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ABSTRACT

Counterfactuals can offer valuable insights by answering what would have been
observed under altered circumstances, conditional on a factual observation.
Whereas the classical interventional interpretation of counterfactuals has been
studied extensively, backtracking constitutes a less studied alternative where all
causal laws are kept intact. In the present work, we introduce a practical method
for computing backtracking counterfactuals in structural causal models that con-
sist of deep generative components. To this end, we impose conditions on the
structural assignments that enable the generation of counterfactuals by solving
a tractable constrained optimization problem in the structured latent space of a
causal model. Our formulation also facilitates a comparison with methods in the
field of counterfactual explanations. Compared to these, our method represents a
versatile, modular and causally compliant alternative. We demonstrate these prop-
erties experimentally on a modified version of MNIST and CelebA.

1 INTRODUCTION

In recent years, there has been a surge in the use of deep learning for causal modelling (Pawlowski
et al., 2020; Kocaoglu et al., 2018; Goudet et al., 2018). The integration of deep learning in causal
modelling combines the potential to effectively operate on high-dimensional distributions, a strength
inherent to deep generative modeling, with the capability to answer inquiries of a causal nature, thus
going beyond statistical associations. At the apex of such inquiries lies the ability to generate sce-
narios of a counterfactual nature—altered worlds where variables differ from their factual realiza-
tions, hence aptly termed counter to fact (Pearl, 2009; Bareinboim et al., 2022). Counterfactuals are
deeply ingrained in human reasoning (Roese, 1997), as evident from phrases such as “Had it rained,
the grass would be greener now” or “Had I invested in bitcoin, I would have become rich”.

Constructing counterfactuals necessitates two fundamental components: (i) a sufficiently accurate
world model with mechanistic semantics, such as a structural causal model; and (ii) a sound proce-
dure for deriving the distribution of all variables that are not subject to explicit alteration. The latter
component has been a subject of debate: While the classical literature in causality constructs coun-
terfactuals by actively manipulating causal relationships (interventional counterfactuals), this ap-
proach has been contested by some psychologists and philosophers (Rips, 2010; Gerstenberg et al.,
2013; Lucas & Kemp, 2015). Instead, they have proposed an account of counterfactuals where
alternate worlds are derived by tracing changes back to background conditions while leaving all
causal mechanisms intact. This type of counterfactual is therefore termed backtracking counterfac-
tual (Jackson, 1977). Due to the preservation of causal mechanisms, backtracking counterfactuals
allow for gaining faithful insights into the structural relationships of the data generating process,
which render them a promising opportunity in practical domains such as medical imaging (Sudlow
et al., 2015), biology (Yang et al., 2021a) and robotics (Ahmed et al., 2021). Recently, von Kügel-
gen et al. (2023) have formalized the backtracking counterfactual within the structural causal model
framework. However, implementing this formalization for deep structural causal models poses chal-
lenges due to multiple computationally intractable steps, such as marginalizations and the evaluation
of distributions that are computationally intractable. The present work addresses these challenges
and offers a computationally tractable implementation by framing the generation of counterfactuals
as a constrained optimization problem. The optimization is solved with an iterative algorithm, which
linearizes the reduced form of the structural causal model. These measures provide effective reme-
dies for generating counterfactual scenarios in multi-variable data with known causal relationships.
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Figure 1: Visualization of DeepBC for Morpho-MNIST. We generate a counterfactual (green)
image img∗ and thickness t∗ with antecedent intensity i∗ for the factual, observable realizations
(blue) img, t, i. Our approach finds new latent variables u∗ that minimize distances di to the factual
latents u, subject to rendering the antecedent i∗ true. The causal mechanisms in the factual world
remain unaltered in the counterfactual world. In this specific distribution, thickness and intensity
are positively related, thus rendering the image both more intense and thicker in the counterfactual.
Dependence of fi on graphical parents is omitted for simplifying visual appearance.

Furthermore, the present work serves as a bridge between causal modelling and practical methods in
the field of high-dimensional counterfactual explanations, which, despite its similar nomenclature,
has evolved largely independently from the field of counterfactuals in causality.

We summarize our main contributions as follows:

• We introduce a computationally tractable method called deep backtracking counterfactuals
(DeepBC) for computing backtracking counterfactuals in deep structural causal models (§ 3). Our
method exhibits multiple favorable properties such as versatility, causal compliance and modular-
ity (§ 3.2).

• We show the relation between our method and the field of counterfactual explanations and elu-
cidate how our method can be understood as a general form of the popular method proposed
by Wachter et al. (2017) (§ 3.1).

• We demonstrate the applicability and distinct advantages of our method through experiments on
two data sets, in comparison to existing methods. Specifically, we apply our method to Morpho-
MNIST and the CelebA data set (§ 4).

Overview. Section § 2 introduces structural causal models (§ 2.1), the deep generative models
that are employed subsequently (§ 2.2), interventional and backtracking counterfactuals (§ 2.3) and
counterfactual explanations (§ 2.4). In Section § 3, we propose our method called deep backtracking
counterfactuals (DeepBC) and discuss its relation to methods in the field of counterfactual explana-
tions (§ 3.1) and its implementation (§ 3.3). In Section § 4, we perform experiments on Morpho-
MNIST (§ 4.1) and CelebA (§ 4.2) that highlight the versatility, modularity and causal compliance
of our method. In Section § 5, we present a compact related work. A more comprehensive related
work section is included in App. E. We then discuss the limitations of our work in § 6 and conclude
with a short summary in § 7.

The following section introduces structural causal models and backtracking counterfactuals, which
sets the stage for introducing our method in § 3.

2 SETTING & PRELIMINARIES

Notation. Upper case X denotes a scalar or multivariate continuous random variable, and lower case
x a realization thereof. Bold X denotes a collection of such random variables with realizations x.
The components of x will be denoted by xi. We denote the probability density of X by p(x).
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2.1 STRUCTURAL CAUSAL MODELS

Let X = (X1, X2, ..., Xn) be a collection of potentially high-dimensional observable “endogenous”
random variables. For instance, X1 could be a high-dimensional object such as an image and X2

a scalar feature variable. The causal relationships among the Xi are specified by a directed acyclic
graph G that is known. A structural causal model is characterized by a collection of structural
equations Xi ← fi(Xpa(i), Ui), for i = 1, 2, ..., n, where Xpa(i) are the causal parents of Xi as
specified by G and U = (U1, U2, ..., Un) are “exogenous” latent variables. The acyclicity of G
ensures that for all i, we can recursively solve for Xi to obtain a deterministic expression in terms
of U. Thus, there exists a unique function that maps U to X, which we denote by F:

X = F(U), (1)

and is known as the reduced-form expression. Hence, F induces a distribution over observables X,
for any given distribution over the latents U. For the remainder of this work, we assume causal
sufficiency (Spirtes, 2010) (no unobserved confounders), which implies joint independence of the
components of U.

2.2 DEEP INVERTIBLE STRUCTURAL CAUSAL MODELS

In this work, we make the simplifying assumption that fi(xpa(i), · ) is invertible for any fixed xpa(i)
1,

such that we can write
Ui = f−1

i (Xpa(i), Xi), i = 1, 2, ..., n.

Under this assumption, the inverse F−1 of the mapping in (1) is guaranteed to exist, and we can write
U = F−1(X). We assume that all fi are given as (conditional) deep generative models2, trained
separately for each structural assignment (Pawlowski et al., 2020). We consider the following two
classes of models, both of which operate on latent variables with a standard Gaussian prior.

Conditional normalizing flows (Rezende & Mohamed, 2015; Winkler et al., 2019) are constructed
as a composition of invertible functions, hence rendering the entire function fi invertible in ui. In
addition, they are chosen such that the determinant of the Jacobian can be compted efficiently. These
two attributes facilitate efficient training of fi via maximum likelihood.

Conditional variational auto-encoders (Kingma & Welling, 2014; Sohn et al., 2015) consist of
separate encoder ei and decoder di networks. These modules parameterize the mean of their respec-
tive conditional distributions, i.e., Ui|xpa(i), xi ∼ N (ei(xpa(i), xi),diag(σ

2
e)) and Xi|xpa(i), ui ∼

N (di(xpa(i), ui), Iσ
2
d). Through joint training of ei, di and variance vector σ2

e using variational in-
ference, ei and di become interconnected. Theoretical insights by Reizinger et al. (2022) support
the use of an approximation, where the decoder effectively inverts the encoder, that is,

xi = fi(xpa(i), f
−1
i (xpa(i), xi)) ≈ di(xpa(i), ei(xpa(i), xi)).

2.3 INTERVENTIONAL AND BACKTRACKING COUNTERFACTUALS

Given a factual observation x and a so-called antecedent x∗
S = (x∗

i : i ∈ S) for a given subset
S ⊂ {1, 2, ...., n}, we define a counterfactual as some x∗ = (x∗

1, x
∗
2, ..., x

∗
n) consistent with x∗

S .
We view x∗ as an answer to the verbal query “What values (x∗) had X taken instead of the given
(observed) x, had XS taken the values x∗

S rather than xS?”. In the present work, we consider
interventional and backtracking counterfactuals. Both generate distributions over counterfactuals
whose random variables we refer to as X∗. We only provide a conceptual notion and refer the reader
to App. A.1 for a more rigorous formalism for both types of counterfactuals.

Interventional counterfactuals render the antecedent true via modification of the structural assign-
ments (f1, f2, ..., fn), which leads to a new collection of assignments (f∗

1 , f
∗
2 , ..., f

∗
n). Specifically,

these new structural assignments are constructed such that the causal dependence on the causal par-
ents of all antecedent variables X∗

S is removed: f∗
i = x∗

i for i ∈ S and f∗
i = fi otherwise. Such a

modification can be understood as a hard intervention on the underlying structural relations.

1also known as bijective generation mechanism (e.g., see Nasr-Esfahany et al. (2023))
2it was shown by Javaloy et al. (2023) that we can identify the true underlying structural equations from

observational data, if we furthermore assume that all fi are diffeomorphic and ui are univariate and real-valued.
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Figure 2: Difference between interventional and backtracking counterfactuals on an example.
Variables that are conditioned on correspond to filled circles. Interventional counterfactuals perform
a hard intervention (indicated by a hammer) X∗

2 ← x∗
2 with antecedent x∗

2 (i.e., S = {2}) in the
counterfactual world (green). Backtracking counterfactuals, on the contrary, construct this counter-
factual world via introducing a new set of latent variables U∗ that depend on U via a backtracking
conditional (red).

Backtracking counterfactuals leave all structural assignments unchanged. In order to set the an-
tecedent x∗

S ̸= xS true, they trace differences to the factual realization back to (ideally small)
changes in the latent variables U. These modified latent variables are represented by a new collec-
tion of variables U∗ that depend on U via a backtracking conditional p(u∗|u) (von Kügelgen et al.,
2023), which represents a probability density for computing similarity between u and u∗ and which
we assume to be decomposable, or factorized: p(u∗ |u) =

∏n
i=1 p(u

∗
i |ui). By marginalizing over

U∗, we obtain the distribution of X∗ |x∗
S ,x.

Section § 2 concludes by introducing so-called counterfactual explanations. This allows us to com-
pare our method against this formulation in Section § 3.1.

2.4 COUNTERFACTUAL EXPLANATIONS

A wealth of prior work in machine learning is concerned about explaining the prediction ŷ of a
classifier fŶ with ŷ ← fŶ (x) through the generation of a new example x∗ which is close to x, yet
predicted as y∗, where y∗ is a label that differs from the (factual) prediction ŷ 3. The intuitive idea
is that contrasting x∗ with x yields an interpretable answer as to why x is classified as ŷ rather than
y∗. Formally (see Wachter et al. (2017)), x∗ can be obtained as the solution of

arg min
x′

do (x
′, x) subject to fŶ (x

′) = y∗, (2)

where do represents a distance function between observed variables.

3 DEEP BACKTRACKING COUNTERFACTUALS (DEEPBC)

In this work, we propose to generate a counterfactual x∗ for the factual realization x as a solution to
the following constrained optimization problem:

arg min
x′

n∑
i=1

di
(
F−1

i (x′), F−1
i (x)

)
subject to x′

S = x∗
S , (3)

where di denotes a differentiable distance function. Intuitively, we can understand this optimization
as finding a solution x∗ that is close to the factual realization x in terms of its latent components,
while fulfilling the constraint that x∗ is compliant both with the antecedent x∗

S and with the causal
laws. This situation is visualized on the Morpho-MNIST example in Fig. 1. We further note that (3)
is equivalent to an optimization problem within the latent space, i.e.:

arg min
u′

n∑
i=1

di (u
′
i, ui) subject to FS(u

′) = x∗
S , F(u) = x. (4)

We obtain the solution of (3) by inserting the solution of (4) into F. In App. A.2, we provide a
derivation of DeepBC from the formalization given by von Kügelgen et al. (2023) .

3We stress that Ŷ is the prediction of a model and thus an effect of X . In general, Ŷ does not agree with Y
(the true variable that is not predicted), since Y might not be the cause of X or might be confounded with X .
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3.1 RELATION TO COUNTERFACTUAL EXPLANATIONS

We can recover counterfactual explanations § 2.4 as a special form of DeepBC. To this end, we
assume access to two variables with the following structural equations

X ← fX(UX) and Ŷ ← fŶ (X), (5)

where we note that Ŷ is not subject to additional randomness UŶ . In this specific case, we observe
that the DeepBC optimization problem (3) reduces to

arg min
x′

dX
(
f−1
X (x′), f−1

X (x)
)

subject to fŶ (x
′) = y∗, (6)

which can be interpreted as an instance of (2), where distance is measured in an unstructured latent
space. From this viewpoint, we can interpret DeepBC as a general form of counterfactual explana-
tions (2) in two ways: Firstly, it accommodates non-deterministic relations among variables, taking
into account the influence of noise on all variables. In the aforementioned instance (5), this can be
modeled by Y ← fY (X,UY ). Secondly, DeepBC can account for multiple variables with complex
causal relationships. 4

3.2 METHODOLOGICAL CONTRIBUTIONS

We highlight the main contributions of our work in the context of counterfactual explanations, which
we demonstrate experimentally in § 4 and App. D:

1. Versatility. DeepBC naturally supports complex causal relationship between multiple variables
that are potentially high dimensional (e.g., images or scalar attributes), which goes beyond the
instance-label setup (5) presented in § 3.1, and supports flexible choices of antecedent variables.
Further, it allows for varying the distance functions di in (3) to obtain counterfactuals with dif-
ferent properties (see § 3.3), such as variable preservation (see App. D.1) or sparsity (see § 4.2).

2. Causal Compliance. A plethora of work has discussed the right choice of distance function be-
tween data points for generating counterfactual explanations (see, e.g., Guidotti, 2022). In this
context, DeepBC offers a causally compliant solution: Rather than defining similarity directly
between observable variables that can lead to violations of causal laws, DeepBC delineates sim-
ilarity in terms of latent variables, embedded into a causal model. This implies that generated
counterfactual explanations are guaranteed to preserve causal relationships since the counterfac-
tual variables are always subject to the causal laws of the factual world.

3. Modularity. Structural relations between variables (f1, f2, ..., fn) exhibit disparities across dis-
tinct domains. It has been postulated that these disparities tend to manifest sparsely, signifying
that many modules fi demonstrate analogous behavior across different domains (Schölkopf et al.,
2021; Perry et al., 2022). Leveraging the explicit incorporation of structural equations, DeepBC
offers adaptability to new domains through the straightforward substitution of individual compo-
nents fi, without the need for relearning the remaining modules. This contrasts with counterfac-
tual explanation methods, which do not incorporate such replaceable modules and thus require
relearning of the entire model to handle a domain shift.

3.3 ALGORITHMS

We rely on a penalty formulation to approximate (4), leading to an unconstrained optimization prob-
lem. Specifically, we aim at minimizing the following objective function with respect to u′:

L(u′; u,x∗
S) :=

n∑
i=1

di(u
′
i, ui) + λ ∥FS(u

′)− x∗
S∥

2
2 , (7)

where λ > 0 is a sufficiently large penalty parameter and u = F(x).

DeepBC via Constraint Linearization. Rather than minimizing (7) via gradient descent, we
empirically observe that employing the first-order Taylor approximation of FS at ū is benefi-
cial, when minimizing the distance di(u

′
i, ūi) = wi · ∥u′

i − ūi∥22 with wi > 05, i.e., FS(u
′) ≈

4For example, there could be a third variable Z related to X and Y in (6) that could be modeled as well.
5By default, we set wi = 1, for all i. A different choice of weights may be useful in settings where certain

variables should be more preserved due to application-specific insights.
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FS(ū) + JS(ū)(u
′ − ū), where JS(ū) := ∇uFS(ū)

⊤ denotes the Jacobian matrix. As a result
of this approximation, (7) is a convex quadratic function in u′ and can therefore be solved for its
minimum û∗ in closed form:

û∗ = (W + λJ⊤
S (ū)JS(ū))

−1(Wu+ λJ⊤
S (ū)x̃

∗
S), (8)

where x̃∗
S := x∗

S + JS(ū)ū − FS(ū) and W := diag(wi) is a diagonal matrix con-
taining the distance weights wi. A detailed derivation of (8) is provided in App. A.3.

Algorithm 1 DeepBC via Constraint Linearization

u′
0 ← u

for t = 1, 2, ...,#it do
J̄S ← JS(u

′
t−1)

x̃∗
S ← x∗

S + J̄Su
′
t−1 − FS(u

′
t−1)

u′
t ← (W + λJ̄⊤

S J̄S)
−1(Wu+ λJ̄⊤

S x̃
∗
S)

end for

Solving (8) once, starting from the initial con-
dition ū = u, does not accurately fulfill the
constraint due to the constraint linearization,
except for special cases. We thus apply an
iterative algorithm similar to the Levenberg-
Marquardt method (e.g., Moré (2006)), based
on (8) that is specified in Alg. 1. Empirically,
we observe Alg. 1 to converge much faster
than gradient descent (see App. B.1 for more
implementation details and experiments).

Sparse DeepBC. We further employ a variant of DeepBC that encourages sparse solutions, where
sparsity is measured in u rather than x. Specifically, we use sparse DeepBC to obtain solutions
where only few elements in u∗ differ from u, i.e., di(u′

i, ui) = ∥u′
i − ui∥0, for all i, where ∥ · ∥0

denotes the number of nonzero elements. We apply a greedy approach similar to Mothilal et al.
(2020), where we start by fixing an integer M > 0 for which we desire that ∥u′ − u∥0 ≤ M . We
then apply an optimization twice: In a first step, we solve for u∗ using DeepBC. Then, we use the
M elements of the solution vector with largest ∥ui − u∗

i ∥2 and apply DeepBC again only on these
elements, while fixing the others to ui. We note that all ui have a standard Gaussian distribution, so
we do not need to weigh ∥ui − u∗

i ∥2 by standard deviation/mean absolute distance, see § 2.2.

4 EXPERIMENTS

We run experiments as to contrast DeepBC to existing ideas and showcase its properties and abilities
as outlined in § 3.1. We provide all technical details about the implementation in App. B.

4.1 MORPHO-MNIST

Figure 3: Counterfactual Images. DeepBC (top
row) changes intensity alongside thickness, since
their causal relation is preserved. Interventional
counterfactuals (bottom row), on the contrary,
solely change the intensity value.

Experimental Setup. We use Morpho-MNIST,
a modified version of MNIST proposed by Cas-
tro et al. (2019), to showcase how deep back-
tracking contrasts with its interventional coun-
terpart (Pawlowski et al., 2020). The data set
consists of three variables, two scalars and an
MNIST image. The first scalar variable T de-
scribes thickness, whereas the second variable
I describes intensity. They have a non-linear re-
lationship and are positively correlated, as can
be seen in Fig. 4 (b) and (c), where the ob-
servational density of thickness and intensity is
shown in blue. The known causal relationship
between thickness and intensity is depicted in
Fig. 4 and we show the true structural equa-
tions in App. C. We first train a normalizing
flow for thickness and one for intensity (condi-
tionally on thickness) and model the image via a conditional β-VAE (Higgins et al., 2017). We use
di(u

′
i, ui) = ∥u′

i − ui∥22 as the distance function for DeepBC. We show further experiments using
weighted distances in App. D.1.

Results. Our experiments illustrate distinctive properties of the backtracking approach. For choos-
ing intensity as the antecedent, backtracking preserves causal laws and thus changes thickness in
accordance with the change in intensity, creating counterfactuals that resemble the images in the
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Figure 4: The blue shaded areas indicate probability density on the observed data set and we note
that both thickness and intensity variables are causes of the image pixels. (a) For varying values of
the antecedent i∗, both u∗

I and upstream variable u∗
T change (latent variables). Only the deep back-

tracking solution is shown. (b) Interventional counterfactuals, in contrast to backtracking counter-
factuals, leave t∗ unchanged for antecendent intensity. (c) For antecedent thickness, counterfactual
and backtracking counterfactuals are identical.

data set (see Dominguez-Olmedo et al. (2023)), where thickness and intensity change simultane-
ously. This is in contrast to the interventional approach, which always leaves thickness unchanged
by breaking the causal relationship between both variables. This can be considered a weakness in
regard to generating counterfactuals that yield faithful insights into the structural relationships of the
data. We show the generated images in Fig. 3. DeepBC arrives at these counterfactuals, since i∗ ̸= i
can either be achieved by choosing a different u∗

I ̸= uI or by changing the upstream u∗
T ̸= uT . This

is true because i∗ also depends on the realization t∗, which, in turn, depends on u∗
T . As to mini-

mize the sum of squares dT (uT , u
∗
T ) + dI(uI , u

∗
I), DeepBC dissociates both latent variables from

their factual realizations, as can be seen in Fig. 4 (a). This entails that the upstream t∗ diverges from
t, which lies in stark contrast to the interventional approach that always keeps upstream variables
unmodified (see the bottom row in Fig. 3 and the green dots in Fig. 4 (b)).

However, interventional and deep backtracking counterfactuals can also be identical, as visible in
Fig. 4 (c), where the thickness variable T is used as antecedent. If the antecedent is a root node of
the causal graph G, which is the case for T , the change in t∗ ̸= t cannot be traced back to any latent
variable other than uT , which is why both u∗

I = uI and u∗
Img = uImg, analogously to interventional

counterfactuals. The change in the value i∗ as a function of t∗ then solely corresponds to the causal
effect of t∗, for both counterfactuals (Fig. 4 (c)).

4.2 CELEBA

Experimental Setup. We generate counterfactual celebrity images on the CelebA data set (Liu
et al., 2015) with a resolution of 128× 128 using binary attributes with the causal graph as assumed
by Yang et al. (2021b). The causal graph is shown in Fig. 5 (a). Our optimization algorithms assume
differentiability of F in u (§ 3.3), which is why we preprocess the data to use the standardized logits
of classifiers that were trained to predict each attribute from the image. Then, analogously to § 4.1,
we train a conditional normalizing flow for each attribute and a conditional β-VAE for the image.

Baselines & Ablations. 1) Measuring distance in x: Prior work has measured distance directly in
terms of the observable x rather than latent variables u that are embedded into a causal model. For
the sake of demonstration in Fig. 5, we use a method that encourages sparse solutions in terms of x,
akin to Mothilal et al. (2020); Lang et al. (2022). In the style of tabular counterfactual explanations,
we train a new regressor, which predicts an attribute from all other attributes (not including the
image). We then employ DeepBC or sparse DeepBC on this regressor, but measure distance in the
attributes of x rather than u. 2) Wrong causal graph: We assess how choosing a different causal
graph (see Fig. 8 (e)) changes the result of the counterfactual. 3) Deep non-causal explanation:
According to (6), we use an image regressor (fŶ ), together with an unconditional auto-encoder (fX )
to generate counterfactual explanations. This corresponds to how Jacob et al. (2022); Rodrı́guez
et al. (2021) obtain counterfactual explanations for image data. We show visual comparisons to 2)
and 3) in App. D.2 only.
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Figure 5: DeepBC for CelebA. Both sparse DeepBC and the endogenous sparsity method alter
gender to add a beard while keeping age unchanged. Only sparse DeepBC respects the causal
downstream: baldness increases as gender changes. In contrast, the method measuring sparsity in x
leaves the variable bald unchanged, thereby violating the causal relationship.

Table 1: Three considered metrics of the different baselines for 500 iterations. We use squared
Euclidean distances for all approaches. Best is in bolt. More details can be found in App. C.1.

distance measured in x interventional deep non-causal wrong graph DeepBC

plausible 1.887±2.548 1.212±0.996 0.933±0.823 1.083±0.904 1.045±0.825

obs 1.503±1.657 0.644±0.953 1.427±1.351 0.888±1.271 0.769±1.066

causal 1.806±2.280 0.757±1.108 1.707±1.454 0.608±0.967 0.559±0.858

Quantitative Evaluation Metrics. We evaluate three metrics: plausibility, observational closeness
and causal compliance6. We define these as

plausible(x∗) :=
∑
Attr

∥∥∥f−1
Attr(x

∗
pa(Attr), x

∗
Attr)

∥∥∥2
2
/n, obs(x,x∗) :=

∑
Attr

∥xAttr − x∗
Attr∥

2
2 /n,

and causal(x,x∗) :=
∑
Attr

∥∥∥f−1
Attr(xpa(Attr), xAttr)− f−1

Attr(x
∗
pa(Attr), x

∗
Attr)

∥∥∥2
2
/n,

for Attr ∈ {Age,Beard,Gender,Bald} and n = 4. We elaborate on the reasoning and detailed
implementation of these metrics in App. C.1.

Results. Sparse DeepBC measures distance in terms of u (subject to the causal laws) rather than
x. Fig. 5 shows sparse DeepBC (M = 2, see § 3.3) and other approaches that are able to generate
counterfactuals that render sparse changes with respect to the considered attributes. As can be seen
from the causal graph, the elderly woman from the factual image could develop a beard by changing
gender and age. Both the endogenous sparsity method and sparse DeepBC choose only gender (it is
much more dependent on beard than on age), leaving the value of age fixed. For sparse DeepBC, de-
spite the latent variable uBald not being updated, the realization of bald is automatically modified as a
downstream effect as encoded by the structural causal model (being old and male often leads to bald-
ness). This lies in contrast to measuring sparsity in terms of x directly, where this causal relationship
is not taken into account. As a result, the factual value of bald is kept unchanged. We demonstrate
further aspects of DeepBC such as modularity and multivariable antecedents in App. D.2.

5 RELATED WORK

Causality in Counterfactual Explanations. One line of work focuses on the setting of explaining
the prediction of a machine learning model based on features along with a graph in the sense of

6We note that counterfactuals cannot be validated, because ground truth do not exist. The purpose and
quality of counterfactuals depend on the application domain and a universal metric does not exist.
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(2) (Ying et al., 2019; Bajaj et al., 2021; Lucic et al., 2022; Ma et al., 2022). These prior works
alter the graph structure in a fashion that corresponds to neither interventional nor backtracking
counterfactuals. Another line of work raises the importance of causality to ensure actionability of
counterfactual explanations in the sense that an alternative outcome could have been achieved by
performing alternative actions, without violating causal relationships (Karimi et al., 2020; 2021).
These works fundamentally differ from ours in that actions break causal relationships, which lies in
stark contrast to the backtracking approach.

Counterfactuals in Deep Structural Causal Models. The integration of deep generative compo-
nents such as normalizing flows and variational auto-encoders into structural causal models can be
traced back to works from Kocaoglu et al. (2018); Goudet et al. (2018); Pawlowski et al. (2020)
and others. Other recent works have explored the use of graph neural networks (Sanchez-Martin
et al., 2022), normalizing flows (Khemakhem et al., 2021; Javaloy et al., 2023) or diffusion mod-
els (Sanchez & Tsaftaris, 2022) to construct structural causal models. A more detailed review of the
literature is included in App. E.

6 DISCUSSION

Identifiablity of Structural Equations. In general, if the causal graph is not known, neither the
structural equations nor the reduced-form (1) that is required for DeepBC can be identified from data
(Karimi et al., 2020; Hyvärinen et al., 2023; Locatello et al., 2019). Recent works have established
numerous conditions under which identifiability holds (e.g., Lachapelle et al. (2022); Buchholz et al.
(2023); Lippe et al. (2023)). Beyond that, recent work has shown that interventional counterfactuals
can be identified for invertible structural causal models (Nasr-Esfahany et al., 2023) and it could be
that similar results hold for backtracking as well.

Sampling Counterfactuals from a Distribution. Prior work has raised the importance of obtain-
ing multiple and diverse explanations for a single example (Mothilal et al., 2020), which our method
currently only allows by varying the choice of distance functions di in (3). As to fulfill this objec-
tive, it has been suggested to sample counterfactuals from a probability distribution (Guidotti, 2022,
§3.1). Prior methods have explored the use of amortized inference to obtain distributions over coun-
terfactual explanations (Mahajan et al., 2019). However, this approach did not yield satisfactory
results in the context of our method, because the true underlying latent posterior (see App. A.1) is
complex. Yet, a possible way forward may be to consider approaches such as flow-based models
(Kingma et al., 2016) or semi-amortization (Kim et al., 2018).

Non-Invertible Generative Models. A possible future line of research could be to explore how
backtracking could be implemented for generative models whose latent variables cannot be inferred
deterministically from the factual realization, such as diffusion models (Ho et al., 2020) and genera-
tive adversarial networks (Goodfellow et al., 2014), both of which are not invertible in general. One
conceivable solution might be to adapt (4) as to jointly optimize over u and u∗ in the latent space.

Non-Causal Counterfactual Explanations. The explicit access to a causal model allows for its
versatility, modularity and the capability to obtain causally compliant solutions for varying choices
of distance functions (§ 3.2, § 4). We note however that non-causal methods that do not rely on
knowledge of the (non-identifiable) reduced-form can yield results of similar appearance in some
settings (see Fig. 9 (d) in App. D.2).

7 CONCLUSION

In this work, we presented DeepBC, a practical algorithm for computing backtracking counterfactu-
als for deep structural causal models. We compared DeepBC to interventional counterfactuals and
the main formulations employed in the field of counterfactual explanations. We found that compared
to prior work in counterfactual explanations, DeepBC is versatile in that it supports complex graph
structures, compliant with the given causal model and modular in that it enables generalization to
out-of-domain settings. In fact, DeepBC can be seen as a general method for computing counterfac-
tual explanations that measures distances between factual and counterfactual in the structured latent
space of a causal model. We empirically demonstrated the merits of our approach in comparison to
prior work, where we highlight the importance of taking causal relationships into account.
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REPRODUCIBILITY STATEMENT

Our anonymized source code is available at https://anonymous.4open.science/r/DeepBC REVISED-
2160. The instructions for reproducing all visualizations are provided in the README.md file at the
top level of the repository. All parameters can be found in the config folders within the respective
subfolders. In addition, we provide a detailed description of the optimization parameters in App. B.1,
training procedures in App. B.2.1 and deep learning architectures in App. B.2.2.
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Amir-Hossein Karimi, Julius Von Kügelgen, Bernhard Schölkopf, and Isabel Valera. Algorithmic
recourse under imperfect causal knowledge: a probabilistic approach. Advances in Neural Infor-
mation Processing Systems, 33:265–277, 2020. 9, 22

Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic Recourse: from Coun-
terfactual Explanations to Interventions. In ACM Conference on Fairness, Accountability, and
Transparency, pp. 353–362, 2021. 9, 22

Ilyes Khemakhem, Ricardo Monti, Robert Leech, and Aapo Hyvarinen. Causal Autoregressive
Flows. In International Conference on Artificial Intelligence and Statistics, pp. 3520–3528, 2021.
9, 22

Yoon Kim, Sam Wiseman, Andrew Miller, David Sontag, and Alexander Rush. Semi-Amortized
Variational Autoencoders. In International Conference on Machine Learning, pp. 2678–2687,
2018. 9

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. International Conference
on Learning Representations, 2014. 3

Durk P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved Variational Inference with Inverse Autoregressive Flow. Advances in Neural Information
Processing Systems, 29:4743–4751, 2016. 9

Murat Kocaoglu, Christopher Snyder, Alexandros G. Dimakis, and Sriram Vishwanath. Causal-
GAN: Learning Causal Implicit Generative Models with Adversarial Training. International Con-
ference on Learning Representations, 2018. 1, 9, 22
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A FORMALISMS & DERIVATIONS

A.1 FORMAL DEFINITION OF INTERVENTIONAL AND BACKTRACKING COUNTERFACTUALS

Both kinds of counterfactuals can be computed in a three-step-procedure.

Interventional Counterfactuals

1. Abduction: Compute the distribution of U | x, given the factual realization x of X.

2. Action: Obtain an altered collection of structural assignments (f∗
1 , f

∗
2 , ..., f

∗
n) by setting xi ←

x∗
i = f∗

i , for all i ∈ S. Leave all other structural assignments unmodified, i.e., f∗
j = fj , for all

j /∈ S.

3. Prediction: Compute a distribution over X∗
I as the pushforward of the distribution of U | x by

F∗.

Backtracking Counterfactuals

1. Cross-World Abduction: Use the antecedent x∗
S and the factual realization x to obtain

p(u∗,u | x∗
S ,x), using the backtracking conditional p(u∗|u) and latent prior density p(u):

p(u∗,u | x∗
S ,x) =

p(u∗,u,x∗
S ,x)

p(x∗
S ,x)

=
p(u∗|u) p(u) δx(F(u))δx∗

S
(FS(u

∗))∫ ∫
p(u∗|u) p(u) δx(F(u))δx∗

S
(FS(u∗)) du du∗ ,

where δx( · ) refers to the dirac delta at x.

2. Marginalization: Marginalize over U to obtain the density p(u∗ | x∗
S ,x) of the counterfactual

posterior:

p(u∗ | x∗
S ,x) =

∫
p(u∗,u | x∗

S ,x) du.

3. Prediction: Compute a distribution over X∗
B by marginalizing over the counterfactual latents U∗:

p(x∗ | x∗
S ,x) =

∫
p(u∗ | x∗

S ,x)δx∗(F(u∗)) du∗.

A.2 FORMAL DERIVATION OF DEEPBC

We derive (3) from the three-step-procedure of backtracking counterfactuals (see App. A.1) as fol-
lows:

1. Cross-World Abduction: By the deterministic relationship between latents and observables, we
see that

p(u∗,u | x∗
S ,x) = p(u∗ | u,x∗

S ,x) p(u | x∗
S ,x) = p(u∗ | u,x∗

S) p(u | x)
= p(u∗ | u,x∗

S) δF−1(x)(u).

2. Marginalization: All the probability is located at F−1(x), which is why marginalization reduces
to

p(u∗ | x∗
S ,x) = p(u∗, u = F−1(x) | x∗

S ,x).

3. Prediction: By the deterministic relationship between latents and observables, we obtain samples
from X∗ | x∗

S ,x simply by sampling from U∗ | F−1(x),x∗
S and then subsequently mapping these

samples through the function F(u∗) to obtain the corresponding observables x∗:

u∗ ∼ U∗ | F−1(x), x∗
S , x∗ = F(u∗).

Instead of sampling, however, we restrict ourselves to the mode of the distribution of
U∗ | F−1(x),x∗

S . We assume that the backtracking conditional density p(u∗|u) has the following
form

p(u∗|u) ∝ exp

{
−

n∑
i=1

di(u
∗
i , ui)

}
,
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where d is a distance function. Then, we have

p(u∗ | F−1(x),x∗
S) ∝

{
exp

{
−
∑n

i=1 di
(
u∗
i ,F

−1
i (x)

)}
, if FS(u

∗) = x∗
S

0, otherwise.

By taking the logarithm and ignoring constants, we obtain

log p(u∗ | F−1(x),x∗
S) =

{
−
∑n

i=1 di
(
u∗
i ,F

−1
i (x)

)
, if FS(u

∗) = x∗
S

−∞, otherwise.

We conclude by noting that arg max
u∗

log p(u∗ | F−1(x),x∗
S), composed with F, is equivalent to (3).

A.3 DERIVATION OF (3)

As a result of the linearization of F, (7) simplifies to

(u′ − u)⊤W(u′ − u) + λ||JS(u
′ − u) + FS(u)− x∗

S ||22
= (u′ − u)⊤W(u′ − u) + λ||JSu

′ − x̃∗
S ||22 =: L̃(u′). (9)

We see that L̃(u′) is convex and differentiable with respect to u′, which means that ∇u′L̃(u′) = 0
implies optimality of u′. To derive u′

opt, we observe that

∇u′L̃(u′) = 2(W(u′ − u) + λJ⊤
S JSu

′ − J⊤
S x̃

∗
S).

As a result, u′
opt is given by

u′
opt = (W + λJ⊤

S JS)
−1(Wu+ λJ⊤

S x̃
∗
S).

B IMPLEMENTATION

B.1 TECHNICAL DETAILS AND COMMENTS FOR THE DEEPBC OPTIMIZATION ALGORITHM

In practice, we implement (8) as follows

û∗ = (λ−1W + J⊤
S JS)

†(λ−1Wu+ J⊤
S x̃

∗
S), (10)

where † denotes Moore-Penrose pseudoinverse. We employ (10) rather than (8) for the reason of
numerical stability. The main computational bottleneck in Alg. 1 is the computation of the pseu-
doinverse (λ−1W + J⊤

S JS)
† in (10), which comes at a cost of O(#it · dim(u)3), compared to

O(#it · dim(u)) for gradient descent. We note, however, that the dimensionality of the latent space
is typically not very large in our experiments. The maximum dimension is 516 for CelebA, due to 4
attributes and 512-dimensional latent space of the VAE. We also stress that JS is sparse (many 0 en-
tries) when S covers attribute variables, because the 512-dimensional latent vector is not upstream
of any attribute. We do not run experiments where many variables are upstream of the antecedent
variable and stress that this may affect the performance of Alg. 1.

In our experiments, we find Alg. 1 to converge much more quickly, as can be seen in Fig. 6. Typ-
ically, convergence can be expected to occur within ≈ 5 iterations, while fulfilling the constraint
realiably (see table in Fig. 6). When applying gradient-based methods like Adam instead of our ap-
proach, we observe that the convergence rate is sensitive to the choice of learning rate. The plot for
λ = 106 shows that the linearization method can lead to oscillations if λ is chosen too large, which
likely stems from small eigenvalues of λ−1W + J⊤

S JS (we not that J⊤
S JS is low-rank) that give

rise to numerical issues. However, these oscillations can be detected early on. Similar to Levenberg-
Marquardt, we could include a small damping variable ϵ > 0 to alleviate this issue. We would then
arrive at

û∗ = (λ−1W + J⊤
S JS + Iϵ)†(λ−1Wu+ J⊤

S x̃
∗
S).

We do not explore this possibility in the present work as we do not encounter these issues in our
experiments.

Adam’s convergence highly depends on the choice of learning rate. We suspect that this is due to
the poorly conditioned Hessian that comes from choosing large λ. However, large λ is required in
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Figure 6: The figures show the sum of penalty losses (7) over all points in Fig. 4 (b) for optimizing
it for 200 iterations on a log10 scale. Comparison of the Adam optimizer with various learning
rates in comparison to constraint linearization (Alg. 1) for different choices of penalty parameter λ.
The table shows the sum of constraint errors ∥FS(u

′)− x∗
S∥

2
2 after 200 iterations (How well the

constraints are fulfilled).
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order to (at least approximately) fulfill the constraint in (3) (see top row in the table of Fig. 6).

In our experiments, we always use DeepBC via constraint linearization (Alg. 1) with λ = 103 and
#it = 30. λ is chosen empirically and our choice yielded convincing results in all experiments. The
choice of iteration number is a conservative upper bound for the algorithm.

B.2 IMPLEMENTATION DETAILS OF THE DEEP STRUCTURAL CAUSAL MODELS

For all experiments, we use PyTorch (Paszke et al., 2019), PyTorch Lightning (Falcon,
William and The PyTorch Lightning team, 2019) and normflows (Stimper et al., 2023).

B.2.1 TRAINING PROCEDURES

We train all models with the following parameters:

optimizer train/val. split ratio regularization max. # epochs

Adam 0.8 early stopping 1000

Morpho-MNIST. We use the same training parameters for both normalizing flow models. Pa-
tience refers to the number of epochs without further decrease in validation loss that early stopping
regularization waits.

model batch size train batch size val. learning rate patience

Flow 64 full 10−3 2
VAE 128 256 10−6 10

CelebA. We use the same training parameters for all normalizing flow models.

model batch size train batch size val. learning rate patience

Flow 64 256 10−3 2
VAE 128 256 10−6 50

B.2.2 NETWORK ARCHITECTURES

Notation. We denote concatenations of variables by [ · , · , ..., · ]. We denote modules that are re-
peated n times by a superscript (n). For instance, Linear(2)(u) is shorthand for Linear ◦ Linear (u),
i.e., two linear layers.

Flow Layers. In all of our experiments, we make use of common types of flow layers:

QuadraticSpline(ui) is a standard quadratic spline flow (Durkan et al., 2019).

ConstScaleShift(ui) performs a constant affine transformation with learned, but unconditional, lo-
cation and scale parameters µ and σ:

ConstScaleShift(ui) = σ · ui + µ.

ScaleShift(ui,xpa(i)) performs the same operation as ConstScaleShift(ui), but µ and σ are com-
puted as a function of ui and xpa(i) via a two-layer Masked Autoencoder for Distribution Estimation
(MADE) module (Germain et al., 2015) with ReLU activation functions and one-dimensional hid-
den units.

Morpho-MNIST. For the thickness variable, we construct the flow as

fT (uT ) = ConstScaleShift ◦ QuadraticSpline(5) (uT ).

For intensity, we use

fI(t, uI) = ConstScaleShift ◦ Sigmoid ◦ QuadraticSpline(3) ◦ ScaleShift ([t, uI ]),
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where Sigmoid denotes the (constant) sigmoid function.

For the MNIST image, we use a convolutional β-VAE (Higgins et al., 2017) with β = 3 and the
following encoder parameterization:

fImg(t, i, img) ≈ eImg(t, i, img)

= Linear
([

t, i,
(

Linear ◦ Pool2D ◦ (ReLU ◦ Conv2D)
(4)

)
(img)

])
,

where the Conv2D layers (starting with parameters from the layer closest to the input) are parameter-
ized by out channels = (8, 16, 32, 64), kernel size = (4, 4, 4, 3), stride = (2, 2, 2, 2),
padding = (1, 1, 1, 0). The linear layers are analogously parameterized with the output dimen-
sions out = (128, 16, 16), i.e., dim(uImg) = 32. For the decoder, we use

f−1
Img(t, i, uImg) ≈ dImg(t, i, uImg)

= TransConv2D ◦ (ReLU ◦ TransConv2D)
(4) ◦ Linear ([t, i, uImg]),

where the linear layer has output dimension out = 64 and the transpose convolution layers (start-
ing with parameters from the layer closest to the input) are parameterized by out channels =
(64, 32, 16, 1), kernel size = (3, 4, 4, 4), stride = (2, 2, 2, 2), padding = (0, 1, 0, 1).

CelebA. We preprocess all attributes via separate classifiers CAttr, i.e., one individual classifier per
attribute. The classifier has the following architecture:

CAttr(img) = Linear ◦Dropout ◦ReLU ◦Linear ◦ (MaxPool2D ◦ ReLU ◦ Conv2D)
(4)

(img). (11)

We then standardize the output logits of CAttr, for each attribute individually.

As for MorphoMNIST, we train one normalizing flow for each attribute. For this, we use the stan-
dardized logits from the classifiers rather than the original binary attributes from the data set. To
model the non-Gaussian distributions, we employ the following flow architecture:

fAttr(t, uAttr) = ScaleShift
([(

QuadraticSpline(10) ◦ ConstScaleShift
)
(uAttr), xpa(Attr)

])
,

For the β-VAE with β = 3, we follow a slightly different approach as for B.2.2. Rather than con-
catenating the conditional variables xpa(i) at the end of the encoder, we instead create an additional
channel chanattr for each attribute attr that we concatenate to the RGB channels of the image. Specif-
ically, we obtain the channel by broadcasting the continuous attribute value xAttr like

chAttr = 1128×128 · xAttr,

where we replace the MADE module by a linear function for Bald, since the signal-to-noise ratio is
low for this variable. The reason is that Beard is the only variable that cannot be modeled well as a
linear function of its causal parents Age and Gender.

where 1128×128 is a matrix of dimensionality 128 × 128 that consists only of 1. We then feed
x̃ := [xR, xG, xB , chBeard, chBald, chGender, chAge] ∈ R128×128×7 directly into the encoder with the
following architecture (roughly inspired by Ghosh et al. (2020)):

fImg(x̃) ≈ eImg(x̃)

= Linear ◦ Pool2D ◦ (ReLU ◦ BatchNorm2D ◦ Conv2D)
(6)

(x̃),

where the final linear layer has output dimension out = 512 and the transpose convolu-
tion layers (starting with parameters from the layer closest to the input) are parameterized
by out channels = (128, 128, 128, 256, 512, 1024), kernel size = (3, 3, 3, 3, 3, 3),
stride = (2, 2, 2, 2, 2, 2), padding = (1, 1, 1, 1, 1, 1). For the decoder, noting that xpa(Img) =
[xBeard, xBald, xGender, xAge], we use

f−1
Img(xpa(Img), uImg) ≈ dImg(xpa(Img), uImg)

= TransConv2D ◦ (ReLU ◦ BatchNorm2D ◦ TransConv2D)
(4) ◦ Linear ([xpa(Img), uImg]),

where the first linear layer maps to R4·1024, which is then reshaped to a feature map in R2×2×1024.
The consecutive transposed convolutional layers have the parameters out channels =
(512, 256, 128, 128, 128), kernel size = (3, 3, 3, 3, 3), stride = (2, 2, 2, 2, 2), padding =
(1, 1, 1, 1, 1).
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C GROUND TRUTH STRUCTURAL EQUATIONS MORPHO-MNIST

The structural equation for thickness T and intensity I are given as

T ← 0.5 + UT , UT ∼ Γ(10, 5)

I ← 191 · Sigmoid (0.5 · UI + 2 · T − 5) + 64, UI ∼ N (0, 1).

For details about how the MNIST images were modified as to change perceived thickness and inten-
sity, we refer the reader to Pawlowski et al. (2020).

C.1 METRIC IMPLEMENTATIONS

We only evaluate the metrics on the attribute values, because the tabular method (method 1)) does
not generate images. Furthermore, this leads to the following choice of distance metric

obs(x,x∗) :=
∑
Attr

∥xAttr − x∗
Attr∥

2
2 /n, (12)

which is adopted from early work on counterfactual explanations (see e.g. Wachter et al. (2017)).
We note that xAttr are standardized logits, so we do not scale the distances. The other metric

plausible(x∗) :=
∑
Attr

∥∥∥f−1
Attr(x

∗
pa(Attr), x

∗
Attr)

∥∥∥2
2
/n (13)

penalizes the deviation of the latent variable u∗ from its mean (u∗ = 0). We can think of this loss
intuitively as penalizing the amount of noise that would be necessary to generate the counterfactual
values under the assumption that the causal mechanisms are in place. Finally,

causal(x,x∗) :=
∑
Attr

∥∥∥f−1
Attr(xpa(Attr), xAttr)− f−1

Attr(x
∗
pa(Attr), x

∗
Attr)

∥∥∥2
2
/n (14)

measures the distance of all latents for the structural model. We note that this loss corresponds to the
distance term (the left summand) in (3), restricted to attribute variables and for squared Euclidean
norm. Again, we restrict the loss to attributes for fairer comparison to the tabular method. Since we
do not have access to ground truth structural equations (f1, f2, ..., fn) in CelebA, we use the ones
that were trained on the data set. We furthermore note that incorporating the antecedent variable into
the loss is not an issue either, because it is fixed for all methods. For the deep non-causal explanation
method, we only obtain the counterfactual image, without explicit access to the attribute variables.
In order to extract those, we use the (standardized) logits of classifiers that were trained to predict
the attributes from the image.

We obtain the numbers in table § 4.2 as follows:

We sample a factual data point x = F(u),u ∼ N (0, I). Then, we sample an attribute uniformly, i.e.

attr ∼ U({age, gender, beard, bald})

and construct the corresponding antecedent as

x∗
Attr ∼ N (0, 1).

We then compute the counterfactual x∗ to evaluate all three loss function (12), (13) and (14). This
process is repeated 500 times. The final reported scores are the arithmetic means over the individual
metrics, including ±1std.
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D ADDITIONAL EXPERIMENTS

D.1 MORPHO-MNIST

Figure 7: We run Fig. 4 (b) multiple times, fixing wI = wImg = 1 and changing only wT . We see
that the backtracking solution approach the interventional solution (see Fig. 4 (b)) as we increase
wT , thus preserving the value of thickness more as we increase the weight.

D.2 CELEBA

Figure 8: Additional plots for CelebA, part I). (a) A male, beardless person develops female
traits as an upstream of antecedent beard, where the learned structural equation fBeard is replaced by
f̃Beard to mimic an out-of-domain setting that can be handled by DeepBC. f̃Beard here is constructed
manually such that being female is strongly positively correlated with having a beard, unlike in the
model that was learned from data. (b) Two examples for multivariable DeepBC.
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Figure 9: Additional plots for CelebA, part II). (c) DeepBC takes into account non-deterministic
relationships between variables: In this setting, the removed beard is traced back to uBeard rather than
other variables. The result is highly similar to the interventional example (plotted for comparison).
(d) Non-causal explanation methods based on (6) yield similar results to vanilla DeepBC in some
settings. (e) The right causal graph shows the wrong graph used to generate this image. It demon-
strates that the solution of (sparse) DeepBC is dependent on using the graph structure. Further, it
shows that sparse DeepBC does not always generate sparse solutions. This is because downstream
variables are always updated.
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E RELATED WORK (COMPREHENSIVE)

This section is organized into two lines of prior work. The first line encompasses methods that
incorporate causality into the field of counterfactual explanations. We do however note that the
general field of counterfactual explanations has made many significant advances that are not directly
related to causality in recent years. For a comprehensive overview over these developments, we refer
to Guidotti (2022) and Verma et al. (2020). The second line discusses how deep neural networks have
been used within the context of structural causal models, as to facilitate counterfactual computation.

Causality in Counterfactual Explanations. As explained in § 3.1, our DeepBC approach is related
to the field of counterfactual explanations. Our work builds therefore on earlier approaches that
generate counterfactual explanations by incorporating causal models: One line of work focuses on
the setting of explaining the prediction of a machine learning model based on features along with
a (causal) graph in the sense of (2) (Ying et al., 2019; Bajaj et al., 2021; Lucic et al., 2022; Ma
et al., 2022). Whereas our approach never manipulates the given graph structure of the causal graph,
these prior works alter the graph structure in a fashion that corresponds to neither interventional nor
backtracking counterfactuals.

Another line of work raises the importance of causality to ensure actionability of counterfactual ex-
planations in a sense that an alternative outcome could have been achieved by performing alternative
actions, without violating causal relationships (Karimi et al., 2020; 2021). These works fundamen-
tally differ from ours in that actions break causal relationships, which lies in stark contrast to the
backtracking approach. The latter seeks to trace back counterfactuals to changes in latent variables
rather than changes in causal relationships. However, this line of research is related to ours in that it
argues for respecting causal mechanisms in generating counterfactuals.

The most similar existing work to ours is that of Mahajan et al. (2019). Similarly to the present work,
the authors employ deep generative modelling and measure distance between factual and counter-
factual examples in a latent space. The most distinctive difference to our work is that Mahajan et al.
(2019) impose causal constraints via a causal proximity loss in the observable variables x that as-
sumes additive Gaussian noise. This is in contrast to the backtracking philosophy (Jackson, 1977)
that we follow. In our approach, all changes are traced back solely to latent variables u that are
embedded into the deep causal model such that causal constraints are fulfilled automatically. This
obviates the need for an additional loss and allows easily for non-additive noise dependencies (see
App. C). At the same time, our approach is more versatile as any of the given variables could be
used as antecedent, whereas Mahajan et al. (2019) only support a specific label variable.

Counterfactuals in Deep Structural Causal Models. The integration of deep generative compo-
nents such as normalizing flows and variational auto-encoders into structural causal models can be
traced back to works from Kocaoglu et al. (2018); Goudet et al. (2018); Pawlowski et al. (2020) and
others. Subsequently, this approach has been adopted in various works for computing counterfac-
tuals in applications such as natural language processing (Hu & Li, 2021) and bias reduction (Dash
et al., 2022). Other recent works have explored the use of graph neural networks (Sanchez-Martin
et al., 2022), normalizing flows (Khemakhem et al., 2021; Javaloy et al., 2023) or diffusion mod-
els (Sanchez & Tsaftaris, 2022) to construct structural causal models.

In the present work, we employ variational auto-encoders and normalizing flows to construct deep
structural causal models (outlined in § 2.2). Nevertheless, we regard the design choices within our
implementation as agnostic to various choices of architecture. Specifically, we deem our approach
applicable to any deep structural causal model architecture that yields a reduced-form that is both
invertible and differentiable.

22


	Introduction
	Setting & Preliminaries
	Structural Causal Models
	Deep Invertible Structural Causal Models
	Interventional and Backtracking Counterfactuals
	Counterfactual Explanations

	Deep Backtracking Counterfactuals (DeepBC)
	Relation to Counterfactual Explanations
	Methodological Contributions
	Algorithms

	Experiments
	Morpho-MNIST
	CelebA

	Related Work
	Discussion
	Conclusion
	Formalisms & Derivations
	Formal Definition of Interventional and Backtracking Counterfactuals
	Formal Derivation of DeepBC
	Derivation of eq:optimobjective

	Implementation
	Technical Details and Comments for the DeepBC Optimization Algorithm
	Implementation Details of the Deep Structural Causal Models
	Training Procedures
	Network Architectures


	Ground Truth Structural Equations Morpho-MNIST
	Metric Implementations

	Additional Experiments
	Morpho-MNIST
	CelebA

	Related Work (comprehensive)

