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ABSTRACT

Many machine learning techniques incorporate identity-preserving transforma-
tions into their models to generalize their performance to previously unseen data.
These transformations are typically selected from a set of functions that are known
to maintain the identity of an input when applied (e.g., rotation, translation, flip-
ping, and scaling). However, there are many natural variations that cannot be
labeled for supervision or defined through examination of the data. As suggested
by the manifold hypothesis, many of these natural variations live on or near a low-
dimensional, nonlinear manifold. Several techniques represent manifold varia-
tions through a set of learned Lie group operators that define directions of motion
on the manifold. However theses approaches are limited because they require
transformation labels when training their models and they lack a method for de-
termining which regions of the manifold are appropriate for applying each specific
operator. We address these limitations by introducing a learning strategy that does
not require transformation labels and developing a method that learns the local
regions where each operator is likely to be used while preserving the identity of
inputs. Experiments on MNIST and Fashion MNIST highlight our model’s ability
to learn identity-preserving transformations on multi-class datasets. Additionally,
we train on CelebA to showcase our model’s ability to learn semantically mean-
ingful transformations on complex datasets in an unsupervised manner.

1 INTRODUCTION

A goal of many machine learning models is to accurately identify objects as they undergo natu-
ral transformations – a task that humans are adept at. According to the manifold hypothesis, natural
variations in high-dimensional data lie on or near a low-dimensional, nonlinear manifold (Fefferman
et al., 2016). Additionally, the manifolds representing different classes are separated by low density
regions (Rifai et al., 2011a). Natural physical laws govern the possible transformations that objects
can undergo and many of the identity-preserving transformations (e.g., changes in viewpoint, color,
and lighting) are shared among classes of data. Sharing of transformations between classes enables
increased efficiency in defining data variations – a model can represent a limited set of transforma-
tions that can describe a majority of variations in many classes. Several machine learning models
incorporate specific identity-preserving transformations that are shared among a large number of
classes to generalize the performance of their model to unseen data. These include equivariant mod-
els that incorporate transformations like translation and rotation into intermediate network layers
(Cohen & Welling, 2016; Cohen et al., 2018) and data augmentation techniques that apply known
identity-preserving variations to data while training (Cubuk et al., 2019; Ho et al., 2019; Lim et al.,
2019; Sohn et al., 2020; He et al., 2020; Chen et al., 2020). However, many datasets have natu-
ral transformations shared among classes that are not easily prespecified from intuition, making it
critical that we develop a model that can learn both 1) a representation for these transformations
without explicit transformation labels and 2) the context for which locations in the data space each
transformation is likely to be relevant.

Manifold learning strategies estimate the low-dimensional manifold structure of data. A subset
of these techniques learn to transform points on the manifold through nonlinear Lie group opera-
tors (Rao & Ruderman, 1999; Miao & Rao, 2007; Culpepper & Olshausen, 2009; Sohl-Dickstein
et al., 2010; Cohen & Welling, 2014; Hauberg et al., 2016; Connor & Rozell, 2020; Connor et al.,
2021). Lie group operators represent infinitesimal transformations which can be applied to data
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through an exponential mapping to transform points along a manifold, and a manifold can be glob-
ally defined by a set of operators that each move in different directions along it (Hoffman, 1966;
Dodwell, 1983). A Lie group operator model is well-suited for representing natural data variations
because the operators can be learned from the data, applied to data points to transform them beyond
their local neighborhoods, and used to estimate geodesic paths.

While the Lie group operator models have many benefits, previous approaches demonstrate the two
shortcomings noted above. First, to learn Lie group operators that represent a data manifold, pairs
of training points are selected which lie within a neighborhood of one another. The training objec-
tive encourages efficient paths between these nearby points and the choice of training point pairs
influences the types of manifold transformations that are learned. Recent papers incorporating Lie
group operators into machine learning models have either used predefined operators that represent
known transformations groups (e.g., the 3D rotational group SO(3) (Falorsi et al., 2019)), required
transformation labels for selecting point pairs when training (Connor & Rozell, 2020), or randomly
selected pairs of points from the same class (Connor et al., 2021). To learn an effective model with
datasets having no labeled transformation structure, we require a point pair selection strategy that
identifies points that are related through the transformations the model aims to learn. Second, exist-
ing Lie group operator models have lacked a method for determining which regions of the manifold
are appropriate for each operator, meaning that every operator is equally likely to be used at every
point on the manifold. This is a flawed assumption because, while many transformations are shared
between classes, there are also data variations that are unique to specific data classes. Additionally,
in a dataset with several manifolds (each representing a different class), there is a limited extent to
which a transformation can be applied without moving a point onto another manifold.

The main contributions of this paper are the development of methods to address the two critical
shortcomings of Lie group operator-based manifold models noted above. Specifically, motivated
by finding perceptually similar training samples without transformation labels, we first introduce a
point pair selection strategy to learn a manifold representation of natural variations shared across
multiple data classes without requiring transformations labels. Second, we develop a method that
uses a pretrained classifier (measuring identity-preservation of transformed samples) to learn the
local regions where each operator is likely to be used while preserving the identity of transformed
samples. This approach enables us to analyze the local structure of the data manifold in the context
of the learned operators and to describe the invariances of the classifier. We demonstrate the efficacy
of these strategies in the context of the Manifold Autoencoder (MAE) model (Connor & Rozell,
2020) to learn semantically meaningful transformations on MNIST (LeCun et al., 1998), Fashion
MNIST (Xiao et al., 2017), and CelebA (Liu et al., 2015).

2 BACKGROUND

Manifold Learning Manifold learning models estimate the low-dimensional structure of high-
dimensional data by utilizing the property that local neighborhoods on the manifold are approxi-
mately linear. Traditional techniques represent the manifold through a low-dimensional embedding
of the data points (Tenenbaum et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003; Maaten
& Hinton, 2008) or through estimates of linear tangent planes that represent local directions of man-
ifold motion (Dollár et al., 2007; Bengio & Monperrus, 2005; Park et al., 2015). While these tra-
ditional manifold learning approaches are useful for understanding low-dimensional data structure,
in many cases the input data space is an inefficient representation of the data. For example, data in
the pixel space suffers from the curse of dimensionality and cannot be smoothly interpolated while
maintaining identity (Bengio et al., 2005). Many approaches have used neural networks to learn
a low-dimensional latent space in which manifold models can be incorporated. The contractive
autoencoder (CAE) estimates manifold tangents by minimizing the the Jacobian of the encoder net-
work, encouraging invariance of latent vectors to image space perturbations (Rifai et al., 2011c;b;a;
Kumar et al., 2017). Several methods estimate geodesic paths in the latent space of a trained vari-
ational autoencoder (VAE) model (Arvanitidis et al., 2018; Chen et al., 2018; Shao et al., 2018;
Arvanitidis et al., 2019) and use this approach to learn VAEs with priors that are estimated using the
Riemannian metrics computed in the latent space (Arvanitidis et al., 2021; Kalatzis et al., 2020).

Lie Group Operators A Lie group is a group of continuous transformations which also defines a
manifold by representing infinitesimal transformations that can be applied to input data (Hoffman,
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1966; Dodwell, 1983). Several methods incorporate Lie groups into neural networks to represent
data transformations that are identity-preserving within the model (Cohen & Welling, 2014; Cohen
et al., 2018; Cosentino et al., 2021). A prevalent strategy is to learn a dictionary of Lie group
operators that are mapped to a specific group element through the matrix exponential expm(·) (Rao
& Ruderman, 1999; Ham & Lee, 2006; Miao & Rao, 2007; Culpepper & Olshausen, 2009; Sohl-
Dickstein et al., 2010; Cohen & Welling, 2014; Connor & Rozell, 2020; Connor et al., 2021). In
these models, each operator Ψm, called a transport operator, describes a single direction along the
manifold and is parameterized by a single coefficient cm. Given an initial data point z, the transport
operators define a generative model where transformations can be derived from sampling sparse
coefficients cm ∼ Laplace (0, ζ):

ẑ = expm

(
M∑
m=1

Ψmcm

)
z + ε, (1)

where ε ∼ N (0, σ2
ε I).

The manifold autoencoder (MAE) incorporates the transport operator model into the latent space
of an autoencoder to learn a dictionary of operators that represent the global, nonlinear manifold
structure in the latent space (Connor & Rozell, 2020). This model has been shown to effectively learn
reusable operators with transformation supervision, and it will provide the context for demonstrating
the effectiveness of the methods developed in this paper.

Disentanglement One class of methods that also aim to identify factors of variation in data is dis-
entanglement methods which learn features that each vary one independent characteristic of the data
(Higgins et al., 2018). In a supervised learning scenario, there are many disentangling techniques
that separate data style from content by encouraging similarity between the content features in sam-
ples from the same class (Tenenbaum & Freeman, 2000; Reed et al., 2014; Mathieu et al., 2016;
Bouchacourt et al., 2018) or encouraging features to map to known class (Cheung et al., 2015)
or transformation labels (Hinton et al., 2011; Kulkarni et al., 2015; Yang et al., 2015). There are
also techniques that can disentangle latent representations without labels like InfoGAN (Chen et al.,
2016) and β-VAE (Higgins et al., 2017). The goal of our work is distinct from disentanglement
work because, rather than identifying independently varying factors of variation, we aim to learn
non-linear operators that correspond to transformations on the data manifold (which may not vary
independently). Our approach is advantageous because it can faithfully represent longer transfor-
mation paths, learn variations while maintaining image reconstruction, and change the number of
learned variations by increasing or decreasing the number of learned operators.

3 METHODS

The MAE learns a low-dimensional latent representation of the data by defining an encoder function
f : X → Z that maps high-dimensional data points x ∈ RD to low-dimensional latent vectors z ∈
Rd and a decoder function g : Z → X that maps the latent vectors back into the data space (Connor
& Rozell, 2020). Transport operators Ψ are incorporated into the latent space to learn manifold-
based transformations. Before learning the transport operators, the autoencoder is pretrained to
extract a latent representation of the data using the traditional autoencoder reconstruction objective.

After pretraining, the autoencoder weights are fixed and the operators are trained with the following
objective, which encourages the learning of transport operators that generate efficient paths between
the latent vectors z0 and z1 (coinciding with f(x0) and f(x1)) that are nearby on the manifold:

LΨ =
1

2

∥∥∥∥∥z1 − expm

(
M∑
m=1

Ψmcm

)
z0

∥∥∥∥∥
2

2

+
γ

2

∑
m

‖Ψm‖2F + ζ‖c‖1, (2)

where γ, ζ > 0.

Objective (2) is minimized via an alternating minimization scheme. Specifically, at each training
iteration, points pairs x0 and x1 are selected in the input space and encoded into the latent space
z0 and z1. Then, coefficients c are inferred between the encoded latent vectors (by minimizing (2)
with respect to c) to estimate the best path between z0 and z1. After inference, the coefficients are
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fixed and a gradient step is taken to minimize (2) with respect to transport operator weights. Once
learned, these operators represent different types of motion that traverse the manifold and they can
be combined to generate natural paths on the manifold.

After fitting transport operators to the latent space of a fixed autoencoder network, there is a final
fine-tuning training phase that updates the network weights and transport operators simultaneously
using a joint objective that combines the autoencoder reconstruction loss with LΨ. This fine-tuning
step addresses the potential of a mismatch between the data manifold and the learned latent structure
by adapting the latent structure to fit the transport operators learned between the selected training
point pairs. We empirically find that breaking up training into these three phases increases the
stability with which the transport operators can be learned. Given the context of this MAE model,
in the following sections we describe our contributions.

3.1 UNSUPERVISED TRANSFORMATION LEARNING

There are many possible strategies for selecting training point pairs for a Lie group operator model
and the choice of a strategy can dictate the types of learned transformations. Point pairs may be
selected as random samples from the dataset or from within the same class. These points, however,
are likely to be outside of local manifold neighborhoods and may not provide representations of the
natural, perceptually smooth variations. Point pairs can also be selected as nearest neighbors in the
pixel or autoencoder latent space (denoted with h(x) = x and h(x) = f(x) in (3), respectively):

x1 = arg min
x∈D

‖h(x0)− h(x)‖22. (3)

However, semantic transformations of interest may not be exhibited through pixel similarity nor
through unsupervised autoencoder feature similarity. In some applications there is additional infor-
mation that can aid in point pair selection, such as rotation angle, semantic label, or time index in a
temporal sequence. However, for most complex datasets, information about the transformations of
interest is not available. This necessitates a strategy for selecting training point pairs which can be
used to learn natural transformations without requiring additional transformation supervision.

We generalize transport operator training to incorporate an unsupervised learning strategy that can
be applied to a wide array of datasets. In particular, we assume access to a classifier pretrained on
a large-scale dataset (likely taken from a model zoo) with similar statistics as our training dataset of
interest (Nguyen et al., 2020). In this approach, we select point pairs by setting h(x) from (3) equal
to the penultimate layer of the classifier, similar to the previously proposed perceptual loss (Johnson
et al., 2016). It has been shown that high-level features in such classifier networks correspond to
semantic characteristics of the data and finding points nearby in this feature space can result in image
pairs that are perceptually similar without being exactly the same (Johnson et al., 2016; Yosinski
et al., 2015). Incorporating the classifier features as a supervision strategy for point pair selection
enables our model to learn transport operators without requiring transformation labels or class labels.
We show that this metric leads to learned operators that correspond to semantically identifiable
transformations. Discussion of different point pair strategies can be found in Appendix E.

3.2 LEARNING LOCAL TRANSPORT OPERATOR STATISTICS TO ENCOURAGE IDENTITY
PRESERVATION

A trained transport operator model provides a dictionary of operators that can be applied glob-
ally across the entire data space. This model has flexibility to define local manifold characteristics
through the coefficients c which specify the combination of operators to apply to a given point. The
standard prior on the coefficients is a factorial Laplace distribution parameterized by a single scale
parameter ζ, which encourages transformations to be defined by a sparse set of operators:

pζ(c) =

M∏
m=1

1

2ζ
exp

(
−|cm|

ζ

)
. (4)

By setting a fixed prior on coefficients across the entire manifold, there is an implicit assumption
that the manifold structure is the same over the whole dataset and every operator is equally likely
to be applied at every point. However, this is a flawed assumption because not all transformations
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in one class of data are present in all other classes and within classes there may be regions with
different manifold structure. Failing to capture the local statistics of transport operator usage could
result in transformed points that depart from the data manifold and change their identity.

To address this limitation, we introduce a coefficient encoder network which maps latent vectors
to scale parameters that specify the Laplace distribution on the coefficients at those latent points.
The goal of this network is to estimate local coefficient distributions that maximize the identity-
preservation of points (as measured by a pretrained classifier) transformed with operators character-
ized by sampled coefficients as in (1). Given labeled observations (z, y) and a pretrained classifier
on the latent space r(·), we aim to learn a network qφ(c|z) that outputs parameters that can be used
to produce augmented samples ẑ without changing the classifier output r(ẑ) = y.

To maximize the likelihood of augmented input data maintaining the same classifier output, we adapt
the concept of consistency regularization from semi-supervised learning (Bachman et al., 2014; Sohn
et al., 2020). In our context, we have a pretrained classifier and a dictionary of transport operators
and we aim to find a distribution on the coefficients at individual input points that result in consistent
classification outputs when TΨ(c) is applied. The specific objective can be chosen from a variety of
loss functions that encourage similarity in classifier probability outputs. We specifically minimize
the KL-divegence between the classifier output r(z) and the estimated probability of the transformed
output r(ẑ).

Unfortunately, the consistency regularization objective can be trivially minimized by setting c = 0,
resulting in an identity transformation and the same classifier output. Therefore, we want to encour-
age the largest coefficient values possible while maintaining the identity of our initial data point.
This motivates the addition of a KL-divergence regularizer that encourages the distribution qφ(c|z)
to be similar to a specified Laplace prior with a fixed scale ζ like in (4). Our final objective for
training the coefficient encoder network is: (a more detailed derivation can be found in Appendix A)

E = DKL(r(z)‖r(ẑ)) +DKL (qφ(c|z)‖pζ(c)) . (5)

The coefficient encoder introduces a principled way to build identity-preservation directly into our
model and to identify local manifold characteristics throughout the latent space. Additionally, it
can quantify the extent with which operators can be applied in different parts of the latent space
without changing class prediction, indicating transformations to which the classifier is invariant.
Likewise, points or region that have small encoded coefficient scale weights indicate closeness to
class boundaries and can undergo only small transformations without changing identity.

3.3 DECREASING COMPUTATIONAL COMPLEXITY OF COEFFICIENT INFERENCE

To compute the gradient for the matrix exponential during training and inference, previous works
have used a linear approximation (Rao & Ruderman, 1999), learned the operators in a factored form
(Sohl-Dickstein et al., 2010), or used analytic gradients that are not favorable for parallel compu-
tations (Culpepper & Olshausen, 2009; Connor & Rozell, 2020; Connor et al., 2021). The main
computational bottleneck for learning transport operators is the coefficient inference step, where (2)
is minimized with respect to c. The `1 norm term is non-smooth, leading to slower convergence
when using subgradients found via automatic differentiation (Boyd & Vandenberghe, 2004). In this
work we employ a forward-backward splitting scheme (Beck & Teboulle, 2009) that alternates be-
tween automatic differentiation of the matrix exponential term, and proximal gradients for the `1
norm (Parikh & Boyd, 2014). This significantly speeds up the training process and allows for scal-
ing up the learning of transport operators to complex datasets. To the best knowledge of the authors,
this is the first work to demonstrate learning of Lie group operators on datasets as large and complex
as CelebA. Additional details on the inference algorithm are provided in Appendix B.

4 ANALYSIS

For our experiments, we examine the ability of our proposed approaches to enable the MAE model to
learn natural transformations of datasets where the underlying identity-preserving transformations
are not easily identifiable. We also highlight the benefits of incorporating the coefficient encoder
network that captures the transport operator local usage statistics by encoding coefficient scale values
that best maintain the identity of latent vectors.
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We work with three datasets: MNIST (LeCun et al., 1998), Fashion MNIST (Xiao et al., 2017),
and CelebA (Liu et al., 2015). We select MNIST and Fashion MNIST because they contain several
classes that share natural transformations but they do not have transformation labels. We select
CelebA to highlight our ability learn natural transformations in a larger, more complex dataset. As
a classic dataset used in papers that aim to disentangle dataset features (Higgins et al., 2017; Chen
et al., 2016; Hu et al., 2018; Lin et al., 2019), CelebA contains semantically meaningful natural
transformations that may be amenable to qualitative labeling.

In all experiments, we followed the general training procedure put forth previously (Connor &
Rozell, 2020) by separating the network training into three phases: the autoencoder training phase,
the transport operator training phase, and the fine-tuning phase. The fine-tuning phase adapts the au-
toencoder latent space to fit the learned transformations in the event that that pretrained latent space
does not match the desired data manifold. We select training point pairs that are nearest neighbors in
the feature space of the final, pre-logit layer of a ResNet-18 (He et al., 2015) classifier pretrained on
ImageNet (Russakovsky et al., 2015). After completely training the MAE, we fix the autoencoder
network weights and transport operator weights and train the coefficient encoder network with the
objective derived in Section 3.2. Additional details on the datasets, network architectures, and train-
ing procedure are available in the Appendix.

We compare against the contractive autoencoder (CAE) (Rifai et al., 2011c) and β-VAE (Higgins
et al., 2017), two other methods for incorporating data structure into the latent space.. The CAE
represents another technique that learns a manifold representation in a neural network latent space.
In their model, the manifold is represented by estimated tangent planes at latent point locations.
The β-VAE learns to disentangle factors of variation along latent dimensions through an increase in
the weighted penalty on the KL-divergence term in the VAE objective. We choose these methods
because they also learn natural dataset variations in the latent space without transformation labels.

4.1 LEARNING NATURAL DATA VARIATIONS

First, we show how well the perceptual point pair selection strategy described in Section 3.1 enables
the MAE model to learn natural data variations in datasets and we highlight the usefulness of a
nonlinear manifold model for generating latent space paths. Fig. 1 shows the paths generated by
transport operators trained in this model. The image in the middle column in each block of images
is the reconstructed version of the input image x0. The images to the left and right of the middle
show the reconstructed images generated by an individual learned operator applied to the encoded
latent vector z0: zc = expm(Ψmc)z0, c = −Nc, ..., Nc. We see an individual operator generates
a similar transformation across multiple inputs, and in many cases, the transformations induced by
the transport operators are semantically meaningful. We also show that the perceptual point pair
selection strategy is effective over a range of datasets.

While many of the operators can be assigned a semantic label through qualitative visual inspection,
the CelebA dataset has attribute labels for the images which enable a quantitative analysis of the
connection between learned transport operators and dataset attributes. To classify attributes, we
fine-tune a ResNet-18 pretrained on ImageNet with 16 classification heads for attributes including
smile, beard, hair color, and pale skin (Mao et al., 2020). With this classifier, we are able to identify
transport operators that correspond to specific dataset attributes. Fig. 2 shows the classification
outputs of the attribute classifier for example transport operators. Our model learns operators that
vary hair color and skin paleness as well as several others which are shown in the Appendix.

In Fig. 1 we compare transport operator paths to those generated by the CAE and the β-VAE. The
CAE-generated paths are the directions of motion on the tangent planes estimated at individual
points. The β-VAE paths are generated by varying the value of one latent dimension while the others
remain fixed. While our method and the β-VAE learn several qualitatively similar transformations,
our method is capable of doing so without significantly sacrificing reconstruction performance. In
the Appendix, we include examples of the transformations generated by each learned operator.

A primary motivation for learning the data manifold is to generate new views of data that cannot
arise from pre-defined functions. To highlight the ability of our model to generate new views that
preserve identity, we compare both interpolated and extrapolated paths from the MAE to those from
the CAE, β-VAE, and a traditional auto-encoder in Fig. 3. Interpolated paths offer insight in the
smooth variations between two data points, while extrapolated paths show the capacity to generate
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(a)

(b)

(c)
Figure 1: Paths generated by applying a subset of learned transport operators on three datasets. In
each figure, images in the middle column of the image block are the reconstructed inputs and im-
ages to the right and left are images decoded from transformed latent vectors in positive and negative
directions, respectively. (a) Comparing the transformations generated by three learned transport op-
erators to transformations generated by β-VAE and CAE. The transport operators learn semantically
meaningful transformations similar to the disentangled β-VAE representation while maintaining a
higher resolution in image outputs. (b-c) Transport operators learned using the perceptual point pair
selection strategy generate natural transformations on both MNIST and Fashion MNIST.

(a) (b)
Figure 2: Paths generated by the application of two learned transport operators with the associated
attribute classifier probability outputs for the transformed images. Our model learns operators that
correspond to meaningful CelebA dataset attributes like (a) hair color (b) pale skin.

new views of data. For MAE, the paths are estimated by inferring coefficients c∗ between two
latent points z0 and z1 and then generating the path: zt = expm

(∑M
m=1 Ψmc

∗
mt
)

z0. When
the path multiplier t is between 0 and 1 that indicates interpolation and path multipliers beyond
1 indicate extrapolation. For all other methods, Eucilidean distance between features is used for
both interpolation and extrapolation. In these figures, the first block of images corresponds to the
interpolated path with the selected final point x1 surrounded in an orange box. The second block of
images corresponds to the extrapolated paths.

To quantify the identity preservation of each transformation, we input each generated image into a
pretrained classifier and plot the prediction of the correct class. All four methods perform interpola-
tion effectively but our trained model estimates the extrapolated paths more accurately. Fig. 4 shows
how that accuracy varies during extrapolation sequences for 4000 samples. The MAE is better at
generating extrapolated outputs that maintain class identity. The lower classification accuracy in
fashion MNIST is due to both a more challenging dataset and the lower resolution of autoencoder
image outputs when compared to input images.
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(a)

(b)
Figure 3: Identity preservation of transformed paths as quantified by a pretrained classifier output.
In the figures on the top, the first block of images corresponds to the interpolated path with selected
final point x1 surrounded in an orange box. The second block of images corresponds to the extrapo-
lated paths. Below the images are plots of the probability of the class label associated with the inputs
z0 and z1. A path multiplier between 0 and 1 indicates interpolation and path multipliers beyond 1
indicate extrapolation. (a) MNIST (b) Fashion MNIST.

(a) (b)
Figure 4: The average accuracy of the classifier output for images at each point along the interpola-
tion/extrapolation sequence. When the path multiplier is between 0 and 1 that indicates interpolation
and path multipliers beyond 1 indicate extrapolation. (a) MNIST (b) Fashion MNIST.

4.2 LEARNING LOCAL MANIFOLD STRUCTURE

After the MAE is trained, we have a dictionary of transport operators that describe manifold trans-
formations and a network with a latent space that is adapted to the manifold. We then train the
coefficient encoder network to estimate the coefficient scale weights as a function of points in the
latent space. To visualize how the use of the transport operators varies over the latent space, we
generate an Isomap embedding (Tenenbaum et al., 2000) of latent vectors and color each point by
the encoded scale parameter for coefficients associated with each of the transport operators. Fig. 5a
shows these embeddings for MNIST data. Each operator has regions of the latent space where their
use is concentrated.

By training the coefficient encoder to maximize the similarity between the classification outputs for
an input sample and for a transformed version of that sample, the network aids in identifying which
transport operators can be applied to inputs in regions of the data space without changing the iden-
tity of the input. This helps significantly with data augmentation where the goal is to create new
samples with in-class variations. To highlight this benefit, in Fig. 6 we show samples augmented by
applying transport operators with randomly sampled coefficients to an input latent vector. In each
block of images, the leftmost image (in a green box) is the input image and the images to the right
are decoded augmentations. The top row shows samples augmented with transport operators con-
trolled by coefficients sampled from Laplace distributions with encoded coefficient scale weights.
The bottom row shows samples augmented with transport operators controlled by coefficients sam-
pled from Laplace distributions with a fixed scale parameter. While both strategies generate some
realistic variations of the data, using the encoded scale weights improves identity-preservation of
the transformed output. The augmentations with the encoded scale weights are better at maintaining
the identity of the sampled points.
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(a) (b)
Figure 5: (a) Visualizations of the encoded coefficient scale weights. The leftmost image shows
an Isomap embedding of the latent vectors with input images overlaid. The scatter plots on the
right show the same Isomap embedding colored by the encoded coefficient scale weights for several
operators (yellow indicates large scale weights and blue small scale weights). We see operators
whose use is localized in regions of the manifold space. (b) The average coefficient scale weights for
each class on each transport operator for MNIST. High scale weights for a given operator (yellow)
indicate it can be applied to a given class without easily changing identity. The images on the right
show examples of the operators applied to classes with high encoded scale weights (in the top yellow
boxes) and classes with low encoded scale weights (in bottom blue boxes). The examples with low
coefficient scale weights change classes more easily than other examples.

Figure 6: Examples of samples generated by transport operators using coefficients sampled with
encoded scale weights (top row) and with a fixed scale weight (bottom row). Images in the green
box are the input images and the remaining images in each row are transformed outputs.

Because the coefficient encoder uses a pretrained classifier to determine the coefficient distributions
in the latent space, the resulting encoded scale weights can inform about the types of manifold
transformations the classifier is invariant to. Fig. 5b shows the average coefficient scale weights
for each class (rows) and each transport operator (columns) for MNIST. From this we can identify
classes for which the classifier is both sensitive and robust to transformations, represented by small
and large scale weights respectively. We can also examine which classes share the use of the same
transformations. The images to the right in Fig. 5b show transport operators being applied to samples
with high encoded scale weights (in a yellow box) and samples with low encoded scale weights (in
a blue box). We can examine the characteristics of transformations that are better suited to some
classes than others. For instance, operator 3 in Fig. 5b increases the curve at the bottom of digits.
This is a natural transformation for classes 3, 5, and 6 which all have higher coefficient scale weights
for this operator, but when this is applied to a 1, that makes it look like an 8.

5 CONCLUSION

In this work we develop methods to improve the effectiveness and utility of Lie group operator
models for learning manifold representations of datasets with complex transformations that cannot
be labeled. We do this by introducing a perceptual point pair selection strategy for training operators
and by developing a method that uses a pretrained classifier to learn local regions where opera-
tors are likely to be used while preserving the identity of transformed samples. We demonstrate
the efficacy of our approach in learning natural dataset variations with the MAE. While this is a
powerful model, users should be mindful of the biases that are introduced through training with spe-
cific supervision methods when drawing conclusions about learned data transformations. This work
presents a promising technique for learning representations of natural data variations that can im-
prove model robustness. In future work we can address some limitations by expanding this work to
consider methods for localizing manifold structure with limited or no class labels and improving the
reconstruction fidelity by applying the model within more complex generative model embeddings.
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SUPPLEMENTARY MATERIAL

A COEFFICIENT ENCODER DETAILS

Figure 7: System diagram for learning local coefficient statistics.

Our motivation in training an encoder to learn the coefficient statistics is to understand the regions
of the manifold in which specific transport operators are applicable and the invariances of a pre-
trained classifier to the learned transport operator-induced transformations. In this section, we will
outline a derivation of our coefficient encoder training objective from a variational inference per-
spective by learning a variational posterior for the coefficients using a deep neural network (Kingma
& Welling, 2013; Rezende et al., 2014). Given observations (zi, yi) for i = 1, . . . , N , and a pre-
trained classifier r(·), we aim to learn a distribution qφ(c|z) from which we can sample to define the
transformation TΨ(c) that can be applied to z while maintaining class identity. In other words, we
want the augmented ẑ = TΨ(c)z + ε to result in r(ẑ) = y.

To encourage identity-preservation of vectors transformed with transport operators that are con-
trolled by sampled coefficients, we maximize the likelihood of a class output for an observation
under the system model diagrammed in Figure 7. This system connects the observed latent vector z
to an output y through a transformation defined by c. We follow the derivation used in Rezende &
Mohamed (Rezende & Mohamed, 2016) which introduces the variational posterior to estimate the
log likelihood of the data.

Consider a parameterized distribution for the conditional likelihood of our observations:

log pθ(y|z) = logEpζ(c) [pθ(y|c, z)] (6)

= log

∫
c

pζ(c)pθ(y|c, z)dc (7)

= log

∫
c

qφ(c|z)
pζ(c)

qφ(c|z)
pθ(y|c, z)dc (8)

≥
∫
c

qφ(c|z) log

[
pζ(c)

qφ(c|z)
pθ(y|c, z)

]
dc (9)

= Eqφ [log pθ(y|c, z)]−DKL (qφ(c|z)|pζ(c)) (10)

= Eqφ [logEεpθ(y|c, z, ε, ẑ)]−DKL (qφ(c|z)|pζ(c)) . (11)

In equation 6 and equation 7, we marginalize over the coefficients c as required under our system
model in Figure 7. In equation 9, we lower bound the conditional likelihood with a variational lower
bound derived from Jensen’s inequality. Finally, we use the reparameterization trick to define ẑ as a
deterministic function of c, z, and the parameter-free random variable ε in equation 11.

To sample from qφ(c | z) when computing the expectations, we first use the reparameterization
trick (Connor et al., 2021; Kingma & Welling, 2013; Rezende et al., 2014) to define the sampled
coefficients ĉ as a function of a uniform random variable u ∼ Unif

(
− 1

2 ,
1
2

)M
:

ĉ = lφ(u, z) = −hφ(z) sgn(u) log(1− 2 |u|), (12)

where lφ is a defined mapping from a uniform distribution to a Laplace distribution and the Laplace
scale parameters are defined by the output of the coefficient encoder hφ that we aim to learn.

Using the reparameterization of ĉ and ẑ, we can define the expectation:
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Eqφ [logEεpθ(y|c, z, ε, ẑ)] = Eu [logEεpθ(y|ĉ = lφ(u, z), ε, ẑ)] (13)

≈ 1

JK

J∑
j=1

log

K∑
k=1

pθ

(
y|ĉ(j) = lφ(u(j), z), ε(k), ẑ

)
. (14)

Our pre-trained classifier defines pθ which allows us to specify final objective using of r(·). Using a
KL-divergence as the likelihood function between the ground truth labels yi and the classifier output
for the augmented inputs r(ẑ(j)

i ) and simplifying the model by setting ε to 0, we get:

log pθ(y|z) ≥ − 1

J

J∑
j=1

DKL

(
yi|r(ẑ(j)

i )
)
−DKL (qφ(c|z)|pζ(c)) , (15)

where in practice we use a single sample J = 1 and we estimate DKL

(
yi|r(ẑ(j)

i )
)
≈

DKL

(
r(z

(j)
i )|r(ẑ(j)

i )
)

for test samples for which we may not have class labels. These practical
simplifications result in the objective in 5 which we want to minimize. The KL divergence between
the qφ(c|z) and pζ(c) has a closed form expression (Gil, 2011):

DKL (qφ(c | z)‖pζ(c)) = log(hφ(z))− log(ζ) +
ζ

hφ(z)
− 1 (16)

B COEFFICIENT INFERENCE DETAILS

Figure 8: Comparison in time taken for various coefficient inference algorithms on fully trained
transport operators. Each inference trial is performed over random batches of 100 point pairs drawn
from the CelebA dataset (with a latent dimension of 32). 30 trials are run with the same c0 and
tolerance. We used the proximal gradient (GPU) method.

To perform coefficient inference, previous Lie group operator methods (Connor & Rozell, 2020;
Connor et al., 2021) use the analytic gradient proposed in (Culpepper & Olshausen, 2009) with a
conjugate gradient descent solver. This method requires an eigenvalue decomposition for computing
the gradient which is not favorable for parallel computations. Alternatively, we use the PyTorch
implementation of the matrix exponential that allows for automatic differentiation. Furthermore, to
handle the non-smooth `1 norm in objective (2), we apply a proximal gradient step in a forward-
backward splitting scheme (Beck & Teboulle, 2009). For the `1 norm, the proximal gradient has a
known, closed-form solution in the soft-thresholding function (Parikh & Boyd, 2014):

Tλ(c) = sign(c) ∗max
(
|c| − λ, 0

)
(17)

15



Under review as a conference paper at ICLR 2022

Let ∇c
1
2

∥∥∥z1 − expm
(∑M

m=1 Ψmcm

)
z0

∥∥∥2

2
≈ ∇f̃(c) be a numerical approximation to the gradi-

ent of the `2 term, found through automatic differentiation. Given initial coefficient values c0 drawn
from an isotropic Gaussian with variance 4× 10−4, our gradient descent step is:

ck+1 = Tζαk
(
ck − αk∇f̃(ck)

)
(18)

These steps are iterated upon until either a max iteration count is reached, or the change in coeffi-
cients, ‖ck+1−ck‖2, falls below some threshold. For all experiments we use a max iteration count of
800 and a tolerance of 1×10−5. For our step-size, we use αk = (0.985)kα0 with α0 = 1×10−2. We
experimented with different acceleration methods (Kingma & Ba, 2015; Beck & Teboulle, 2009),
and found that in many cases they resulted in worse performance.

The main parameter to select for inference is the sparsity-inducing parameter on the coefficient prior,
ζ. This value is sensitive to the dataset, latent dimension, and γ hyper-parameter value. In practice,
we fix a γ value and pick ζ to be as high as possible, inducing sparsity in the inferred coefficients,
while maintaining good reconstruction performance of ẑ1. If ζ is too large, that will result in all
coefficients going to zero, preventing proper reconstructive performance. On the other hand, setting
ζ to be too small will result in all operators being used to represent the transformation between each
point pair, preventing any meaningful structure from being learned during training. Parameters used
in specific training runs are included in their respective Appendix sections.

When compared against the coefficient inference implementation from (Connor & Rozell, 2020), we
perform inference for a batch of 100 samples in an average of 1.67 seconds over 100 trials whereas
the inference from (Connor & Rozell, 2020) took an average of 101.01 seconds. We also compare
the speed-up over a baseline that strictly uses automatic differentiation (subgradients) and compare
the benefits from moving to GPU hardware in Figure 8. We use the proximal gradient (GPU) method
from this figure. Experiments were run on a machine with an Intel i7-6700 CPU with 4.00 GHz and
a Nvidia TITAN RTX.

C TRAINING STRATEGY

In all experiments, we follow the general training procedure put forth previously (Connor & Rozell,
2020). We train the MAE with three training phases: the autoencoder training phase, the trans-
port operator training phase, and the fine-tuning phase. During the autoencoder training phase, the
network weights are updated using a reconstruction loss objective: EAE = ‖x− x̂‖22.

During the transport operator training phase, the network weights are fixed and the transport oper-
ators are trained between pairs of points using the objective (2). Pairs of images x0, x1 are chosen
using the perceptual point pair selection strategy described in Section 3.1. The images are then en-
coded into the latent space z0, z1. For each batch, the first step is to infer the coefficients between all
pairs of latent vectors. Coefficient inference is best performed when the entries of the latent vectors
are close to the range [−1, 1]. Because of this, we define a scale factor that can be applied to encoded
latent vectors to reduce the magnitude of their entries prior to performing coefficient inference. In
practice, we inspect the latent vector magnitudes after the autoencoder training phase and choose a
scale that will adjust the magnitudes of the latent vector entries to be in the range [−1, 1]. This does
not have to be a precise range for the latent vector magnitudes but instead is a practical guideline.
Coefficient inference is performed on the scaled latent vectors as described in Sections 3.3 and Ap-
pendix B. After the coefficients are inferred for a batch, the weights on the dictionary elements are
updated. This phase of training is performed until the loss values reach a plateau and the dictionary
magnitudes plateau.

The fine-tuning training phase begins after the transport operator training phase is complete. In
this phase, both the network weights and the transport operator weights are updated using the joint
objective:

E = λ
(
‖x0 − x̂0‖22 + ‖x1 − x̂1‖22

)
+ (1− λ)EΨ, (19)

where EΨ is defined in (2). Using this objective, we alternate between taking steps on the transport
operator weights while the network weights are fixed and taking steps on the network weights while
the transport operator weights are fixed. Additionally, during the fine-tuning phase we incorporate
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occasional steps in which we update the network weights using only the reconstruction loss to ensure
effective image reconstruction.

In most cases, it is necessary to reduce the γ parameter in front of the Frobenius norm dictionary
regularizer prior to fine-tuning or the dictionary magnitudes will reduce to zero. We report the γ we
use for transport operator training and fine-tuning in the experimental details sections below. It may
also be necessary to decrease the network learning rate during fine-tuning.

The coefficient encoder training requires a network that is trained to classify data from our selected
dataset. We train this classifier using training data from a given dataset. For datasets with worse
autoencoder reconstruction quality, we train the classifier in the latent space. Otherwise we train the
classifier on images in the data space. With the MAE and classifier trained, we train the coefficient
encoder network following the strategy described in Section 3.2 and Appendix A.

To train the CAE, we use the same autoencoder architecture used with the MAE with the addition
of a Frobenius norm regularizer on the encoder Jacobian, weighted by a selected λ value (different
from the λ in equation 19). The Jacobian is computed using PyTorch automatic differentiation. We
find the Jacobian norm decreases to the same value irrespective of our choice of λ, leading us to
choose λ = 1. For the β-VAE we use the same architectures outlined in (Higgins et al., 2017) with
β = 10 for CelebA and β = 5 for MNIST and FMNIST. We find that setting β any higher results in
poor reconstructive performance. Scripts for training both comparison methods are included in the
code repository.

Hyper-parameter tuning for all experiments was performed on the Georgia Tech Partnership for
Advanced Computing Environment (PACE) clusters (PACE, 2017). Experiments were performed
using a Nvidia Quadro RTX 6000. Runs training the CAE, and β-VAE on CelebA were all run on a
separate machine with a Nvidia TITAN RTX.

D PARAMETER SELECTION

The MAE model has several hyperparameters that must be tuned and we will provide guidance
to determining ideal parameter values for our experiments and future experiments. First we will
describe some signs to look out for to identify if a run is succeeding or failing. One indicator that
we compute is the transport operator difference which is:

EΨdiff =
1

2

∥∥∥∥∥z1 − expm

(
M∑
m=1

Ψmcm

)
z0

∥∥∥∥∥
2

2

− 1

2

∥∥∥∥∥z1 − expm

(
M∑
m=1

Ψ̂mcm

)
z0

∥∥∥∥∥
2

2

, (20)

where Ψ̂m is the dictionary after the gradient step is taken. A gradient step should decrease the
transport operator objective meaning the EΨdiff value should be positive for an effective step. If
there are many gradient steps that result in negative EΨdiff values, that indicates that the parameters
are not optimal or that the learning rate is too large. This is an important metric to observe during
fine-tuning to determine whether to select a smaller γ or smaller network learning rate.

Signs of failure of a training run with selected training parameters:

• All operator magnitudes reduce towards zero.

• All inferred coefficients between point pairs are zero.

• Most of the operators generate transformation paths with latent values that increase quickly
to infinity.

• Many steps have negative values for EΨdiff.

• The operator magnitudes increase which results in unstable training steps with NaN values
in the computed objective.

Dictionary regularizer parameter The dictionary regularizer parameter γ is the weight on the
Frobenius norm term in equation 2. This objective term serves two purposes. First, it balances the
effect of the coefficient sparsity regularizer with the parameter ζ. If ζ is large, the sparsity regularizer
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encourages small coefficient magnitudes and one way to achieve that while still effectively inferring
paths is to increase the magnitude of the operators. The Frobenius norm term must have a large
enough influence to counterbalance this force or the operators will increase in magnitude to the
point of being unstable. If a run is becoming unstable, we recommend decreasing ζ or increasing γ.

The second purpose of the dictionary regularizer term is to identify which operators are necessary
to represent the transformations on the data manifold. If an operator is not being used to represent
a transformation between z0 and z1 then the dictionary regularizer reduces its magnitude to zero.
Therefore, during training we are able to estimate the model order based on how many dictionary
elements remain non-zero. In our tests we vary γ between 2× 10−8 and 2× 10−4. If γ is too small,
it will not counterbalance the coefficient sparsity term and the dictionaries will grow to unstable
magnitudes. If γ is too large it will reduce the magnitude of all operators to zero. During the fine-
tuning steps, we have often found it necessary to reduce the γ because, with a larger γ, both the
operator magnitudes and the latent vector magnitudes can decrease substantially which leads to an
ineffective manifold model.

Coefficient sparsity parameter The coefficient sparsity parameter ζ in equation 2 controls the
sparsity of the coefficients that are used to estimate paths between z0 and z1. We run tests with
values of ζ between 0.005 and 2. From dataset to dataset the ideal value varies. If ζ values are too
small then all of the operators are used to represent all of the paths between point pairs. The ζ should
be increased so fewer than M coefficients are used for each inferred path. When ζ is too large, all
the coefficients go to zero during inference. This means there is no path inferred between z0 and z1

because of overweighting the sparsity constraint.

Number of dictionary elements As mentioned above, the dictionary regularizer acts as a model
order selection tool so our strategy for selecting number of dictionary elements M is to increase the
number of dictionary elements until some of their magnitudes begin reducing to zero during training.
This indicates that some of the operators are not necessary for representing transformations.

Latent dimension The latent dimension of the autoencoder is selected to ensure quality recon-
structed image outputs.

Relative weight of reconstruction and transport operator objectives The parameter λ deter-
mines the weight of the reconstruction term relative to the transport operator term. We observe good
performance of the model for λ between 0.5 and 0.75.

E COMPARING POINT PAIR SELECTION STRATEGIES

In the past, transport operators have been trained using point pairs that were selected randomly from
the same class (Connor et al., 2021) or with some knowledge of transformation labels (Connor &
Rozell, 2020). In this work, we establish a method that learns natural transformations without re-
quiring transformation labels using a perceptual point pair selection strategy. The perceptual loss
metric (which compares the the features values from the penultimate layer of a pretrained classi-
fier model) enables us to select point pairs that may share semantically meaningful transformations
without being exactly the same. Fig. 9 shows examples of nearest neighbors selected using pixel
similarity, similarity in the autoencoder latent space, and the perceptual loss metric. This highlights
how the perceptual loss metric can be useful for identifying inputs with similar qualitative charac-
teristics. For instance, in the set of images on the left, the perceptual loss metric identifies another
bald man as a nearest neighbor which has similar characteristics of the initial image even though the
exact image looks quite different.

When examining the success of learned operators, one characteristic we care about is how well
the operators maintain the stability of generated paths. We consider generated paths stable if the
latent vectors do not expand quickly to infinity. We have defined this as a useful characteristic for
identity-preservation of applied operators – if operators expand latent vectors to infinity, that will
very likely lead to a change in identity. Each of the operators can be viewed as the dynamics matrix
of a continuous time linear dynamical systems model and we can analyze their stability as dynamical
systems by observing their eigenvalues (Strogatz, 2000).
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Figure 9: Examples of nearest neighbors identified through pixel similarity, latent similarity, and
the perceptual loss metric. In each set of 12 images, the images in the first column (contained in
green boxes) are the initial reference images and the images to the right of those show three selected
nearest neighbors. The perceptual loss metric identifies neighbors that share similar characteristics,
like hair style, without being exactly the same.

In continuous time linear dynamical systems, there are three classifications of system stability. If a
system is stable, the real parts of all eigenvalues are below zero. In a stable system, the magnitude
of an input shrinks as time progresses forward. If a system is unstable, the real part of at least one
eigenvalue is above zero. In unstable systems, the magnitude of an input expands to infinity as
time progresses forward. Finally, if a system is marginally stable, then the magnitude of an input
remains constant and the real parts of all of its eigenvalues are zero1 (Strogatz, 2000). The transport
operator model is unique because operators can represent dynamics matrices that define the natural
data variations which do not have the same directionality as temporal systems (where time moves
forward). Therefore transport operators can be applied with positive or negative coefficients and the
traditional view of stability of temporal systems no longer applies.

To maintain the stability of generated paths, the operators need to generate cyclic transformation
paths that neither increase nor decrease the latent vector magnitudes. This corresponds to marginal
stability in linear dynamical systems. A marginally stable system has only imaginary eigenval-
ues with no real parts (Strogatz, 2000). Therefore, we can identify transport operators approach-
ing marginal stability by investigating the magnitudes of the real parts of their eigenvalues. The
maximum real magnitude of an eigenvalue of a dynamics matrix drives the speed with which the
generated paths expand to infinity. Therefore this maximum real magnitude is the focus of our inves-
tigation into the stability of paths generated by learned operators. When the maximum magnitude
of the real part for all eigenvectors associated with an operator is close to zero, that indicates that
the operator is closer to marginal stability. Therefore, we quantify the stability of transport operator
generated paths by looking at the maximum magnitude of real parts of eigenvalues associated with
each transport operator. Fig. 10a shows the sorted maximum magnitude of the real parts of eigenval-
ues in each of the 16 operators learned in the experiment in Section 4.1 which learns natural MNIST
variations. The blue x’s are associated with the operators trained using the perceptual point pair
selection strategy and the red dots are associated with the operators trained using a simple strategy
of selecting point pairs as nearest neighbors in the latent space. With the exception of one operator,
all the operators trained using latent space similarity for supervision have larger maximum magni-
tudes of real eigenvalue components than the operators trained using the perceptual loss metric. This
indicates that the operators trained using the latent space similarity to select training point pairs are
farther from marginal stability and can be seen as less stable by our definition of transport operator
stability.

To view the effect of these learned operators more intuitively, we plot the values of the latent di-
mensions as individual operators are applied in Fig. 11. Each line in these plots shows the influence
of the operators on a single latent dimension (Note that this experiment utilizes a latent dimension
of 10). Fig. 11a shows the paths generated by transport operators trained with the perceptual point
pair selection strategy . The plots with straight lines (i.e., operators 3, 4, 7, 12, 14, and 16) indicate
that those operators had their magnitudes reduced to zero during training and therefore they have no
impact on the latent vectors when applied. Most of the operators learned using the perceptual point
pair selection strategy are close to cyclic except for operator 2 (the operator with the large real com-
ponent magnitude in Fig. 10a). By contrast, several of the operators trained with point pairs selected

1Note that a system can also be marginally stable with at least one pair of eigenvalues with a zero real part
and non-zero imaginary parts and the rest of the eigenvalues with non-positive real parts. For simplification of
this analysis, we will focus on striving for systems which have eigenvalues with all real parts equal to 0.
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(a) (b)
Figure 10: Analysis of eigenvalues of operators learned in the MNIST experiment. (a) The maxi-
mum absolute value of the real parts of eigenvalues computed from each learned operator. (b) Plot
of the real and imaginary parts of the eigenvalues for each operator.

as nearest neighbors in the latent space extend to infinity (Fig. 11b). This can explain the larger
maximum real value magnitudes in Fig. 10a. This analysis leads us to conclude that the perceptual
point pair selection strategy has a greater potential to yield identity-preserving transport operators.

(a)

(b)
Figure 11: Visualizations of the effect of each learned transport operator on each dimension of an
encoded latent vector. In each plot, each line represents a single latent dimension and the coefficient
magnitude of the transformation varies on the x-axis. (a) Paths from operators learned with per-
ceptual point pair supervision. (b) Paths from operators learned with point pairs selected as nearest
neighbors in the latent space.

F MNIST EXPERIMENT DETAILS

The MNIST dataset is made available under the terms of the Creative Commons Attribution-Share
Alike 3.0 license. We split the MNIST dataset into training, validation, and testing sets. The training
set contains 50,000 images from the traditional MNIST training set. The validation set is made up
of the remaining 10,000 images. The traditional MNIST testing set is used for our testing set. The
input images are normalized so their pixel values are between 0 and 1. The network architecture
used for the autoencoder is shown in Table 1. The training parameters for the transport operator
training phase and the fine-tuning phase are shown in Tables 2 and 3.
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Prior to training the coefficient encoder for the MNIST dataset, we train a classifier on the labeled
MNIST image data which we use to encourage identity-preservation during coefficient encoder
training. The training parameters for the coefficient encoder are shown in Table 4. The image
classifier we use is based on the simple LeNet architecture with two convolutional layers and three
fully connected layers (LeCun et al., 1998).

Table 1: Network Architecture for MNIST and Fashion MNIST Experiments
Encoder Network Decoder Network
Input ∈ R28×28 Input ∈ R2

conv: chan: 64 , kern: 4, stride: 2, pad: 1 Linear: 3136 Units
BatchNorm: feat: 64 ReLU
ReLU convTranpose: chan: 64, kern: 4, stride: 1, pad: 1
conv: chan: 64, kern: 4, stride: 2, pad: 1 BatchNorm: feat: 64
BatchNorm: feat: 64 ReLU
ReLU convTranpose: chann: 64, kern: 4, stride: 2, pad: 2
conv: chan: 64, kern: 4, stride: 1, pad: 0 BatchNorm: feat: 64
BatchNorm: feat: 64 ReLU
ReLU convTranpose: chan: 1, kernel: 4, stride: 2, pad: 1
Linear: 2 Units Sigmoid

Table 2: Training parameters for the transport operator training phase of the MNIST experiment
MNIST Transport Operator Training Parameters
batch size: 250
autoencoder training epochs: 300
transport operator training epochs: 50
latent space dimension (zdim): 10
M : 16
lrnet : 10−4

lrΨ : 10−3

ζ : 0.1
γ : 2× 10−6

initialization variance for Ψ: 0.05
number of restarts for coefficient inference: 1
nearest neighbor count: 5
latent scale: 30

Table 3: Training parameters for the fine-tuning
phase of the MNIST experiment

MNIST Fine-tuning Parameters
batch size: 250
transport operator training epochs: 100
lrnet : 10−4

lrΨ : 10−3

ζ : 0.1
γ : 2× 10−6

λ: 0.75
number of network update steps: 50
number of Ψ update steps: 50

Table 4: Training parameters for the
MNIST Coefficient Encoder

MNIST Coefficient Encoder Parameters
batch size: 250
training epochs: 300
lr: 10−3

ζprior : 0.1
λkl: 0.5
coefficient spread scale: 0.1
classifier domain: image

G MNIST EXPERIMENT ADDITIONAL RESULTS

Here we show additional experimental details and results for the MNIST experiment. Fig. 12 shows
the magnitude of all 16 operators after the fine-tuning phase. Six of the operators have their magni-
tudes reduced to zero. Fig. 13 shows the paths generated by transport operators trained on MNIST
data.
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Figure 12: The magnitudes of the learned operators after fine-tuning.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)
Figure 13: Paths generated by all non-zero transport operators trained on the MNIST dataset. Im-
ages in the middle column of the image block are the reconstructed inputs and images to the right
and left are images decoded from transformed latent vectors in positive and negative directions,
respectively
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H FASHION-MNIST EXPERIMENT DETAILS

The Fashion-MNIST dataset is made available under the terms of the MIT license. We split the
Fashion MNIST dataset into training, validation, and testing sets. The training set contains 50,000
images from the Fashion-MNIST training set. The validation set is made up of the remaining 10,000
images. The traditional Fashion-MNIST testing set is used for our testing set. The input images
are normalized so their pixel values are between 0 and 1. The network architecture used for the
autoencoder is the same as in the MNIST experiment and it is shown in Table 1. The training
parameters for the transport operator training phase and the fine-tuning phase are shown in Tables 5
and 6.

Prior to training the coefficient encoder for the Fashion-MNIST dataset, we train a classifier the
latent vectors associated with labeled Fashion-MNIST data which we use to encourage identity-
preservation during coefficient encoder training. The training parameters for the coefficient encoder
are shown in Table 7. The latent vector classifier has a simple architecture of Linear(512), ReLU,
Linear(10), Softmax.

Table 5: Training parameters for the transport operator training phase of the Fashion-MNIST exper-
iment

Fashion-MNIST Transport Operator Training Parameters
batch size: 200
autoencoder training epochs: 300
transport operator training epochs: 50
latent space dimension (zdim): 10
M : 16
lrnet : 10−4

lrΨ : 10−3

ζ : 0.5
γ : 2× 10−5

initialization variance for Ψ: 0.05
number of restarts for coefficient inference: 1
nearest neighbor count: 5
latent scale: 30

Table 6: Training parameters for the fine-tuning
phase of the Fashion-MNIST experiment

Fashion-MNIST Fine-tuning Parameters
batch size: 200
transport operator training epochs: 150
lrnet : 10−4

lrΨ : 10−3

ζ : 0.5
γ : 2× 10−6

λ: 0.75
number of network update steps: 50
number of Ψ update steps: 50

Table 7: Training parameters for the Fashion-
MNIST Coefficient Encoder

Fashion-MNIST Coefficient Encoder Parameters
batch size: 200
training epochs: 300
lr: 10−3

ζprior : 0.5
λkl: 0.5
coefficient spread scale: 0.1
classifier domain: latent

I FASHION MNIST EXPERIMENT ADDITIONAL RESULTS

Here we show additional experimental details and results for the Fashion-MNIST experiment.
Fig. 14 shows the magnitude of all 16 operators after the fine-tuning phase. Six of the operators
had their magnitudes reduced to zero.

To visualize how the use of the transport operators varies over the latent space, we generate an
Isomap embedding (Tenenbaum et al., 2000) of latent vectors and color each point by the encoded
scale parameter for coefficients associated with each of the transport operators. Fig. 15a shows
these embeddings for Fashion-MNIST data. Each operator has regions of the latent space where
their use is concentrated. Fig. 15b shows the average coefficient scale weights for each class (rows)
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Figure 14: The resulting magnitude of the learned operators after fine-tuning the MAE.

and each transport operator (columns) for Fashion-MNIST. There are some classes like trouser and
sandal (classes 1 and 5) which have large encoded coefficient scale weights for most of the transport
operators. This means they are robust to many natural transformations. Other classes like coat and
shirt (classes 4 and 6) have smaller encoded coefficient scale weights which means they are sensitive
to many transformations. The images to the right in Fig. 15b show transport operators being applied
to samples with high encoded scale weights (in a yellow box) and samples with low encoded scale
weights (in a blue box). Fig. 16 shows the paths generated by non-zero transport operators trained
on Fashion-MNIST data.

(a)

(b)
Figure 15: (a) Visualizations of the encoded coefficient scale weights. The leftmost image shows
an Isomap embedding of the latent vectors with input images overlaid. The scatter plots on the
right show the same Isomap embedding colored by the encoded coefficient scale weights for several
operators (yellow indicates large scale weights and blue small scale weights). We see operators
whose use is localized in regions of the manifold space. (b) The average coefficient scale weights
for each class on each transport operator for Fashion-MNIST. High scale weights for a given operator
(yellow) indicate it can be applied to a given class without easily changing identity. The images on
the right show examples of the operators applied to classes with high encoded scale weights (in the
top yellow boxes) and classes with low encoded scale weights (in bottom blue boxes). The examples
with low coefficient scale weights change classes more easily than other examples.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)
Figure 16: Paths generated by all non-zero transport operators trained on the Fashion-MNIST
dataset. Images in the middle column of the image block are the reconstructed inputs and images
to the right and left are images decoded from transformed latent vectors in positive and negative
directions, respectively

J CELEBA EXPERIMENT DETAILS

The CelebA dataset is publicly available for non-commercial research purposes. We split the CelebA
dataset into training and testing sets. The training set contains the first 150,000 images accompanied
with the entire test set. The input images are normalized so their pixel values are between 0 and 1.
The network architecture used for the autoencoder is shown in Table 8. The training parameters for
the transport operator training phase and the fine-tuning phase are shown in Table 9.
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The attribute classifier is a ResNet-18 model adapted from
https://github.com/d-li14/face-attribute-prediction with 16 classifier
heads after the layer with 512 hidden units. Each classifier head corresponds to a single attribute
and is modeled as a fully-connected linear layer with 256 hidden units, followed by batch normal-
ization, dropout, and ReLU layers. Afterwards, two logits are output for a 0/1 prediction for each
classifier output. The training procedure, including the dynamic loss weighting, follows (Mao et al.,
2020).

Table 8: Network Architecture for CelebA Experiments
Encoder Network Decoder Network
Input ∈ R64×64 Input ∈ R32

conv: chan: 32 , kern: 4, stride: 2, pad: 1 Linear: 80,000 Units
BatchNorm: feat: 32 ReLU
ReLU convTranpose: chan: 256, kern: 3, stride: 1, pad: 0
conv: chan: 64, kern: 4, stride: 2, pad: 1 BatchNorm: feat: 256
BatchNorm: feat: 64 ReLU
ReLU convTranpose: chann: 256, kern: 3, stride: 1, pad: 0
conv: chan: 128, kern: 3, stride: 2, pad: 1 BatchNorm: feat: 256
BatchNorm: feat: 128 ReLU
ReLU convTranpose: chan: 256, kernel: 3, stride: 1, pad: 1
conv: chan: 256, kern: 3, stride: 1, pad: 1 BatchNorm: feat: 256
BatchNorm: feat: 128 ReLU
ReLU convTranpose: chan: 128, kernel: 3, stride: 1, pad: 1
conv: chan: 256, kern: 4, stride: 2, pad: 1 BatchNorm: feat: 128
BatchNorm: feat: 256 ReLU
ReLU convTranpose: chan: 128, kernel: 3, stride: 1, pad: 0
conv: chan: 128, kern: 4, stride: 2, pad: 1 BatchNorm: feat: 128
BatchNorm: feat: 128 ReLU
ReLU convTranpose: chan: 3, kernel: 4, stride: 2, pad: 0
Linear: 32 Units Sigmoid

Table 9: Training parameters for the CelebA experiment
CelebA Transport Operator Training Parameters
batch size: 500
autoencoder training epochs: 300
transport operator training epochs: 50
latent space dimension (zdim): 32
M : 40
lrnet : 10−4

lrΨ : 10−3

ζ : 1.5
γ : 1× 10−5

initialization variance for Ψ: 0.05
number of restarts for coefficient inference: 1
nearest neighbor count: 5
latent scale: 2

CelebA Fine-tuning Parameters
batch size: 500
fine-tuning epochs: 10
lrnet : 10−4

lrΨ : 10−3

ζ : 0.8
γ : 5× 10−7

λ: 0.75
number of network update steps: 50
number of Ψ update steps: 50

K CELEBA EXPERIMENT ADDITIONAL RESULTS

Here we show additional experimental results for the CelebA experiment. Fig. 17 shows the paths
generated by the 40 transport operators trained on celebA data. Each row represents a different
operator acting on the same input image. Images in the middle column of the image block are the
reconstructed inputs and images to the right and left are images decoded from transformed latent
vectors in positive and negative directions, respectively. Fig. 18 shows the classification outputs of
the attribute classifier for example transport operators. These two operators that vary smiling, beard,
and sunglasses attributes.
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(a) (b)

(c) (d)
Figure 17: Paths generated by all 40 transport operators trained on the CelebA dataset. Images in
the middle column of the image block are the reconstructed inputs and images to the right and left
are images decoded from transformed latent vectors in positive and negative directions, respectively

(a) (b)
Figure 18: Paths generated by the application of two learned transport operators with the associated
attribute classifier probability outputs for the transformed images. Our model learns operators that
correspond to meaningful CelebA dataset attributes like (a) smiling (b) sunglasses/beard

Fig. 19 shows an interesting feature in our learned operators – many of them generate cyclic paths
that begin and end at nearly the same point. Also, in these cyclic sequences, the transformations
seem to lead to a change in gender. The image sequence in Fig. 19a shows the path generated by a
single operator. The image in the middle is the reconstructed input image and the images to the left
and right are the paths generated by negative and positive coefficients respectively. This operator
changes the hairline and quantity of bangs. As we apply the transport operator with a negative
coefficient (to the left of center), the woman gains bangs and then becomes a man with a moustache
on the far left of the image. As we apply the transport operator with a positive coefficient (to the
right of center), the woman’s forehead gets higher and then she becomes a man with a high forehead
and eventually, on the far right the woman transforms into a man with bangs, similar to the man
on the far left. The similarity between the generated images on the far left and far right is notable
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because this indicates the transformation path is nearly closed. Fig. 19b shows the change in five of
the 32 latent dimensions over the generated path. These paths have a nearly cyclic structure.

This is particularly interesting because in (Connor & Rozell, 2020) they learn closed transformation
paths by selecting point pairs on known cyclic transformation paths and highlight the benefit of the
transport operator model for representing these types of paths. In this case, we learn this cyclic path
with only perceptual point pair supervision. Additionally, this identifies a benefit of the transport
operator approach over other models of the manifold in a neural network latent space. We can
learn nonlinear paths that keep the generated points in the same neighborhood in the latent space
without extending to infinity which is inevitable when linear paths that are used to represent natural
transformations.

(a)

(b)
Figure 19: An example of an operator that generates a nearly cyclic path in the latent space (a)
Image outputs along a path generated by a single learned operator. The images on the far left and
far right look similar which indicates that this operator generates a nearly closed path that begins
and ends at the same point. (b) Paths of five of the 32 latent dimensions as the learned operator is
applied to them. This again highlights the cyclic nature of the transport operator generated paths.
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