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Abstract

A large body of work addresses deep neural network (DNN) quantization and
pruning to mitigate the high computational burden of deploying DNNs. We ana-
lyze two prominent classes of methods; the first class uses regularization based
on the Fisher Information Matrix (FIM) of parameters, whereas the other uses a
student-teacher paradigm, referred to as Knowledge Distillation (KD). The Fisher
criterion can be interpreted as regularizing the network by penalizing the approx-
imate KL-divergence (KLD) between the output of the original model and that
of the quantized model. The KD approach bypasses the need to estimate the FIM
and directly minimizes the KLD between the two models. We place these two
approaches in a unified setting, and study their generalization characteristics using
their loss landscapes. Using CIFAR-10 and CIFAR-100 datasets, we show that
for higher temperatures, distillation produces wider minima in loss landscapes and
yields higher accuracy than the Fisher criterion.

1 Introduction
Deep Neural Network (DNN) networks are compressed or quantized to reduce hardware complexity,
memory usage, and energy usage. A DNN model, F(x; θ), has output distribution p(y|x; θ). Upon
quantization, the output of the network is perturbed to p(y|x; θ − δθ), where θ − δθ ≡ Q(θ), and
Q(.) is the quantization operation. Quantization has a deleterious effect on the performance of the
model, particularly in the low-bit regime, where the number of bits N ≤ 4 [1, 2, 3, 4, 5].

The performance degradation can be mitigated using a regularizer that minimizes the KL-divergence
(KLD) between a high performance FP32 (32 bit floating point) network, and a quantized net-
work. We consider the FP32 DNN, F(x;φ), with output distribution p(y|x;φ), and a quantized
network, F(x;Q(θ)) with output distribution p(y|x;Q(θ)). We use pφ and pQ(θ) to denote the output
distributions. The regularized loss for training the quantized network is

L̃(θ) = LCE(θ) + λDKL(pφ||pQ(θ)), (1)

where LCE is the standard cross entropy loss. Note that we consider two different sets of parameters
φ and θ here for generality. Broadly speaking, there are two paradigms for operationalizing the
regularizer in (1): (a) Setting φ = θ and using a second order expansion around θ of the KL-
divergence in terms of the Fisher information matrix (FIM), then empirically estimating the FIM and
solving for θ; (b) Using distillation by pre-training and fixing an FP32 teacher model with parameters
φ; then optimizing the student quantized model with parameters θ.

In this paper, we place these two approaches in a unified setting and study their generalization
characteristics using their loss landscapes. We show an advantage for implementing (1) via distillation
as increasing the temperature hyperparameter in distillation flattens the loss function at the minimum.
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We empirically validate that the flatter minima result in improved model accuracy on benchmark data
for different bit widths.

2 Methods
In this section we provide an overview of the two families of methods: Fisher-based regularization
and KD. The details of regularizing using Fisher Information for DNN quantization is outlined in
Section 2.1; Quantization based on KD is covered in Section 2.2. In Section 2.3 we derive bound on
the trace of the Hessian, inversely relating KD temperature and loss surface curvature.
2.1 Fisher Information regularization for quantization
We return to the KL divergence in (1) and set φ = θ (where θ are the FP32 parameters). This loss
function identifies a broad optimum for the network such that small perturbations δθ = θ − Q(θ)
around the optimum do not change the output distribution of the network. For sufficiently small
δθ, a second order Taylor expansion of the KL divergence can be written in terms of the FIM:
DKL(pθ||pθ−δθ ) ≈ δTθ Fδθ. Therefore, we implement (1) using the FIM,

L̃(θ) = LCE(θ) +
λ

2
δTθ Fδθ. (2)

The FIM, F, defines a metric on a Riemannian manifold of probability densities on the space of
network parameters. The FIM is the expected value of the negative Hessian of the log-loss (standard
cross entropy for DNNs), or equivalently, the covariance of the score1. Many approaches for reducing
the complexity of DNNs can be interpreted as means of implementing the regularizer in (2). For
network pruning, unnecessary weights can be eliminated using salience criteria based on the FIM
(estimated using Hessian) [6, 7, 8, 9, 10, 11]. These methods are heuristics for discarding weights
that induce a large δθ for parameters that have a small entry in F.
Several methods quantize weights based on the FIM. In [12] weights are clustered by FIM diagonal
value, and high FIM clusters are assigned larger bit depth. In [13] a non-uniform quantizer is learned
using a FIM-weighted k-means scheme. Matrix-free power iteration is used for mixed-precision
layer-wise quantization based on the Hessian eigenspectrum [14, 15, 16]. These methods shape the
quantization error, δθ, such that it is inversely proportional to the entries in F. Some methods directly
regularize δTθ δθ[17] (equivalent to using an identity matrix for FIM), or constrain `∞-norm of δθ [5].
Implementing FIM-based methods: Approaches that optimize a variant of (2) require estimation
of the FIM. We estimate F using the diagonal approximation in [4, 13, 18, 12]. The second moment,
v̂(θ), of the ADAM optimizer [19] is an exponential moving average of squared gradients, and can be
used to estimate the FIM diagonal. Then, the gradient update from the regularizer for weight θj is:

∂

∂θj

λ

2
δTθ Fδθ =

∂

∂θj

λ

2

∑
i

Fiiδ
2
θi = λFjjδθj . (3)

Before regularization, F is fixed after first finding a good minimum. The regularizer gradient is not
used when computing momentum, but only added when calculating the final parameter update [20].
2.2 Distillation as KL-Divergence minimization
We return to the original loss function based on the KL divergence in (1). In contrast to FIM
regularization for quantization, KD uses a pre-trained FP32 teacher, F(x;φ), to guide the training
of the quantized, reduced capacity student model, F(x;Q(θ)). We expand (1), DKL(pφ||pQ(θ)) =
H(pφ, pQ(θ))−H(pφ); since the teacher model is pre-trained and fixed, the second term H(pφ) is a
constant. Thus, (1) reduces to the traditional distillation loss,

L̃(θ) = LCE(θ) + λH(pφ, pQ(θ)). (4)

KD has been previously used for DNN quantization; because KD is parameter agnostic, it can be
used with other compression techniques [10, 21, 22, 23, 24, 25]. Quantization-aware KD [26] distills
a compressed student model onto an FP32 teacher trained from scratch, before fine tuning the student
using the teacher. FIM-based approaches have even been used in conjunction with KD [10] for model
pruning. KD has been used extensively to reduce the size of transformer models [22, 23, 24, 25, 27].
These variants of KD compress BERT [28] to 7 MB applying layer-wise knowledge transfer [22], or
apply KD every L-layers [29].

2.3 Flatness of minima
The flatness of the loss function at a minimum is encoded in the eigenvalues of the Hessian and
is used by [30, 31] to connect improvements in generalization performance to flatter minima. The

1Score here refers to the partial derivative of the log likelihood with respect to θ.
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study in [30] characterizes loss curvature at a minimum using a diagonal FIM to estimate the Hessian
eigenspectrum. The FIM-based methods directly make use of the Hessian during optimization;
however KD bypasses the need to compute the Hessian altogether. As we detail in the ensuing
section, KD consistently outperforms FIM-based methods on multiple benchmark problems and for
all bit widths considered. We hypothesize that the increased test accuracy of KD corresponds to
reduced curvature of the loss at the minimum. We show that curvature is inversely proportional to
KD temperature by establishing an upper bound on the the trace of the Hessian. The Hessian’s trace
has been applied as a useful measure of curvature in previous studies [15].

To establish the connection between curvature and the temperature parameter, consider the last layer
(softmax) of a DNN. KD uses a temperature softmax: qk = ezk/T∑

j e
(zj/T ) to smooth predicted class

probabilities as a function of T (output probability qk for the kth class). For a K class problem, the
softmax layer has weights θ` ∈ RK×M , layer inputs x` ∈ RM , and the pre-softmax logit for the k-th
class is zk = θ`

T

k,:x
`, where θ`k,: is a row of the weight matrix. KD temperature plays an important

role for quantization as it directly impacts the width at the optimum and, as a result, the allowable
quantization error. The Hessian H ∈ RMK×MK has block structure with each M ×M block,

Hkj =
∂2LCE(θ)

∂θ`k,:∂θ
`
j,:

=

N∑
n=1

1

T 2
qnj(Ikj − qnk)x`nx`

T

n , (5)

where Ik,j is an element of the identity matrix, k, j ∈ {1, . . . ,K}, and additional the subscript n
denotes the sample index out of N data points. The trace of the Hessian can be expressed as

Tr(H) =

K∑
k=1

N∑
n=1

qnk(1− qnk)
T 2

Tr(x`nx
`T

n ) ≤ M(K − 1)

T 2K

N∑
n=1

Tr(x`nx
`T

n ), (6)

where the bound the arises from qk(1 − qk) ≤ K−1
K2 . This bound shows an inverse relationship

between the curvature of the loss at the minimum and the temperature parameter, T 2. That is, as
the temperature is increased, the minimum becomes flatter. This is validated experimentally in the
next section where we visualize the loss at the minimum. Furthermore, we also show that the flatter
minimum results in improved accuracy.

3 Results and Discussion
In this section we empirically compare methods based on FIM regularization with distillation on
CIFAR-10 and CIFAR-100. We first visualize the loss landscapes for a 4-bit quantized ResNet-18 on
CIFAR-10, then compare accuracy results across different bit widths on CIFAR-10 and CIFAR-100.
For all bit width levels on CIFAR-10 and CIFAR-100, networks were trained for 300 epochs with a
straight through estimator (STE) to find a good minimum θ∗, and then subsequently trained with the
regularizers (and STE) for 100 epochs. We also include mean squared quantization error (MSQE)
regularization as a useful comparison as it is identical to Fisher regularization, as it assumes that the
FIM is the identity matrix (i.e. assuming all parameters are equally important).
3.1 Loss landscape visualization
The filter normalization method of [32] is used to compare the loss surfaces at the minimum for
each regularization method. The loss is plotted along two random vectors β and γ, sampled from
a Gaussian distribution and rescaled per filter. Qualitatively, Figure 1 shows that the loss surface
exhibits local convexity along β and γ, and the improvement in test accuracy correlates with minimum
width. This is also seen in [32] where increases in test accuracy (due to modifications such as L2
regularization, skip connections, selection of hyperparameters), correspond to flatter minima. To
quantitatively characterize minima flatness, we fit a paraboloid to the computed loss surface as it is
locally convex. The trace of the Hessian of the fitted paraboloid is used to measure the curvature
of the loss. For consistency, β and γ are fixed across all regularization methods, rescaled with
filter normalization for every network. Figure 1 (h), demonstrates that as temperature is increased,
test accuracy increases, and the trace of the Hessian of the fitted curve decreases. This empirically
consistent with the bound in (6). This is repeated for 10 randomly chosen γ and β.

3.2 Accuracy results
Tables 1 (a) and (b) show the effect of regularization on CIFAR-10 and CIFAR-100 across all bit
widths. MSQE and Fisher regularization not only result in similar test accuracy, but have very similar
minima flatness. Since networks trained with STE already use Q(θ∗) in the forward pass, reducing
the perturbation δθ∗ does not change the operating point of the network (for both Fisher and MSQE).
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Figure 1: (a)-(g) Test loss surface on CIFAR-10 of 4-bit quantized ResNet-18. Around the minimum,
the loss surface is locally convex about the two random directions γ and β that are used to visualize
the loss. (h) shows CIFAR10 test accuracy vs flatness of minimum as measured by the trace of the
Hessian of a parabolic curve fit to the local loss landscape.

Bits
A/W STE MSQE Fisher KD

32/2 93.5±.2 93.6±.2 93.6±.2 94.0±.3
4/4 93.4±.2 93.4±.2 93.4±.2 94.2±.1
4/1 90.7±.4 91.3±.3 91.2±.2 91.4±.2
2/2 89.3±.2 89.4±.2 89.4±.4 89.9±.2

(a)

Bits
A/W STE MSQE Fisher KD

4/4 72.0±.5 72.3±.2 72.1±.4 73.6±.2
4/2 67.9±.3 69.7±.5 70.0±.3 70.4±.3

(b)

Table 1: Performance of quantized models (A: Activation, W: Weights). (a) Test Accuracy of ResNet-
18 on CIFAR10 (average over 5 trials). Distillation temperature of T=4 is used. Mean squared
quantization error (MSQE) corresponds to setting an identity matrix for the FIM. STE denotes
training with straight-through estimator and serves as a baseline. FP32 baseline accuracy (teacher) is
94.4%. (b) Quantized ResNet-18 accuracy for Cifar100. FP32 Baseline (teacher) is 74.1%.

3.2.1 Why does distillation outperform Fisher-based methods?

We posit that the difference in performance between distillation, Fisher, and MSQE regularization
is a consequence of the difference in minima flatness observed in Figure 1 (h). The temperature, T ,
in distillation widens the minimum, as measured by the trace of the Hessian, which translates to
improved accuracy at all bit widths. Another possible reason for the improved performance is that
distillation bypasses FIM estimation altogether, while still minimizing (1). Estimating the FIM is
challenging. Approaches often use diagonal approximations [14, 15, 18, 12, 13] (the Hessians of
DNN loss surfaces are non-diagonal [33, 34]), or computationally intensive methods [11, 14, 15].
These approaches have tenuous theoretical foundation, since the “empirical Fisher approximation,”
the widely used FIM estimate, computes expectation over the training labels yn, and is distinct from
estimating the true FIM, an expectation over model outputs, y. Weight updates preconditioned with
empirical Fisher can be orthogonal or opposite to updates preconditioned with the true Fisher [35].

4 Conclusion
In this work we studied two regularization methods for DNN quantization that constrain the KL-
divergence between the output distribution of the full precision model and the output of the model
under a quantization perturbation. The first method uses an approximation to the KL-divergence
in terms of the FIM to constrain the solution space. The second method uses distillation as an
alternative to directly regularizing the KL-divergence between an FP32 and quantized model without
assumptions of closeness in parameter space or having to estimate the FIM. Experiments on CIFAR10
and CIFAR100 demonstrated distillation outperformed Fisher and MSQE regularization. We provided
evidence that this improvement is due to flatter minima obtained from increasing the temperature
parameter in KD.
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Broader Impact

An extremely broad array of applications demand the use of low power DNNs across computer vision,
natural language processing, and speech recognition. Computer vision systems such as autonomous
driving, human activity detection, robotic systems require efficient DNN inference. Voice driven
smart home systems also require low latency, low power deep learning inference for understanding
spoken commands.

Beyond mobile devices, efficient and accurate DNN inference is likely to be crucial for datacenters as
well. Datacenter workloads can involve DNN inference for recommender systems, computer vision,
speech processing, and language. An increasing and large fraction of datacenter workload is expected
to come from DNN inference [36] while the model size of state of the art models, in key application
domains such as natural language processing, are simultaneously also increasing [28, 37, 38, 39].
DNN compression could become a necessity for low-latency inference of these complex models, and
for managing energy density and ecological impact.

Several ethical concerns arise in the application areas of low power DNN. Pervasive sensor networks
could utilize efficient, high performance DNN models for to track individual behaviors, movements,
and intents without the knowledge or consent of the surveilled. For example, The authors in [10] use
the Fisher information and Knowledge distillation to prune a network for faster gaze prediction.
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