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Abstract

Vision transformers dominate image processing tasks due to their superior perfor-
mance. However, the quadratic complexity of self-attention limits the scalability of
these systems and their deployment on resource-constrained devices. State Space
Models (SSMs) have emerged as a solution by introducing a linear recurrence
mechanism, which reduces the complexity of sequence modeling from quadratic
to linear. Recently, SSMs have been extended to high-resolution vision tasks.
Nonetheless, the linear recurrence mechanism struggles to fully utilize matrix
multiplication units on modern hardware, resulting in a computational bottleneck.
We address this issue by introducing VMeanba, a training-free compression method
that eliminates the channel dimension in SSMs using mean operations. Our key
observation is that the output activations of SSM blocks exhibit low variances
across channels. Our VMeanba leverages this property to optimize computation by
averaging activation maps across the channel to reduce the computational overhead
without compromising accuracy. Evaluations on image classification and semantic
segmentation tasks demonstrate that VMeanba achieves up to a 1.12x speedup with
less than a 3% accuracy loss. When combined with 40% unstructured pruning, the
accuracy drop remains under 3%.

1 Introduction

Computer vision has advanced significantly due to deep learning and the availability of large-scale
datasets. Convolutional Neural Networks (CNNs) have become foundational for tasks such as image
classification [[11} 22 9] and object detection [6} 15 21]. However, CNNs struggle to capture long-
range dependencies. Vision Transformers (ViTs) [3} 118} 24] which utilize self-attention mechanisms,
effectively address this limitation but suffer from high computational costs due to quadratic complexity.
To mitigate these costs, research has focused on reducing ViT complexity [250 |1} [18}[17,15]], applying
model compression techniques [19, 14} 30} 27, 124} [13]], and exploring alternative architectures like
RWKYV and State Space Models (SSMs) [120L 18l 14} [7].

State Space Models (SSMs) have recently garnered attention in computer vision as efficient and
effective alternatives to Vision Transformers (ViTs), demonstrating competitive performance across
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various tasks [16} 29} [12, 23]]. For example, VMamba [16] achievesd 82.6% top-1 accuracy on
ImageNet-1k [2], surpassing Swin Transformer [18] by 1.3% with comparable FLOPs. However,
despite reducing computational complexity, SSMs still fail to fully utilize matrix multiplication units
on GPUs, creating a bottleneck in vision-based SSM models.

To this end, we first analyze the latency break-
down of VMambea [16] and identify the selective
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Figure 1: The GPU kernel time of each operation unexplored.

in a VMamba block. The latency is measured using

feature maps with an input resolution of 224 x 224. In this paper, we propose VMeanba, a novel
We rank the kernels by their latency and highlights —activation compression method designed to op-
the top-5 time-consuming kernels on the bar chart. timize the selective scan operation in VMamba
The selective scan operation is one of the major blocks. The high-level overview of VMeanba

contributors in the VMamba block. is presented in Figure 2] The key idea is to re-
duce the input tensor’s channel dimensions in

the associate scan operation by applying a mean
operation. Through analysis of the weight and activation distributions in the trained VMamba model,
we identified a smooth pattern with small variances that allows for dimensional reduction. Based
on this observation, we developed the VMeanba block to exploit this pattern, resulting in a more
efficient associate scan operation without compromising accuracy. Experimental results demonstrate
that VMeanba achieves up to a 1.12x speedup with less than a 3% accuracy loss. To the best of our
knowledge, this is the first work optimizing of the selective scan operation in VMamba.
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Figure 2: Overview of the VMeanba block. VMeanba reduced the channel dimension of the inputs to
the associated scan operation by applying a transform 7, thereby simplifying the computation. The
proposed VMeanba components are highlighted in red, while the original selective scan components
are shown in blue and green, with the green block indicating the main area of optimization.

2 Methods

2.1 Distribution Analysis of VMamba

We conduct an in-depth investigation into the characteristics of each layer’s output within the Mamba
block of VMamba. The output is denoted as yqyer € RE*P*L where B is the batch size, D is the
inner channel dimension utilized by the scan algorithm within the Mamba block, and L is 4x of the
feature map size H W . Our analysis revealed that for each ¥4y, the distribution of values across the
inner channel dimension is remarkably consistent across different data points, as illustrated in figure
El This observation raised a critical question: Is the full dimensionality D necessary for each y;4yer?
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Figure 3: The figure illustrates the distribution of inner dimension values of ¥4y, across various
data points as a function of sequence length. Notably, the distribution remains remarkably consistent
across different data points for identical [ values, as indicated by the arrows. The distribution for
I =195, shown on the right, provides further evidence of this concentration.

To explore this, we hypothesized a property described by equation (T):

ylayer[:a da :] ~ ylayer[:a d,a :]

vd,d € [1,D],d # d’
Given that the scan algorithm in the Mamba block performs a linear transformation, this unique
property of Yjqayer can be attributed to the inputs A, Bu; and C to the SSM system. Consequently,
we propose that a reduced set of inputs (A, equce, (But)reduce; Creduce). referred to collectively as

Tpasis, can effectively represent the original inputs (A4, Buy, C'). By leveraging these reduced inputs,
we can optimize the computational efficiency of each Mamba block.

ey

2.2 VMeanba

Building on the findings from section[2.1} we indroduce a new model inference efficiency optimization
method called VMeanba, which computes [,;s for each Mamba block using mean operators. We
further design a pipeline to select which layers in the model will undergo this optimization.
VMeanba block. The Ij,s;, is derived by having a transform function 7' that maps the original
inputs (A, Buy, C) to reduced dimension inputs. After processing by the original Mamba block, the
output is recovered using an inverse transform function 7°!. This entire process can be expressed as
equation (2). o

Yiayer = T~ (Mamba(T(A, Bus,C))) )
In this process, 1" is defined as the mean operator applied along the inner channel dimension
axis, and 7! is defined as the broadcast operator. While the mean transform may lead to a loss
of information, it significantly reduces the dimensionality of the inputs from D to 1, with our
experiments demonstrating that model performance is maintained. The computational complexity
analysis is provided in[B]
Layer Selection. We developed a pipeline to replace K Mamba blocks with VMeanba blocks. We
treat the choices of layers as a hyperparameter, determined using the validation set. Specifically, we
calculate the layer impact score Sjqy¢r for each layer, and select the layers with the K smallest scores
to apply the VMeanba optimization. The impact score is defined by equation (3):

Slayer = Acc(Original Model) — Ace(V Meanba on layer) 3)

where Acc represents the model accuracy on the validation set. The algorithm for this process is
detailed in[C]

3 Experiments

We apply the proposed VMeanba method to two different tasks: image classification and semantic
segmentation. The details experiment setup and more experiments are provided in appendix [D}] []



Acc@1 vs K for classification aAcc vs K for segmentation

8254 A A A A < o i .

A 82 A A

A,

>50% blocks applied B
VMeanba

Acc@1l (%)
3
o

aAcc (%)

725 >50% blocks applied
VMeanba

& base A & base
small small
6759 A tiny A A tiny

Figure 4: Accuracy versus K Analysis on classification and segmentation tasks by using VMeanba.
This figure illustrates the trade-off between the value of K and the associated accuracy drop. By
carefully selecting an appropriate K, the model’s accuracy can be largely preserved.

3.1 Results on image classification and semantic segmentation

Accuracy versus K Analysis. We applied the VMeanba method to VMamba backbone models for
both image classification and semantic segmentation tasks, varying the parameter K, as shown in
Figure[d] Our results indicate that the model accuracy remains largely unaffected when an appropriate
K value is chosen. However, there is a trade-off exists: increasing K reduces inference time but leads
to a more pronounced accuracy decline, as indicated by the arrows in the figure. Striking an optimal
balance between accuracy and K is essential. For example, selecting K = 10 for the base model in
image classification and semantic segmentation appears reasonable. In cases where accuracy drop is
deemed unacceptable, one could still opt for a larger K and retrain the model to recover performance.
Since this study focuses on a training-free approach, retraining strategies are left for future work.

3.2 Combined with Other Optimization Techniques

We demonstrated that our VMeanba method can be seam-
lessly integrated with other optimization techniques to en-
hance model efficiency. Specifically, we explored the effective-

ness of combining VMeanba with unstructured pruning on the . 0 83.5%
Linear Layers

Pruning Target K Acc@1

VMamba base model for the image classification task using 8 81.6%
value K = 8. The results are summarized in Table[I] Pruning 0 801%
was applied to weight of linear layer or convolution 2D layer =~ Conv2D Layers g 77' 5 ,%‘j

using the /1 norm, with a consistent pruning ratio of 40%. Our
findings indicate that the VMeanba method is orthogonal to
pruning, as it enhances efficiency while maintaining compa-
rable accuracy, demonstrating that the two techniques can be
combined without interference.

Table 1: Accuracy comparison of
VMeanba with pruning on Linear
and Conv2D layers using the base
backbone.

4 Conclusion

In this work, we introduced VMeanba, a novel, training-free

model compression technique that reduces the inference time of the Mamba block in VMamba by
applying a mean operation to reduce the dimensionality of input channel tensors in the associate
scan operation. Our experimental results demonstrate that VMeanba enhances inference speed and
throughput while maintaining competitive accuracy in VMamba.

This work contributes to the field by introducing a practical method for improving VMamba’s
efficiency and suggests future exploration of the dimensionality of input channel tensors and the kernel
fusion of the discretization and selective scan operations to improve GPU utilization. Additionally,
we envision extending VMeanba to other computer vision tasks to evaluate its broader applicability
and scalability.



A Preliminaries

In this section, we introduce some preliminaries of the State Space Model, SSM [[10]], and two recently
proposed methods using SSM, mainly selective state space model (Mamba)[7]] and VMamba[16]

State Space Model (SSM). The SSM is a mathematical model that represents the evolution of a
system over time. The model is specified as a set of equations that relate the state of the system to the
observations at each time step. The most general form of the SSM is called continuous-time linear
dynamical system, which is defined as equation ().

R (t) = A(t)h(t) + B(t)u(t)
y(t) = C(t)h(t) + D(t)u(t)

h(t) € R™ is the state variable at time step ¢ € R, or usually called hidden variable in recent
machine learning literature, u(¢) € R™ is the input, y(¢) € RP is the output, and A(t) € R™*",
B(t) e R™*™ C(t) € RP*™ D(t) € RP*™ are the system matrices at each time step. Note that in
the following context, we treat u(t) and y(¢) as scalars, i.e., m = p = 1. The above continuous-time
linear dynamical system can lead to a linear time-invariant (LTI) system when the system matrices
A(t), B(t), C(t), D(t) are all time-invariant. This LTI SSM then can be written as equation (3)). It
can be discretized into a discrete-time linear dynamical system, which is defined as equation (6)). One
of the frequent ways for this transformation utilized in the literature related to SSM is zero-order hold
(ZOH) discretization, which is defined as equation . Besides, it can further written as a convolution

“

form (8).
I (t) = Ah(t) + Bu(t) 5)
y(t) = Ch(t) + Du(t)
hy = Ahy_1 + Buy
yr = Chy + Duy ©
) A = exp(AA) o
B = (AA) ' exp(AA - I)AB
K =(CB,CAB,...,CA*B,..) ®

y=xxK
Selective State Space Model (Mamba). Mamba is the discrete-time linear dynamical system with a
timescale parameter A that transforms the continuous variables A, B to discrete variables A, B. In
addition to discretization, Mamba also relax the time-invariant constraint of the system matrices by
introducing selection mechanism, which simply makes several parameters A, B, C' to be time-varying
by functions s of the input u. Specifically defined as equation (9).

sp(u) = Lineary(u)
sc(u) = Lineary (u)

©))

sa(u) = Broadcastp(Lineari(u))
A = 7a(Parameter + sa(u))

The Lineary is a parameterized linear projection to dimension d, and the 7o = softplus. As the
selection mechanism loses the equivalence to convolution form , to avoid the sequential recurrence,
Mamba further incorporates a work-efficient parallel algorithm, associate scan, into its GPU kernel
implementation to facilitate parallel computation of the system.

VMamba The original Mamba block is designed for 1-dimensional input and output, which is
not suitable for computer vision tasks. VMamba proposed a new module called 2D-Selective-Scan
(SS2D) for adapting Mamba to 2D input and output. The SS2D module is composed of three steps:
cross-scan, selective scan (Mamba block), and cross merge. The cross-scan unfold the input feature
map along four directions, forming 4 sets of 1D sequences. Then the selective scan processes each 1D
sequence in parallel. The cross-merge finally merges the 4 sets of 1D sequences back to 2D feature
map. The cross-scan and cross-merge are called Cross Scan Module (CSM) together, and by this way,
the model can have a global receptive field. VMamba further stack multiple SS2D blocks in a layer,
and then stack layers to form the whole model.



B Computation Complexity

Complexity of SSM  The computational complexity of the associated scan operation in Mamba
block, measured in floating-point operations (FLOPs), is derived from processing a sequence of
length L, which requires 2L operations. Furthermore, the input to the scan operation incurs an
additional cost of 3 FLOPs, leading to a total of 3 x 2BLD, where B is the batch size, L is the
sequence length, and D is the inner dimension.

In the context of the SSM system, computations involve multiplications for Bu; and Ch;, which
amount to 2B LD, and additions for Ch; and D, totaling BLD FLOPs. Consequently, the overall
FLOPs for the SSM system is 3BLD. The total FLOPs for the Mamba block, therefore, aggregate to
3x2BLD +3BLD.

Complexity of reduced SSM The reduction in FLOPs can be achieved by employing the Ijs;s,
which consists of 9BLd FLOPs, and additional FLOPs for the reduce operation and broadcast
operation. The total reduction in FLOPs is summarized by the equation (T0):

FLOP, iginal = 3 x 2BLD + 3BLD
FLOP, cquction = IBLA + FLOPreguce_op
+ FLOPyoadcast

(10)

Complexity of VMeanba The mean operator contribute only BL D+ BL FLOPs, and the broadcast
operator is just a memory operation. The reduced FLOPs is then B(10 + D)L FLOPs, comparing to
the original 9B D L FLOPs, we achieve 89% FLOPs reduction (10 << D).

C Algorithm

Algorithm 1 VMeanba Layer Selection Pipeline

Input: Model, Dy, K, CalculateScore
Output: layersToApply

1: Scores <[]

2: for layer in Layers do

3 s < CalculateScore(layer, Model, Dyq1)
4 Scores < Scores + s

5: end for
6
7
8

: Layers < Sort(Siayer)
. layersToApply < Layers[: K|
: return layersToApply

D Experiments Setup

Datasets. The datasets we use for our VMeanba experiments are the ImageNet-1k dataset [2]
for image classification and the ADE20k dataset [28] for semantic segmentation. We only use
the validation set of them for the experiments. The ImageNet-1k dataset contains 50k validation
images from 1k classes, and the ADE20k dataset contains 2k images for validation, with pixel-level
annotations.

Models. We use the VMamba pre-trained backbone models [[16] for both tasks. The backbone
models is first trained on the ImageNet- 1k training dataset. It is then used as the pre-trained backbone
models for downstream task. The segmentation task use the UperNet [26] on top of the VMamba
pre-trained backbone models, and trained on the ADE20k training dataset. The VMamba backbone
models have three different versions: tiny, small, and base. There are two mainly differences between
these versions: the number of layers and the dimension of the L and D in the SS2D block. All of the
backbone models have four layers and the finy version is stack as [2, 2, 8, 2], while the other two
versions are stack as [2, 2, 20, 2]. The dimension of the L and D is different across two tasks, both of



them remain the same inside each layer. However, the dimension of the D grows by a factor of 2, and
the dimension of the L scale down by a factor of 4 along the layers.

Kernel Implementation. The original CUDA kernel for the Mamba block includes both the
discretization and scan operations, dividing the GPU multiprocessor into a 2D grid blocks based on
the batch size and inner dimension. In this configuration, multiple threads within the block handle
the scan operation. However, since the discretization process is not the focus of this study, and the
original approach of dividing the inner dimension across blocks is not compatible with our VMeanba
method, we developed a new CUDA kernel. This new kernel exclusively handles the scan operation,
with the discretization process executed outside the kernel. All experiments conducted in this paper
are based on this optimized kernel. Future work includes integrating the discretization and scan
operations into a single kernel for further optimization.

Additional Information. The evaluation metric for the image classification task is top-1 accuracy,
while for the semantic segmentation task, we utilized all pixel accuracy (aAcc). The batch size for
the image classification task is set to 128, whereas for the semantic segmentation task, it is limited to
1 due to the dynamic input size present in the validation set. All experiments were conducted on a
single NVIDIA RTX A6000 GPU with 48GB of memory. The profiling was performed using NVTX
API, Nvidia Nsight Systems, and Nvidia Nsight Compute tools.

E More Experiment results

Table 2: Speedup analysis of the VMeanba method compared to the original inner dimension size
kernel. All VMeanba times are approximately 0.02 ms.

Backbone Inner dimension ~ Sequence length  Original time (ms) Speedup

384 3136 5.46 273x

. 768 784 2.23 112x
Tiny & Small 1536 196 1.10 55x
3072 49 0.71 36x

512 3136 5.86 293x

Base 1024 784 2.94 147x
2048 196 1.47 74x

4096 49 0.93 47x

Table 3: GPU kernel memory usage with and without the VMeanba method. T indicates that the
original kernel memory usage is too small to be measured.

Inner dimension Sequence length Original memory Optimized memory
R/W (Bytes) R/W (Bytes)
512 3136 3.3G/823.5M 6.4M/1.3M
1024 784 1.6G/411.9M 1.6M / 14.5K
2048 196 822.1M /207.5M 412.4K/5.8K
4096 49 411.1M/ 107.5M 108.5K / 07

Kernel Analysis We analyzed GPU kernel speedup and memory usage when applying VMeanba
across varying scan sequence lengths and inner dimensions, as shown in Tables[2]and 3] Optimized
kernel times, consistently around 0.02 ms, are excluded from Table@ The VMeanba method achieves
up to 293x speedup, particularly for longer scan sequences, aligning with the O(DL) complexity
discussed in[B] Additionally, memory transfer between global and shared memory is significantly
reduced, enabling longer scan sequences and larger batch sizes for improved throughput.



Table 4: Batch inference time comparison for the VMamba models with and without the VMeanba
method on the image classification task.

Backbone K  Accuracy (Acc@1/aAcc) Batch Inference Time (ms) Speedup

0 82.5% 283 Ix
Tiny 2 82.3% 261 1.08x
4 80.7% 252 1.12x
8 72.3% 240 1.18x
0 83.9% 415 Ix
Small 2 83.8% 393 1.06x
4 83.3% 391 1.06x
8 80.1% 383 1.08x
0 83.7% 527 Ix
Base 2 83.7% 519 1.02x
4 83.3% 515 1.02x
8 82.6% 508 1.04x

Batch Inference Time Analysis. We compared batch inference times of VMamba models with and
without the proposed VMeanba method across three backbone models on an image classification task
(Table[). The application of VMeanba reduced inference times, increasingly so as the value of K
increased due to time savings from applying the mean operation to more layers. Notably, the base
model exhibited less speedup compared to the small and tiny models, likely due to its larger inner
dimension size incurring greater time consumption during discretization and the mean operation.
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