Zhu, J., and Su, H. Boosting adversarial training with hypersphere embedding. *Proceedings of the 34th Advances in Neural Information Processing Systems (NeurIPS)*, 2020.
- Peng, W., Varanka, T., Mostafa, A., Shi, H., and Zhao, G. Hyperbolic deep neural networks: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44 (12):10023–10044, 2021.
- Perron, L. and Didier, F. Cp-sat, 2024. URL https://developers.google.com/ optimization/cp/cp_solver/.
- Postnikov, M. M. Geometry VI: Riemannian Geometry, volume 91. Springer Science & Business Media, 2013.
- Qiu, Z., Liu, W., Feng, H., Xue, Y., Feng, Y., Liu, Z., Zhang, D., Weller, A., and Schölkopf, B. Controlling text-toimage diffusion by orthogonal finetuning. *Proceedings* of the 37th Advances in Neural Information Processing Systems (NeurIPS), 2023.
- Qu, H., Cai, Y., and Liu, J. Llms are good action recognizers. In Proceedings of the 37th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18395–18406, 2024.
- Sala, F., De Sa, C., Gu, A., and Ré, C. Representation tradeoffs for hyperbolic embeddings. In *Proceedings of* the 35th International Conference on Machine Learning (ICML), pp. 4460–4469, 2018.
- Solomon, M. M. Algorithms for the vehicle routing and scheduling problems with time window constraints. *Operations research*, 35(2):254–265, 1987.
- Stahl, S. The Poincaré half-plane: A gateway to modern geometry. Jones and Bartlett, 1993. ISBN 9780763753818.
- Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., and Philip, S. Y. Hyperbolic variational graph neural network for modeling dynamic graphs. In *Proceedings* of the 35th AAAI Conference on Artificial Intelligence (AAAI), volume 35, pp. 4375–4383, 2021.
- Sun, L., Zhang, Z., Ye, J., Peng, H., Zhang, J., Su, S., and Philip, S. Y. A self-supervised mixed-curvature graph neural network. In *Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI)*, volume 36, pp. 4146–4155, 2022.
- Sun, Z. and Yang, Y. Difusco: Graph-based diffusion solvers for combinatorial optimization. *Proceedings of* the 37th Advances in Neural Information Processing Systems (NeurIPS), 2023.

- Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and Subramanian, A. New benchmark instances for the capacitated vehicle routing problem. *European Journal of Operational Research*, 257(3):845–858, 2017.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all you need. *Proceedings of the 31th Advances in Neural Information Processing Systems (NeurIPS)*, 2017.
- Vidal, T. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighborhood. *Computers & Operations Research*, 140:105643, 2022.
- Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks. Proceedings of the 29th Advances in Neural Information Processing Systems (NeurIPS), 2015.
- Wang, S., Wei, X., Nogueira dos Santos, C. N., Wang, Z., Nallapati, R., Arnold, A., Xiang, B., Yu, P. S., and Cruz, I. F. Mixed-curvature multi-relational graph neural network for knowledge graph completion. In *Proceedings* of the Web Conference (WWW), pp. 1761–1771, 2021.
- Wang, Y., Zhang, S., Ye, J., Peng, H., and Sun, L. A mixedcurvature graph diffusion model. In *Proceedings of the* 33th ACM International Conference on Information and Knowledge Management (CIKM), pp. 2482–2492, 2024.
- Williams, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8:229–256, 1992.
- Wouda, N. A., Lan, L., and Kool, W. PyVRP: a highperformance VRP solver package. *INFORMS Journal on Computing*, 36(4):943–955, 2024. doi: 10.1287/ijoc.2023. 0055. URL https://doi.org/10.1287/ijoc. 2023.0055.
- Xin, L., Song, W., Cao, Z., and Zhang, J. Neurolkh: Combining deep learning model with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. *Proceedings of the 35th Advances in Neural Information Processing Systems (NeurIPS)*, 2021.
- Ye, H., Wang, J., Liang, H., Cao, Z., Li, Y., and Li, F. Glop: Learning global partition and local construction for solving large-scale routing problems in real-time. In *Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI)*, volume 38, pp. 20284–20292, 2024.
- Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. mixup: Beyond empirical risk minimization. In Proceedings of the 6th International Conference on Learning Representations (ICLR), 2018.
- Zhang, N., Yang, J., Cao, Z., and Chi, X. Adversarial generative flow network for solving vehicle routing problems.

In International Conference on Learning Representations, 2025.

- Zhou, J., Wu, Y., Cao, Z., Song, W., Zhang, J., and Chen, Z. Learning large neighborhood search for vehicle routing in airport ground handling. *IEEE Transactions on Knowl*edge and Data Engineering, 35(9):9769–9782, 2023a.
- Zhou, J., Wu, Y., Song, W., Cao, Z., and Zhang, J. Towards omni-generalizable neural methods for vehicle routing problems. In *Proceedings of the 40th International Conference on Machine Learning (ICML)*, pp. 42769–42789, 2023b.
- Zhou, J., Cao, Z., Wu, Y., Song, W., Ma, Y., Zhang, J., and Xu, C. Mvmoe: Multi-task vehicle routing solver with mixture-of-experts. In *Proceedings of the 41th International Conference on Machine Learning (ICML)*, pp. 61804–61824, 2024.

A. Appendix

Appendix.1. Definitions, Formulas and Visualizations

Definition of Ollivier-Ricci Curvatures

Curvature describes how much a curve deviates from being a straight line or how much a surface bends in the space. The Ollivier-Ricci curvature (Ollivier, 2009) is a discrete notion of curvature that extends Ricci curvature from smooth (thus continuous) Riemannian manifolds to structures like graphs and networks (Fu et al., 2025). To be specific, suppose that we are given a metric space denoted by (X, d) where d represents metric distance (in our case X consists of two dimensions (coordinates) and d is the L2 distance between two points), then the Ollivier-Ricci curvature has the following form:

$$\kappa(x,y) = 1 - \frac{W(\mu_x,\mu_y)}{d(x,y)}, \quad x,y \in X$$
(15)

where $W(\cdot, \cdot)$ denotes Wasserstein distance between two probability measures:

$$\mu_x(z) = \frac{c_{xz}}{\sum_{i=1}^{N_x} c_{xi}}, \quad \mu_y(z) = \frac{c_{yz}}{\sum_{i=1}^{N_y} c_{yi}}$$
(16)

where c_{xz} , c_{yz} are edge weights on edges xz, yz and N_x , N_y are numbers of adjacent neighbors of x, y, respectively. Based on these quantities, μ_x and μ_y actually measure the transition probability of the random walk starts from x, y and ends at some point z. In other words, the smaller (bigger) the $W(\mu_x, \mu_y)$, the higher (lower) the chances that x and y will encounter each other within a few steps, which shares great similarity with the contraction (divergence) behaviors in spherical (hyperbolic) spaces. In our implementation, for each node $x \in X$, we use K-Nearest Neighbors algorithm to sample 5 nodes from each node's neighbour set and calculate the node curvature by averaging Ollivier-Ricci curvatures on the selected 5 edges. Finally, we can get the graph curvature by averaging all of these nodes' curvatures.

Remarks. Note that although we only take 5 edges for each node in the stage of curvature calculations, the embedder takes the complete graph as the input. The reason for us to choose KNN graphs to analyze curvatures is that during the delivery, not all of the edges are worth of being considered: some maybe less important and some maybe blocked due to hard constraints (*e.g.*, the same edge can't be visited twice during the delivery). As a result of this, applying KNN graphs here is more faithful to actual scenarios. Similar operations also appear in some prior works for solving traveling salesman problem (Joshi et al., 2019).

In previous works such as (Gu et al., 2018; Bachmann et al., 2020), the Parallelogram Law has been utilized to analyze the deviations of datasets from Euclidean geometry. This classical geometry identity checks whether quadruple of points behaves flat in the normal Euclidean sense: If the sum of the squares of the diagonals is greater (less) than the sum of the squares of the sides in a parallelogram then it indicates that data points are located in negative (positive) curvature spaces. The reasons for us to choose Ollivier-Ricci curvature mainly lie in two sides: 1) Enumerating all of the four point configurations from a graph with N = 50 nodes is computationally expensive while Ollivier-Ricci curvature offers a more light-weight method. 2) Ollivier-Ricci curvature enables a more nuanced understanding of geometric structures in datasets under optimal transport: it captures the degree to which local neighborhoods contract or diverge and this makes it especially well-suited for datasets represented as graphs or networks. For a more comprehensive comparison between these different curvature concepts, please refer to Table 4.

Hyperbolic Model ($\kappa < 0$)

Let \mathbf{x} , \mathbf{y} be a point on the manifold $\mathbb{H}(\kappa)$, $\mathbf{v} \in T_{\mathbf{x}}\mathbb{H}(\kappa)$ a tangent space vector and $\lambda_{\mathbf{x}} = \frac{2}{1+\kappa ||\mathbf{x}||_{2}^{2}}$. \oplus_{κ} is defined in Eq. (3).

Exponential Map:

$$Exp_{\mathbf{x}}^{\kappa}(\mathbf{v}) = \mathbf{x} \oplus_{\kappa} \left(\tanh\left(\sqrt{-\kappa}\frac{\lambda_{\mathbf{x}}|\mathbf{v}|}{2}\right) \frac{\mathbf{v}}{|\mathbf{v}|} \right)$$
(17)

Logarithmic Map:

$$Log_{\mathbf{x}}^{\kappa}(\mathbf{y}) = \frac{2}{\lambda_{\mathbf{x}}\sqrt{-\kappa}} \tanh^{-1}\left(\sqrt{-\kappa} \left|\mathbf{x} \oplus_{\kappa} (-\mathbf{y})\right|\right) \cdot \frac{\mathbf{x} \oplus_{\kappa} (-\mathbf{y})}{\left|\mathbf{x} \oplus_{\kappa} (-\mathbf{y})\right|}$$
(18)

Hyperspherical Model ($\kappa > 0$)

Let \mathbf{x}, \mathbf{y} be a point on the manifold $\mathbb{S}(\kappa)$, and $\mathbf{v} \in T_{\mathbf{x}} \mathbb{S}(\kappa)$ a tangent space vector. $d_{\kappa}(\mathbf{x}, \mathbf{y})$ is defined in Eq. (6).

Exponential Map:

$$Exp_{\mathbf{x}}^{\kappa}(\mathbf{v}) = \cos(\sqrt{\kappa}|\mathbf{v}|) \cdot \mathbf{x} + \sin(\sqrt{\kappa}|\mathbf{v}|) \cdot \frac{\mathbf{v}}{|\mathbf{v}|}$$
(19)

Logarithmic Map:

$$Log_{\mathbf{x}}^{\kappa}(\mathbf{y}) = d_{\kappa}(\mathbf{x}, \mathbf{y}) \cdot \frac{\mathbf{y} - \cos(d_{\kappa}(\mathbf{x}, \mathbf{y})) \cdot \mathbf{x}}{|\mathbf{y} - \cos(d_{\kappa}(\mathbf{x}, \mathbf{y})) \cdot \mathbf{x}|}$$
(20)

Curvature Visualizations for another 10 VRPs Tasks

The visualizations of curvatures for remaining datasets are included in Figure 4. Note that these 10 tasks are unseen during training stage, following the settings of (Zhou et al., 2024) while in (Berto et al., 2024), all of the previously mentioned 16 VRP variants are used for training the neural solvers. From Figure 4, we can observe that non-Euclidean information exists widely across these tasks, which further validates the necessity of introducing mixed-curvature space into neural solvers.

Definition of Distortion Rate and Average Distortion Rate

We adopt the notations from (Gu et al., 2018) where U_1 and U_2 denote two metric spaces (possibly with different dimensions) and they are equipped with distances $d_{U_1}(\cdot, \cdot)$ and $d_{U_2}(\cdot, \cdot)$, respectively. A mapping denoted by $f : U_1 \to U_2$ typically exists between these two spaces, such as deep neural networks. For any pair of points a and b, the distortion rate induced from mapping f is defined as:

$$\left| \frac{d_{U_1}(f(a), f(b))}{d_{U_2}(a, b)} - 1 \right|.$$
(21)

To evaluate the distortion rate globally, we consider all pairs of points and compute the average distortion as:

$$D_{avg} = \frac{1}{N} \sum_{a \neq b} \left| \frac{d_{U_1}(f(a), f(b))}{d_{U_2}(a, b)} - 1 \right|,$$
(22)

where N denotes the number of node pairs such that $a \neq b$ without repetitions. By using Eq. (21) and (22), we can know how far away distances in the feature space learned by neural solvers deviates from those distances in the original input graphs. The lower the average distortion rate, the better the quality of representations we get from those models.

Distortion Rate Analysis for Features of Encoder Module

As previously mentioned, learning solely in Euclidean space can significantly distort distance information, adversely affecting the model's decision-making process and the final performances. In Table 3, we compare the distortion rates (defined in Eq. (22)) across various models. From the presented results, our approach achieves considerably lower distortion rates than the baselines, indicating that mixed-curvature space preserves original distances more faithfully. This allows the model to retain more accurate distance-related information, thus enhancing its decision-making capability.

Model	Distortion
POMO-MTL	2477.725
Mixed-POMO-MTL	1678.605
MVMoE-L	2923.151
Mixed-MVMoE-L	1981.076
MVMoE	2083.015
Mixed-MVMoE	1274.142

Table 3. Distortion rates of different models. We extract intermediate representations the final layer of encoder module and we use 1,000 CVRP instances with size N = 50 from testing datasets to calculate the distortion rate (defined in Eq. (22)).

Curvature Analysis for Subspaces of Each Layer in Encoder module

For the model familys in (Zhou et al., 2024), we visualize the curvature of each subspace in every encoder layer of Mixed-POMO-MTL (Figure 6, Appendix.3), MVMoE-L (Figures 7, Appendix.3), and MVMoE (Figures 8, Appendix.3). The distinct color gradients reveal that subspaces in shallower layers tend to lie in hyperbolic geometry. This observation aligns with the intuition that shallow layers primarily capture local structures, which often resemble trees or sparse graphs structures that naturally associated with negative curvatures. In contrast, as we move to deeper layers, the subspaces gradually transition towards the spherical geometry, reflecting the tendency of deeper layers to encode global information, where node features become increasingly aggregated or even collapsed with each other. For RF-X (Berto et al., 2024), we also visualize the curvature of subspaces in the model RF-MVMoE (Figure 9, Appendix.4) and RF-TE (Figure 10, Appendix.4), where we can observe similar curvature evolving patterns across layers.

Curvature Type	Definition	Formula
Riemann Curvature Tensor (Lee, 2006)	Measures the failure of second covariant deriva- tives to commute with each other, encoding the intrinsic curvature of a Riemannian manifold.	$R(u,v)w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$
Ricci Curvature (Chow & Knopf, 2004)	Trace of the Riemann curvature tensor, denot- ing the average sectional curvature along differ- ent directions.	$\operatorname{Ric}(u) = \sum_{i} R(u, e_i) e_i$
Gaussian Curvature (Postnikov, 2013)	Product of the principal curvatures at a point on a surface, encoding the intrinsic measure of curvature.	$K = k_1 \cdot k_2$
Mean Curvature (Postnikov, 2013)	Average of the principal curvatures.	$H = \frac{1}{2}(k_1 + k_2)$
Principal Curvatures (Postnikov, 2013)	Maximum and minimum normal curvatures at a point on a surface.	Eigenvalues k_1 , k_2 of Weingarten map (Cao et al., 2021)
Sectional Curvature (Lee, 2006)	It measures how the manifold curves in the di- rection of a tangent space. It generalizes Gaus- sian curvature into higher dimensions.	$K(u,v) = \frac{\langle R(u,v)v,u \rangle}{\ u \wedge v\ ^2}$
Ollivier-Ricci Curvature (Ollivier, 2009)	Measures the difference between two metric measure spaces based on optimal transport, especially suitable for discrete structures like graphs and networks.	$\kappa(x,y) = 1 - \frac{W(\mu_x,\mu_y)}{d(x,y)}$
Parallelogram Law (Gu et al., 2018)	Whether the sum of the squares of the diagonals equals the sum of the squares of the sides in a parallelogram.	$ x + y ^{2} + x - y ^{2} = 2 x ^{2} + 2 y ^{2}$

Table 4. Different types of curvatures and their expressions in differential/Riemannian geometry. One major difference between Ollivier-Ricci curvature and Ricci/Gaussian/Mean/Principle curvatures is that Ollivier-Ricci curvature can handle discrete structures like graphs and networks while the others require the underlining manifold is continuous and smooth. Apart from Ollivier-Ricci curvature, there have been some other recent efforts that adapt curvatures on continuous spaces into discrete structures. For more information about this, we refer interested readers to (Najman & Romon, 2017).

Acronym	Meaning
РОМО	Policy Optimization with Multiple Optima for Reinforcement Learning (Kwon et al., 2020)
POMO-MTL	Policy Optimization with Multiple Optima for Reinforcement Learning with Multi-Task-Learning (Liu et al., 2024)
MVMoE-L	Multi-Task Vehicle Routing Solver with Mixture-of-Experts-Light (Zhou et al., 2024)
MVMoE	Multi-Task Vehicle Routing Solver with Mixture-of-Experts (Zhou et al., 2024)
RF	RouteFinder (Berto et al., 2024)
LKH	Lin-Kernighan-Helsgaun (Lin & Kernighan, 1973; Helsgaun, 2017)
HGS	Hybrid Genetic Search (Vidal, 2022)
HGS-PyVRP	A Python implementation of HGS for VRPs (Wouda et al., 2024)
VRP(s)	Vehicle Routing Problem(s)
С	Capacity
0	Open Route
L	Duration Limits
В	Backhauls
TW	Time Window
Mixed-X	The model named X augmented with Mixed-Curvature space modules
Euc-X	The model named X augmented with Euclidean space modules

Table 5. List of acronyms that appear in the paper.

Notations	Meaning
$\mathbf{x}, \mathbf{y}, \mathbf{v}$	Finite dimensional vectors
\mathcal{M}	Riemannian manifold
$g_{\mathbf{x}}$	Riemannian metric
$\lambda_{\mathbf{x}}$	Conformal factor of hyperbolic space
κ	Curvature
$\overline{\kappa}$	Consists of $(\kappa_1, \kappa_2, \ldots, \kappa_n)$, each entry corresponds to the curvature of a geometric space
$\overline{\mathbf{x}}$	Consists of $(x_1, x_2,, x_n)$ each entry corresponds to a chunk of feature located in a geometric space
$\mathbb{H}(\kappa)$	Hyperbolic space with curvature κ
$\mathbb{S}(\kappa)$	Hyperspherical space with curvature κ
$T_{\mathbf{x}}\mathcal{M}, T_{\mathbf{x}}\mathbb{H}(\kappa), T_{\mathbf{x}}\mathbb{S}(\kappa)$	Tangent space attached with \mathbf{x} on Riemannian manifold, Hyperbolic space, Hyperspherical space
\oplus_{κ}	Addition operation of hyperbolic space
$d_\kappa(\cdot,\cdot)$	Geodesic distance on hyperbolic/hyperspherical space
$\langle \cdot, \cdot \rangle$	Inner product in vector space
$p_{ heta}(\cdot)$	Generative model with parameter θ
G = (V, E)	Graph with vertex set V and edge set E
a_t	Action taken in time step t
au	Trajectory taken by the model
T	Number of time steps
D	The dimension of original feature space
C	The number of mixed-curvature subspaces
U_1, U_2	Metric spaces
$Exp_{\mathbf{x}}^{\kappa}(\cdot)$	Exponential map attached with point x on the Riemannian manifold with curvature κ
$Log_{\mathbf{x}}^{\kappa}(\cdot)$	Logarithmic map attached with point x on the Riemannian manifold with curvature κ
α, β	Learnable factors for balancing geometric information between layers

Table 6. List of notations that appear in the paper.

A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

Туре	Model	n=50 Gap	n=100 Gap	Туре	Model	n=50 Gap	n=100 Gap
	POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	0.987% 0.980% 1.033%	1.846% 1.731% <u>1.815%</u>		POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	3.637% 3.556% 3.719%	5.313% 5.090% <u>5.305%</u>
CVRP	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	0.955% 0.933% 0.965%	<u>1.728%</u> 1.645% 1.743%	VRPTW	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	3.500% 3.421% 3.508%	4.927% 4.872% 4.995%
	MVMoE Mixed-MVMoE Euc-MVMoE	0.896% 0.865% 0.900%	1.653% 1.599% 1.672%		MVMoE Mixed-MVMoE Euc-MVMoE	3.410% 3.373% 3.414%	4.903% 4.732% <u>4.892%</u>
	POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	1.684% 1.645% 1.713%	1.674% 1.427% <u>1.569%</u>		POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	3.470% 3.420% 3.577%	4.411% 3.996% 4.401%
OVRP	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	1.605% 1.531% <u>1.602%</u>	1.368% 1.265% 1.427%	VRPL	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	3.322% 3.219% 3.366%	3.941% 3.749% 3.992%
	MVMoE Mixed-MVMoE Euc-MVMoE	1.540% 1.456% <u>1.535%</u>	<u>1.285%</u> 1.153% 1.304%		MVMoE Mixed-MVMoE Euc-MVMoE	3.210% 3.060% <u>3.202%</u>	3.852% 3.579% <u>3.708%</u>
	POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	2.634% <u>2.637%</u> 2.656%	3.458% 3.312% 3.479%	OVRPTW	POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	0.201% 0.185% 0.242%	0.479% 0.362% <u>0.472%</u>
VRPB	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	2.548% 2.448% 2.532%	3.214% 3.133% 3.410%		MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	0.131% 0.098% 0.365%	0.323% 0.270% 0.096%
	MVMoE Mixed-MVMoE Euc-MVMoE	2.402% 2.336% 2.410%	3.136% 2.946% 3.157%		MVMoE Mixed-MVMoE Euc-MVMoE	0.092% 0.052% 0.096%	0.261% 0.227% 0.277%
	POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	6.430% 6.348% 6.378%	7.335% <u>7.831%</u> 7.971%		POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	2.734% 2.708% 2.762%	3.441% 3.350% 3.453%
OVRPB	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	7.243% 6.175% 6.525%	7.243% 6.997% 7.580%	OVRPL	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	2.597% 2.497% 2.606%	3.244% <u>3.159%</u> 3.120%
	MVMoE Mixed-MVMoE Euc-MVMoE	5.999% 5.871% <u>5.994%</u>	7.088% 6.800% <u>6.909%</u>		MVMoE Mixed-MVMoE Euc-MVMoE	<u>2.454%</u> 2.419% 2.459%	3.148% 2.971% <u>3.141%</u>
	POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	1.971% 1.905% <u>1.969%</u>	1.793% 1.514% <u>1.693%</u>		POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	8.841% <u>8.934%</u> 9.188%	7.413% 7.457% <u>7.414%</u>
VRPBL	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	1.872% 1.781% 1.886%	<u>1.473%</u> 1.378% 1.516%	RPBTW	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	8.745% 8.715% 8.803%	7.190% 7.018% <u>7.183%</u>
	MVMoE Mixed-MVMoE Euc-MVMoE	<u>1.776%</u> 1.729% 1.779%	1.346% 1.264% 1.405%		MVMoE Mixed-MVMoE Euc-MVMoE	8.600% 8.545% 8.665%	4.903% 4.732% 7.113%
	POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	2.586% <u>2.621%</u> 2.720%	1.920% 1.673% 1.926%		POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	6.306% 6.282% 6.305%	7.343% <u>7.919%</u> 8.015%
/RPLTW	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	2.535% 2.448% 2.530%	<u>1.545%</u> 1.515% 1.618%	VRPBL	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	6.310% 6.077% 6.311%	7.300% 7.027% 7.560%
Ŋ	MVMoE Mixed-MVMoE	2.421% 2.387%	<u>1.471%</u> 1.365%		MVMoE Mixed-MVMoE <i>Contin</i>	5.843% 5.705% ued on the 1	7.115% 6.857% next page

A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

Туре	Model	n=50 Gap	n=100 Gap	Туре	Model	n=50 Gap	n=100 Gap
	Euc-MVMoE	<u>2.418%</u>	1.492%		Euc-MVMoE	5.831%	7.047%
	POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	9.628% <u>9.734%</u> 9.785%	10.453% 10.192% 10.666%		POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	3.633% 3.600% 3.710%	4.374% 4.020% 4.375%
VRPBTW	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	9.630% 9.530% <u>9.592%</u>	10.188% 9.899% <u>10.163%</u>	VRPLTW	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	3.488% 3.335% 3.529%	3.396% 3.816% 4.063%
0	MVMoE Mixed-MVMoE Euc-MVMoE	9.308% 9.283% 9.443%	<u>9.948%</u> 9.749% 9.968%		MVMoE Mixed-MVMoE Euc-MVMoE	3.396% 3.225% <u>3.386%</u>	3.903% 3.560% 3.915%
	POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	9.035% <u>9.139%</u> 9.286%	<u>7.746%</u> 7.658% 7.761%	N	POMO-MTL Mixed-POMO-MTL Euc-POMO-MTL	9.851% <u>9.946%</u> 9.967%	<u>10.498%</u> 10.358% 10.670%
RPBLTW	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	<u>8.915%</u> 8.871% 8.996%	<u>7.473%</u> 7.278% 7.537%	RPBLTW	MVMoE-L Mixed-MVMoE-L Euc-MVMoE-L	<u>9.682%</u> 9.582% 9.754%	10.263% 10.027% <u>10.247%</u>
>	MVMoE Mixed-MVMoE Euc-MVMoE	8.775% 8.690% 8.875%	7.332% 7.304% 7.422%	o 	MVMoE Mixed-MVMoE Euc-MVMoE	<u>9.516%</u> 9.462% 9.636%	10.009% 9.772% 10.045%

Table 7: Ablation studies on whether the improvements on performances stem from the increased number of parameters or the design of mixed-curvature geometric spaces. The training configurations are consistent with (Zhou et al., 2024). Comparisons are conducted on MVMoE with 16 VRP variants (6 in-distribution and 10 out-of-distribution tasks) in which case each task contains 1,000 instances. Bold indicates best and underline indicates the second-best result. Euc-X represents the model that replaces the mixed-curvature modules with their Euclidean counterparts so that numbers of total parameters for these models are in the same level.

A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

Туре	Model	n=50 Gap	n=100 Gap	Туре	Model	n=50 Gap	n=100 Gap
	POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	0.987% 0.980% 1.057%	1.846% 1.731% <u>1.807%</u>		POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	3.637% 3.556% 3.647%	5.313% 5.090% <u>5.156%</u>
CVRP	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	0.955% 0.933% 0.984%	1.728% 1.645% 1.731%	VRPTW	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	3.500% 3.421% 3.516%	4.927% 4.872% 5.018%
	MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	0.896% 0.865% <u>0.890%</u>	1.653% 1.599% 1.674%		MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	3.410% 3.373% <u>3.256%</u>	4.903% 4.732% <u>4.897%</u>
	POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	2.634% 2.637% 2.607%	3.458% 3.312% <u>3.373%</u>		POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	0.201% 0.185% 0.205%	0.479% 0.362% <u>0.420%</u>
OVRP	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	2.548% 2.448% 2.608%	3.214% 3.133% 3.197%	VRPL	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	0.131% 0.098% 0.150%	0.323% 0.270% 0.350%
	MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	2.402% 2.336% 2.421%	3.136% 2.946% <u>3.129%</u>		MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	0.092% 0.052% 0.086%	0.261% 0.227% 0.294%
VRPB	POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	1.684% 1.645% <u>1.682%</u>	1.674% 1.427% <u>1.517%</u>	×	POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	<u>3.470%</u> <u>3.420%</u> 3.599%	4.411% 3.996% <u>4.136%</u>
	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	1.605% 1.531% <u>1.591%</u>	1.368% 1.265% 1.418%	OVRPTV	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	3.322% 3.219% 3.431%	3.941% 3.749% 4.001%
	MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	1.540% 1.456% 1.540%	<u>1.285%</u> 1.153% 1.307%		MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	3.210% 3.060% 3.256%	<u>3.852%</u> 3.579% 3.939%
	POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	6.430% 6.348% <u>6.298%</u>	7.335% 7.831% <u>7.414%</u>		POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	2.734% 2.708% 2.830%	3.441% <u>3.350%</u> 3.332%
OVRPB	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	7.243% 6.175% <u>6.241%</u>	7.243% 6.997% 7.094%	OVRPL	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	2.597% 2.497% 2.668%	3.244% 3.159% <u>3.173%</u>
	MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	5.999% 5.871% <u>5.760%</u>	7.088% 6.800% <u>6.782%</u>		MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	2.454% 2.419% 2.505%	3.148% 2.971% 3.152%
	POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	<u>1.971%</u> 1.905% 1.987%	1.793% 1.514% <u>1.639%</u>		POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	8.841% 8.934% <u>8.900%</u>	<u>7.413%</u> 7.457% 7.383%
VRPBL	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	1.872% 1.781% 1.860%	1.473% 1.378% 1.531%	VRPBTV	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	8.745% 8.715% 8.790%	7.190% 7.018% 7.169%
	MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	<u>1.776%</u> 1.729% 1.773%	1.346% 1.264% 1.430%		MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	8.600% 8.545% 8.649%	4.903% 4.732% 7.041%
>	POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	2.586% 2.621% 2.670%	1.920% 1.673% <u>1.805%</u>		POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	6.306% 6.282% 6.111%	7.343% 7.919% <u>7.460%</u>
VRPLTW	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	2.535% 2.448% 2.533%	1.545% 1.515% 1.601%	OVRPBI	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	6.310% 6.077% 6.198%	7.300% 7.027% 7.109%
	MVMoE Mixed-MVMoE	<u>2.421%</u> 2.387%	<u>1.471%</u> 1.365%		MVMoE Mixed-MVMoE	5.843% 5.705%	7.115% 6.857%

Continued on the next page

A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

Туре	Model	n=50 Gap	n=100 Gap	Туре	Model	n=50 Gap	n=100 Gap
	Mixed-MVMoE (w.o. Mix-up)	2.478%	1.523%		Mixed-MVMoE (w.o. Mix-up)	5.705%	<u>6.809%</u>
OVRPBTW	POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	9.628% <u>9.734%</u> 9.818%	10.453% 10.192% 10.251%	M	POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	3.633% 3.600% 3.765%	4.374% 4.020% <u>4.124%</u>
	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	9.630% 9.530% 9.639%	10.188% 9.899% 10.032%	OVRPLT	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	3.488% 3.335% 3.546%	3.396% 3.816% 4.037%
	MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	9.308% 9.948 9.283% 9.749 9.441% 10.096			MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	3.396% 3.225% 3.434%	3.903% 3.560% 3.932%
M	POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	9.035% <u>9.139%</u> 9.102%	7.746% 7.658% <u>7.699%</u>	M.	POMO-MTL Mixed-POMO-MTL Mixed-POMO-MTL (w.o. Mix-up)	9.851% <u>9.946%</u> 9.940%	10.498% 10.358% <u>10.323%</u>
VRPBLTV	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	8.915% 8.871% 9.013%	7.473% 7.278% 7.410%	OVRPBL1	MVMoE-L Mixed-MVMoE-L Mixed-MVMoE-L (w.o. Mix-up)	9.682% 9.582% 9.764%	10.263% 10.027% 10.135%
	MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	8.775% 8.690% 8.881%	7.332% 7.304% 7.351%		MVMoE Mixed-MVMoE Mixed-MVMoE (w.o. Mix-up)	9.516% 9.462% 9.579%	10.009% 9.772% 10.201%

Table 8: Ablation studies on whether the Mix-up module brings improvements on performances. The training configurations are consistent with (Zhou et al., 2024). Comparisons are conducted on MVMoE with 16 VRP variants (6 in-distribution and 10 out-of-distribution tasks) in which case each task contains 1,000 instances. Bold indicates best and underline indicates the second-best result.

Model	Parameters
POMO-MTL	1,254,656
Mixed-POMO-MTL	1,386,810
MVMoE-Light	3,698,944
Mixed-MVMoE-Light	3,831,116
MVMoE	3,682,176
Mixed-MVMoE	3,814,348

Table 9. Comparisons for the number of parameters in each baseline model and their mixed-curvature space counterparts. Our comparisons are based on the models mentioned in (Zhou et al., 2024). For the embedder, we insert two mixed-curvature modules for processing features from depot and customer nodes, respectively. For each layer of encoder, we insert one mixed-curvature module for processing features from the previous layer. In specifics, the ratio of increased parameters is between 3.57% and 10.56% compared to baselines.

Туре	Model	n=50 Gap	n=100 Gap	Туре	Model	n=50 Gap	n=100 Gap
CVRP	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	1.011% 0.980% <u>1.009%</u>	1.840% 1.731% <u>1.808%</u>	VRPTW	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	3.583% 3.556% 3.570%	5.205% 5.090% 5.250%
OVRP	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	2.645% <u>2.637%</u> 2.592%	3.465% 3.312% <u>3.367%</u>	VRPL	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	0.193% 0.185% <u>0.187%</u>	0.450% 0.362% 0.456%
VRPB	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	1.678% 1.645% <u>1.655%</u>	1.585% 1.427% <u>1.564%</u>	OVRPTW	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	3.423% 3.420% 3.475%	4.361% 3.996% <u>4.234%</u>
OVRPB	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	6.279% 6.348% <u>6.290%</u>	7.470% 7.831% 7.328%	OVRPL	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	2.737% 2.708% 3.356%	2.692% 3.350% <u>3.349%</u>
VRPBL	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	1.947% 1.905% 1.956%	1.729% 1.514% <u>1.696%</u>	VRPBTW	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	8.820% 8.934% <u>8.847%</u>	7.548% <u>7.457%</u> 7.402%
VRPLTW	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	2.520% 2.621% 2.585%	<u>1.830%</u> 1.673% 1.891%	OVRPBL	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	6.151% 6.282% <u>6.160%</u>	<u>7.444%</u> 7.919% 7.376%
OVRPBTW	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	9.788% <u>9.734%</u> <u>9.698%</u>	10.470% 10.192% <u>10.415%</u>	OVRPLTW	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	3.630% <u>3.600%</u> 3.573%	4.382% 4.020% <u>4.270%</u>
VRPBLTW	Mixed-POMO-MTL-4 Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	9.022% 9.139% <u>9.112%</u>	7.731% 7.658% 7.733%	OVRPBLTW	Mixed-POMO-MTL-4 / Mixed-POMO-MTL-8 Mixed-POMO-MTL-16	9.836% 9.946% <u>9.868%</u>	10.583% 10.358% <u>10.488%</u>

Table 10. Ablation studies on the number of subspaces in mixed-curvature modules. The training configurations are consistent with (Zhou et al., 2024). Comparisons are conducted on POMO-MTL with 16 VRP variants in which cases each task contains 1,000 instances. Bold indicates best value and the underline indicates the second best result.

Figure 4. The histogram of curvatures on each node from the remaining 10 VRP tasks. We utilize 1,000 instances with size 50 for each task to visualize curvature information. The x-axis represents curvature values, while the y-axis denotes the count of each value. The avg line indicates the average curvature across all nodes. We adopt Ollivier-Ricci curvature (Ollivier, 2009) which is especially suitable for measuring curvatures on discrete structures like graphs. From the information in the figure, it shows that almost every node in each task dataset has either negative or positive curvature and the average curvature suggests that each task contains non-Euclidean geometry patterns. Better viewed in color.

Figure 5. Visualization of Ollivier-Ricci curvatures on random generated complete graphs with different sizes. Each node's coordinate is restricted in the 2D region $[-1, 1] \times [-1, 1]$. For each complete graph, we use KNN to select 5 nearest neighbors of each node. Warm (cold) colors represent positive (negative) curvatures. From these presented results, we can observe that edges with negative curvatures often link distant nodes while edges with positive curvatures often exist in highly clustered regions. This property is shared among all of the node sizes. Better viewed in color.

Appendix.2. Detailed Experimental Configurations with (Zhou et al., 2024)

Definitions of Constraints in Utilized Tasks

We follow the settings of (Kool et al., 2019; Kwon et al., 2020; Zhou et al., 2024) and details are listed as follows:

- Coordinates: We focus on uniform distribution setting in which case each node's locations are sampled from U(0, 1) in a unit square.
- Capacity: We set capacity to 40 and 50 for N = 50 and N = 100, respectively. Note that one of the hard constraints involved in each task is that nodes with demands greater than delivery vehicle's current demand are masked.
- **Demand:** We sample the demand of each node from the list $\{1, 2, ..., 9\}$. Note that before sending into model, the node demand is normalized by the demand of delivery vehicle.
- **Open Route:** We set it as an indicator vector with all ones. During decoding stage, we need to manually set mask to prevent delivery vehicle from going back to the depot node.
- **Backhauls:** Similar to demand setting, we sample from $\{1, 2, ..., 9\}$ as our initial demands. Then, in the same way as that of (Liu et al., 2024), we sample 20% of nodes to be the backhauls nodes.
- Duration Limit: We set it to 3, which represents the maximum length of delivery vehicle's route.
- **Time Window:** For the depot node, we assign its time window as [0, 3] and service time for depot is 0 by default. However, service time for customer nodes is set to 0.2 and time window for customer nodes are sampled from uniform distribution.

By combining constraints in different ways, we can obtain various kinds of tasks as listed in Table 11. Since some nodes don't have features like time-windows or backhauls, these features will separately appear in the encoder module.

	Capacity (C)	Open Route (O)	Backhauls (B)	Duration Limit (L)	Time Window (TW)
CVRP	\checkmark	×	×	×	×
VRPTW	\checkmark	×	×	×	\checkmark
OVRP	\checkmark	\checkmark	×	×	×
VRPL	\checkmark	×	×	\checkmark	×
VRPB	\checkmark	×	\checkmark	×	×
OVRPTW	\checkmark	\checkmark	×	×	\checkmark
OVRPB	\checkmark	\checkmark	\checkmark	×	×
OVRPL	\checkmark	\checkmark	×	\checkmark	×
VRPBL	\checkmark	×	\checkmark	\checkmark	×
VRPBTW	\checkmark	×	\checkmark	×	\checkmark
VRPLTW	\checkmark	×	×	\checkmark	\checkmark
OVRPBL	\checkmark	\checkmark	\checkmark	\checkmark	×
OVRPBTW	\checkmark	\checkmark	\checkmark	×	\checkmark
OVRPLTW	\checkmark	\checkmark	×	\checkmark	\checkmark
VRPBLTW	\checkmark	×	\checkmark	\checkmark	\checkmark
OVRPBLTW	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table 11. Detailed descriptions of constraints contained in each problem type. We have 16 VRP tasks in total. The first 6 VRP tasks get involved in training stage and the last 10 tasks are used for zero-shot/few-shot testings.

Hyper-Parameters	Value
Training Epochs	5,000
Fine-tuning Epochs	10
Instances in each Training Epoch	20,000
Instances in each Fine-tuning Epoch	10,000
Optimizer	Adam
LR Scheduler	MultiStepLR
LR Milestones	[4,501]
LR Gamma	0.1
Training Learning Rate	1e-4
Fine-tuning Learning Rate	1e-4
Weight Decay	1e-6
Training Batch Size	128
Fine-tuning Batch Szie	128
Evaluation Batch Size	64
Problem Scales	{50, 100}
Node Distribution	U(0,1)
Number of Experts in MoE	4
Auxiliary Loss Weight in MoE	0.001
Gating Mechanism in MoE	node-level, input-choice gating
Embedding Size	128
Hidden Feature Size	512
Number of Encoder Layers	6
QKV Dimension	16
Attention Head Number	8
Logit Clipping	10
Evaluation Type	argmax
Number of Experts in MoE for Routing	2
Number of Subspaces (C)	8
Initialization value of Curvature (κ)	0
Initialization value of α, β	$\{1,1\}$

Table 12. Detailed experiment settings of hyper-parameters. This configuration is consistent with (Zhou et al., 2024). However, other choices for the number of subspaces are also valid as long as the sum of subspaces' dimensions equals 128. Even if 128 is not divisible by number of subspaces, we can still determine dimensions manually or automatically (*e.g.*, neural architecture search (Elsken et al., 2019)).

Set-Sol	lomon	PO	OMO	POM	O-MTL	MV	/MoE	Mixed-P	OMO-MTL
Instance	Opt	Obj	Gap	Obj	Gap	Obj	Gap	Obj	Gap
R101	1637.7	1805.6	10.252%	1821.2	11.205%	1798.1	9.794%	1862.3	13.714%
R102	1466.6	1556.7	6.143%	1596.0	8.823%	1572.0	7.187%	1634.1	11.422%
R103	1208.7	1341.4	10.979%	1327.3	9.812%	1328.2	9.887%	1374.1	13.687%
R104	971.5	1118.6	15.142%	1120.7	15.358%	1124.8	15.780%	1134.4	16.767%
R105	1355.3	1506.4	11.149%	1514.6	11.754%	1479.4	9.157%	1569.7	15.818%
R106	1234.6	1365.2	10.578%	1380.5	11.818%	1362.4	10.352%	1413.4	14.480%
R107	1064.6	1214.2	14.052%	1209.3	13.592%	1182.1	11.037%	1230.2	15.556%
R108	932.1	1058.9	13.604%	1061.8	13.915%	1023.2	9.774%	1063.0	14.046%
R109	1146.9	1249.0	8.902%	1265.7	10.358%	1255.6	9.478%	1258.2	9.704%
R110	1068.0	1180.4	10.524%	1171.4	9.682%	1185.7	11.021%	1213.2	13.593%
R111	1048.7	1177.2	12.253%	1211.5	15.524%	1176.1	12.148%	1189.8	13.453%
R112	948.6	1063.1	12.070%	1057.0	11.427%	1045.2	10.183%	1097.3	15.676%
RC101	1619.8	2643.0	63.168%	1833.3	13.181%	1774.4	9.544%	1882.7	16.231%
RC102	1457.4	1534.8	5.311%	1546.1	6.086%	1544.5	5.976%	1616.4	10.907%
RC103	1258.0	1407.5	11.884%	1396.2	10.986%	1402.5	11.486%	1403.0	11.526%
RC104	1132.3	1261.8	11.437%	1271.7	12.311%	1265.4	11.755%	1252.6	10.628%
RC105	1513.7	1612.9	6.553%	1644.9	8.668%	1635.5	8.047%	1660.1	8.382%
RC106	1372.7	1539.3	12.137%	1552.8	13.120%	1505.0	9.638%	1497.2	9.072%
RC107	1207.8	1347.7	11.583%	1384.8	14.655%	1351.6	11.906%	1330.8	10.180%
RC108	1114.2	1305.5	17.169%	1274.4	14.378%	1254.2	12.565%	1273.9	14.332%
RC201	1261.8	2045.6	62.118%	1761.1	39.570%	1577.3	25.004%	1595.3	26.428%
RC202	1092.3	1805.1	65.257%	1486.2	36.062%	1616.5	47.990%	1416.4	29.672%
RC203	923.7	1470.4	59.186%	1360.4	47.277%	1473.5	59.521%	1223.3	32.433%
RC204	783.5	1323.9	68.973%	1331.7	69.968%	1286.6	64.212%	1103.8	40.887%
RC205	1154.0	1568.4	35.910%	1539.2	33.380%	1537.7	33.250%	1365.2	18.301%
RC206	1051.1	1707.5	62.449%	1472.6	40.101%	1468.9	39.749%	1239.7	17.939%
RC207	962.9	1567.2	62.758%	1375.7	42.870%	1442.0	49.756%	1264.7	31.345%
RC208	776.1	1505.4	93.970%	1185.6	52.764%	1107.4	42.688%	1113.0	43.407%
Average Gap		29.	658%	21.	380%	20.	317%	17	.84%

Appendix.3. Real-World Experimental Results with (Zhou et al., 2024) and Subspace Visualizations

Table 13. Zero-Shot Inference on VRPTW benchmark instances from Set-Solomon. Each model is trained on the size n=100, following the settings in (Zhou et al., 2024).

Set-X	K	PC	ОМО	POM	O-MTL	MV	MoE	Mixed-P	OMO-MTL
Instance	Opt	Obj	Gap	Obj	Gap	Obj	Gap	Obj	Gap
X-n101-k25	27591	30138	9.231%	32482	17.727%	29361	6.415%	29676	7.557%
X-n106-k14	26362	39322	49.162%	27369	3.820%	27278	3.475%	27821	5.936%
X-n110-k13	14971	15223	1.683%	15151	1.202%	15089	0.788%	15226	1.703%
X-n115-k10	12747	16113	26.406%	14785	15.988%	13847	8.629%	13328	4.558%
X-n120-k6	13332	14085	5.648%	13931	4.493%	14089	5.678%	14039	5.303%
X-n125-k30	55539	58513	5.355%	60687	9.269%	58944	6.131%	59642	7.388%
X-n129-k18	28940	29246	1.057%	30332	4.810%	29802	2.979%	29476	1.852%
X-n134-k13	10916	11302	3.536%	11581	6.092%	11353	4.003%	11298	3.499%
X-n139-k10	13590	14035	3.274%	13911	2.362%	13825	1.729%	13760	1.251%
X-n143-k7	15700	16131	2.745%	16660	6.115%	16125	2.707%	16070	2.357%
X-n148-k46	43448	49328	13.533%	50782	16.880%	46758	7.618%	47157	8.537%
X-n153-k22	21220	32476	53.040%	26237	23.643%	23793	12.125%	23392	10.236%
X-n157-k13	16876	17660	4.646%	17510	3.757%	17650	4.586%	18444	9.291%
X-n162-k11	14138	14889	5.312%	14720	4.117%	14654	3.650%	14588	3.183%
X-n167-k10	20557	21822	6.154%	21399	4.096%	21340	3.809%	21141	2.841%
X-n172-k51	45607	49556	8.659%	56385	23.632%	51292	12.465%	48815	7.034%
X-n176-k26	47812	54197	13.354%	57637	20.549%	55520	16.121%	52593	10.000%
X-n181-k23	25569	37311	45.923%	26219	2.542%	26258	2.695%	27552	7.755%
X-n186-k15	24145	25222	4.461%	25000	3.541%	25182	4.295%	24900	3.127%
X-n190-k8	16980	18315	7.862%	18113	6.673%	18327	7.933%	18593	9.499%
X-n195-k51	44225	49158	11.154%	54090	22.306%	49984	13.022%	48689	10.094%
X-n200-k36	58578	64618	10.311%	61654	5.251%	61530	5.039%	61844	5.575%
X-n209-k16	30656	32212	5.076%	32011	4.420%	32033	4.492%	31828	3.823%
X-n219-k73	117595	133545	13.564%	119887	1.949%	121046	2.935%	125002	6.299%
X-n228-k23	25742	48689	89.142%	33091	28.549%	31054	20.636%	29244	13.604%
X-n237-k14	27042	29893	10.543%	28472	5.288%	28550	5.577%	28850	6.686%
X-n247-k50	37274	56167	50.687%	45065	20.902%	43673	17.167%	41142	10.377%
X-n251-k28	38684	40263	4.082%	40614	4.989%	41022	6.044%	40792	5.449%
Average	Gap	16.0	529%	9.8	20%	6.8	84%	6.2	43%

Table 14. Zero-Shot Inference on CVRP benchmark instances from Set-X. Each model is trained on the size n=100, following the settings in (Zhou et al., 2024).

Set-X		PC	МО	POM	O-MTL	MV	/MoE	Mixed-P(OMO-MTL
Instance	Opt	Obj	Gap	Obj	Gap	Obj	Gap	Obj	Gap
X-n502-k39	69226	75617	9.232%	77284	11.640%	73533	6.222%	81423	17.619%
X-n513-k21	24201	30518	26.102%	28510	17.805%	32102	32.647%	29529	22.016%
X-n524-k153	154593	201877	30.586%	192249	24.358%	186540	20.665%	173928	12.507%
X-n536-k96	94846	106073	11.837%	106514	12.302%	109581	15.536%	105632	11.372%
X-n548-k50	86700	103093	18.908%	94562	9.068%	95894	10.604%	95680	10.358%
X-n561-k42	42717	49370	15.575%	47846	12.007%	56008	31.114%	49619	16.158%
X-n573-k30	50673	83545	64.871%	60913	20.208%	59473	17.366%	57588	13.646%
X-n586-k159	190316	229887	20.792%	208893	9.761%	215668	13.321%	212404	11.606%
X-n599-k92	108451	150572	38.839%	120333	10.956%	128949	18.901%	120722	11.315%
X-n613-k62	59535	68451	14.976%	67984	14.192%	82586	38.718%	71275	19.719%
X-n627-k43	62164	84434	35.825%	73060	17.528%	70987	14.193%	69334	11.534%
X-n641-k35	63682	75573	18.672%	72643	14.071%	75329	18.289%	71750	12.669%
X-n655-k131	106780	127211	19.134%	116988	9.560%	117678	10.206%	120227	12.593%
X-n670-k130	146332	208079	42.197%	190118	29.922%	197695	35.100%	170403	16.450%
X-n685-k75	68205	79482	16.534%	80892	18.601%	97388	42.787%	80512	18.044%
X-n701-k44	81923	97843	19.433%	92075	12.392%	98469	20.197%	90724	10.734%
X-n716-k35	43373	51381	18.463%	52709	21.525%	56773	30.895%	50798	17.119%
X-n733-k159	136187	159098	16.823%	161961	18.925%	178322	30.939%	161089	18.285%
X-n749-k98	77269	87786	13.611%	90582	17.229%	100438	29.985%	87907	13.767%
X-n766-k71	114417	135464	18.395%	144041	25.891%	152352	33.155%	128375	12.199%
X-n783-k48	72386	90289	24.733%	83169	14.897%	100383	38.677%	84181	16.295%
X-n801-k40	73305	124278	69.536%	85077	16.059%	91560	24.903%	86152	17.525%
X-n819-k171	158121	193451	22.344%	177157	12.039%	183599	16.113%	183792	16.235%
X-n837-k142	193737	237884	22.787%	214207	10.566%	229526	18.473%	213651	10.279%
X-n856-k95	88965	152528	71.447%	101774	14.398%	99129	11.425%	115359	29.668%
X-n876-k59	99299	119764	20.609%	116617	17.440%	119619	20.463%	112067	12.858%
X-n895-k37	53860	70245	30.421%	65587	21.773%	79018	46.710%	69614	29.250%
X-n916-k207	329179	399372	21.324%	361719	9.885%	383681	16.557%	365822	11.132%
X-n936-k151	132715	237625	79.049%	186262	40.347%	220926	66.466%	167584	26.274%
X-n957-k87	85465	130850	53.104%	98198	14.898%	113882	33.250%	117787	37.819%
X-n979-k58	118976	147687	24.132%	138092	16.067%	146347	23.005%	132921	11.721%
X-n1001-k43	72355	100399	38.759%	87660	21.153%	114448	58.176%	88897	22.862%
Average	Gap	29.0	558%	16.	769%	26.	048%	16.6	514%

Table 15. Zero-Shot Inference on large-scale CVRP instances from Set-X. Each model is trained on the size n=100, following the setting in (Zhou et al., 2024).

Figure 6. Visualization of curvature for each subspace of each layer in the encoder module. Shown model is Mixed-POMO-MTL. The shown colors indicate that subspaces in shallower layers tend to reside in hyperbolic space. As the layer index increases, more subspaces shift closer to spherical geometry. The tendency towards spherical geometry is even more serious when N = 100. However, we also observe an unexpected change in last layer where curvatures cluster around zero. Such kind of inconsistency may explain the inferior performances of Mixed-POMO-MTL on some unseen tasks like VRPBTW. Better viewed in color.

Figure 7. Visualization of curvature for each subspace of each layer in the encoder module. Shown model is Mixed-MVMoE-L. The shown colors indicate that subspaces in shallower layers tend to reside in hyperbolic space. As the layer index increases, more subspaces shift closer to spherical geometry. Compared with Mixed-POMO-MTL, it is more consistent as the layer deepens. Better viewed in color.

Figure 8. Visualization of curvature for each subspace of each layer in the encoder module. Shown model is Mixed-MVMoE (n=100). The shown colors indicate that subspaces in shallower layers tend to reside in hyperbolic space. As the layer index increases, more subspaces shift closer to spherical geometry. As we can observe from the presented color gradients, MVMoE sometimes can learn very positive curvatures even in the shallow layer. We hypothesize this maybe due to the fact that MVMoE doesn't apply approximate routing mechanism so that model itself acquires much stronger abilities to capture high-level information. Better viewed in color.

Appendix.4. Detailed Experimental Configurations, Results and Visualizations with RouteFinder (Berto et al., 2024)

Definitions of Constraints in Utilized Tasks

In this case, we follow the settings of (Berto et al., 2024) and details are listed as follows:

- Coordinates: We focus on uniform distribution setting in which case each node's locations are sampled from U(0, 1) in a unit square.
- Capacity: We set capacity to 40 and 50 for n = 50 and n = 100, respectively. Note that one of the hard constraints involved in each task is that nodes with demands greater than dilvery vehicle's current demand are masked.
- **Demand:** We sample the demand of each node from the list $\{1, 2, ..., 9\}$. Note that before sending into model, the node demand is normalized by the demand of delivery vehicle.
- **Open Route:** We set it as an indicator vector with all ones. During decoding stage, we need to manually set mask to prevent vehicle from going back to the depot node.
- **Backhauls:** Similar to demand setting, we sample from $\{1, 2, ..., 9\}$ as our initial demands. Then, the same as in (Liu et al., 2024), we sample 20% of nodes to be the backhauls nodes.
- Duration Limit: We set it to 3, which represents the maximum length of delivery vehicle's route.
- **Time Window:** For the depot, we assign its time window as [0,3] and service time for depot is 0 by default. However, service time for customer nodes is set to 0.2 and time window for customer nodes are sampled from uniform distribution.
- **Mixed:** In the regular setting, there is a strict preceeding ordering between linehaul and backhaul customers. However, the mixed scenario allows linehaul and backhaul customers to happen in an interleaved manner.

By combining constraints in different ways, we can obtain various kinds of tasks in Table 16. Since some nodes don't have features like time-windows and backhauls, these features will separately appear in the encoder module.

	Capacity (C)	Open Route (O)	Backhauls (B)	Duration Limit (L)	Time Window (TW)	Mixed (M)
CVRP	 ✓ 	X	×	×	×	×
VRPTW	 ✓ 	×	×	×	\checkmark	×
OVRP	 ✓ 	\checkmark	×	×	×	×
VRPL	 ✓ 	×	×	\checkmark	×	×
VRPB	 ✓ 	×	\checkmark	×	×	×
OVRPTW	 ✓ 	\checkmark	×	×	\checkmark	×
OVRPB	 ✓ 	\checkmark	\checkmark	×	×	×
OVRPL	 ✓ 	\checkmark	×	\checkmark	×	×
VRPBL	 ✓ 	×	\checkmark	\checkmark	×	×
VRPBTW	 ✓ 	×	\checkmark	×	\checkmark	×
VRPLTW	 ✓ 	×	×	\checkmark	\checkmark	×
OVRPBL	 ✓ 	\checkmark	\checkmark	\checkmark	×	×
OVRPBTW	 ✓ 	\checkmark	\checkmark	×	\checkmark	×
OVRPLTW	 ✓ 	\checkmark	×	\checkmark	\checkmark	×
VRPBLTW	 ✓ 	×	\checkmark	\checkmark	\checkmark	×
OVRPBLTW	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	×
VRPMB	 ✓ 	×	\checkmark	×	×	\checkmark
OVRPMB		\checkmark	\checkmark	×	×	\checkmark
VRPMBL	 ✓ 	×	\checkmark	\checkmark	×	\checkmark
VRPMBTW		×	\checkmark	×	\checkmark	\checkmark
OVRPMBL	 ✓ 	\checkmark	\checkmark	\checkmark	×	\checkmark
OVRPMBTW		\checkmark	\checkmark	×	\checkmark	\checkmark
VRPMBLTW		×	\checkmark	\checkmark	\checkmark	\checkmark
OVRPMBLTW	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table 16. Detailed descriptions of constraints contained in each problem type. We have 24 VRP tasks in total. Note that the first 16 VRP tasks get involved in training stage and the last 8 tasks are used for few-shot testings.

Hyper-Parameters	Value
Training Epochs	300
Fine-tuning Epochs	10
Instances in each Training Epoch	100,000
Instances in each Fine-tuning Epoch	10,000
Optimizer	Adam
LR Scheduler	MultiStepLR
LR Milestones	[270,295]
LR Gamma	0.1
Gradient Clips	1.0
Training Learning Rate	3e-4
Fine-tuning Learning Rate	3e-4
Weight Decay	1e-6
Training Batch Size	256
Fine-tuning Batch Szie	256
Evaluation Batch Size	128
Problem Scales	$\{50, 100\}$
Node Distribution	U(0,1)
Number of Experts in MoE	4
Auxiliary Loss Weight in MoE	0.001
Gating Mechanism in MoE	node-level, input-choice gating
Embedding Size	128
Hidden Feature Size	512
Number of Encoder Layers	6
QKV Dimension	16
Attention Head Number	8
Logit Clipping	10
Evaluation Type	argmax
Number of Experts in MoE for Routing	2
Number of Subspaces (C)	8
Initialization value of Curvature (κ)	0
Initialization value of α, β	{1,1}

Table 17. Detailed experiment settings of hyper-parameters for RouteFinder (Berto et al., 2024) based model. However, other choices for the number of subspaces are also valid as long as the sum of subspaces' dimensions equals 128. Even if 128 is not divisible by number of subspaces, we can still determine dimensions manually or automatically (*e.g.*, neural architecture search (Elsken et al., 2019)).

A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

			n=50			n=100					n=50			n=100	
Туре	Model	Obj	Gap	Time	Obj	Gap	Time	Туре	Model	Obj	Gap	Time	Obj	Gap	Time
	HGS-PyVRP OR-Tools MTPOMO	10.372 10.572 10.518	0.000% 1.907% 1.411%	10.4m 10.4m 2s	15.628 16.280 15.934	0.000% 4.178% 1.988%	20.8m 20.8m 7s		HGS-PyVRP OR-Tools MTPOMO	16.031 16.089 16.410	0.000% 0.347% 2.364%	10.4m 10.4m 1s	25.423 25.814 26.412	0.000% 1.506% 3.873%	20.8m 20.8m 7s
RP	Mixed-MTPOMO MVMoE	10.518 10.501	1.413% 1.242%	2s 2s	15.951 15.888	2.095% 1.694%	8s 9s	TW	Mixed-MTPOMO MVMoE	16.414 16.404	2.391% 2.329%	2s 2s	$\frac{26.388}{26.389}$	3.780% 3.788%	8s 9s
CV	RF-MoE	10.505	1.265%	38 28	15.887	$\frac{1.690\%}{1.622\%}$	10s 9s	VRP	RF-MoE	16.396	$\frac{2.272\%}{2.234\%}$	38 28	$\frac{26.387}{26.322}$	3.519%	10s 9s
	Mixed-RF-MVMoE RF-TE	10.500 10.504	1.230%	3s 2s	$\frac{15.866}{15.857}$	1.559% 1.505%	10s 7s		Mixed-RF-MVMoE RF-TE	$\frac{16.371}{16.364}$	$\frac{2.118\%}{2.077\%}$	3s 1s	$\frac{26.307}{26.235}$	$\frac{3.457\%}{3.178\%}$	10s 7s
	Mixed-RF-TE	<u>10.493</u>	<u>1.166%</u>	23 3s	<u>15.846</u>	<u>1.440%</u>	9s		Mixed-RF-TE	<u>16.320</u>	<u>1.798%</u>	3s	<u>26.167</u>	<u>2.914%</u>	9s
	HGS-PyVRP OR-Tools	6.507 6.553	$0.000\% \\ 0.686\%$	10.4m 10.4m	9.725 9.995	0.000% 2.732%	20.8m 20.8m		HGS-PyVRP OR-Tools	10.587 10.570	0.000% 2.343%	10.4m 10.4m	15.766 16.466	0.000% 5.302%	20.8m 20.8m
	MTPOMO Mixed MTPOMO	6.718	3.209%	1s 20	10.210	4.965%	6s		MTPOMO Mixed MTPOMO	10.775	1.734%	1s 20	16.149	2.434%	7s
д	MVMoE	$\frac{6.714}{6.702}$	$\frac{3.130\%}{2.965\%}$	28 28	10.230	4.621%	88 98	L	MVMoE	$\frac{10.771}{10.751}$	$\frac{1.098\%}{1.505\%}$	28 28	16.099	2.315%	8 9s
DVR	Mixed-MVMoE	$\frac{6.699}{6.607}$	$\frac{2.929\%}{2.929\%}$	3s	10.181	4.658%	9s	VRP	Mixed-MVMoE	10.752	1.523%	3s	16.099	2.118%	9s
U	Mixed-RF-MVMoE	6.6897 6.689	2.880% 2.764%	28 38	<u>10.139</u> <u>10.137</u>	4.229% <u>4.216%</u>	98 10s		Mixed-RF-MVMoE	<u>10.737</u> <u>10.736</u>	1.388% <u>1.381%</u>	28 38	<u>16.070</u>	1.941% <u>1.888%</u>	98 98
	RF-TE Mixed-RF-TE	6.684 6.675	2.687% 2.551%	1s 2s	10.121 10.111	4.055% 3.946%	6s 7s		RF-TE Mixed-RF-TE	10.749 10.731	1.502% 1.339%	1s 2s	16.051 16.040	1.827% 1.751%	6s 7s
	HGS-PyVRP	9.687	0.000%	10.4m	14.377	0.000%	20.8m		HGS-PyVRP	10.510	0.000%	10.4m	16.926	0.000%	20.8m
	OR-Tools	9.802	1.159%	10.4m	14.933	3.853%	20.8m		OR-Tools	10.519	0.078%	10.4m	17.027	0.583%	20.8m
	Mixed-MTPOMO	10.035	3.583%	2s	15.082	4.922% 5.045%	7s		Mixed-MTPOMO	10.676	1.479%	2s	<u>17.420</u> <u>17.419</u>	2.892% 2.889%	78 78
в	MVMoE Mixed MVMoE	10.005	3.270%	2s	15.023	4.508%	9s	Γ	MVMoE Mined MVMoE	10.669	1.492%	$\frac{2s}{2s}$	17.416	2.872%	10s
/RP	RF-MoE	9.980	$\frac{3.242\%}{3.015\%}$	28 28	14.973	4.164%	8s	/RP	RF-MoE	$\frac{10.003}{10.674}$	$\frac{1.439\%}{1.539\%}$	28 28	17.393	$\frac{2.738\%}{2.697\%}$	10s
-	Mixed-RF-MVMoE	9.980	$\frac{3.012\%}{2.080\%}$	2s	$\frac{14.962}{14.042}$	$\frac{4.085\%}{3.052\%}$	9s	б	Mixed-RF-MVMoE	$\frac{10.660}{10.652}$	$\frac{1.403\%}{1.326\%}$	2s	$\frac{17.369}{17.327}$	$\frac{2.592\%}{2.346\%}$	11s 7c
	Mixed-RF-TE	<u>9.963</u>	<u>2.989%</u>	2s	<u>14.942</u>	<u>3.863%</u>	0s 7s		Mixed-RF-TE	<u>10.635</u>	<u>1.166%</u>	2s	<u>17.285</u>	<u>2.100%</u>	7s
	HGS-PyVRP	10.186	0.000%	10.4m	14.779	0.000%	20.8m		HGS-PyVRP	15.510	0.000%	10.4m	16.926	0.000%	20.8m
	MTPOMO	10.551	4.697%	10.4m	15.712	6.251%	20.011 7s		MTPOMO	18.990	2.128%	10.4m	30.898	3.624%	20.011 7s
_	Mixed-MTPOMO MVMoF	$\frac{10.666}{10.637}$	$\frac{4.644\%}{4.354\%}$	2s 2s	15.728	6.359% 5.758%	8s Qe	≥	Mixed-MTPOMO MVMoF	19.015	2.258%	2s 2s	$\frac{30.897}{30.892}$	$\frac{3.616\%}{3.608\%}$	8s 10s
(BB)	Mixed-MVMoE	10.640	4.394%	2s	15.647	5.816%	10s	BLJ	Mixed-MVMoE	<u>18.977</u>	<u>2.060%</u>	2s	<u>30.883</u>	<u>3.569%</u>	11s
ΙΛ	RF-MoE Mixed_RE-MVMoE	10.575	3.765% 3 702%	2s 2s	15.541	5.121%	9s 10s	VRF	RF-MoE Mixed_RE-MVMoE	18.957	1.960%	2s 2s	30.808	3.323%	10s
	RF-TE	10.578	3.803%	1s	15.528	5.039%	6s		RF-TE	18.941	$\frac{1.075\%}{1.877\%}$	1s	30.688	2.923%	7s
	Mixed-RF-TE	10.553	<u>3.555%</u>	2s	<u>15.499</u>	<u>4.843%</u>	7s		Mixed-RF-TE	18.894	<u>1.621%</u>	2s	30.642	<u>2.768%</u>	8s
	OR-Tools	18.292	0.000% 0.383%	10.4m 10.4m	29.467 29.945	0.000% 1.597%	20.8m 20.8m		OR-Tools	16.356	0.000% 0.499%	10.4m 10.4m	25.757 26.259	0.000% 1.899%	20.8m 20.8m
	MTPOMO	18.639	1.878%	1s	30.437	3.285%	7s		MTPOMO	16.824	2.823%	1s	26.891	4.368%	7s
ΓW	MVMoE	18.640	1.983%	28 28	$\frac{50.428}{30.436}$	$\frac{3.233\%}{3.281\%}$	8 9	₹	MVMoE	16.811	$\frac{2.779\%}{2.750\%}$	28 28	$\frac{20.882}{26.868}$	$\frac{4.330\%}{4.277\%}$	8 9s
CPB.	Mixed-MVMoE	$\frac{18.630}{18.616}$	1.830%	$\frac{2s}{2s}$	$\frac{30.422}{20.241}$	$\frac{3.232\%}{2.054\%}$	10s	SPL7	Mixed-MVMoE	$\frac{16.804}{16.777}$	$\frac{2.703\%}{2.550\%}$	$\frac{2s}{2s}$	$\frac{26.851}{26.774}$	$\frac{4.211\%}{2.012\%}$	10s
ΥF	Mixed-RF-MVMoE	18.607	1.737% <u>1.706%</u>	28 28	<u>30.306</u>	2.934% 2.839%	98 10s	1 A	Mixed-RF-MVMoE	<u>16.762</u>	2.330% 2.453%	28 28	<u>26.774</u> <u>26.746</u>	3.912% 3.802%	98 10s
	RF-TE Mixed-RF-TF	18.600 18 555	1.676% 1 417 %	1s 2s	30.241 30 172	2.619% 2.385%	7s 8s		RF-TE Mixed-RF-TF	16.762	2.454% 2.121%	1s 2s	26.689 26.637	3.579%	7s 8s
	HGS-PyVRP	6.898	0.000%	10.4m	10.335	0.000%	20.8m	 	HGS-PyVRP	6.899	0.000%	10.4m	10.335	0.000%	20.8m
	OR-Tools	6.928	0.412%	10.4m	10.577	2.315%	20.8m		OR-Tools	6.927	0.386%	10.4m	10.582	2.363%	20.8m
	Mixed-MTPOMO	7.099	3.005% 2.889%	1s 2s	10.878	5.224% 5.354%	7s 8s		Mixed-MTPOMO	7.112	3.055%	1s 2s	10.884	5.276% 5.419%	os 8s
τPB	MVMoE	7.089	2.741%	2s	10.840	4.861%	9s	PBL	MVMoE	7.098	2.846%	2s	10.847	4.928%	9s
OVF	RF-MoE	$\frac{7.088}{7.080}$	$\frac{2.729\%}{2.513\%}$	2s 2s	$\frac{10.835}{10.805}$	<u>4.809%</u> 4.522%	10s 9s	NR	RF-MoE	$\frac{7.090}{7.083}$	$\frac{2.739\%}{2.635\%}$	28 28	$\frac{10.842}{10.806}$	4.878% 4.534%	10s 9s
-	Mixed-RF-MVMoE	$\frac{7.075}{7.071}$	$\frac{2.509\%}{2.470\%}$	2s	$\frac{10.791}{10.772}$	$\frac{4.388\%}{4.208\%}$	10s		Mixed-RF-MVMoE	$\frac{7.076}{7.074}$	$\frac{2.539\%}{2.509\%}$	2s	$\frac{10.796}{10.779}$	$\frac{4.428\%}{4.262\%}$	10s
	RF-TE Mixed-RF-TE	7.071 7.053	2.479% <u>2.216%</u>	1s 2s	10.772 10.745	4.208% <u>3.939%</u>	7s 8s		RF-TE Mixed-RF-TE	7.074 <u>7.054</u>	2.508% 2.215%	1s 2s	10.778 10.749	4.262% <u>3.979%</u>	7s 8s
	HGS-PyVRP	11.668	0.000%	10.4m	19.156	0.000%	20.8m		HGS-PyVRP	11.669	0.000%	10.4m	19.15	0.000%	20.8m
	MTPOMO	11.817	1.260%	10.4m 1s	19.505	2.496%	20.8m 7s		MTPOMO	11.082	1.229%	10.4m 1s	19.503	2.485%	20.8m 7s
ΙM	Mixed-MTPOMO	11.823	1.312%	$\frac{2s}{2s}$	$\frac{19.634}{10.641}$	$\frac{2.476\%}{2.51\%}$	8s	A	Mixed-MTPOMO	11.824	1.315%	$\frac{2s}{2s}$	$\frac{19.631}{10.639}$	$\frac{2.465\%}{2.503\%}$	8s
BL	Mixed-MVMoE	<u>11.822</u> <u>11.814</u>	<u>1.228%</u>	28 28	<u>19.621</u>	2.318% <u>2.412%</u>	10s	PB1	Mixed-MVMoE	<u>11.819</u>	<u>1.2/1%</u>	28 28	<u>19.624</u>	2.303% <u>2.424%</u>	10s 11s
WRI	RF-MoE	11.824	1.312%	$\frac{2s}{2s}$	19.607	2.334%	10s	OVR	RF-MoE	11.823	1.304%	$\frac{2s}{2s}$	19.606	2.328%	10s
0	RF-TE	$\frac{11.813}{11.805}$	$\frac{1.225\%}{1.150\%}$	28 18	19.584	$\frac{2.212\%}{2.048\%}$	7s		RF-TE	$\frac{11.813}{11.805}$	$\frac{1.218\%}{1.151\%}$	28 18	19.583	$\frac{2.209\%}{2.042\%}$	7s
	Mixed-RF-TE	<u>11.780</u>	<u>0.949%</u>	2s	<u>19.503</u>	<u>1.793%</u>	8s		Mixed-RF-TE	<u>11.780</u>	<u>0.946%</u>	2s	<u>19.501</u>	<u>1.783%</u>	8s

Continued on the next page

A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

			n-50			n_100					n-50			n_100	
Туре	Model	Obj	n=50 Gap	Time	Obj	Gap	Time	Туре	Model	Obj	Gap	Time	Obj	Gap	Time
	HGS-PyVRP	6.507	0.000%	10.4m	9.724	0.000%	20.8m		HGS-PyVRP	10.510	0.000%	10.4m	16.926	0.000%	20.8m
	OR-Tools	6.552	0.668%	10.4m	10.001	2.791%	20.8m		OR-Tools	10.497	0.114%	10.4m	17.023	0.728%	20.8m
	MTPOMO	6.719	3.227%	1s	10.214	5.002%	6s		MTPOMO	10.670	1.500%	1s	17.420	2.889%	7s
	Mixed-MTPOMO	6.715	3.159%	2s	10.234	5.214%	7s	>	Mixed-MTPOMO	10.678	1.571%	2s	17.418	2.882%	8s
Ľ	MVMoE	6.707	3.030%	2s	10.184	4.696%	9s	AL.	MVMoE	10.671	1.511%	2s	17.419	2.885%	10s
R	Mixed-MVMoE	6.700	2.949%	2s	10.183	4.683%	10s	Ы	Mixed-MVMoE	10.662	1.429%	2s	17.397	2.759%	11s
8	RF-MoE	6.696	2.864%	2s	10.140	4.249%	9s	R N	RF-MoE	10.673	1.532%	2s	17.386	2.693%	10s
-	Mixed-RF-MVMoE	6.689	2.762%	2s	10.136	4.202%	10s	Ô	Mixed-RF-MVMoE	10.661	1.413%	2s	17.369	2.591%	11s
	RF-TE	6.686	2.721%	1s	10.120	4.052%	6s		RF-TE	10.653	1.341%	1s	17.327	2.347%	7s
	Mixed-RF-TE	<u>6.675</u>	2.545%	2s	<u>10.110</u>	<u>3.937%</u>	7s		Mixed-RF-TE	<u>10.636</u>	<u>1.176%</u>	2s	17.287	2.108%	8s

Table 18: Each model's performances on 16 seen tasks following the setting of (Berto et al., 2024). Each task is assigned with 1,000 instances for testing. The best performances are annotated with bold and domains improved by our module are highlighted with underlines.

VRPLib	RF-POMO-MTL	RF-MVMoE	RF-TE	Mixed-RF-TE
	Gap	Gap	Gap	Gap
А	2.529%	2.833%	2.825%	2.454%
В	2.752%	3.171%	2.583%	2.665%
Е	5.069%	2.348%	2.929%	3.369%
F	12.772%	14.858%	12.951%	11.479%
М	5.907%	7.010%	5.078%	5.102%
Р	4.678%	3.389%	4.573%	4.254%
X	9.143%	10.259%	8.435%	9.458%
Average Gap	6.121%	6.267%	5.627%	5.579%

Table 19. Zero-Shot Inference on CVRP benchmark instances from Set-X (Uchoa et al., 2017).

Method	VR	PMB	OVI	RPMB	VRPMBL		VRP	VRPMBTW		PMBL	OVRI	PMBTW	VRPM	ABLTW	OVRP	MBLTW
	Cost	Gap	Cost	Gap	Cost	Gap	Cost	Gap	Cost	Gap	Cost	Gap	Cost	Gap	Cost	Gap
HGS-PyVRP	13.54	0.00%	9.01	0.00%	13.78	0.00%	25.51	0.00%	9.01	0.00%	16.97	0.00%	25.85	0.00%	16.97	0.00%
OR-Tools	14.93	10.27%	10.59	17.54%	15.42	11.90%	29.97	17.48%	10.59	17.54%	19.31	13.78%	30.44	17.76%	19.31	13.78%
Zero-shot	14.88	10.13%	10.72	19.02%	15.18	10.32%	28.29	10.89%	10.72	19.01%	18.45	8.68%	28.65	10.82%	18.45	8.69%
Mixed-Zero-Shot	16.04	19.12%	12.62	31.20%	16.61	20.95%	28.73	12.71%	11.72	30.40%	18.75	10.55%	29.40	13.78%	18.78	10.72%
Train (scratch)	15.12	12.13%	10.40	15.35%	16.32	18.27%	28.15	10.71%	10.18	16.08%	18.36	11.19%	28.69	10.95%	18.86	11.19%
Mixed (scratch)	14.60	7.96%	9.61	6.65%	14.83	7.61%	26.56	4.18%	9.62	6.76%	<u>17.54</u>	3.37%	26.98	4.47%	17.54	3.39%
EAL (step 0)	14.88	10.13%	10.72	19.02%	15.18	10.32%	28.29	10.89%	10.72	19.01%	18.45	8.68%	28.65	10.82%	18.45	8.69%
Mixed-EAL (step 0)	16.04	19.12%	12.62	31.20%	16.61	20.95%	28.73	12.71%	11.72	30.40%	18.75	10.55%	29.40	13.78%	18.78	10.72%
EAL	14.59	7.89%	9.66	7.19%	14.78	7.39%	26.69	4.61%	9.65	7.13%	17.59	3.65%	27.13	4.90%	17.59	3.65%
Mixed-EAL	<u>14.03</u>	<u>3.68%</u>	<u>9.37</u>	<u>4.02%</u>	<u>14.31</u>	<u>3.89%</u>	<u>26.46</u>	<u>3.69%</u>	<u>9.37</u>	<u>4.06%</u>	<u>17.46</u>	<u>2.86%</u>	<u>26.89</u>	<u>3.99%</u>	<u>17.45</u>	<u>2.84%</u>

Table 20. Performance comparisons under few-shot scenario on 8 unseen tasks. EAL here denotes the Efficient Adapter Layer proposed in (Berto et al., 2024). It pads zeros on original weight matrix, which can infuse unseen features into model. Following (Berto et al., 2024), each model is trained on the size N = 100 and each task is assigned with 1,000 test instances for validations. During few-shot learning, model is trained with 10 epochs and each epoch contains 10,000 instances. The best performances are annotated with bold and domains improved by our module are highlighted with underlines.

Figure 9. Visualization of curvature for each subspace of each layer in the encoder module. Shown model is Mixed-RF-MVMoE. The shown colors indicate that subspaces in shallower layers tend to reside in hyperbolic space. As the layer index increases, more subspaces shift closer to spherical geometry. Similar to the results presented in Figure 8, the MVMoE based model keeps the consistency in the evolution of curvatures across layers. Better viewed in color.

Figure 10. Visualization of curvature for each subspace of each layer in the encoder module. Shown model is Mixed-RF-TE. The shown colors indicate that subspaces in shallower layers tend to reside in hyperbolic space. As the layer index increases, more subspaces shift closer to spherical geometry. Compared to the MVMoE based models in Figure 8, Mixed-RF-TE doesn't acquire very positive or negative curvatures, they mostly cluster around the zero point. Better viewed in color.