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Abstract
Solving various types of vehicle routing prob-
lems (VRPs) using a unified neural solver has
garnered significant attentions in recent years. De-
spite their effectiveness, existing neural multi-task
solvers often fail to account for the geometric
structures inherent in different tasks, which may
result in suboptimal performance. To address
this limitation, we propose a curvature-aware pre-
training framework. Specifically, we leverage
mixed-curvature spaces during the feature fusion
stage, encouraging the model to capture the un-
derlying geometric properties of each instance.
Through extensive experiments, we evaluate the
proposed pre-training strategy on existing neural
multi-task solvers across a variety of testing sce-
narios. The results demonstrate that the curvature-
aware pre-training approach not only enhances the
generalization capabilities of existing neural VRP
solvers on synthetic datasets but also improves
solution quality on real-world benchmarks.

1. Introduction
Vehicle routing problems (VRPs) owing to its broad ap-
plicability among various domains such as transportation
service (Ge et al., 2019; Zhou et al., 2023a) and trajectory
planning (Dantzig & Ramser, 1959; Min, 1989), have gar-
nered great attentions in recent years. However, because of
its NP-Hard complexity, obtaining optimal solutions within
a reasonable time is almost infeasible. Regarding to this,
several heuristic solvers have been proposed, such as Lin-
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Kernighan-Helsgaun (LKH) (Lin & Kernighan, 1973; Hels-
gaun, 2017), Hybrid Genetic Search (HGS) (Vidal, 2022)
and OR-Tools (Perron & Didier, 2024). Despite the fact
that these solvers have achieved remarkable performances,
their reliance on hand-crafted rules and specialized domain
knowledge may severely limit their abilities to generalize to
more general problem types, especially the emerging VRP
variants. Additionally, these solvers may become computa-
tionally prohibitive when applied on large-scale instances.

On the other hand, deep learning based neural solvers such
as (Kool et al., 2019; Kwon et al., 2020; Zhou et al., 2023b;a;
Goh et al., 2024; Zhang et al., 2025) require minimal hand-
crafted rules and offer significantly much faster inference
speeds. Typically, following the architecture of POMO
(Kwon et al., 2020), these neural solvers often contain self-
attention modules and utilize reinforcement learning as their
optimization algorithms. Besides, hard masks are integrated
into the attention mechanism to eliminate infeasible actions.
Despite their efficiency and flexibility, these solvers primar-
ily address relatively simple VRPs, and extending current
frameworks to handle more complex problem types remains
as an under-explored area.

Recently, there has been a growing trend towards build-
ing multi-task foundation models for solving various types
of VRPs (Liu et al., 2024; Zhou et al., 2024; Berto et al.,
2024; Huang et al., 2025). Although these models have
demonstrated promising results, they largely overlook the
geometric structures that widely exist in different tasks. As
shown in Figure 1, VRP instances, despite being defined in
Euclidean coordinates, exhibit node-level curvature distri-
butions that cannot be faithfully captured in flat spaces: the
Ollivier-Ricci curvature (defined in Eq. (15), Appendix.1)
which effectively quantifies geometric structures on dis-
crete spaces like graphs or networks, reveals that almost
every node carries either negative or positive curvature, in-
dicating that the underlying data contains structures in a
mixed-curvature space rather than a purely Euclidean one.
Specifically, we observe that nodes are frequently situated
in regions of either positive (contractive) or negative (ex-
pansive) curvature spaces, which correlate with delivery
patterns such as customer clustering or route divergence in
the delivery map (Figure 5, Appendix.1). All of these factors
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are critical to decision makings in solving vehicle routing
problems. However, the embedding and feature transfor-
mation spaces in current neural solvers are still confined to
Euclidean geometric spaces where each point (or node) is
treated uniformly, severely limiting their abilities to adapt
to such heterogeneous geometries (Nickel & Kiela, 2017;
Ganea et al., 2018; Liu et al., 2019; Chami et al., 2019;
Desai et al., 2023). Indeed, prior work (Sala et al., 2018)
has shown that Euclidean spaces, regardless of dimension-
ality, struggle to represent complex structures such as trees
without incurring significant distortions. Fortunately, some
deep learning methods on Riemannian manifolds (Nickel
& Kiela, 2017; Ganea et al., 2018; Gu et al., 2018) have
provided an alternative way to avoid these potential pitfalls.

In this work, we propose the first pre-training strategy
that trains multi-task foundation models within a mixed-
curvature geometric space to solve various types of VRPs,
which empowers the neural solvers with the ability to
capture nuanced geometric information from inputs in a
curvature-sensitive manner. Specifically, we partition the
feature space of each encoder layer into multiple subspaces,
each mapped to a geometric space of a specific curvature.
Features from the previous layer are projected into these
distinct curvature spaces and subsequently merged in the
output stage. By leveraging the unique properties of non-
Euclidean spaces such as hyperbolic (negative curvature)
and hyperspherical (positive curvature) geometries, our ap-
proach allows the model to effectively capture complex
geometric patterns from problem instances, offering a novel
way to enhance performance across a wide range of VRPs.
Accordingly, our contributions are summarized as follows:

• We investigate the multi-task VRP problem from a
novel perspective by introducing mixed-curvature ge-
ometric spaces, motivated by the diverse curvatures
of nodes. To our knowledge, this is the first work to
explore a curvature-aware neural solver for VRPs.

• We propose a novel and practical pre-training paradigm
that integrates spaces of varying curvatures, enabling
the model to explore inherent geometric structures
from the inputs for solving VRPs.

• Through extensive experiments, we demonstrate that
our proposed approach not only achieves remarkable
improvements across various types of VRPs but also
shows its strong adaptability to different architectures
of multi-task solvers. In addition, results on real-world
benchmarks further validate its effectiveness.
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(b) OVRP
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(c) VRPB

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Curvature

0

10

20

30

40

Co
un

t

avg

(d) VRPL

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Curvature

0

20

40

60

80

100

Co
un

t

avg

(e) VRPTW
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Figure 1. Histograms of curvatures for each node across 6 VRP
tasks. We utilize 1,000 instances for every task, each containing 50
nodes, to visualize curvature distributions. The x-axis represents
curvature values, while the y-axis denotes the count of each value.
The avg line indicates the average curvature across all nodes. We
employ Ollivier-Ricci curvature (Ollivier, 2009) which is well-
suited for measuring curvatures in discrete structures like graphs.
For further details on this curvature, please refer to Appendix.1.
It is demonstrated that almost every node in the dataset has either
negative or positive curvature and the average curvature suggests
that each task in the Euclidean space contains non-Euclidean ge-
ometry information, motivating the use of a mixed-curvature space.
Visualizations of curvatures for other VRP tasks are provided in
Figure 4, Appendix.1. Better viewed in color.

2. Related Work
VRP Solvers

Existing solvers for VRPs can be broadly classified
into three categories: 1) Traditional Solvers: This cate-
gory includes established methods such as Lin-Kernighan-
Helsgaun (LKH) algorithm (Lin & Kernighan, 1973), Hy-
brid Genetic Search (HGS) (Vidal, 2022), and OR-Tools
(Perron & Didier, 2024). These solvers leverage heuristic
search algorithms and rely heavily on expert knowledge,
which may limit their adaptabilities to new problem settings.
2) Neural Solvers: Building on early works like (Vinyals
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et al., 2015), these methods employ deep learning to itera-
tively construct solutions. The introduction of self-attention
(Vaswani et al., 2017) to VRPs (Kool et al., 2019; Kwon
et al., 2020) has significantly improved solution quality.
Subsequent progress, such as (Kim et al., 2022; Zhou et al.,
2023b), focuses on training with varied data to enhance
generalization to unseen scenarios. Recent developments
include scaling to larger problem instances (Luo et al., 2023;
Pan et al., 2023; Ye et al., 2024; Cheng et al., 2023) and
exploring non-autoregressive decoding (Sun & Yang, 2023).
However, these methods often rely on additional heuristic
searches for particularly challenging or large-scale instances,
which may limit the efficiency. 3) Hybrid Solvers: These ap-
proaches combine the strength of neural approaches with tra-
ditional heuristics to overcome their own limitations. Exam-
ples include the adaptation of neural methods for candidate
set generation (Xin et al., 2021), enhancing the flexibility
and efficiency of classic architectures. Hybrid solvers like
(Hottung & Tierney, 2020; Hottung et al., 2021; Xin et al.,
2021; Chalumeau et al., 2023; Ma et al., 2024; Chen et al.,
2024) have demonstrated considerable success. However,
these methods often require task-specific training, which
hinders their ability to generalize across different VRPs.

Recent efforts (Liu et al., 2024; Zhou et al., 2024; Berto
et al., 2024) have begun focusing on cross-task learning
to address the generalization gaps observed in earlier ap-
proaches. For instance, (Liu et al., 2024) introduces attribute
composition to handle a wide range of VRP variants, while
(Zhou et al., 2024) employs a mixture-of-experts (MoE)
framework to balance performance and computational ef-
ficiency. Our method diverges from these by leveraging
mixed-curvature spaces to process input features, enabling
more effective capture of intricate geometric structures and
providing a generalizable solution across diverse VRP tasks.

Deep Learning in Non-Euclidean Space

Unlike the Euclidean setting, which assumes data points lie
in flat and homogeneous spaces, non-Euclidean geometry
models the underlying space by curved Riemannian mani-
folds. The family of curved Riemannian manifolds can be
broadly categorized into two types: hyperbolic surface (char-
acterized by negative curvature) and hyperspherical surface
(characterized by positive curvature). In details, hyperbolic
geometry can be expressed through five isometric models,
including Poincaré ball model (Nickel & Kiela, 2017; Ganea
et al., 2018), Lorentz model(hyperboloid) (Chen et al., 2021;
Bdeir et al., 2024; Nickel & Kiela, 2018), Poincaré half
space model (Stahl, 1993), Klein model (Bi et al., 2015)
and hemisphere model (Cannon et al., 1997). Thanks to
their non-uniform distance metric, hyperbolic surfaces are
particularly well-suited for extracting hierarchical and re-
lational structures from data and this has led to their wide
applications in vision (Khrulkov et al., 2020; Atigh et al.,

2022; Moreira et al., 2024), language (Dai et al., 2021; Fan
et al., 2024; Qu et al., 2024), audio (Hong et al., 2023) and
data mining (Chami et al., 2019; Liu et al., 2019; Sun et al.,
2021; Choudhary et al., 2024). On the other hand, hyper-
spherical surfaces constrain data representations within a
unit hypersphere. This property helps model achieve lower
variances and better generalization abilities across a wide
range of applications, including image classification (Liu
et al., 2017b;a), adversarial attack (Pang et al., 2020) and
generative modeling (Qiu et al., 2023). Other works like
(Gu et al., 2018; Wang et al., 2021; Sun et al., 2022; Cho
et al., 2023; Wang et al., 2024; Fu et al., 2025) have explored
a mixed-curvature environment where models process fea-
tures across spaces with varying curvatures, which leverages
the strengths of both hyperbolic and hyperspherical geome-
tries into learning process. In contrast to all these works,
ours focuses on learning diverse data representations for
variants of VRPs, aiming to enhance the cross-task general-
ization ability.

3. Preliminaries
We introduce essential definitions related to mixed-curvature
spaces and key concepts in VRPs. For a broader overview
of geometric deep learning, we refer interested readers to
the surveys (Peng et al., 2021; Mettes et al., 2024).

3.1. Basics of Riemannian Manifolds

A Riemannian manifold M is a smooth structure equipped
with a metric gx. This metric is a smoothly varying positive-
definite inner product defined on the tangent space TxM of
point x ∈ M. Such kind of structures generalizes the con-
cepts like distance and angle from Euclidean space to more
complex geometric spaces. To navigate between the mani-
fold and its tangent space more conveniently, the following
two important mappings are often used:

Expκx : TxM → M, Logκx : M → TxM. (1)

The exponential map, denoted by Expκx, transfers vectors
from tangent space TxM back to manifold M of curvature
κ. The logarithmic map, denoted by Logκx , transfers vectors
from manifold M of curvatre κ to tangent space TxM. Due
to page limit, we put their mathematical expressions under
hyperbolic and hyperspherical settings in Eqs. (17), (18),
(19), (20), Appendix.1.

3.2. Hyperbolic and Hyperspherical Spaces

Our framework is built upon a mixed-curvature space that
integrates properties of multiple geometric spaces. Below,
we provide a brief overview of the two geometric spaces
that are employed in this work: the hyperbolic spaces and
hyperspherical spaces.
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Figure 2. The framework of the proposed module. We consider three geometric spaces with negative (hyperbolic), zero (Euclidean) and
positive (hyperspherical) curvatures, respectively. For each feature transformation operation, we split original feature space into C smaller
subspaces, each with their own learnable curvatures (κ1, . . . , κC ). Operations like Exp and Log are frequently used to navigate vectors
between manifold and tangent space. In the encoder layer, an extra Mix-up method is utilized to make information transmission smoother
from shallow layer to deeper ones.

Hyperbolic Spaces. In our work, we adopt the Poincaré ball
for modeling hyperbolic geometric information as proposed
in (Ganea et al., 2018). Hyperbolic space is characterized
by a negative curvature κ < 0 and its domain is defined as:

H(κ) = {x ∈ Rd| − κ · ||x||22 < 1}, (2)

where ||x||2 is the regular L2 distance. The associated
conformal factor is given by λx(·, ·) = 2

1+κ||x||22
. Distance

and arithmetic operations are derived in (Ganea et al., 2018).
For instance, the addition operation, denoted by ⊕κ takes
the following form:

x⊕κ y =
(1− 2κ⟨x,y⟩ − κ∥y∥22)x+ (1 + κ∥x∥22)y

1− 2κ⟨x,y⟩+ κ2∥x∥22∥y∥22
.

(3)
Building on this, the distance between two points x and y in
hyperbolic space can be calculated in the following format:

dκ(x,y) =

(
2√
−κ

)
tanh−1

(√
−κ∥ − x⊕κ y∥2

)
. (4)

Hyperspherical Spaces. The hypersphere, also referred to
as a spherical space, is characterized by a positive curvature
κ > 0:

S(κ) = {x ∈ Rd|κ · ||x||22 = 1}, (5)

and the distance between two points x and y on the sphere
is given as:

dκ(x,y) =
1√
κ
cos−1 (κ · ⟨x, y⟩) , (6)

where ⟨·, ·⟩ is the regular vector inner product.

Remarks. In hyperbolic spaces, as |κ| increases, the con-
formal factor λx decreases, leading to greater distances be-
tween points. This causes points on the manifold to spread
out in a more noticeable way. Conversely, in hyperspherical
spaces, increasing |κ| results in shorter distances, drawing
points closer together. As |κ| approaches zero, both geome-
tries degenerate into the standard Euclidean space.

3.3. Product Manifold Spaces

Product manifold space consists of multiple manifolds with
different curvatures. It is defined by Cartesian product:

M = M1 ×M2 × · · · ×MC , (7)

which is equipped with curvature κ = (κ1, · · · , κC). Each
point in M has the form x = (x1, · · · ,xC). In this case,
exponential map and logarithmic map take following forms:

Expκx(·) = (Expκ1
x1
(·), · · · , ExpκC

xC
(·)),

Logκx(·) = (Logκ1
x1
(·), · · · , LogκC

xC
(·)).

(8)

3.4. Basics of VRPs

The input of VRP instance (e.g. CVRP) is a fully connected,
undirected graph G = (V,E), where V = {v0, . . . , vn}
denots the set of n + 1 nodes including the depot v0 and
n customer nodes. The set E = {eij , i, j = 0, . . . , n}
denotes the set of edges and each edge has a cost cij . Other
inputs like capacity and time-window are concatenated with
coordinates to formalize features of each node. Then, model
starts to decode feasible solutions auto-regressively:

pθ(τ |G) =

T∏
t=1

pθ(at|at−1, G), (9)

where at, τ and θ represent next step’s action, generated tra-
jectory and model parameters, respectively. During decod-
ing, remaining capacity, elapsed time and traveled distance
are recorded and treated as dynamical features.

Remarks. Note that although some intermediate represen-
tations of our proposed module locate in non-Euclidean
spaces, all of the problem instances from each considered
task are grounded in Euclidean space, following the data
generation process in (Zhou et al., 2024; Berto et al., 2024).
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4. Methodology
In this section, we illustrate the mixed-curvature module
using the architecture proposed in (Kwon et al., 2020; Liu
et al., 2024) as an example. However, this module can be
seamlessly integrated into other neural architectures, such
as MVMoE(-L) (Zhou et al., 2024) and RouteFinder (Berto
et al., 2024). As shown in Figure 2, our framework firstly
embeds concatenated features of graphs by Euclidean em-
bedders and then projects these features from flat space into
a mixed-curvature space by partitioning the original fea-
ture space into multiple geometric subspaces, each with a
learnable curvature parameter. Furthermore, to mitigate the
geometry mismatch phenomena at each encoder layer, we in-
terpolate representations between current layer and previous
layer. By doing this, we can enable model to acquire a soft
and learnable alignment process among incompatible geo-
metric spaces, facilitating a smoother information flow and
ultimately enhancing the quality of learned representations.

4.1. Mixed-Curvature Linear Transformation

In the first stage, we split original feature space with dimen-
sion D into C subspaces so that each subspace is equipped
with a learnable curvature parameter κ and a smaller di-
mension D

C . After conducting transformations in geometric
spaces, these scattered features will be merged together
to formalize a complete vector with original dimension D.
Similar to (Ganea et al., 2018; Gu et al., 2018; Cho et al.,
2023), we rely on exponential map and logarithmic map
defined in Eq. (8) to perform feature transformation opera-
tions. To be specific, suppose that our intermediate feature
representations X now reside in mixed-curvature space and
we aim to perform operations such as feature transformation
f = XW, then we have:

X̂ = Expκ2
0

(
Logκ1

0 (X)W
)
, (10)

where we choose the original point 0 to define the tangent
space. Note that the tangent space is flat, so W actually re-
sides in the Euclidean space, allowing us to train it with the
standard optimizer like Adam. Also note that κ1 may not
always equal to κ2. By applying these different curvatures,
our proposed module can capture diverse geometric struc-
tures in a layer-by-layer manner instead of being confined to
subspaces with limited semantics. Activation functions and
normalization modules can be similarly adapted, following
the form of Eq. (10).

4.2. Mixed-Curvature Augmented Embedding Layer

In the original POMO-MTL architecture (Liu et al., 2024),
the embedding layer consists of two parts: one for the depot
node and the other for the customer nodes. However, this
setup can lead to suboptimal embeddings that fail to capture
the full range of geometric information in the inputs. To ad-

dress this issue, we first project the depot and customer node
embeddings from Euclidean space into a mixed-curvature
space (i.e., the embedding layer in Figure 2), and then apply
two independent mixed-curvature layers following Eq. (10).
This process yields two feature representations, X̂dep and
X̂cus. We then concatenate them to form the final embed-
ding:

Xemb = [Logκ0(X̂dep);Log
κ
0(X̂cus)], (11)

where [; ] denotes the concatenation operation.

4.3. Mixed-Curvature Augmented Encoder Layer

In the prior experiments for our proposed architecture,
we observe that naively propagating features from non-
Euclidean subspaces (e.g., hyperbolic or hyperspherical)
into attention blocks often leads to performance degradation.
We suspect this phenomenon is attributed to the shift of the
receptive field with respect to the network depth: In shal-
low layers, the model primarily captures localized structural
information (so the connectivity resembles a sparse graph
which is a tree-like structure), where curvature tends to be
negative (Nickel & Kiela, 2017; 2018). However, as the
depth increases, the receptive field expands and the model
begins to aggregate global information thus entangling the
features of all nodes. This leads the model into hyperspher-
ical spaces where points in feature space become substan-
tially interconnected. Such properties of neural networks
introduce a form of curvature mismatch between consec-
utive layers, leading into inferior performances. Drawing
inspiration from the Mix-up technique (Zhang et al., 2018),
which stabilizes training by interpolating representations
of different samples, we design a similar mixing strategy
that interpolates features across layers before sending them
into current layer’s attention block. Specifically, we formal-
ize the input to each attention block as a weighted sum of
the original Euclidean representation and the logarithmic-
mapped mixed-curvature features from the previous layer:

Xk = α ∗Xk−1 + β ∗ Logκ0(X̂k−1), (12)

where α, β are learnable parameters. In this way, model
itself can gradually adjust to the evolving curvatures across
layers. Unlike previous rigid transitions, this module en-
courages the model to retrieve previous layer’s information
in a dynamical manner, thereby improving the quality of
representations.

4.4. Loss

Once decoder receives embeddings from previous estab-
lished mixed-curvature encoder layers, the model starts to
generate logits for each trajectory in the way of Eq. (9).
Following (Kwon et al., 2020), we adopt the reinforce algo-
rithm proposed in (Williams, 1992) for training. Specifically,
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n=50 n=100 n=50 n=100
Type Model Obj Gap Time Obj Gap Time Type Model Obj Gap Time Obj Gap Time

C
V

R
P

HGS 10.334 0.000% 4.6m 15.504 0.000% 9.1m

V
R

PT
W

HGS 14.509 0.000% 8.4m 24.339 0.000% 19.6m
LKH3 10.346 0.115% 9.9m 15.590 0.556% 18.0m LKH3 14.607 0.664% 5.5m 24.721 1.584% 7.8m
OR-Tools 10.540 1.962% 10.4m 16.381 5.652% 20.8m OR-Tools 14.915 2.694% 10.4m 25.894 6.297% 20.8m
OR-Tools(×10) 10.418 0.788% 1.7h 15.935 2.751% 3.5h OR-Tools(×10) 14.665 1.011% 1.7h 25.212 3.482% 3.5h
POMO-MTL 10.437 0.987% 3s 15.790 1.846% 9s POMO-MTL 15.032 3.637% 3s 25.610 5.313% 12s
Mixed-POMO-MTL 10.436 0.980% 5s 15.771 1.731% 14s Mixed-POMO-MTL 15.021 3.556% 4s 25.556 5.090% 12s
MVMoE-L 10.434 0.955% 4s 15.771 1.728% 11s MVMoE-L 15.013 3.500% 4s 25.519 4.927% 14s
Mixed-MVMoE-L 10.431 0.933% 6s 15.758 1.645% 14s Mixed-MVMoE-L 15.002 3.421% 4s 25.506 4.872% 15s
MVMoE 10.428 0.896% 4s 15.760 1.653% 12s MVMoE 14.999 3.410% 4s 25.512 4.903% 15s
Mixed-MVMoE 10.424 0.865% 7s 15.751 1.599% 16s Mixed-MVMoE 14.995 3.373% 4s 25.473 4.732% 16s

O
V

R
P

LKH3 6.511 0.198% 4.5m 9.828 0.000% 5.3m

V
R

PL

LKH3 10.571 0.790% 7.8m 15.771 0.000% 16.0m
OR-Tools 6.531 0.495% 10.4m 10.010 1.806% 20.8m OR-Tools 10.677 1.746% 10.4m 16.496 4.587% 20.8m
OR-Tools(×10) 6.498 0.000% 1.7h 9.842 0.122% 3.5h OR-Tools(×10) 10.495 0.000% 1.5h 16.004 1.444% 3.5h
POMO-MTL 6.671 2.634% 2s 10.169 3.458% 9s POMO-MTL 10.513 0.201% 2s 15.846 0.479% 10s
Mixed-POMO-MTL 6.670 2.637% 3s 10.154 3.312% 10s Mixed-POMO-MTL 10.511 0.185% 3s 15.827 0.362% 11s
MVMoE-L 6.665 2.548% 3s 10.145 3.214% 11s MVMoE-L 10.506 0.131% 3s 15.821 0.323% 12s
Mixed-MVMoE-L 6.658 2.448% 4s 10.136 3.133% 12s Mixed-MVMoE-L 10.502 0.098% 3s 15.813 0.270% 13s
MVMoE 6.655 2.402% 3s 10.138 3.136% 12s MVMoE 10.501 0.092% 3s 15.812 0.261% 14s
Mixed-MVMoE 6.651 2.336% 4s 10.119 2.946% 12s Mixed-MVMoE 10.497 0.052% 4s 15.806 0.227% 14s

V
R

PB

OR-Tools 8.127 0.989% 10.4m 12.185 2.594% 20.8m

O
V

R
PT

W

OR-Tools 8.737 0.592% 10.4m 14.635 1.756% 20.8m
OR-Tools(× 10) 8.046 0.000% 1.7h 11.878 0.000% 3.5h OR-Tools(×10) 8.638 0.000% 1.7h 14.380 0.000% 3.5h
POMO-MTL 8.182 1.684% 2s 12.072 1.674% 8s POMO-MTL 8.987 3.470% 3s 15.008 4.411% 12s
Mixed-POMO-MTL 8.179 1.645% 2s 12.043 1.427% 8s Mixed-POMO-MTL 8.982 3.420% 3s 14.948 3.996% 12s
MVMoE-L 8.176 1.605% 3s 12.036 1.368% 10s MVMoE-L 8.974 3.322% 4s 14.940 3.941% 14s
Mixed-MVMoE-L 8.170 1.531% 3s 12.025 1.265% 10s Mixed-MVMoE-L 8.964 3.219% 4s 14.911 3.749% 15s
MVMoE 8.170 1.540% 3s 12.027 1.285% 10s MVMoE 8.964 3.210% 4s 14.927 3.852% 15s
Mixed-MVMoE 8.164 1.456% 3s 12.011 1.153% 11s Mixed-MVMoE 8.950 3.060% 4s 14.888 3.579% 16s

Table 1. Performances on 6 seen tasks by following the setting of (Zhou et al., 2024). Each task is assigned with 1,000 unseen instances
for testing. The best performances are annotated with bold and domains improved by our module are highlighted with underlines.

based on Eq. (9), our objective function is defined as:

L = Eτ∼pθ(τ |G)[R(τ)], (13)

and during the optimization stage, the gradient of the objec-
tive function takes the following form:

∇θL =
1

N

N∑
i=1

(
R(τ i)− bi(G)

)
∇θ log pθ(τ

i|G), (14)

where R(τ i) denotes the reward (in our case, it is defined
as the negative length) obtained from the i-th generated tra-
jectory τ i, and bi(G) is the shared baseline introduced to
reduce the variance in optimization stage. For other models
such as MVMoE(-L) (Zhou et al., 2024), an additional ob-
jective may be added to balance the load among different
expert modules.

Remarks. As noted in (Cho et al., 2023), the linear transfor-
mation defined in Eq. (10) is differentiable with respect to
curvature κ. Hence, we can treat κ as a learnable parameter
and optimize it during training.

5. Experiments
In this section, we present our experimental findings
to demonstrate the effectiveness of the proposed mixed-
curvature pre-training paradigm in enabling a multi-task
solver for vehicle routing problems (VRPs). Specifically,
we evaluate our approach on 24 distinct VRP variants (or
tasks) spanning 6 different constraint types. All experiments

are conducted on a machine equipped with four NVIDIA
RTX A6000 GPUs, each with 48 GB of memory. In the
following, we first introduce the baselines used in our exper-
iments, then describe the training and testing configurations.
Finally, we report the experimental results along with de-
tailed result analysis1.

Baselines

The baselines used in our study fall into two categories:
traditional heuristic solvers and neural solvers. Below, we
provide specific details for each baseline:

HGS (Vidal, 2022): A traditional solver based on genetic
algorithm, designed to tackle different VRP variants.

LKH3 (Helsgaun, 2017): A widely used heuristic algo-
rithm for solving VRP variants. It employs a k-opt mecha-
nism where, during the search stage, k edges are removed
and reconnected to discover potentially better solutions.

OR-Tools (Perron & Didier, 2024): A comprehensive
solver developed by Google that supports various combina-
torial optimization tasks, including VRPs.

POMO-MTL (Liu et al., 2024): A multi-task extension
of POMO (Kwon et al., 2020), which enables the model to
address multiple VRPs simultaneously.

MVMoE(-L) (Zhou et al., 2024): MVMoE incorporates

1Our code is available at: https://github.com/
lsyysl9711/Mixed_Curvature_VRPs
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n=50 n=100 n=50 n=100
Type Model Obj Gap Time Obj Gap Time Type Model Obj Gap Time Obj Gap Time

O
V

R
PB

OR-Tools 5.764 0.332% 10.4m 8.522 1.852% 20.8m

O
V

R
PL

OR-Tools 6.522 0.480% 10.4m 9.966 1.783% 20.8m
OR-Tools(× 10) 5.745 0.000% 1.7h 8.365 0.000% 3.5h OR-Tools(× 10) 6.490 0.000% 1.7h 9.790 0.000% 3.5h
POMO-MTL 6.116 6.430% 2s 8.979 7.335% 8s POMO-MTL 6.668 2.734% 2s 10.126 3.441% 10s
Mixed-POMO-MTL 6.112 6.348% 3s 9.021 7.831% 9s Mixed-POMO-MTL 6.667 2.708% 3s 10.116 3.350% 11s
MVMoE-L 6.122 6.522% 3s 8.972 7.243% 10s MVMoE-L 6.659 2.597% 3s 10.106 3.244% 12s
Mixed-MVMoE-L 6.102 6.175% 3s 8.951 6.997% 11s Mixed-MVMoE-L 6.653 2.497% 4s 10.098 3.159% 13s
MVMoE 6.092 5.999% 3s 8.959 7.088% 11s MVMoE 6.650 2.454% 3s 10.097 3.148% 13s
Mixed-MVMoE 6.084 5.871% 4s 8.934 6.800% 12s Mixed-MVMoE 6.648 2.419% 4s 10.079 2.971% 14s

V
R

PB
L

OR-Tools 8.131 1.254% 10.4m 12.905 2.586% 20.8m

V
R

PB
T

W

OR-Tools 15.053 1.857% 10.4m 26.217 2.858% 20.8m
OR-Tools(×10) 8.029 0.000% 1.7h 11.790 0.000% 3.5h OR-Tools(×10) 14.771 0.000% 1.7h 25.496 0.000% 3.5h
POMO-MTL 8.188 1.971% 2s 11.998 1.793% 9s POMO-MTL 16.055 8.841% 3s 27.319 7.413% 11s
Mixed-POMO-MTL 8.182 1.905% 3s 11.964 1.514% 10s Mixed-POMO-MTL 16.071 8.943% 3s 27.327 7.457% 12s
MVMoE-L 8.180 1.872% 3s 11.960 1.473% 10s MVMoE-L 16.041 8.745% 3s 27.265 7.190% 13s
Mixed-MVMoE-L 8.172 1.781% 3s 11.949 1.378% 12s Mixed-MVMoE-L 16.039 8.715% 4s 27.223 7.018% 11s
MVMoE 8.172 1.776% 3s 11.945 1.346% 11s MVMoE 16.022 8.600% 3s 27.236 7.078% 14s
Mixed-MVMoE 8.168 1.729% 4s 11.936 1.264% 12s Mixed-MVMoE 16.014 8.545% 4s 27.208 6.967% 15s

V
R

PL
T

W

OR-Tools 14.815 1.432% 10.4m 25.823 2.534% 20.8m

O
V

R
PB

L

OR-Tools 5.771 0.549% 10.4m 8.555 2.459% 20.8m
OR-Tools(×10) 14.598 0.000% 1.7h 25.195 0.000% 3.5h OR-Tools(×10) 5.739 0.000% 1.7h 8.348 0.000% 3.5h
POMO-MTL 14.961 2.586% 3s 25.619 1.920% 13s POMO-MTL 6.104 6.306% 2s 8.961 7.343% 9s
Mixed-POMO-MTL 14.966 2.621% 3s 25.561 1.673% 14s Mixed-POMO-MTL 6.102 6.282% 3s 9.009 7.919% 10s
MVMoE-L 14.953 2.535% 4s 25.529 1.545% 16s MVMoE-L 6.104 6.310% 3s 8.957 7.300% 11s
Mixed-MVMoE-L 14.941 2.448% 4s 25.521 1.515% 17s Mixed-MVMoE-L 6.090 6.077% 3s 8.935 7.027% 11s
MVMoE 14.937 2.421% 4s 25.514 1.471% 17s MVMoE 6.076 5.843% 3s 8.942 7.115% 12s
Mixed-MVMoE 14.931 2.387% 4s 25.486 1.365% 18s Mixed-MVMoE 6.068 5.705% 4s 8.920 6.857% 12s

O
V

R
PB

T
W

OR-Tools 8.758 0.927% 10.4m 14.713 2.268% 20.8m

O
V

R
PL

T
W

OR-Tools 8.728 0.656% 10.4m 14.535 1.779% 20.8m
OR-Tools(×10) 8.675 0.000% 1.7h 14.384 0.000% 3.5h OR-Tools(×10) 8.669 0.000% 1.7h 14.279 0.000% 3.5h
POMO-MTL 9.514 9.628% 3s 15.879 10.453% 10s POMO-MTL 8.987 3.633% 3s 14.896 4.374% 12s
Mixed-POMO-MTL 9.523 9.734% 3s 15.844 10.192% 11s Mixed-POMO-MTL 8.984 3.600% 3s 14.845 4.020% 12s
MVMoE-L 9.515 9.630% 3s 15.841 10.188% 12s MVMoE-L 8.974 3.488% 4s 14.839 3.971% 14s
Mixed-MVMoE-L 9.506 9.530% 4s 15.802 9.899% 13s Mixed-MVMoE-L 8.961 3.335% 4s 14.816 3.816% 15s
MVMoE 9.486 9.308% 4s 15.808 9.948% 13s MVMoE 8.966 3.396% 4s 14.828 3.903% 15s
Mixed-MVMoE 9.483 9.283% 4s 15.779 9.749% 14s Mixed-MVMoE 8.951 3.225% 4s 14.779 3.560% 16s

V
R

PB
LT

W

OR-Tools 14.890 1.402% 10.4m 25.979 2.518% 20.8m

O
V

R
PB

LT
W

OR-Tools 8.729 0.624% 10.4m 14.496 1.724% 20.8m
OR-Tools(×10) 14.667 0.000% 1.7h 25.342 0.000% 3.5h OR-Tools(×10) 8.673 0.000% 1.7h 14.250 0.000% 3.5h
POMO-MTL 15.980 9.035% 3s 27.247 7.746% 12s POMO-MTL 9.532 9.851% 3s 15.738 10.498% 11s
Mixed-POMO-MTL 15.998 9.139% 3s 27.219 7.658% 13s Mixed-POMO-MTL 9.541 9.946% 3s 15.720 10.358% 13s
MVMoE-L 15.963 8.915% 4s 27.177 7.473% 14s MVMoE-L 9.518 9.682% 4s 15.706 10.263% 13s
Mixed-MVMoE-L 15.961 8.871% 4s 27.129 7.278% 15s Mixed-MVMoE-L 9.509 9.582% 4s 15.673 10.027% 14s
MVMoE 15.945 8.775% 4s 27.142 7.332% 15s MVMoE 9.503 9.516% 4s 15.671 10.009% 14s
Mixed-MVMoE 15.932 8.690% 4s 27.136 7.304% 16s Mixed-MVMoE 9.498 9.462% 4s 15.636 9.772% 16s

Table 2. Performances on 10 unseen tasks following the setting of (Zhou et al., 2024). Each task is assigned with 1,000 instances for
testing. The best performances are annotated with bold and domains improved by our module are highlighted with underlines.

mixture-of-expert (MoE) modules into both encoder and
decoder layers, differing from the original POMO-MTL
architecture. In the meanwhile, MVMoE-L is a lightweight
variant of MVMoE that accelerates the routing mechanism
while maintaining computational efficiency.

RF-X (Berto et al., 2024): RouteFinder (or its variant) of-
fers a more fine-grained feature fusion approach that further
enhances performances of POMO-MTL, and MVMoE(-L).

Training Configurations

Due to the significant differences in experimental settings
between (Zhou et al., 2024) and (Berto et al., 2024), we
divide our experiments into two parts. The first part strictly
follows the training configurations outlined in (Zhou et al.,
2024), and the analysis of these results is presented in Sec-
tion 5.1. The second part follows the experimental setup
from (Berto et al., 2024), with the corresponding analysis
provided in Section 5.2.

Configurations with (Zhou et al., 2024). We have two prob-

lem scales: 50 and 100 nodes in each instance. As men-
tioned earlier, our pre-training paradigm can be seamlessly
integrated into any existing architectures, so we take POMO-
MTL (Liu et al., 2024), and MVMoE(-L) (Zhou et al., 2024)
as our backbones. We adopt Adam as our optimizer. The
learning rate, weight decay and batch size are set to 1e-4
and 1e-6 and 128, respectively. We train each model with
5,000 epochs and for each epoch there are 20,000 instances.
During the last 500 epochs, we decay the learning rate by 10.
At the very beginning, we initialize all of the curvatures as 0
and jointly optimize them with other parameters. Note that
only 6 VRP variants are used for training. Further details
about hyper-parameters are listed in Table 12, Appendix.2.

Configurations with (Berto et al., 2024). The problem scales
consist of 50 and 100 as well. We take RF-X (Berto et al.,
2024) as the backbone, and follow the settings in its original
paper, where each model is only trained with 300 epochs
and each epoch is assigned with 100,000 training instances.
Note that different from (Zhou et al., 2024), in this case,
16 VRP tasks are all used for training RF-X. Besides, the
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learning rate, weight decay and batch size are set to 3e-4,
1e-6 and 256, respectively. In epoch 270 and 295, we decay
the learning rate by 10. The detailed experimental configu-
rations of RF-X can be found in Table 17, Appendix.4.

Validation Configurations

We conduct four types of validation experiments: the in-
distribution testing, zero-shot testing, few-shot testing, and
real-world testing. We divide these evaluations into two sets
of configurations corresponding to (Zhou et al., 2024) and
(Berto et al., 2024).

Configurations with (Zhou et al., 2024). For each VRP task,
we pre-collect 1,000 unseen instances and report gaps rel-
ative to the optimal (or best) known solutions. Following
(Kwon et al., 2020; Zhou et al., 2024), we apply greedy
rollout with 8× instance augmentation for fair comparisons,
where best solutions for each instance are obtained by solv-
ing multiple (8×) equivalent instances. Those equivalent
instances are acquired by rotating or clipping the original
instances (Kwon et al., 2020). The in-distribution test com-
prises 6 VRP tasks included during training, while the zero-
shot test includes 10 tasks not seen during training. For
few-shot testing, we choose VRPBLTW and OVRPBLTW
to assess model performance in low-data scenarios. Lastly,
we follow (Zhou et al., 2024) for real-world evaluations
on set-X (Uchoa et al., 2017) for CVRP and set-Solomon
(Solomon, 1987) for VRPTW.

Configurations with (Berto et al., 2024). In this setting, each
task is again assigned 1,000 unseen instances, with the gaps
to the optimal (or best) solutions reported. 16 VRP tasks
are designated as the seen ones in the in-distribution test,
while 8 tasks are the unseen ones in few-shot evaluations.
For real-world testing, we follow (Berto et al., 2024) and
use sets A, B, E, F, M, P, and X from CVRPLib (Uchoa
et al., 2017) to assess the model performance under more
practical conditions.

Distortion Rate and Curvature Analysis. Apart from the
above validations, we also analyze the distortion rates and
visualize the learned curvatures. Due to space limits, we
move them to Appendix.1.

5.1. Results Compared with (Zhou et al., 2024)

In-distribution Test on Seen Tasks. To evaluate perfor-
mance on tasks seen during training, we begin by testing
the models on 6 such tasks. The results, presented in Ta-
ble 1, indicate that the original MVMoE augmented with
the mixed-curvature module outperforms all prior baselines.
Furthermore, the mixed-curvature module improves POMO-
MTL and MVMoE-L performance on 5 out of 6 tasks and 6
out of 6 tasks, respectively, emphasizing the general bene-
fits of incorporating geometric subspaces at the pre-training

stage. Notably, in the more challenging scenario where
N = 100, MVMoE-L with the mixed-curvature module
outperforms the original MVMoE across all 6 tasks, demon-
strating strong versatility across different problem sizes.

Zero-shot Test on Unseen Tasks. To further assess the
zero-shot predictive capabilities of our approach, we evalu-
ate each model on 10 tasks that were not included in training.
The results, shown in Table 2, reveal that MVMoE with the
mixed-curvature module achieves state-of-the-art perfor-
mance on all 10 tasks at both node number scales. This
outcome underscores the effectiveness of our module in en-
abling solvers to generalize to previously unseen scenarios.

Few-Shot Test. Following the experimental setup of (Zhou
et al., 2024), we examine two previously unseen tasks,
OVRPBLTW and VRPBLTW, to gauge each model’s perfor-
mance in a few-shot context. Specifically, we fine-tune each
model for 10 epochs, with each epoch drawing on 10,000
randomly sampled training instances. As illustrated in Fig-
ure 3, Mixed-MVMoE and Mixed-MVMoE-L outperform
the baseline models, demonstrating that the incorporation
of mixed-curvature spaces can enhance performance in low-
resource settings as well.
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Figure 3. The few-shot performance on two unseen tasks following
settings of (Zhou et al., 2024). The x and y axis represent epochs
and gaps, respectively. Here each problem instance has 50 nodes.

Real-World Instances Test. We also evaluate the mod-
els on real-world testing instances sourced from CVRPLib,
categorized broadly into moderate-scale and large-scale set-
tings. Table 13, Table 14 and Table 15, Appendix.3 show
that models incorporating our mixed-curvature module out-
perform both the single-task model (POMO) and multi-task
models (POMO-MTL and MVMoE). The results indicate
not only a reduction in the performance gap on moderate-
scale problems but also a consistent narrowing of the gap on
large-scale instances, showing our mixed-curvature module
enables the original model to adapt effectively to real-world
scenarios.

5.2. Results Compared with (Berto et al., 2024)

In RouteFinder (Berto et al., 2024), all of the 16 tasks from
(Zhou et al., 2024) are used for training, and the results
are shown in Table 18. From these presented outcomes, it
is evident that RF-TE combined with the mixed-curvature
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module achieves the lowest performance gaps on 16 of
the 16 tasks on both node sizes. Besides, augmented with
mixed-curvature modules, backbones like MTPOMO, MV-
MoE and RF-MVMoE get consistent improvements on their
performances. We also evaluate its performance on 7 real-
world benchmarks from CVRPLib, where RF-TE equipped
with the mixed-curvature module further reduces the aver-
age gaps (as shown in Table 19). Moreover, we assess its
capabilities on 8 few-shot tasks. As illustrated in Table 20,
the mixed-curvature-based model trained with EAL (shorted
for Efficient Adapter Layer in (Berto et al., 2024)) signif-
icantly surpasses the performance of the original model
tuned with EAL. Furthermore, when trained from scratch,
the mixed-curvature-based model outperforms the original
model with EAL on 6 of the 8 tasks, demonstrating the
effectiveness of the mixed-curvature module in enhancing
existing multi-task VRP solvers.

5.3. More Ablation Studies and Discussions

Effects of Increased Parameters. Since we insert several
mixed-curvature modules into the embedder and encoder
layer, the total number of parameters is increased and we list
the number of parameters of each model in Table 9. Com-
pared to previous baselines, the increased ratio is between
3.57% and 10.56%. Moreover, from results presented in
Table 7, we can observe that only increasing the number of
parameters will downgrade performances in most cases. In
specifics, we replace the mixed-curvature space modules in
encoder with their Euclidean counterparts so that the num-
ber of parameters is still in the same level as before (we
name these models as Euc-POMO-MTL, Euc-MVMoE-L
and Euc-MVMoE). For the Euc-POMO-MTL, it achieves
the worst performances on 13 out of 16 and 11 out of 16
tasks with node size of 50 and 100, respectively. For the Euc-
MVMoE, it achieves worst performances on 12 out of 16
tasks under both of the node size settings. These evidences
demonstrate that naively increasing the number of parame-
ters will often lead into inferior results in most cases, which
indicates that the improvements on performances largely
benefit from the introduction of mixed-curvature spaces.

Effects of Mix-up Modules. In this part, we discuss the
effectiveness of Mix-up modules and how will it affect the
performances of model. We utilize Mixed-POMO-MTL,
Mixed-MVMoE(-L) to conduct ablation experiments. From
results presented in Table 8, we can observe that after re-
moving the Mix-up modules from the encoder, the perfor-
mances for Mixed-POMO-MTL will become worse on 12
out of 16 tasks with node size N = 50 and 11 out of 16
tasks with node size N = 100, respectively. Similarly, the
Mixed-MVMoE without Mix-Up modules will lose their
SOTA performances on 11-12 tasks across problem types
and node sizes. These demonstrate that the Mix-up modules
can further enhance performances, which validates this mod-

ule’s utility and necessity in smoothing transitions between
different curvature spaces.

Effects of the Number of Subspaces. In our experiment,
we set the number of subspaces in mixed-curvature space
as 8 and each subspace is assigned with 16 feature dimen-
sions. To further investigate the effects of the number of
subspaces on model’s performances, we also try 4 and 16 in
Mixed-POMO-MTL to illustrate the difference. We show
results on both node scales in Table 10. From the presented
results for N = 50, we can find that the Mixed-POMO-
MTL-8 can achieve the best averaged performances on 16
tasks, while the Mixed-POMO-MTL-4 and Mixed-POMO-
MTL-16 achieve relatively inferior performances. We guess
the reason is that although POMO-MTL-Mixed-4 acquires
larger subspaces, its diversity is severely limited by the
number of subspaces compared to the other two. In the
meanwhile, Mixed-POMO-MTL-16 enhances its diversity
but the feature dimension maybe too small to capture impor-
tant geometric information from the inputs. However, when
problem size becomes larger, Mixed-POMO-MTL-16 can
surpass Mixed-POMO-MTL-4 by a large margin and greatly
shorten the gap with respect to Mixed-POMO-MTL-4.

Discussions of Running Time. Since several mixed-
curvature modules are inserted into the embedder and en-
coder, the running time will be increased. As reflected in
Table 1 and Table 2, the model requires more time to process
instances on almost every VRPs task. Taking N = 100 as
an example, Mixed-POMO-MTL, Mixed-MVMoE-L and
Mixed-MVMoE introduce 10.72%, 7.68%, 7.56% extra
time costs to their own backbones, respectively. These show
that although mixed-curvature modules bring extra compu-
tational burdens, the added costs are moderate.

Conclusions
In this work, we present a novel pre-training paradigm that
processes features in curved geometric spaces for solving
multi-task VRPs. By splitting the original feature space into
multiple subspaces, each with its own learnable curvature,
we enable the model to capture diverse geometric structures
from inputs. Extensive experiments show that our mixed-
curvature modules consistently enhance various backbone
architectures, highlighting the promise of mixed-curvature
spaces in improving multi-task VRP solvers. However, our
approach has limitations. First, the frequent use of exponen-
tial and logarithmic map operations introduces extra time
costs and may cause some unstable numerical phenomena.
Second, our study does not consider large-scale instances
with around 10,000 nodes which has achieved great atten-
tions recently. Thirdly, we allocate 16 dimensions for each
curvature subspace but other adaptive methods like neural-
architecture-search (Elsken et al., 2019) may also be feasible.
We plan to explore and address them in future works.
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A. Appendix
Appendix.1. Definitions, Formulas and Visualizations

Definition of Ollivier-Ricci Curvatures
Curvature describes how much a curve deviates from being a straight line or how much a surface bends in the space. The
Ollivier-Ricci curvature (Ollivier, 2009) is a discrete notion of curvature that extends Ricci curvature from smooth (thus
continuous) Riemannian manifolds to structures like graphs and networks (Fu et al., 2025). To be specific, suppose that we
are given a metric space denoted by (X, d) where d represents metric distance (in our case X consists of two dimensions
(coordinates) and d is the L2 distance between two points), then the Ollivier-Ricci curvature has the following form:

κ(x, y) = 1− W (µx, µy)

d(x, y)
, x, y ∈ X (15)

where W (·, ·) denotes Wasserstein distance between two probability measures:

µx(z) =
cxz∑Nx

i=1 cxi
, µy(z) =

cyz∑Ny

i=1 cyi
(16)

where cxz, cyz are edge weights on edges xz, yz and Nx, Ny are numbers of adjacent neighbors of x, y, respectively. Based
on these quantities, µx and µy actually measure the transition probability of the random walk starts from x, y and ends
at some point z. In other words, the smaller (bigger) the W (µx, µy), the higher (lower) the chances that x and y will
encounter each other within a few steps, which shares great similarity with the contraction (divergence) behaviors in
spherical (hyperbolic) spaces. In our implementation, for each node x ∈ X , we use K-Nearest Neighbors algorithm to
sample 5 nodes from each node’s neighbour set and calculate the node curvature by averaging Ollivier-Ricci curvatures on
the selected 5 edges. Finally, we can get the graph curvature by averaging all of these nodes’ curvatures.

Remarks. Note that although we only take 5 edges for each node in the stage of curvature calculations, the embedder
takes the complete graph as the input. The reason for us to choose KNN graphs to analyze curvatures is that during the
delivery, not all of the edges are worth of being considered: some maybe less important and some maybe blocked due to
hard constraints (e.g., the same edge can’t be visited twice during the delivery). As a result of this, applying KNN graphs
here is more faithful to actual scenarios. Similar operations also appear in some prior works for solving traveling salesman
problem (Joshi et al., 2019).

In previous works such as (Gu et al., 2018; Bachmann et al., 2020), the Parallelogram Law has been utilized to analyze
the deviations of datasets from Euclidean geometry. This classical geometry identity checks whether quadruple of points
behaves flat in the normal Euclidean sense: If the sum of the squares of the diagonals is greater (less) than the sum of
the squares of the sides in a parallelogram then it indicates that data points are located in negative (positive) curvature
spaces. The reasons for us to choose Ollivier-Ricci curvature mainly lie in two sides: 1) Enumerating all of the four point
configurations from a graph with N = 50 nodes is computationally expensive while Ollivier-Ricci curvature offers a more
light-weight method. 2) Ollivier-Ricci curvature enables a more nuanced understanding of geometric structures in datasets
under optimal transport: it captures the degree to which local neighborhoods contract or diverge and this makes it especially
well-suited for datasets represented as graphs or networks. For a more comprehensive comparison between these different
curvature concepts, please refer to Table 4.

Hyperbolic Model (κ < 0)
Let x,y be a point on the manifold H(κ), v ∈ TxH(κ) a tangent space vector and λx = 2

1+κ||x||22
. ⊕κ is defined in Eq. (3).

Exponential Map:

Expκx(v) = x⊕κ

(
tanh

(√
−κ

λx|v|
2

)
v

|v|

)
(17)

Logarithmic Map:

Logκx(y) =
2

λx

√
−κ

tanh−1
(√

−κ |x⊕κ (−y)|
)
· x⊕κ (−y)

|x⊕κ (−y)|
(18)
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Hyperspherical Model (κ > 0)
Let x,y be a point on the manifold S(κ), and v ∈ TxS(κ) a tangent space vector. dκ(x,y) is defined in Eq. (6).

Exponential Map:
Expκx(v) = cos(

√
κ|v|) · x+ sin(

√
κ|v|) · v

|v|
(19)

Logarithmic Map:

Logκx(y) = dκ(x,y) ·
y − cos(dκ(x,y)) · x
|y − cos(dκ(x,y)) · x|

(20)

Curvature Visualizations for another 10 VRPs Tasks
The visualizations of curvatures for remaining datasets are included in Figure 4. Note that these 10 tasks are unseen during
training stage, following the settings of (Zhou et al., 2024) while in (Berto et al., 2024), all of the previously mentioned 16
VRP variants are used for training the neural solvers. From Figure 4, we can observe that non-Euclidean information exists
widely across these tasks, which further validates the necessity of introducing mixed-curvature space into neural solvers.

Definition of Distortion Rate and Average Distortion Rate
We adopt the notations from (Gu et al., 2018) where U1 and U2 denote two metric spaces (possibly with different dimensions)
and they are equipped with distances dU1

(·, ·) and dU2
(·, ·), respectively. A mapping denoted by f : U1 → U2 typically

exists between these two spaces, such as deep neural networks. For any pair of points a and b, the distortion rate induced
from mapping f is defined as: ∣∣∣∣dU1(f(a), f(b))

dU2
(a, b)

− 1

∣∣∣∣ . (21)

To evaluate the distortion rate globally, we consider all pairs of points and compute the average distortion as:

Davg =
1

N

∑
a̸=b

∣∣∣∣dU1
(f(a), f(b))

dU2(a, b)
− 1

∣∣∣∣ , (22)

where N denotes the number of node pairs such that a ̸= b without repetitions. By using Eq. (21) and (22), we
can know how far away distances in the feature space learned by neural solvers deviates from those distances in the
original input graphs. The lower the average distortion rate, the better the quality of representations we get from those models.

Distortion Rate Analysis for Features of Encoder Module
As previously mentioned, learning solely in Euclidean space can significantly distort distance information, adversely
affecting the model’s decision-making process and the final performances. In Table 3, we compare the distortion rates
(defined in Eq. (22)) across various models. From the presented results, our approach achieves considerably lower distortion
rates than the baselines, indicating that mixed-curvature space preserves original distances more faithfully. This allows the
model to retain more accurate distance-related information, thus enhancing its decision-making capability.

Model Distortion

POMO-MTL 2477.725
Mixed-POMO-MTL 1678.605
MVMoE-L 2923.151
Mixed-MVMoE-L 1981.076
MVMoE 2083.015
Mixed-MVMoE 1274.142

Table 3. Distortion rates of different models. We extract intermediate representations the final layer of encoder module and we use 1,000
CVRP instances with size N = 50 from testing datasets to calculate the distortion rate (defined in Eq. (22)).
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Curvature Analysis for Subspaces of Each Layer in Encoder module
For the model familys in (Zhou et al., 2024), we visualize the curvature of each subspace in every encoder layer of
Mixed-POMO-MTL (Figure 6, Appendix.3), MVMoE-L (Figures 7, Appendix.3), and MVMoE (Figures 8,Appendix.3).
The distinct color gradients reveal that subspaces in shallower layers tend to lie in hyperbolic geometry. This observation
aligns with the intuition that shallow layers primarily capture local structures, which often resemble trees or sparse graphs
structures that naturally associated with negative curvatures. In contrast, as we move to deeper layers, the subspaces
gradually transition towards the spherical geometry, reflecting the tendency of deeper layers to encode global information,
where node features become increasingly aggregated or even collapsed with each other. For RF-X (Berto et al., 2024),
we also visualize the curvature of subspaces in the model RF-MVMoE (Figure 9, Appendix.4) and RF-TE (Figure 10,
Appendix.4), where we can observe similar curvature evolving patterns across layers.

Curvature Type Definition Formula

Riemann Curvature Tensor
(Lee, 2006)

Measures the failure of second covariant deriva-
tives to commute with each other, encoding the
intrinsic curvature of a Riemannian manifold.

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w

Ricci Curvature
(Chow & Knopf, 2004)

Trace of the Riemann curvature tensor, denot-
ing the average sectional curvature along differ-
ent directions.

Ric(u) =
∑

i R(u, ei)ei

Gaussian Curvature
(Postnikov, 2013)

Product of the principal curvatures at a point
on a surface, encoding the intrinsic measure of
curvature.

K = k1 · k2

Mean Curvature
(Postnikov, 2013) Average of the principal curvatures. H = 1

2 (k1 + k2)

Principal Curvatures
(Postnikov, 2013)

Maximum and minimum normal curvatures at
a point on a surface.

Eigenvalues k1, k2 of Weingarten map (Cao
et al., 2021)

Sectional Curvature
(Lee, 2006)

It measures how the manifold curves in the di-
rection of a tangent space. It generalizes Gaus-
sian curvature into higher dimensions.

K(u, v) = ⟨R(u,v)v,u⟩
∥u∧v∥2

Ollivier-Ricci Curvature
(Ollivier, 2009)

Measures the difference between two metric
measure spaces based on optimal transport,
especially suitable for discrete structures like
graphs and networks.

κ(x, y) = 1− W (µx,µy)
d(x,y)

Parallelogram Law
(Gu et al., 2018)

Whether the sum of the squares of the diagonals
equals the sum of the squares of the sides in a
parallelogram.

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2

Table 4. Different types of curvatures and their expressions in differential/Riemannian geometry. One major difference between Ollivier-
Ricci curvature and Ricci/Gaussian/Mean/Principle curvatures is that Ollivier-Ricci curvature can handle discrete structures like graphs
and networks while the others require the underlining manifold is continuous and smooth. Apart from Ollivier-Ricci curvature, there have
been some other recent efforts that adapt curvatures on continuous spaces into discrete structures. For more information about this, we
refer interested readers to (Najman & Romon, 2017).
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Acronym Meaning

POMO Policy Optimization with Multiple Optima for Reinforcement Learning (Kwon et al., 2020)
POMO-MTL Policy Optimization with Multiple Optima for Reinforcement Learning with Multi-Task-Learning (Liu et al., 2024)
MVMoE-L Multi-Task Vehicle Routing Solver with Mixture-of-Experts-Light (Zhou et al., 2024)
MVMoE Multi-Task Vehicle Routing Solver with Mixture-of-Experts (Zhou et al., 2024)
RF RouteFinder (Berto et al., 2024)
LKH Lin-Kernighan-Helsgaun (Lin & Kernighan, 1973; Helsgaun, 2017)
HGS Hybrid Genetic Search (Vidal, 2022)
HGS-PyVRP A Python implementation of HGS for VRPs (Wouda et al., 2024)
VRP(s) Vehicle Routing Problem(s)
C Capacity
O Open Route
L Duration Limits
B Backhauls
TW Time Window
Mixed-X The model named X augmented with Mixed-Curvature space modules
Euc-X The model named X augmented with Euclidean space modules

Table 5. List of acronyms that appear in the paper.

Notations Meaning

x,y,v Finite dimensional vectors
M Riemannian manifold
gx Riemannian metric
λx Conformal factor of hyperbolic space
κ Curvature
κ Consists of (κ1, κ2, . . . , κn), each entry corresponds to the curvature of a geometric space
x Consists of (x1,x2, . . . ,xn) each entry corresponds to a chunk of feature located in a geometric space
H(κ) Hyperbolic space with curvature κ
S(κ) Hyperspherical space with curvature κ
TxM, TxH(κ), TxS(κ) Tangent space attached with x on Riemannian manifold, Hyperbolic space, Hyperspherical space
⊕κ Addition operation of hyperbolic space
dκ(·, ·) Geodesic distance on hyperbolic/hyperspherical space
⟨·, ·⟩ Inner product in vector space
pθ(·) Generative model with parameter θ
G = (V,E) Graph with vertex set V and edge set E
at Action taken in time step t
τ Trajectory taken by the model
T Number of time steps
D The dimension of original feature space
C The number of mixed-curvature subspaces
U1, U2 Metric spaces
Expκx(·) Exponential map attached with point x on the Riemannian manifold with curvature κ
Logκx(·) Logarithmic map attached with point x on the Riemannian manifold with curvature κ
α, β Learnable factors for balancing geometric information between layers

Table 6. List of notations that appear in the paper.
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n=50 n=100 n=50 n=100
Type Model Gap Gap Type Model Gap Gap

C
V

R
P

POMO-MTL 0.987% 1.846%

V
R

PT
W

POMO-MTL 3.637% 5.313%
Mixed-POMO-MTL 0.980% 1.731% Mixed-POMO-MTL 3.556% 5.090%
Euc-POMO-MTL 1.033% 1.815% Euc-POMO-MTL 3.719% 5.305%

MVMoE-L 0.955% 1.728% MVMoE-L 3.500% 4.927%
Mixed-MVMoE-L 0.933% 1.645% Mixed-MVMoE-L 3.421% 4.872%
Euc-MVMoE-L 0.965% 1.743% Euc-MVMoE-L 3.508% 4.995%

MVMoE 0.896% 1.653% MVMoE 3.410% 4.903%
Mixed-MVMoE 0.865% 1.599% Mixed-MVMoE 3.373% 4.732%
Euc-MVMoE 0.900% 1.672% Euc-MVMoE 3.414% 4.892%

O
V

R
P

POMO-MTL 1.684% 1.674%

V
R

PL

POMO-MTL 3.470% 4.411%
Mixed-POMO-MTL 1.645% 1.427% Mixed-POMO-MTL 3.420% 3.996%
Euc-POMO-MTL 1.713% 1.569% Euc-POMO-MTL 3.577% 4.401%

MVMoE-L 1.605% 1.368% MVMoE-L 3.322% 3.941%
Mixed-MVMoE-L 1.531% 1.265% Mixed-MVMoE-L 3.219% 3.749%
Euc-MVMoE-L 1.602% 1.427% Euc-MVMoE-L 3.366% 3.992%

MVMoE 1.540% 1.285% MVMoE 3.210% 3.852%
Mixed-MVMoE 1.456% 1.153% Mixed-MVMoE 3.060% 3.579%
Euc-MVMoE 1.535% 1.304% Euc-MVMoE 3.202% 3.708%

V
R

PB

POMO-MTL 2.634% 3.458%
O

V
R

PT
W

POMO-MTL 0.201% 0.479%
Mixed-POMO-MTL 2.637% 3.312% Mixed-POMO-MTL 0.185% 0.362%
Euc-POMO-MTL 2.656% 3.479% Euc-POMO-MTL 0.242% 0.472%

MVMoE-L 2.548% 3.214% MVMoE-L 0.131% 0.323%
Mixed-MVMoE-L 2.448% 3.133% Mixed-MVMoE-L 0.098% 0.270%
Euc-MVMoE-L 2.532% 3.410% Euc-MVMoE-L 0.365% 0.096%

MVMoE 2.402% 3.136% MVMoE 0.092% 0.261%
Mixed-MVMoE 2.336% 2.946% Mixed-MVMoE 0.052% 0.227%
Euc-MVMoE 2.410% 3.157% Euc-MVMoE 0.096% 0.277%

O
V

R
PB

POMO-MTL 6.430% 7.335%

O
V

R
PL

POMO-MTL 2.734% 3.441%
Mixed-POMO-MTL 6.348% 7.831% Mixed-POMO-MTL 2.708% 3.350%
Euc-POMO-MTL 6.378% 7.971% Euc-POMO-MTL 2.762% 3.453%

MVMoE-L 7.243% 7.243% MVMoE-L 2.597% 3.244%
Mixed-MVMoE-L 6.175% 6.997% Mixed-MVMoE-L 2.497% 3.159%
Euc-MVMoE-L 6.525% 7.580% Euc-MVMoE-L 2.606% 3.120%

MVMoE 5.999% 7.088% MVMoE 2.454% 3.148%
Mixed-MVMoE 5.871% 6.800% Mixed-MVMoE 2.419% 2.971%
Euc-MVMoE 5.994% 6.909% Euc-MVMoE 2.459% 3.141%

V
R

PB
L

POMO-MTL 1.971% 1.793%

V
R

PB
T

W

POMO-MTL 8.841% 7.413%
Mixed-POMO-MTL 1.905% 1.514% Mixed-POMO-MTL 8.934% 7.457%
Euc-POMO-MTL 1.969% 1.693% Euc-POMO-MTL 9.188% 7.414%

MVMoE-L 1.872% 1.473% MVMoE-L 8.745% 7.190%
Mixed-MVMoE-L 1.781% 1.378% Mixed-MVMoE-L 8.715% 7.018%
Euc-MVMoE-L 1.886% 1.516% Euc-MVMoE-L 8.803% 7.183%

MVMoE 1.776% 1.346% MVMoE 8.600% 4.903%
Mixed-MVMoE 1.729% 1.264% Mixed-MVMoE 8.545% 4.732%
Euc-MVMoE 1.779% 1.405% Euc-MVMoE 8.665% 7.113%

V
R

PL
T

W

POMO-MTL 2.586% 1.920%

O
V

R
PB

L

POMO-MTL 6.306% 7.343%
Mixed-POMO-MTL 2.621% 1.673% Mixed-POMO-MTL 6.282% 7.919%
Euc-POMO-MTL 2.720% 1.926% Euc-POMO-MTL 6.305% 8.015%

MVMoE-L 2.535% 1.545% MVMoE-L 6.310% 7.300%
Mixed-MVMoE-L 2.448% 1.515% Mixed-MVMoE-L 6.077% 7.027%
Euc-MVMoE-L 2.530% 1.618% Euc-MVMoE-L 6.311% 7.560%

MVMoE 2.421% 1.471% MVMoE 5.843% 7.115%
Mixed-MVMoE 2.387% 1.365% Mixed-MVMoE 5.705% 6.857%

Continued on the next page
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n=50 n=100 n=50 n=100
Type Model Gap Gap Type Model Gap Gap

Euc-MVMoE 2.418% 1.492% Euc-MVMoE 5.831% 7.047%

O
V

R
PB

T
W

POMO-MTL 9.628% 10.453%

O
V

R
PL

T
W

POMO-MTL 3.633% 4.374%
Mixed-POMO-MTL 9.734% 10.192% Mixed-POMO-MTL 3.600% 4.020%
Euc-POMO-MTL 9.785% 10.666% Euc-POMO-MTL 3.710% 4.375%

MVMoE-L 9.630% 10.188% MVMoE-L 3.488% 3.396%
Mixed-MVMoE-L 9.530% 9.899% Mixed-MVMoE-L 3.335% 3.816%
Euc-MVMoE-L 9.592% 10.163% Euc-MVMoE-L 3.529% 4.063%

MVMoE 9.308% 9.948% MVMoE 3.396% 3.903%
Mixed-MVMoE 9.283% 9.749% Mixed-MVMoE 3.225% 3.560%
Euc-MVMoE 9.443% 9.968% Euc-MVMoE 3.386% 3.915%

V
R

PB
LT

W

POMO-MTL 9.035% 7.746%

O
V

R
PB

LT
W

POMO-MTL 9.851% 10.498%
Mixed-POMO-MTL 9.139% 7.658% Mixed-POMO-MTL 9.946% 10.358%
Euc-POMO-MTL 9.286% 7.761% Euc-POMO-MTL 9.967% 10.670%

MVMoE-L 8.915% 7.473% MVMoE-L 9.682% 10.263%
Mixed-MVMoE-L 8.871% 7.278% Mixed-MVMoE-L 9.582% 10.027%
Euc-MVMoE-L 8.996% 7.537% Euc-MVMoE-L 9.754% 10.247%

MVMoE 8.775% 7.332% MVMoE 9.516% 10.009%
Mixed-MVMoE 8.690% 7.304% Mixed-MVMoE 9.462% 9.772%
Euc-MVMoE 8.875% 7.422% Euc-MVMoE 9.636% 10.045%

Table 7: Ablation studies on whether the improvements on performances stem from the increased number of parameters
or the design of mixed-curvature geometric spaces. The training configurations are consistent with (Zhou et al., 2024).
Comparisons are conducted on MVMoE with 16 VRP variants (6 in-distribution and 10 out-of-distribution tasks) in which
case each task contains 1,000 instances. Bold indicates best and underline indicates the second-best result. Euc-X represents
the model that replaces the mixed-curvature modules with their Euclidean counterparts so that numbers of total parameters
for these models are in the same level.
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n=50 n=100 n=50 n=100
Type Model Gap Gap Type Model Gap Gap

C
V

R
P

POMO-MTL 0.987% 1.846%

V
R

PT
W

POMO-MTL 3.637% 5.313%
Mixed-POMO-MTL 0.980% 1.731% Mixed-POMO-MTL 3.556% 5.090%
Mixed-POMO-MTL (w.o. Mix-up) 1.057% 1.807% Mixed-POMO-MTL (w.o. Mix-up) 3.647% 5.156%

MVMoE-L 0.955% 1.728% MVMoE-L 3.500% 4.927%
Mixed-MVMoE-L 0.933% 1.645% Mixed-MVMoE-L 3.421% 4.872%
Mixed-MVMoE-L (w.o. Mix-up) 0.984% 1.731% Mixed-MVMoE-L (w.o. Mix-up) 3.516% 5.018%

MVMoE 0.896% 1.653% MVMoE 3.410% 4.903%
Mixed-MVMoE 0.865% 1.599% Mixed-MVMoE 3.373% 4.732%
Mixed-MVMoE (w.o. Mix-up) 0.890% 1.674% Mixed-MVMoE (w.o. Mix-up) 3.256% 4.897%

O
V

R
P

POMO-MTL 2.634% 3.458%

V
R

PL

POMO-MTL 0.201% 0.479%
Mixed-POMO-MTL 2.637% 3.312% Mixed-POMO-MTL 0.185% 0.362%
Mixed-POMO-MTL (w.o. Mix-up) 2.607% 3.373% Mixed-POMO-MTL (w.o. Mix-up) 0.205% 0.420%

MVMoE-L 2.548% 3.214% MVMoE-L 0.131% 0.323%
Mixed-MVMoE-L 2.448% 3.133% Mixed-MVMoE-L 0.098% 0.270%
Mixed-MVMoE-L (w.o. Mix-up) 2.608% 3.197% Mixed-MVMoE-L (w.o. Mix-up) 0.150% 0.350%

MVMoE 2.402% 3.136% MVMoE 0.092% 0.261%
Mixed-MVMoE 2.336% 2.946% Mixed-MVMoE 0.052% 0.227%
Mixed-MVMoE (w.o. Mix-up) 2.421% 3.129% Mixed-MVMoE (w.o. Mix-up) 0.086% 0.294%

V
R

PB

POMO-MTL 1.684% 1.674%
O

V
R

PT
W

POMO-MTL 3.470% 4.411%
Mixed-POMO-MTL 1.645% 1.427% Mixed-POMO-MTL 3.420% 3.996%
Mixed-POMO-MTL (w.o. Mix-up) 1.682% 1.517% Mixed-POMO-MTL (w.o. Mix-up) 3.599% 4.136%

MVMoE-L 1.605% 1.368% MVMoE-L 3.322% 3.941%
Mixed-MVMoE-L 1.531% 1.265% Mixed-MVMoE-L 3.219% 3.749%
Mixed-MVMoE-L (w.o. Mix-up) 1.591% 1.418% Mixed-MVMoE-L (w.o. Mix-up) 3.431% 4.001%

MVMoE 1.540% 1.285% MVMoE 3.210% 3.852%
Mixed-MVMoE 1.456% 1.153% Mixed-MVMoE 3.060% 3.579%
Mixed-MVMoE (w.o. Mix-up) 1.540% 1.307% Mixed-MVMoE (w.o. Mix-up) 3.256% 3.939%

O
V

R
PB

POMO-MTL 6.430% 7.335%

O
V

R
PL

POMO-MTL 2.734% 3.441%
Mixed-POMO-MTL 6.348% 7.831% Mixed-POMO-MTL 2.708% 3.350%
Mixed-POMO-MTL (w.o. Mix-up) 6.298% 7.414% Mixed-POMO-MTL (w.o. Mix-up) 2.830% 3.332%

MVMoE-L 7.243% 7.243% MVMoE-L 2.597% 3.244%
Mixed-MVMoE-L 6.175% 6.997% Mixed-MVMoE-L 2.497% 3.159%
Mixed-MVMoE-L (w.o. Mix-up) 6.241% 7.094% Mixed-MVMoE-L (w.o. Mix-up) 2.668% 3.173%

MVMoE 5.999% 7.088% MVMoE 2.454% 3.148%
Mixed-MVMoE 5.871% 6.800% Mixed-MVMoE 2.419% 2.971%
Mixed-MVMoE (w.o. Mix-up) 5.760% 6.782% Mixed-MVMoE (w.o. Mix-up) 2.505% 3.152%

V
R

PB
L

POMO-MTL 1.971% 1.793%

V
R

PB
T

W

POMO-MTL 8.841% 7.413%
Mixed-POMO-MTL 1.905% 1.514% Mixed-POMO-MTL 8.934% 7.457%
Mixed-POMO-MTL (w.o. Mix-up) 1.987% 1.639% Mixed-POMO-MTL (w.o. Mix-up) 8.900% 7.383%

MVMoE-L 1.872% 1.473% MVMoE-L 8.745% 7.190%
Mixed-MVMoE-L 1.781% 1.378% Mixed-MVMoE-L 8.715% 7.018%
Mixed-MVMoE-L (w.o. Mix-up) 1.860% 1.531% Mixed-MVMoE-L (w.o. Mix-up) 8.790% 7.169%

MVMoE 1.776% 1.346% MVMoE 8.600% 4.903%
Mixed-MVMoE 1.729% 1.264% Mixed-MVMoE 8.545% 4.732%
Mixed-MVMoE (w.o. Mix-up) 1.773% 1.430% Mixed-MVMoE (w.o. Mix-up) 8.649% 7.041%

V
R

PL
T

W

POMO-MTL 2.586% 1.920%

O
V

R
PB

L

POMO-MTL 6.306% 7.343%
Mixed-POMO-MTL 2.621% 1.673% Mixed-POMO-MTL 6.282% 7.919%
Mixed-POMO-MTL (w.o. Mix-up) 2.670% 1.805% Mixed-POMO-MTL (w.o. Mix-up) 6.111% 7.460%

MVMoE-L 2.535% 1.545% MVMoE-L 6.310% 7.300%
Mixed-MVMoE-L 2.448% 1.515% Mixed-MVMoE-L 6.077% 7.027%
Mixed-MVMoE-L (w.o. Mix-up) 2.533% 1.601% Mixed-MVMoE-L (w.o. Mix-up) 6.198% 7.109%

MVMoE 2.421% 1.471% MVMoE 5.843% 7.115%
Mixed-MVMoE 2.387% 1.365% Mixed-MVMoE 5.705% 6.857%

Continued on the next page
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n=50 n=100 n=50 n=100
Type Model Gap Gap Type Model Gap Gap

Mixed-MVMoE (w.o. Mix-up) 2.478% 1.523% Mixed-MVMoE (w.o. Mix-up) 5.705% 6.809%

O
V

R
PB

T
W

POMO-MTL 9.628% 10.453%

O
V

R
PL

T
W

POMO-MTL 3.633% 4.374%
Mixed-POMO-MTL 9.734% 10.192% Mixed-POMO-MTL 3.600% 4.020%
Mixed-POMO-MTL (w.o. Mix-up) 9.818% 10.251% Mixed-POMO-MTL (w.o. Mix-up) 3.765% 4.124%

MVMoE-L 9.630% 10.188% MVMoE-L 3.488% 3.396%
Mixed-MVMoE-L 9.530% 9.899% Mixed-MVMoE-L 3.335% 3.816%
Mixed-MVMoE-L (w.o. Mix-up) 9.639% 10.032% Mixed-MVMoE-L (w.o. Mix-up) 3.546% 4.037%

MVMoE 9.308% 9.948% MVMoE 3.396% 3.903%
Mixed-MVMoE 9.283% 9.749% Mixed-MVMoE 3.225% 3.560%
Mixed-MVMoE (w.o. Mix-up) 9.441% 10.096% Mixed-MVMoE (w.o. Mix-up) 3.434% 3.932%

V
R

PB
LT

W

POMO-MTL 9.035% 7.746%

O
V

R
PB

LT
W

POMO-MTL 9.851% 10.498%
Mixed-POMO-MTL 9.139% 7.658% Mixed-POMO-MTL 9.946% 10.358%
Mixed-POMO-MTL (w.o. Mix-up) 9.102% 7.699% Mixed-POMO-MTL (w.o. Mix-up) 9.940% 10.323%

MVMoE-L 8.915% 7.473% MVMoE-L 9.682% 10.263%
Mixed-MVMoE-L 8.871% 7.278% Mixed-MVMoE-L 9.582% 10.027%
Mixed-MVMoE-L (w.o. Mix-up) 9.013% 7.410% Mixed-MVMoE-L (w.o. Mix-up) 9.764% 10.135%

MVMoE 8.775% 7.332% MVMoE 9.516% 10.009%
Mixed-MVMoE 8.690% 7.304% Mixed-MVMoE 9.462% 9.772%
Mixed-MVMoE (w.o. Mix-up) 8.881% 7.351% Mixed-MVMoE (w.o. Mix-up) 9.579% 10.201%

Table 8: Ablation studies on whether the Mix-up module brings improvements on performances. The training configurations
are consistent with (Zhou et al., 2024). Comparisons are conducted on MVMoE with 16 VRP variants (6 in-distribution and
10 out-of-distribution tasks) in which case each task contains 1,000 instances. Bold indicates best and underline indicates
the second-best result.

Model Parameters

POMO-MTL 1,254,656
Mixed-POMO-MTL 1,386,810
MVMoE-Light 3,698,944
Mixed-MVMoE-Light 3,831,116
MVMoE 3,682,176
Mixed-MVMoE 3,814,348

Table 9. Comparisons for the number of parameters in each baseline model and their mixed-curvature space counterparts. Our comparisons
are based on the models mentioned in (Zhou et al., 2024). For the embedder, we insert two mixed-curvature modules for processing
features from depot and customer nodes, respectively. For each layer of encoder, we insert one mixed-curvature module for processing
features from the previous layer. In specifics, the ratio of increased parameters is between 3.57% and 10.56% compared to baselines.
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n=50 n=100 n=50 n=100
Type Model Gap Gap Type Model Gap Gap

Mixed-POMO-MTL-4 1.011% 1.840% Mixed-POMO-MTL-4 3.583% 5.205%
CVRP Mixed-POMO-MTL-8 0.980% 1.731% VRPTW Mixed-POMO-MTL-8 3.556% 5.090%

Mixed-POMO-MTL-16 1.009% 1.808% Mixed-POMO-MTL-16 3.570% 5.250%

Mixed-POMO-MTL-4 2.645% 3.465% Mixed-POMO-MTL-4 0.193% 0.450%
OVRP Mixed-POMO-MTL-8 2.637% 3.312% VRPL Mixed-POMO-MTL-8 0.185% 0.362%

Mixed-POMO-MTL-16 2.592% 3.367% Mixed-POMO-MTL-16 0.187% 0.456%

Mixed-POMO-MTL-4 1.678% 1.585% Mixed-POMO-MTL-4 3.423% 4.361%
VRPB Mixed-POMO-MTL-8 1.645% 1.427% OVRPTW Mixed-POMO-MTL-8 3.420% 3.996%

Mixed-POMO-MTL-16 1.655% 1.564% Mixed-POMO-MTL-16 3.475% 4.234%

Mixed-POMO-MTL-4 6.279% 7.470% Mixed-POMO-MTL-4 2.737% 2.692%
OVRPB Mixed-POMO-MTL-8 6.348% 7.831% OVRPL Mixed-POMO-MTL-8 2.708% 3.350%

Mixed-POMO-MTL-16 6.290% 7.328% Mixed-POMO-MTL-16 3.356% 3.349%

Mixed-POMO-MTL-4 1.947% 1.729% Mixed-POMO-MTL-4 8.820% 7.548%
VRPBL Mixed-POMO-MTL-8 1.905% 1.514% VRPBTW Mixed-POMO-MTL-8 8.934% 7.457%

Mixed-POMO-MTL-16 1.956% 1.696% Mixed-POMO-MTL-16 8.847% 7.402%

Mixed-POMO-MTL-4 2.520% 1.830% Mixed-POMO-MTL-4 6.151% 7.444%
VRPLTW Mixed-POMO-MTL-8 2.621% 1.673% OVRPBL Mixed-POMO-MTL-8 6.282% 7.919%

Mixed-POMO-MTL-16 2.585% 1.891% Mixed-POMO-MTL-16 6.160% 7.376%

Mixed-POMO-MTL-4 9.788% 10.470% Mixed-POMO-MTL-4 3.630% 4.382%
OVRPBTW Mixed-POMO-MTL-8 9.734% 10.192% OVRPLTW Mixed-POMO-MTL-8 3.600% 4.020%

Mixed-POMO-MTL-16 9.698% 10.415% Mixed-POMO-MTL-16 3.573% 4.270%

Mixed-POMO-MTL-4 9.022% 7.731% Mixed-POMO-MTL-4 9.836% 10.583%
VRPBLTW Mixed-POMO-MTL-8 9.139% 7.658% OVRPBLTW Mixed-POMO-MTL-8 9.946% 10.358%

Mixed-POMO-MTL-16 9.112% 7.733% Mixed-POMO-MTL-16 9.868% 10.488%

Table 10. Ablation studies on the number of subspaces in mixed-curvature modules. The training configurations are consistent with (Zhou
et al., 2024). Comparisons are conducted on POMO-MTL with 16 VRP variants in which cases each task contains 1,000 instances. Bold
indicates best value and the underline indicates the second best result.
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Figure 4. The histogram of curvatures on each node from the remaining 10 VRP tasks. We utilize 1,000 instances with size 50 for each
task to visualize curvature information. The x-axis represents curvature values, while the y-axis denotes the count of each value. The
avg line indicates the average curvature across all nodes. We adopt Ollivier-Ricci curvature (Ollivier, 2009) which is especially suitable
for measuring curvatures on discrete structures like graphs. From the information in the figure, it shows that almost every node in each
task dataset has either negative or positive curvature and the average curvature suggests that each task contains non-Euclidean geometry
patterns. Better viewed in color.
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k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=50)
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(a) N=50

k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=100)
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(b) N=100

k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=150)
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(c) N=150
k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=200)
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(d) N=200

k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=250)
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(e) N=250

k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=300)
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(f) N=300
k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=350)
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(g) N=350

k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=400)
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(h) N=400

k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=450)

4

2

0

2

4

Ol
liv

ie
r-R

icc
i C

ur
va

tu
re

(i) N=450
k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=500)
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(j) N=500

k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=600)
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(k) N=600

k-NN Graph (k=5) with Ollivier-Ricci Curvature (N=800)
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(l) N=800

Figure 5. Visualization of Ollivier-Ricci curvatures on random generated complete graphs with different sizes. Each node’s coordinate is
restricted in the 2D region [−1, 1]× [−1, 1]. For each complete graph, we use KNN to select 5 nearest neighbors of each node. Warm
(cold) colors represent positive (negative) curvatures. From these presented results, we can observe that edges with negative curvatures
often link distant nodes while edges with positive curvatures often exist in highly clustered regions. This property is shared among all of
the node sizes. Better viewed in color.
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Appendix.2. Detailed Experimental Configurations with (Zhou et al., 2024)

Definitions of Constraints in Utilized Tasks

We follow the settings of (Kool et al., 2019; Kwon et al., 2020; Zhou et al., 2024) and details are listed as follows:

• Coordinates: We focus on uniform distribution setting in which case each node’s locations are sampled from U(0, 1)
in a unit square.

• Capacity: We set capacity to 40 and 50 for N = 50 and N = 100, respectively. Note that one of the hard constraints
involved in each task is that nodes with demands greater than delivery vehicle’s current demand are masked.

• Demand: We sample the demand of each node from the list {1, 2, . . . , 9}. Note that before sending into model, the
node demand is normalized by the demand of delivery vehicle.

• Open Route: We set it as an indicator vector with all ones. During decoding stage, we need to manually set mask to
prevent delivery vehicle from going back to the depot node.

• Backhauls: Similar to demand setting, we sample from {1, 2, . . . , 9} as our initial demands. Then, in the same way as
that of (Liu et al., 2024), we sample 20% of nodes to be the backhauls nodes.

• Duration Limit: We set it to 3, which represents the maximum length of delivery vehicle’s route.

• Time Window: For the depot node, we assign its time window as [0, 3] and service time for depot is 0 by default.
However, service time for customer nodes is set to 0.2 and time window for customer nodes are sampled from uniform
distribution.

By combining constraints in different ways, we can obtain various kinds of tasks as listed in Table 11. Since some nodes
don’t have features like time-windows or backhauls, these features will separately appear in the encoder module.

Capacity (C) Open Route (O) Backhauls (B) Duration Limit (L) Time Window (TW)
CVRP ! % % % %

VRPTW ! % % % !

OVRP ! ! % % %

VRPL ! % % ! %

VRPB ! % ! % %

OVRPTW ! ! % % !

OVRPB ! ! ! % %

OVRPL ! ! % ! %

VRPBL ! % ! ! %

VRPBTW ! % ! % !

VRPLTW ! % % ! !

OVRPBL ! ! ! ! %

OVRPBTW ! ! ! % !

OVRPLTW ! ! % ! !

VRPBLTW ! % ! ! !

OVRPBLTW ! ! ! ! !

Table 11. Detailed descriptions of constraints contained in each problem type. We have 16 VRP tasks in total. The first 6 VRP tasks get
involved in training stage and the last 10 tasks are used for zero-shot/few-shot testings.

25



A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

Hyper-Parameters Value
Training Epochs 5,000
Fine-tuning Epochs 10
Instances in each Training Epoch 20,000
Instances in each Fine-tuning Epoch 10,000
Optimizer Adam
LR Scheduler MultiStepLR
LR Milestones [4,501]
LR Gamma 0.1
Training Learning Rate 1e-4
Fine-tuning Learning Rate 1e-4
Weight Decay 1e-6
Training Batch Size 128
Fine-tuning Batch Szie 128
Evaluation Batch Size 64
Problem Scales {50, 100}
Node Distribution U (0,1)
Number of Experts in MoE 4
Auxiliary Loss Weight in MoE 0.001
Gating Mechanism in MoE node-level, input-choice gating
Embedding Size 128
Hidden Feature Size 512
Number of Encoder Layers 6
QKV Dimension 16
Attention Head Number 8
Logit Clipping 10
Evaluation Type argmax
Number of Experts in MoE for Routing 2
Number of Subspaces (C) 8
Initialization value of Curvature (κ) 0
Initialization value of α, β {1,1}

Table 12. Detailed experiment settings of hyper-parameters. This configuration is consistent with (Zhou et al., 2024). However, other
choices for the number of subspaces are also valid as long as the sum of subspaces’ dimensions equals 128. Even if 128 is not divisible by
number of subspaces, we can still determine dimensions manually or automatically (e.g., neural architecture search (Elsken et al., 2019)).

26



A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

Appendix.3. Real-World Experimental Results with (Zhou et al., 2024) and Subspace Visualizations

Set-Solomon POMO POMO-MTL MVMoE Mixed-POMO-MTL
Instance Opt Obj Gap Obj Gap Obj Gap Obj Gap
R101 1637.7 1805.6 10.252% 1821.2 11.205% 1798.1 9.794% 1862.3 13.714%
R102 1466.6 1556.7 6.143% 1596.0 8.823% 1572.0 7.187% 1634.1 11.422%
R103 1208.7 1341.4 10.979% 1327.3 9.812% 1328.2 9.887% 1374.1 13.687%
R104 971.5 1118.6 15.142% 1120.7 15.358% 1124.8 15.780% 1134.4 16.767%
R105 1355.3 1506.4 11.149% 1514.6 11.754% 1479.4 9.157% 1569.7 15.818%
R106 1234.6 1365.2 10.578% 1380.5 11.818% 1362.4 10.352% 1413.4 14.480%
R107 1064.6 1214.2 14.052% 1209.3 13.592% 1182.1 11.037% 1230.2 15.556%
R108 932.1 1058.9 13.604% 1061.8 13.915% 1023.2 9.774% 1063.0 14.046%
R109 1146.9 1249.0 8.902% 1265.7 10.358% 1255.6 9.478% 1258.2 9.704%
R110 1068.0 1180.4 10.524% 1171.4 9.682% 1185.7 11.021% 1213.2 13.593%
R111 1048.7 1177.2 12.253% 1211.5 15.524% 1176.1 12.148% 1189.8 13.453%
R112 948.6 1063.1 12.070% 1057.0 11.427% 1045.2 10.183% 1097.3 15.676%
RC101 1619.8 2643.0 63.168% 1833.3 13.181% 1774.4 9.544% 1882.7 16.231%
RC102 1457.4 1534.8 5.311% 1546.1 6.086% 1544.5 5.976% 1616.4 10.907%
RC103 1258.0 1407.5 11.884% 1396.2 10.986% 1402.5 11.486% 1403.0 11.526%
RC104 1132.3 1261.8 11.437% 1271.7 12.311% 1265.4 11.755% 1252.6 10.628%
RC105 1513.7 1612.9 6.553% 1644.9 8.668% 1635.5 8.047% 1660.1 8.382%
RC106 1372.7 1539.3 12.137% 1552.8 13.120% 1505.0 9.638% 1497.2 9.072%
RC107 1207.8 1347.7 11.583% 1384.8 14.655% 1351.6 11.906% 1330.8 10.180%
RC108 1114.2 1305.5 17.169% 1274.4 14.378% 1254.2 12.565% 1273.9 14.332%
RC201 1261.8 2045.6 62.118% 1761.1 39.570% 1577.3 25.004% 1595.3 26.428%
RC202 1092.3 1805.1 65.257% 1486.2 36.062% 1616.5 47.990% 1416.4 29.672%
RC203 923.7 1470.4 59.186% 1360.4 47.277% 1473.5 59.521% 1223.3 32.433%
RC204 783.5 1323.9 68.973% 1331.7 69.968% 1286.6 64.212% 1103.8 40.887%
RC205 1154.0 1568.4 35.910% 1539.2 33.380% 1537.7 33.250% 1365.2 18.301%
RC206 1051.1 1707.5 62.449% 1472.6 40.101% 1468.9 39.749% 1239.7 17.939%
RC207 962.9 1567.2 62.758% 1375.7 42.870% 1442.0 49.756% 1264.7 31.345%
RC208 776.1 1505.4 93.970% 1185.6 52.764% 1107.4 42.688% 1113.0 43.407%

Average Gap 29.658% 21.380% 20.317% 17.84%

Table 13. Zero-Shot Inference on VRPTW benchmark instances from Set-Solomon. Each model is trained on the size n=100, following
the settings in (Zhou et al., 2024).
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Set-X POMO POMO-MTL MVMoE Mixed-POMO-MTL
Instance Opt Obj Gap Obj Gap Obj Gap Obj Gap
X-n101-k25 27591 30138 9.231% 32482 17.727% 29361 6.415% 29676 7.557%
X-n106-k14 26362 39322 49.162% 27369 3.820% 27278 3.475% 27821 5.936%
X-n110-k13 14971 15223 1.683% 15151 1.202% 15089 0.788% 15226 1.703%
X-n115-k10 12747 16113 26.406% 14785 15.988% 13847 8.629% 13328 4.558%
X-n120-k6 13332 14085 5.648% 13931 4.493% 14089 5.678% 14039 5.303%
X-n125-k30 55539 58513 5.355% 60687 9.269% 58944 6.131% 59642 7.388%
X-n129-k18 28940 29246 1.057% 30332 4.810% 29802 2.979% 29476 1.852%
X-n134-k13 10916 11302 3.536% 11581 6.092% 11353 4.003% 11298 3.499%
X-n139-k10 13590 14035 3.274% 13911 2.362% 13825 1.729% 13760 1.251%
X-n143-k7 15700 16131 2.745% 16660 6.115% 16125 2.707% 16070 2.357%
X-n148-k46 43448 49328 13.533% 50782 16.880% 46758 7.618% 47157 8.537%
X-n153-k22 21220 32476 53.040% 26237 23.643% 23793 12.125% 23392 10.236%
X-n157-k13 16876 17660 4.646% 17510 3.757% 17650 4.586% 18444 9.291%
X-n162-k11 14138 14889 5.312% 14720 4.117% 14654 3.650% 14588 3.183%
X-n167-k10 20557 21822 6.154% 21399 4.096% 21340 3.809% 21141 2.841%
X-n172-k51 45607 49556 8.659% 56385 23.632% 51292 12.465% 48815 7.034%
X-n176-k26 47812 54197 13.354% 57637 20.549% 55520 16.121% 52593 10.000%
X-n181-k23 25569 37311 45.923% 26219 2.542% 26258 2.695% 27552 7.755%
X-n186-k15 24145 25222 4.461% 25000 3.541% 25182 4.295% 24900 3.127%
X-n190-k8 16980 18315 7.862% 18113 6.673% 18327 7.933% 18593 9.499%
X-n195-k51 44225 49158 11.154% 54090 22.306% 49984 13.022% 48689 10.094%
X-n200-k36 58578 64618 10.311% 61654 5.251% 61530 5.039% 61844 5.575%
X-n209-k16 30656 32212 5.076% 32011 4.420% 32033 4.492% 31828 3.823%
X-n219-k73 117595 133545 13.564% 119887 1.949% 121046 2.935% 125002 6.299%
X-n228-k23 25742 48689 89.142% 33091 28.549% 31054 20.636% 29244 13.604%
X-n237-k14 27042 29893 10.543% 28472 5.288% 28550 5.577% 28850 6.686%
X-n247-k50 37274 56167 50.687% 45065 20.902% 43673 17.167% 41142 10.377%
X-n251-k28 38684 40263 4.082% 40614 4.989% 41022 6.044% 40792 5.449%

Average Gap 16.629% 9.820% 6.884% 6.243%

Table 14. Zero-Shot Inference on CVRP benchmark instances from Set-X. Each model is trained on the size n=100, following the settings
in (Zhou et al., 2024).
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Set-X POMO POMO-MTL MVMoE Mixed-POMO-MTL
Instance Opt Obj Gap Obj Gap Obj Gap Obj Gap
X-n502-k39 69226 75617 9.232% 77284 11.640% 73533 6.222% 81423 17.619%
X-n513-k21 24201 30518 26.102% 28510 17.805% 32102 32.647% 29529 22.016%
X-n524-k153 154593 201877 30.586% 192249 24.358% 186540 20.665% 173928 12.507%
X-n536-k96 94846 106073 11.837% 106514 12.302% 109581 15.536% 105632 11.372%
X-n548-k50 86700 103093 18.908% 94562 9.068% 95894 10.604% 95680 10.358%
X-n561-k42 42717 49370 15.575% 47846 12.007% 56008 31.114% 49619 16.158%
X-n573-k30 50673 83545 64.871% 60913 20.208% 59473 17.366% 57588 13.646%
X-n586-k159 190316 229887 20.792% 208893 9.761% 215668 13.321% 212404 11.606%
X-n599-k92 108451 150572 38.839% 120333 10.956% 128949 18.901% 120722 11.315%
X-n613-k62 59535 68451 14.976% 67984 14.192% 82586 38.718% 71275 19.719%
X-n627-k43 62164 84434 35.825% 73060 17.528% 70987 14.193% 69334 11.534%
X-n641-k35 63682 75573 18.672% 72643 14.071% 75329 18.289% 71750 12.669%
X-n655-k131 106780 127211 19.134% 116988 9.560% 117678 10.206% 120227 12.593%
X-n670-k130 146332 208079 42.197% 190118 29.922% 197695 35.100% 170403 16.450%
X-n685-k75 68205 79482 16.534% 80892 18.601% 97388 42.787% 80512 18.044%
X-n701-k44 81923 97843 19.433% 92075 12.392% 98469 20.197% 90724 10.734%
X-n716-k35 43373 51381 18.463% 52709 21.525% 56773 30.895% 50798 17.119%
X-n733-k159 136187 159098 16.823% 161961 18.925% 178322 30.939% 161089 18.285%
X-n749-k98 77269 87786 13.611% 90582 17.229% 100438 29.985% 87907 13.767%
X-n766-k71 114417 135464 18.395% 144041 25.891% 152352 33.155% 128375 12.199%
X-n783-k48 72386 90289 24.733% 83169 14.897% 100383 38.677% 84181 16.295%
X-n801-k40 73305 124278 69.536% 85077 16.059% 91560 24.903% 86152 17.525%
X-n819-k171 158121 193451 22.344% 177157 12.039% 183599 16.113% 183792 16.235%
X-n837-k142 193737 237884 22.787% 214207 10.566% 229526 18.473% 213651 10.279%
X-n856-k95 88965 152528 71.447% 101774 14.398% 99129 11.425% 115359 29.668%
X-n876-k59 99299 119764 20.609% 116617 17.440% 119619 20.463% 112067 12.858%
X-n895-k37 53860 70245 30.421% 65587 21.773% 79018 46.710% 69614 29.250%
X-n916-k207 329179 399372 21.324% 361719 9.885% 383681 16.557% 365822 11.132%
X-n936-k151 132715 237625 79.049% 186262 40.347% 220926 66.466% 167584 26.274%
X-n957-k87 85465 130850 53.104% 98198 14.898% 113882 33.250% 117787 37.819%
X-n979-k58 118976 147687 24.132% 138092 16.067% 146347 23.005% 132921 11.721%
X-n1001-k43 72355 100399 38.759% 87660 21.153% 114448 58.176% 88897 22.862%

Average Gap 29.658% 16.769% 26.048% 16.614%

Table 15. Zero-Shot Inference on large-scale CVRP instances from Set-X. Each model is trained on the size n=100, following the setting
in (Zhou et al., 2024).
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Figure 6. Visualization of curvature for each subspace of each layer in the encoder module. Shown model is Mixed-POMO-MTL. The
shown colors indicate that subspaces in shallower layers tend to reside in hyperbolic space. As the layer index increases, more subspaces
shift closer to spherical geometry. The tendency towards spherical geometry is even more serious when N = 100. However, we also
observe an unexpected change in last layer where curvatures cluster around zero. Such kind of inconsistency may explain the inferior
performances of Mixed-POMO-MTL on some unseen tasks like VRPBTW. Better viewed in color.
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Figure 7. Visualization of curvature for each subspace of each layer in the encoder module. Shown model is Mixed-MVMoE-L. The
shown colors indicate that subspaces in shallower layers tend to reside in hyperbolic space. As the layer index increases, more subspaces
shift closer to spherical geometry. Compared with Mixed-POMO-MTL, it is more consistent as the layer deepens. Better viewed in color.
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Figure 8. Visualization of curvature for each subspace of each layer in the encoder module. Shown model is Mixed-MVMoE (n=100).
The shown colors indicate that subspaces in shallower layers tend to reside in hyperbolic space. As the layer index increases, more
subspaces shift closer to spherical geometry. As we can observe from the presented color gradients, MVMoE sometimes can learn very
positive curvatures even in the shallow layer. We hypothesize this maybe due to the fact that MVMoE doesn’t apply approximate routing
mechanism so that model itself acquires much stronger abilities to capture high-level information. Better viewed in color.
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Appendix.4. Detailed Experimental Configurations, Results and Visualizations with RouteFinder (Berto et al., 2024)

Definitions of Constraints in Utilized Tasks

In this case, we follow the settings of (Berto et al., 2024) and details are listed as follows:

• Coordinates: We focus on uniform distribution setting in which case each node’s locations are sampled from U(0, 1)
in a unit square.

• Capacity: We set capacity to 40 and 50 for n = 50 and n = 100, respectively. Note that one of the hard constraints
involved in each task is that nodes with demands greater than dilvery vehicle’s current demand are masked.

• Demand: We sample the demand of each node from the list {1, 2, . . . , 9}. Note that before sending into model, the
node demand is normalized by the demand of delivery vehicle.

• Open Route: We set it as an indicator vector with all ones. During decoding stage, we need to manually set mask to
prevent vehicle from going back to the depot node.

• Backhauls: Similar to demand setting, we sample from {1, 2, . . . , 9} as our initial demands. Then, the same as in (Liu
et al., 2024), we sample 20% of nodes to be the backhauls nodes.

• Duration Limit: We set it to 3, which represents the maximum length of delivery vehicle’s route.

• Time Window: For the depot, we assign its time window as [0, 3] and service time for depot is 0 by default. However,
service time for customer nodes is set to 0.2 and time window for customer nodes are sampled from uniform distribution.

• Mixed: In the regular setting, there is a strict preceeding ordering between linehaul and backhaul customers. However,
the mixed scenario allows linehaul and backhaul customers to happen in an interleaved manner.

By combining constraints in different ways, we can obtain various kinds of tasks in Table 16. Since some nodes don’t have
features like time-windows and backhauls, these features will separately appear in the encoder module.

Capacity (C) Open Route (O) Backhauls (B) Duration Limit (L) Time Window (TW) Mixed (M)
CVRP ! % % % % %

VRPTW ! % % % ! %

OVRP ! ! % % % %

VRPL ! % % ! % %

VRPB ! % ! % % %

OVRPTW ! ! % % ! %

OVRPB ! ! ! % % %

OVRPL ! ! % ! % %

VRPBL ! % ! ! % %

VRPBTW ! % ! % ! %

VRPLTW ! % % ! ! %

OVRPBL ! ! ! ! % %

OVRPBTW ! ! ! % ! %

OVRPLTW ! ! % ! ! %

VRPBLTW ! % ! ! ! %

OVRPBLTW ! ! ! ! ! %

VRPMB ! % ! % % !

OVRPMB ! ! ! % % !

VRPMBL ! % ! ! % !

VRPMBTW ! % ! % ! !

OVRPMBL ! ! ! ! % !

OVRPMBTW ! ! ! % ! !

VRPMBLTW ! % ! ! ! !

OVRPMBLTW ! ! ! ! ! !

Table 16. Detailed descriptions of constraints contained in each problem type. We have 24 VRP tasks in total. Note that the first 16 VRP
tasks get involved in training stage and the last 8 tasks are used for few-shot testings.
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Hyper-Parameters Value
Training Epochs 300
Fine-tuning Epochs 10
Instances in each Training Epoch 100,000
Instances in each Fine-tuning Epoch 10,000
Optimizer Adam
LR Scheduler MultiStepLR
LR Milestones [270,295]
LR Gamma 0.1
Gradient Clips 1.0
Training Learning Rate 3e-4
Fine-tuning Learning Rate 3e-4
Weight Decay 1e-6
Training Batch Size 256
Fine-tuning Batch Szie 256
Evaluation Batch Size 128
Problem Scales {50, 100}
Node Distribution U (0,1)
Number of Experts in MoE 4
Auxiliary Loss Weight in MoE 0.001
Gating Mechanism in MoE node-level, input-choice gating
Embedding Size 128
Hidden Feature Size 512
Number of Encoder Layers 6
QKV Dimension 16
Attention Head Number 8
Logit Clipping 10
Evaluation Type argmax
Number of Experts in MoE for Routing 2
Number of Subspaces (C) 8
Initialization value of Curvature (κ) 0
Initialization value of α, β {1,1}

Table 17. Detailed experiment settings of hyper-parameters for RouteFinder (Berto et al., 2024) based model. However, other choices for
the number of subspaces are also valid as long as the sum of subspaces’ dimensions equals 128. Even if 128 is not divisible by number of
subspaces, we can still determine dimensions manually or automatically (e.g., neural architecture search (Elsken et al., 2019)).
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n=50 n=100 n=50 n=100
Type Model Obj Gap Time Obj Gap Time Type Model Obj Gap Time Obj Gap Time

C
V

R
P

HGS-PyVRP 10.372 0.000% 10.4m 15.628 0.000% 20.8m

V
R

PT
W

HGS-PyVRP 16.031 0.000% 10.4m 25.423 0.000% 20.8m
OR-Tools 10.572 1.907% 10.4m 16.280 4.178% 20.8m OR-Tools 16.089 0.347% 10.4m 25.814 1.506% 20.8m
MTPOMO 10.518 1.411% 2s 15.934 1.988% 7s MTPOMO 16.410 2.364% 1s 26.412 3.873% 7s
Mixed-MTPOMO 10.518 1.413% 2s 15.951 2.095% 8s Mixed-MTPOMO 16.414 2.391% 2s 26.388 3.780% 8s
MVMoE 10.501 1.242% 2s 15.888 1.694% 9s MVMoE 16.404 2.329% 2s 26.389 3.788% 9s
Mixed-MVMoE 10.503 1.265% 3s 15.887 1.690% 10s Mixed-MVMoE 16.396 2.272% 3s 26.387 3.775% 10s
RF-MoE 10.499 1.226% 2s 15.876 1.622% 9s RF-MoE 16.389 2.234% 2s 26.322 3.519% 9s
Mixed-RF-MVMoE 10.500 1.230% 3s 15.866 1.559% 10s Mixed-RF-MVMoE 16.371 2.118% 3s 26.307 3.457% 10s
RF-TE 10.504 1.274% 2s 15.857 1.505% 7s RF-TE 16.364 2.077% 1s 26.235 3.178% 7s
Mixed-RF-TE 10.493 1.166% 3s 15.846 1.440% 9s Mixed-RF-TE 16.320 1.798% 3s 26.167 2.914% 9s

O
V

R
P

HGS-PyVRP 6.507 0.000% 10.4m 9.725 0.000% 20.8m

V
R

PL

HGS-PyVRP 10.587 0.000% 10.4m 15.766 0.000% 20.8m
OR-Tools 6.553 0.686% 10.4m 9.995 2.732% 20.8m OR-Tools 10.570 2.343% 10.4m 16.466 5.302% 20.8m
MTPOMO 6.718 3.209% 1s 10.210 4.965% 6s MTPOMO 10.775 1.734% 1s 16.149 2.434% 7s
Mixed-MTPOMO 6.714 3.150% 2s 10.230 5.166% 8s Mixed-MTPOMO 10.771 1.698% 2s 16.161 2.513% 8s
MVMoE 6.702 2.965% 2s 10.177 4.621% 9s MVMoE 10.751 1.505% 2s 16.099 2.115% 9s
Mixed-MVMoE 6.699 2.929% 3s 10.181 4.658% 9s Mixed-MVMoE 10.752 1.523% 3s 16.099 2.118% 9s
RF-MoE 6.697 2.886% 2s 10.139 4.229% 9s RF-MoE 10.737 1.388% 2s 16.070 1.941% 9s
Mixed-RF-MVMoE 6.689 2.764% 3s 10.137 4.216% 10s Mixed-RF-MVMoE 10.736 1.381% 3s 16.062 1.888% 9s
RF-TE 6.684 2.687% 1s 10.121 4.055% 6s RF-TE 10.749 1.502% 1s 16.051 1.827% 6s
Mixed-RF-TE 6.675 2.551% 2s 10.111 3.946% 7s Mixed-RF-TE 10.731 1.339% 2s 16.040 1.751% 7s

V
R

PB

HGS-PyVRP 9.687 0.000% 10.4m 14.377 0.000% 20.8m

O
V

R
PT

W

HGS-PyVRP 10.510 0.000% 10.4m 16.926 0.000% 20.8m
OR-Tools 9.802 1.159% 10.4m 14.933 3.853% 20.8m OR-Tools 10.519 0.078% 10.4m 17.027 0.583% 20.8m
MTPOMO 10.033 3.564% 1s 15.082 4.922% 6s MTPOMO 10.668 1.479% 1s 17.420 2.892% 7s
Mixed-MTPOMO 10.035 3.583% 2s 15.100 5.045% 7s Mixed-MTPOMO 10.676 1.555% 2s 17.419 2.889% 7s
MVMoE 10.005 3.270% 2s 15.023 4.508% 9s MVMoE 10.669 1.492% 2s 17.416 2.872% 10s
Mixed-MVMoE 10.002 3.242% 2s 15.027 4.537% 10s Mixed-MVMoE 10.665 1.459% 2s 17.393 2.738% 10s
RF-MoE 9.980 3.015% 2s 14.973 4.164% 8s RF-MoE 10.674 1.539% 2s 17.387 2.697% 10s
Mixed-RF-MVMoE 9.980 3.012% 2s 14.962 4.085% 9s Mixed-RF-MVMoE 10.660 1.403% 2s 17.369 2.592% 11s
RF-TE 9.977 2.989% 1s 14.942 3.952% 6s RF-TE 10.652 1.326% 1s 17.327 2.346% 7s
Mixed-RF-TE 9.963 2.832% 2s 14.929 3.863% 7s Mixed-RF-TE 10.635 1.166% 2s 17.285 2.100% 7s

V
R

PB
L

HGS-PyVRP 10.186 0.000% 10.4m 14.779 0.000% 20.8m

V
R

PB
LT

W

HGS-PyVRP 15.510 0.000% 10.4m 16.926 0.000% 20.8m
OR-Tools 10.331 1.390% 10.4m 15.426 4.338% 20.8m OR-Tools 18.422 0.332% 10.4m 29.830 2.770% 20.8m
MTPOMO 10.672 4.697% 1s 15.712 6.251% 7s MTPOMO 18.990 2.128% 1s 30.898 3.624% 7s
Mixed-MTPOMO 10.666 4.644% 2s 15.728 6.359% 8s Mixed-MTPOMO 19.015 2.258% 2s 30.897 3.616% 8s
MVMoE 10.637 4.354% 2s 15.640 5.758% 9s MVMoE 18.985 2.100% 2s 30.892 3.608% 10s
Mixed-MVMoE 10.640 4.394% 2s 15.647 5.816% 10s Mixed-MVMoE 18.977 2.060% 2s 30.883 3.569% 11s
RF-MoE 10.575 3.765% 2s 15.541 5.121% 9s RF-MoE 18.957 1.960% 2s 30.808 3.323% 10s
Mixed-RF-MVMoE 10.568 3.702% 2s 15.537 5.089% 10s Mixed-RF-MVMoE 18.939 1.873% 2s 30.773 3.202% 11s
RF-TE 10.578 3.803% 1s 15.528 5.039% 6s RF-TE 18.941 1.877% 1s 30.688 2.923% 7s
Mixed-RF-TE 10.553 3.555% 2s 15.499 4.843% 7s Mixed-RF-TE 18.894 1.621% 2s 30.642 2.768% 8s

V
R

PB
T

W

HGS-PyVRP 18.292 0.000% 10.4m 29.467 0.000% 20.8m

V
R

PL
T

W

HGS-PyVRP 16.356 0.000% 10.4m 25.757 0.000% 20.8m
OR-Tools 18.366 0.383% 10.4m 29.945 1.597% 20.8m OR-Tools 16.441 0.499% 10.4m 26.259 1.899% 20.8m
MTPOMO 18.639 1.878% 1s 30.437 3.285% 7s MTPOMO 16.824 2.823% 1s 26.891 4.368% 7s
Mixed-MTPOMO 18.659 1.985% 2s 30.428 3.253% 8s Mixed-MTPOMO 16.816 2.779% 2s 26.882 4.330% 8s
MVMoE 18.640 1.883% 2s 30.436 3.281% 9s MVMoE 16.811 2.750% 2s 26.868 4.277% 9s
Mixed-MVMoE 18.630 1.830% 2s 30.422 3.232% 10s Mixed-MVMoE 16.804 2.703% 2s 26.851 4.211% 10s
RF-MoE 18.616 1.757% 2s 30.341 2.954% 9s RF-MoE 16.777 2.550% 2s 26.774 3.912% 9s
Mixed-RF-MVMoE 18.607 1.706% 2s 30.306 2.839% 10s Mixed-RF-MVMoE 16.762 2.453% 2s 26.746 3.802% 10s
RF-TE 18.600 1.676% 1s 30.241 2.619% 7s RF-TE 16.762 2.454% 1s 26.689 3.579% 7s
Mixed-RF-TE 18.555 1.417% 2s 30.172 2.385% 8s Mixed-RF-TE 16.706 2.121% 2s 26.637 3.377% 8s

O
V

R
PB

HGS-PyVRP 6.898 0.000% 10.4m 10.335 0.000% 20.8m

O
V

R
PB

L

HGS-PyVRP 6.899 0.000% 10.4m 10.335 0.000% 20.8m
OR-Tools 6.928 0.412% 10.4m 10.577 2.315% 20.8m OR-Tools 6.927 0.386% 10.4m 10.582 2.363% 20.8m
MTPOMO 7.108 3.005% 1s 10.878 5.224% 7s MTPOMO 7.112 3.055% 1s 10.884 5.276% 6s
Mixed-MTPOMO 7.099 2.889% 2s 10.892 5.354% 8s Mixed-MTPOMO 7.108 3.002% 2s 10.899 5.419% 8s
MVMoE 7.089 2.741% 2s 10.840 4.861% 9s MVMoE 7.098 2.846% 2s 10.847 4.928% 9s
Mixed-MVMoE 7.088 2.729% 2s 10.835 4.809% 10s Mixed-MVMoE 7.090 2.739% 2s 10.842 4.878% 10s
RF-MoE 7.080 2.513% 2s 10.805 4.522% 9s RF-MoE 7.083 2.635% 2s 10.806 4.534% 9s
Mixed-RF-MVMoE 7.075 2.509% 2s 10.791 4.388% 10s Mixed-RF-MVMoE 7.076 2.539% 2s 10.796 4.428% 10s
RF-TE 7.071 2.479% 1s 10.772 4.208% 7s RF-TE 7.074 2.508% 1s 10.778 4.262% 7s
Mixed-RF-TE 7.053 2.216% 2s 10.745 3.939% 8s Mixed-RF-TE 7.054 2.215% 2s 10.749 3.979% 8s

O
V

R
PB

LT
W

HGS-PyVRP 11.668 0.000% 10.4m 19.156 0.000% 20.8m

O
V

R
PB

T
W

HGS-PyVRP 11.669 0.000% 10.4m 19.15 0.000% 20.8m
OR-Tools 11.681 0.106% 10.4m 19.305 0.767% 20.8m OR-Tools 11.682 0.109% 10.4m 19.303 0.757% 20.8m
MTPOMO 11.817 1.260% 1s 19.637 2.496% 7s MTPOMO 11.814 1.229% 1s 19.635 2.485% 7s
Mixed-MTPOMO 11.823 1.312% 2s 19.634 2.476% 8s Mixed-MTPOMO 11.824 1.315% 2s 19.631 2.465% 8s
MVMoE 11.822 1.301% 2s 19.641 2.518% 10s MVMoE 11.819 1.271% 2s 19.638 2.503% 10s
Mixed-MVMoE 11.814 1.228% 2s 19.621 2.412% 10s Mixed-MVMoE 11.813 1.216% 2s 19.624 2.424% 11s
RF-MoE 11.824 1.312% 2s 19.607 2.334% 10s RF-MoE 11.823 1.304% 2s 19.606 2.328% 10s
Mixed-RF-MVMoE 11.813 1.225% 2s 19.584 2.212% 11s Mixed-RF-MVMoE 11.813 1.218% 2s 19.583 2.209% 11s
RF-TE 11.805 1.150% 1s 19.551 2.048% 7s RF-TE 11.805 1.151% 1s 19.550 2.042% 7s
Mixed-RF-TE 11.780 0.949% 2s 19.503 1.793% 8s Mixed-RF-TE 11.780 0.946% 2s 19.501 1.783% 8s

Continued on the next page
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n=50 n=100 n=50 n=100
Type Model Obj Gap Time Obj Gap Time Type Model Obj Gap Time Obj Gap Time

O
V

R
PL

HGS-PyVRP 6.507 0.000% 10.4m 9.724 0.000% 20.8m

O
V

R
PL

T
W

HGS-PyVRP 10.510 0.000% 10.4m 16.926 0.000% 20.8m
OR-Tools 6.552 0.668% 10.4m 10.001 2.791% 20.8m OR-Tools 10.497 0.114% 10.4m 17.023 0.728% 20.8m
MTPOMO 6.719 3.227% 1s 10.214 5.002% 6s MTPOMO 10.670 1.500% 1s 17.420 2.889% 7s
Mixed-MTPOMO 6.715 3.159% 2s 10.234 5.214% 7s Mixed-MTPOMO 10.678 1.571% 2s 17.418 2.882% 8s
MVMoE 6.707 3.030% 2s 10.184 4.696% 9s MVMoE 10.671 1.511% 2s 17.419 2.885% 10s
Mixed-MVMoE 6.700 2.949% 2s 10.183 4.683% 10s Mixed-MVMoE 10.662 1.429% 2s 17.397 2.759% 11s
RF-MoE 6.696 2.864% 2s 10.140 4.249% 9s RF-MoE 10.673 1.532% 2s 17.386 2.693% 10s
Mixed-RF-MVMoE 6.689 2.762% 2s 10.136 4.202% 10s Mixed-RF-MVMoE 10.661 1.413% 2s 17.369 2.591% 11s
RF-TE 6.686 2.721% 1s 10.120 4.052% 6s RF-TE 10.653 1.341% 1s 17.327 2.347% 7s
Mixed-RF-TE 6.675 2.545% 2s 10.110 3.937% 7s Mixed-RF-TE 10.636 1.176% 2s 17.287 2.108% 8s

Table 18: Each model’s performances on 16 seen tasks following the setting of (Berto et al., 2024). Each task is assigned
with 1,000 instances for testing. The best performances are annotated with bold and domains improved by our module are
highlighted with underlines.

VRPLib RF-POMO-MTL RF-MVMoE RF-TE Mixed-RF-TE
Gap Gap Gap Gap

A 2.529% 2.833% 2.825% 2.454%
B 2.752% 3.171% 2.583% 2.665%
E 5.069% 2.348% 2.929% 3.369%
F 12.772% 14.858% 12.951% 11.479%
M 5.907% 7.010% 5.078% 5.102%
P 4.678% 3.389% 4.573% 4.254%
X 9.143% 10.259% 8.435% 9.458%

Average Gap 6.121% 6.267% 5.627% 5.579%

Table 19. Zero-Shot Inference on CVRP benchmark instances from Set-X (Uchoa et al., 2017).

Method VRPMB OVRPMB VRPMBL VRPMBTW OVRPMBL OVRPMBTW VRPMBLTW OVRPMBLTW

Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

HGS-PyVRP 13.54 0.00% 9.01 0.00% 13.78 0.00% 25.51 0.00% 9.01 0.00% 16.97 0.00% 25.85 0.00% 16.97 0.00%
OR-Tools 14.93 10.27% 10.59 17.54% 15.42 11.90% 29.97 17.48% 10.59 17.54% 19.31 13.78% 30.44 17.76% 19.31 13.78%
Zero-shot 14.88 10.13% 10.72 19.02% 15.18 10.32% 28.29 10.89% 10.72 19.01% 18.45 8.68% 28.65 10.82% 18.45 8.69%
Mixed-Zero-Shot 16.04 19.12% 12.62 31.20% 16.61 20.95% 28.73 12.71% 11.72 30.40% 18.75 10.55% 29.40 13.78% 18.78 10.72%
Train (scratch) 15.12 12.13% 10.40 15.35% 16.32 18.27% 28.15 10.71% 10.18 16.08% 18.36 11.19% 28.69 10.95% 18.86 11.19%
Mixed (scratch) 14.60 7.96% 9.61 6.65% 14.83 7.61% 26.56 4.18% 9.62 6.76% 17.54 3.37% 26.98 4.47% 17.54 3.39%
EAL (step 0) 14.88 10.13% 10.72 19.02% 15.18 10.32% 28.29 10.89% 10.72 19.01% 18.45 8.68% 28.65 10.82% 18.45 8.69%
Mixed-EAL (step 0) 16.04 19.12% 12.62 31.20% 16.61 20.95% 28.73 12.71% 11.72 30.40% 18.75 10.55% 29.40 13.78% 18.78 10.72%
EAL 14.59 7.89% 9.66 7.19% 14.78 7.39% 26.69 4.61% 9.65 7.13% 17.59 3.65% 27.13 4.90% 17.59 3.65%
Mixed-EAL 14.03 3.68% 9.37 4.02% 14.31 3.89% 26.46 3.69% 9.37 4.06% 17.46 2.86% 26.89 3.99% 17.45 2.84%

Table 20. Performance comparisons under few-shot scenario on 8 unseen tasks. EAL here denotes the Efficient Adapter Layer proposed
in (Berto et al., 2024). It pads zeros on original weight matrix, which can infuse unseen features into model. Following (Berto et al.,
2024), each model is trained on the size N = 100 and each task is assigned with 1,000 test instances for validations. During few-shot
learning, model is trained with 10 epochs and each epoch contains 10,000 instances. The best performances are annotated with bold and
domains improved by our module are highlighted with underlines.

35



A Mixed-Curvature based Pre-training Paradigm for Multi-Task Vehicle Routing Solver

1 2 3 4 5 6 7 8
Subspace Index

Embedder

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

La
ye

r I
nd

ex

-0.03 -0.14 -0.29 -0.16 -0.33 -0.21 -0.23 -0.24

-0.06 -0.05 -0.03 -0.09 -0.11 -0.03 -0.05 -0.03

-0.03 -0.07 -0.03 -0.04 -0.05 -0.04 0.54 -0.02

0.05 0.39 0.06 -0.04 -0.12 0.54 -0.05 0.06

0.48 0.42 0.55 0.58 -0.01 0.68 0.46 0.51

0.73 0.36 0.30 0.35 -0.11 -0.23 -0.09 0.33

0.56 0.56 0.59 0.65 0.60 0.18 0.55 0.62

Curvature(N=50)

1 2 3 4 5 6 7 8
Subspace Index

Embedder

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

La
ye

r I
nd

ex

-0.16 -0.15 -0.25 -0.06 -0.12 -0.07 -0.15 -0.29

-0.07 -0.01 -0.04 0.03 -0.08 -0.00 -0.00 -0.10

-0.00 0.23 -0.00 0.00 0.22 0.21 0.00 0.00

0.21 -0.00 0.22 0.22 0.23 0.00 0.19 0.13

0.43 0.49 0.63 0.67 0.34 0.07 0.42 0.36

0.37 0.44 0.40 0.07 0.46 -0.16 0.46 -0.01

0.72 0.62 0.47 0.58 0.84 0.77 0.68 0.44

Curvature(N=100)

0.2

0.0

0.2

0.4

0.6

0.2

0.0

0.2

0.4

0.6

0.8

Figure 9. Visualization of curvature for each subspace of each layer in the encoder module. Shown model is Mixed-RF-MVMoE. The
shown colors indicate that subspaces in shallower layers tend to reside in hyperbolic space. As the layer index increases, more subspaces
shift closer to spherical geometry. Similar to the results presented in Figure 8, the MVMoE based model keeps the consistency in the
evolution of curvatures across layers. Better viewed in color.
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Figure 10. Visualization of curvature for each subspace of each layer in the encoder module. Shown model is Mixed-RF-TE. The shown
colors indicate that subspaces in shallower layers tend to reside in hyperbolic space. As the layer index increases, more subspaces shift
closer to spherical geometry. Compared to the MVMoE based models in Figure 8, Mixed-RF-TE doesn’t acquire very positive or negative
curvatures, they mostly cluster around the zero point. Better viewed in color.
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