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Abstract

In recent years, multimodal large language
models (MLLMs) with vision processing ca-
pability have shown substantial advancements,
excelling particularly in interpreting general
images. Their application in domain-specific
tasks, like those in the medical fields, is fur-
ther enhanced through continuous visual in-
struction fine-tuning (CVIF). Despite these ad-
vancements, a significant challenge arises from
label noise encountered during the collection
of domain-specific data. Our studies reveal that
this label noise can adversely affect the learn-
ing of vision projection embeddings and con-
tribute to inaccuracies in LLMs’ fine-tuning,
often leading to hallucinations. In this paper,
we introduce a novel framework designed to
minimize the impact of label noise. Our ap-
proach focuses on stabilizing the learning of
vision embeddings and reducing the effect of
label noise through the inherent semantic un-
derstanding of uncertainty in LLMs. Extensive
experiments demonstrate that our framework
maintains robust performance in general visual
question-answer (VQA) tasks while showing
significant effectiveness in medical VQA tasks.
To the best of our knowledge, this is the first
study to specifically address and analyze the
impact of label noise in CVIF.

1 Introduction

Recent advancements in large language models
(LLMs) have significantly advanced artificial gen-
eral intelligence (AGI) (Touvron et al.,, 2023;
Floridi and Chiriatti, 2020; Chiang et al., 2023).
Enhancing LLMs’ ability to process multimodal
real-world data, particularly integrating visual data,
is key to developing universal AGI interfaces that
facilitate human interaction (Radford et al., 2021).
Studies have focused on using vision-instructed
tuning to align visual inputs with semantic repre-
sentations in LL.Ms, enabling them to process real-
world visual signals (Li et al., 2023b; Zhu et al.,

2023; Liu et al., 2023). This alignment enhances
the capabilities of AGI assistants, allowing users
to interact with and manipulate visual inputs using
natural language commands.

To improve the performance of multimodal large
language models (MLLMs) in specific domains,
it’s crucial to apply continuous multimodal instruc-
tion fine-tuning using tailored datasets (Zhang et al.,
2023a; Yan et al., 2021; Wu et al., 2023). This tech-
nique is also vital for visual-based LLMs, where
continual vision instruction fine-tuning (CVIF)
leverages domain-specific images and guidance (Li
et al., 2023a; Zhang et al., 2023b). However, build-
ing these datasets often encounters the challenge
of label noise—incorrect or inaccurate labels stem-
ming from data annotation inconsistencies, auto-
mated processing errors, or subjective human judg-
ment, especially in complex areas like medicine
where expert interpretations vary (Han et al., 2018;
Liu et al., 2020; Xia et al., 2020; Liu et al., 2021b).

Label noise in instructional data induces halluci-
nations in LLMs post fine-tuning, notably in text-
based LLMs (Qi et al., 2023; Dong et al., 2023) but
is under-researched in vision-based models, par-
ticularly in general visual question-answer (VQA)
tasks. Section B of our study reveals that label
noise not only triggers hallucinations in vision-
based LLMs but also adversely affects the projec-
tion layer, crucial for visual interpretation (Li et al.,
2023b; Zhu et al., 2023; Liu et al., 2023). This dual
impact significantly biases inference. Prior studies
mainly consider label noise in classification tasks
using label transition matrices (Zhang and Sabuncu,
2018; Wang et al., 2017; Chen and Gupta, 2015;
Yong et al., 2022), which are insufficient for the
nuanced demands of VQA tasks.

We propose a novel framework targeting VQA
tasks that mitigates label noise by focusing on both
the projection layer and LLMs. We first employ
Polyak averaging techniques (Polyak, 1964) to re-
duce the overfitting of bias in projection layers.



Concurrently, we leverage the inherent bias under-
standing of certain phrases within LLMs (Zhou
et al., 2023), which learned from extensive text
corpus learning, to learn the bias instruction data
and infer uncertainly to mitigate the label noise
influence. Hence, we term our framework “Leave
the Bias in Bias” (LEABNB). We conduct ex-
periments in general VQA tasks using the Llava
model (Liu et al., 2023) and domain-specific medi-
cal VQA tasks employing MedVInT_TD (Zhang
et al., 2023b). Experimental results indicate that
LEABNB demonstrates significant robustness to
label noise and achieves performance comparable
to the standard fine-tuning process when applied to
clean datasets. This makes LEABNB well-suited
for general CVIF scenarios. Our contributions are
concluded as follows:

* We first investigate the label noise effect of
vision-based LLMs in CVIF.

* Building upon these findings, we introduce
LEABNB, a novel framework designed to ef-
fectively mitigate the effects of label noise in
CVIE.

* Our methodology validates and leverages the
LLMs’ inherent bias understanding of certain
phrases in label noise reduction.

* To the best of our knowledge, LEABNB rep-
resents the first framework for mitigating the
effect of label noise in CVIF.

2 Method

2.1 Preliminary

Vision-based LLLMs integrate pre-trained textual
LLMs (Chiang et al., 2023; Touvron et al., 2023)
with visual models (Radford et al., 2021), which
are initially trained on distinct datasets for text and
images. For applications like VQA, it is crucial to
align visual information with the text-based knowl-
edge of LLMs. A standard pre-trained LLM, py,
undergoes fine-tuning with an instruction dataset
D;r, comprising instruction-response pairs (x,y).
This process aims to maximize the log-likelihood
of generating correct responses, formulated as:

k
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Additionally, techniques like RLHF (Ouyang et al.,
2022) are utilized to enhance alignment with hu-

man instructions and promote the LLMs’ helpful-
ness, harmlessness, and honesty.

To enable LLMs to process visual information,
we employ a pre-trained visual model, specifically
CLIP (Radford et al., 2021), to generate visual
embeddings z. = g(z). These embeddings are in-
tegrated into LLMs using a projection encoder h.
and a vision instruction fine-tuning (VIF) dataset
Dy, which consists of tuples (z, x,y). The vision-
augmented LLM, denoted as g -, merges param-
eters 6 from the LLM and « from the projection
layer. Optimization is achieved by maximizing the
model’s log-likelihood:

k
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where the expectation is calculated over the VIF
dataset, considering output tokens y;, conditioned
on projected embeddings and input tokens. For
domain-specific applications like medical VQA,
we adapt the LLM using a specialized dataset D,
following Equation (2).

However, a critical issue in CVIF is the intro-
duction of label noise during the learning process.
Label noise, which stems from human or machine
errors in dataset labels (Algan and Ulusoy, 2021),
can significantly undermine the learning process.
For instance, a benign skin lesion in a medical
dataset might be mislabeled as malignant due to
diagnostic inaccuracies (Liu et al., 2021b). Such
errors can cause inconsistencies across datasets
and conflict with the intrinsic knowledge of LLMs.
Consequently, when 7y , is fine-tuned with these
datasets, it may destabilize the learning process
and lead to misinterpretations of medical images, a
critical concern in healthcare.

2.2 Leave the Bias in Bias

By analyzing the impact of label noise in Appendix
B, the label noise can influence both # and ~y, and
induce compounded performance drop. Here, we
present the LEABNB framework to mitigate label
noise influence in CVIF, which is shown in Figure 1.
Based on the case study results shown in the Table
2, we can initially froze the projection layer to mit-
igate overfitting from noisy labels, which proved
somewhat effective. However, this approach lim-
ited the model’s ability to generalize to new tasks.
Consequently, we adopted Polyak Averaging for
the projection layer v, employing a decay factor
A to modulate updates, as illustrated in Equation



7 Vi

>

ty

it (o
Question: What
are the anima-

Question: What a-
re the animals in

ls in the ima- — the image? >
ge? Answer: L-
ion. Lion. 0 0

A A
| >

- > Vision Projection —

Question: Where can om-—
ental caking be seen in

a
this image?

Right
n lateral aspect of anterior peri-
toneumnm.

n Left
lateral aspect of anterior perito-
neum.

I_
-
=

Figure 1: The CVIF phase for vision-based LLMs, depicted on the left, incorporates a specific preprocessing
protocol. We use a graphical template to format “Questions” and “Answers” for VQA tasks and initiate with a
biased, leading prompt to evoke an overly confident response from the model. The Polyak averaging strategy
manages the weight updates in the projection layer. The inference phase, shown on the right, demonstrates that
using prompt, (e.g., “100% confidence”) leads to biased and often incorrect responses. Conversely, employing
prompt,, (e.g., “90% confidence”) helps the model shed its biases and produce more accurate answers.

(3). At each iteration ¢ + 1, the parameters are
updated by combining them, scaled by A = 0.05,
with the parameters from the previous time step ¢.
This method not only preserves the model’s gen-
eralization across new tasks but also counters the
detrimental effects of noisy data.

Fr1 = M1 + (1= M)y, )

where )\ tuning the update extent and ;1 updated
by Equation (2).

In the field of LLMs, which are generative rather
than typical classification-based, traditional meth-
ods (Radford et al., 2019) for handling label noise
are ineffective. This is because LLMs depend on
semantic comprehension rather than purely prob-
abilistic learning on labeled data. Our proposed
framework, LEABNB, seeks to mitigate label noise
in LL.Ms by exploiting their semantic capabilities.
Several studies (Laranjo et al., 2018; Kadavath
et al., 2022; Zhou et al., 2023) have shown LLMs
may develop biased reasoning from phrases with
overconfident meanings, a bias rooted in human
language’s unique features that can be observed in
our daily lives. For example, the human may utilize
phrase “I'm 100% certain...” with false statements
due to overconfidence. Also, such phrase often im-
plies negation in LLMs’ pre-training corpora (e.g.,
“I’m not 100% sure’’), which can also bias LLMs
reasoning.

Inspired by (Liu et al., 2022) that utilizes over-
parameterization to handle label noise by assign-
ing a specific output parameter to each data point
and then mitigating corrupted label noise through
inference without these parameters, we introduce
a new strategy within our LEABNB framework,
termed Bias-learning. This method employs the

prompt prompt., characterized by overconfidence
and certainty, to update the model parameter 6.
In contrast, during inference, we employ prompts
prompt,, that are uncertain and conservative. The
name of our method, “Leave the bias in bias,” re-
flects its purpose. In QA tasks, using overly con-
fident phrases during model fine-tuning can intro-
duce biases. These biases originate from the corpus
knowledge acquired in the pre-training phase, often
associated with expressions of negation and incor-
rect answers. By introducing uncertainty during the
inference stage, we can modify the semantic envi-
ronment, enabling LLMs to confine the biases they
have learned within specific, overconfident prompt
environments, and encourage them to re-reason
their answers. As fine-tuning activates existing ca-
pabilities without adding new knowledge, correct
labeling remains unaffected, and the issue of hal-
lucinations due to overfitting on incorrect labels is
addressed. Consequently, the model parameters at
time step ¢ are updated according to the following
sequential rules:

9t+1 = 9t + anEDV 10gp0(3’|h’% (Z6)7 Xey
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where o represents the learning rate. After the
training, we perform the VQA task by sampling
model answers y’ with uncertain prompts: y’ ~
p@("h'y (Ze)7pr0mptu(x>)'

3 Experiment

To evaluate our method’s efficacy, we experimented
on four recognized datasets and designed three ex-
perimental settings: standard SFT training, MW-



Table 1: The performance of LEABNB on four datasets

Task Method 0% 10% 20% 40%
SFT 74.45+0.62 70.53 £0.54 65.96 + 1.02 45.42 £ 0.83
Slake MW-Net - 71.32+0.33 66.82 + 0.89 47.46 £0.23
ours - 71.82 4 0.51 68.53 & 0.63 51.67 4= 0.92
SFT 52.02+£0.53 48.84 £0.81 46.46 £0.41 37.25+£0.73
VQA-RAD MW-Net - 49.82 £ 0.53 47.62+£1.23 38.86 £0.63
ours - 50.17 £ 0.43 48.48 +0.68 41.69 + 1.22
SFT 64.51 £0.62 60.84 £0.58 54.63 £1.33 51.85£0.91
GQA MW-Net - 61.72+0.63 55.58 £ 0.66 54.72 £ 0.86
ours - 63.22 4+ 0.73 60.27 +1.29 57.14 4+ 0.97
SFT 4482 £1.22  42.76 £0.98 39.21£0.75 34.74 £0.86
OKVQA MW-Net - 43.42 +0.63  39.74 +0.56 34.24 £0.94
ours - 43.354+0.54 42.56 +£1.29 37.12 + 0.49

Net, and our approach. MW-Net excels in fine-
tuning MLLMs through a meta-network that dy-
namically adjusts loss function weights to alleviate
label noise impacts and prevent overfitting (Huang
etal., 2023; Friend et al., 1993; Zhang and Sabuncu,
2018). Other approaches handle label noise by esti-
mating a transition matrix, suitable only for classi-
fication with fixed classes (Yao et al., 2020; Yang
et al., 2022; Bae et al., 2024). In contrast, MW-
Net, a model-agnostic method, recalculates loss
values across various models and tasks, serving as
a versatile baseline in our experiments. We refer
the readers to Appendix C.1 for more information
about the dataset preparation and construction for
our experiment.

As shown in Table 1, we introduced different
levels of label noise into these datasets, specifically
including three noise levels of 10%, 20%, and 40%.
As the noise ratio increases, the memory effect of
deep learning models causes them to fit more incor-
rect knowledge, resulting in a significant decrease
in test accuracy. However, our method exhibits ex-
cellent robustness in handling high proportions of
noise. As noise levels increase, our method allows
the LLM to learn more biased information, which
significantly enhances its performance. We refer
the readers to Appendix C.2 for the information
about evaluation metrics and model hyperparame-
ters for the experiment.

The experimental results demonstrate that
LEABNB surpasses the baseline in almost all four
datasets. By observing the inference log, the results
likely arises from how language model responses
under LEABNB, consisting of multiple tokens, are
minimally affected by noisy labels that only al-
ter a few key tokens crucial for semantic meaning.
The answer of MW-Net, however, struggles with
these fine semantic distinctions between clean and

noisy labels, failing to adjust weights adequately
to prevent overfitting due to noisy data. Specifi-
cally, in the specialized medical VQA datasets, our
method performed better in the SLAKE dataset
than in the VQA-RAD dataset, likely due to dif-
ferences in handling open-ended questions. VQA-
RAD’s lengthier and more complex answers add
to the prediction challenges. Conversely, in the
general VQA datasets, our approach showed supe-
rior performance on the GQA dataset compared to
the OKVQA dataset because GQA questions de-
pend solely on the image and its contents, whereas
OKVQA requires integrating extensive external
knowledge, complicating the model’s ability to cap-
ture accurate answers.

To further evaluate our proposed LEABNB, we
ablate the effectiveness of Polyak Averaging and
Bias-learning to improve its robustness against
noisy data. The ablation results are shown in the
Appendix D.

4 Conclusion

In this study, we observe that label noise detri-
mentally affects both the visual and language mod-
ules of vision-based LLMs during the CVIF pro-
cess, reducing model performance. We introduce
LEABNB, a novel framework designed to miti-
gate label noise in vision-based LLMs by using
Polyak Averaging for enhanced stability in the
projection layer and employing bias learning to
utilize LLMs’ inherent deterministic semantic un-
derstanding. We tested LEABNB on two popular
vision-based LLMs across four open-source bench-
mark datasets, where it demonstrated substantial
improvements in general and domain-specific VQA
tasks. To the best of our knowledge, LEABNB is
the first framework specifically aimed at counter-
acting label noise during the CVIF process.



5 Limitations

In this study, we encountered several limitations
that can be addressed in the future. First, our ex-
periments were exclusively conducted using vision-
based LLMs on the Llama (Touvron et al., 2023)
and Vicuna (Chiang et al., 2023) with 7B parameter
sizes, leaving the impact of our research framework
on LLMs with large parameter scales as area for
future exploration. Second, we limited our inves-
tigation to four datasets, observing varied perfor-
mances of our framework across different general
and domain-specific VQA datasets. This varia-
tion highlights the need for further research to as-
sess the generalizability of our framework across
a wider range of VQA datasets from diverse do-
mains. Lastly, we discovered that the design of
the prompts plays a crucial role in influencing the
results of the inference process during learning.
Therefore, future studies will focus on developing
strategies for designing optimal and stable prompts
to improve inferential effectiveness.
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A Related work
A.1 Multimodal Large Language Models

LLMs have driven transformative advancements
in artificial intelligence and related fields. For in-
stance, ChatGPT (Abdullah et al., 2022), leverag-
ing cutting-edge techniques such as instructional
fine-tuning (Li et al., 2023c; Liu et al., 2023;
Ouyang et al., 2022) and reinforcement learning
from human feedback (RLHF) (Stiennon et al.,
2020), has demonstrated exceptional capabilities
in language understanding and logical reasoning.
Since the introduction of GPT-4 (Achiam et al.,
2023), researchers have explored its significant
multimodal capabilities. Multimodal learning in-
volves mapping data from different modalities
(i.e., text, images, and audio.) to a shared rep-
resentational space, enabling comparison, associ-
ation, or joint processing of data from these vari-
ous sources.CLIP (Radford et al., 2021) employs
contrastive learning to map images and text into
a shared vector space, thereby improving the se-
mantic alignment between visual and linguistic de-
scriptions. Subsequently, GIT (Wang et al., 2022)
refined spatial alignment between images and text,
while BLIP2 (Li et al., 2023b) improved the effi-
ciency of pre-trained models, optimizing their per-
formance. Flamingo (Alayrac et al., 2022) lever-
aged unsupervised pre-training on a large scale
of unannotated multimodal data, making it adept
at visual tasks with limited annotated resources.
MiniGPT-4 (Zhu et al., 2023) improved text genera-
tion through a training strategy using self-generated
data. LLaVA (Liu et al., 2023) achieved a map-
ping of visual and textual information to same-
dimensional embeddings, with updates in model
weights and fine-tuning significantly boosting per-
formance on complex semantic tasks.

A.2 The Impact of Uncertainty and
Overconfidence on Language Models

Early research on biases in language models and
computer systems (Friedman and Nissenbaum,
1996) revealed that such systems could exhibit bias
due to inherent data prejudices. This research un-
derscored the importance of understanding and ad-
dressing uncertainties and overconfidence in sys-
tems.

With advancements in deep learning in the 21st
century, more attention has been given to issues of
uncertainty and overconfidence in language mod-
els. However, earlier efforts primarily focused on

improving the accuracy of model confidence es-
timates(Sun et al., 2022; Kuhn et al., 2023), pre-
cisely measuring uncertainty(Kwiatkowski et al.,
2019; Liang et al., 2022), and optimizing cali-
bration performance. These studies adopted a
multi-dimensional approach ranging from model
ensembles to fine-tuning single-model details, aim-
ing to refine the models’ recognition and expres-
sion of predictive uncertainty.On the other hand,
some studies have examined the impact of certainty
in language expressions on model performance.
Mielke et al.(Mielke et al., 2022) proposed a solu-
tion to reduce model overconfidence through lin-
guistic calibration. Their research prioritized im-
proving the model’s certainty in responses to better
reflect the accuracy of its answers. Kadavath et
al.(Kadavath et al., 2022) experimented with the
model’s ability to express confidence after deter-
mining the correctness of its answers and found
the model to be relatively well-calibrated in vari-
ous scenarios. Their work further demonstrated the
model’s potential in self-assessing the accuracy of
its expressions. Recent work(Zhou et al., 2023) has
revealed the high sensitivity of Large Language
Models (LLMs) to certainty, uncertainty, or evi-
dential language prompts, indicating that prompts
with extreme certainty might compromise model
performance, while those containing uncertainty or
evidential cues could enhance it. This finding is sig-
nificant for optimizing the model’s input process-
ing mechanisms, showing potential for promoting
output accuracy through fine-tuning input prompts.

A.3 Label Noise

Learning from noisy data has been a persistent
area of focus for researchers aiming to mitigate
the impact of noise in training data, primarily con-
centrating on classification tasks. Existing studies,
such as Song et al.(Song et al., 2022), typically
employ robust architectural designs, regularization
techniques, loss function adjustments, or sample
selection strategies to suppress the adverse effects
of noisy labels.

Here, we discuss several popular works. Robust
loss functions(Zhang and Sabuncu, 2018; Wang
et al., 2019; Amid et al., 2019; Ma et al., 2020) are
among the most prevalent methods for addressing
label noise, aiming to reduce the loss impact of
outliers and thereby alleviate the effects of label
noise. Similar concepts are also present in gradient
clipping(Menon et al., 2019) and loss reweighting
strategies(Liu and Tao, 2015; Wang et al., 2017).



Among them, Meta-weight-net(Shu et al., 2019) is
a meta-learning method that aims to improve the
robustness of models on noisy labeled data by learn-
ing sample weights. It introduces a meta-network
to predict the weight of each training sample and
alternately optimizes with the main network. How-
ever, this method still faces challenges in practical
applications, such as the difficulty in designing and
optimizing the meta-network, high computational
overhead, and sensitivity to the distribution of noisy
labels.Another method to handle label noise oper-
ates on the assumption that noise labels are gener-
ated according to the conditional probability distri-
bution of the true labels. The key lies in estimating
this transition probability. Previous research(Chen
and Gupta, 2015; Goldberger and Ben-Reuven,
2016) achieved this by adding a noise adaptation
layer on top of the classification network and train-
ing it jointly. Later works(Patrini et al., 2017) es-
timate the transition probabilities independently,
but this typically relies on noise-free validation
data or additional assumptions.A third strategy for
combating label noise is sample selection, which
involves identifying and selecting clean samples
from noisy data. For instance, Arpit et al.(Arpit
et al., 2017) explored the tendency of deep net-
works to first learn simple (clean) patterns before
gradually adapting to the memorization of noisy
data. Based on this effect, Arazo et al. in 2019
used a bimodal Gaussian mixture model (GMM) to
fit the distribution of sample losses, thereby distin-
guishing clean samples as those with lower losses.
This method implies that networks can preferen-
tially learn "cleaner" samples first when faced with
complex, noisy data, providing another perspec-
tive for addressing the issue of noisy labels.In the
robust training of multimodal models, Elad Am-
rani et al.(Amrani et al., 2021) proposed a noise
estimation method based on multimodal density
estimation. By leveraging the inherent correlations
between different modalities, this method identi-
fies noisy samples and improves the robustness of
multimodal models, achieving comparable perfor-
mance to state-of-the-art methods on multiple tasks.
However, in the context of Large Language Models
(LLMs), the method assumes that noisy labels arise
from inconsistencies between modalities, which
does not fully align with the situations of human
or machine labeling errors. Furthermore, it does
not sufficiently consider the interaction between
noisy labels and the inherent knowledge of LLMs,
as well as the importance of domain knowledge.
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B The Label Noise Effects on VQA Tasks
During CVIF

To comprehensively analyze the impact of label
noise in both general and domain-specific contexts,
we selected two widely recognized vision-based
LLMs: Llava and MedVInT_TD (Zhang et al.,
2023b). These models differ in their VIF processes
but both involve training parameters 6 and . To
isolate the effects of label noise on 6 and -y, we per-
form CVIF following the training procedure simi-
lar to Equation (2) but optimize different parts of
the parameters independently. Initially, we freeze 0
and fine-tune  to solely investigate the influence of
~. Next, we freeze v and fine-tune 6 to observe the
label noise effects on LLM’s side. Finally, both
and -y are fine-tuned simultaneously on the dataset
to observe the overall influence under label noise.
This case study allows for a detailed examination of
how label noise distinctly affects each parameter.

The experimental results are presented in Ta-
ble 2. It is evident that label noise in dataset D¢
substantially impacts the learning of parameters
~ and 0, leading to decreased accuracy in VQA
tasks. This effect is observed in both open-ended
and multiple-choice (cloze) VQA formats. Notably,
when both v and 6 are influenced by label noise,
the error is not just additive but compounded, lead-
ing to more pronounced inaccuracies. Therefore,
in the development of the LEABNB framework, we
focus on mitigating the impact of label noise from
the perspectives of both v and 6.

Table 2: Case study conducted on the SLAKE dataset

Method 0% 10% 20% 40%
SFT 7445 70.53 6596 4542
Freeze Projection Layer 7124 66.52 46.76
Freeze LLMs 68.83 63.25 42.66

C Experiment Details

C.1 Datasets

Experiments in this study were conducted on
four open-source benchmark datasets: SLAKE
(Liu et al., 2021a), VQA-RAD (Lau et al., 2018),
GQA (Hudson and Manning, 2019), and OKVQA
(Marino et al., 2019). The SLAKE and VQA-RAD
datasets are dedicated to medical VQA tasks, while
GQA and OKVQA are widely used for evaluat-
ing general VQA tasks. Since the aforementioned
datasets are clean with accurately labeled data, to



simulate label noise, we employed a manual label
corruption approach. Considering the resource-
intensive nature of manual annotation, we opted to
randomly select 3,000 samples from the training
sets of the three datasets, excluding the complete
training set of VQA-RAD, to construct our exper-
imental training set. Additionally, we randomly
drew 800 samples from each corresponding set to

create our test set.

Answer:The posterior horn of
&8 the (left) lateral ven-
tricle.

Question:Is the p-
erson in the pic-
ture wearing blue
clothes?

Question:What is
the hypodensity in
the posterior left?

i L

8 Answer:io(Yes).

Figure 2: The figure illustrates the label noise discussed,
with “closed-ended” and “open-ended” classes repre-
sented on the left and right, respectively. Red texts
indicate clean labels, while pink texts denote manually
annotated label noise. All manual noise perturbations
are controlled within the same context, only changing
target words’ semantics without altering context, e.g.,
replacing "left" with "right" maintains context while
introducing semantic noise.

As shown in Figure 2, we utilized a label flipping
strategy for closed-ended question-answer pairs by
altering “yes” labels to “no” with given probability
and vice versa to generate erroneous labels, which
was in alignment with previous works (Han et al.,
2018; Liu et al., 2020; Xia et al., 2020). For open-
ended question-answer pairs, we manually injected
noise into the original labels with a given proba-
bility to simulate the presence of erroneous labels.
This noise strategically introduces deviations in
conceptual entities, effectively affecting label se-
mantics without altering the overall semantic con-
text of the sentence. This approach closely resem-
bles actual noise scenarios commonly encountered
in open-ended question-answering tasks, as incor-
rect labels often stem from subtle misunderstand-
ings, ambiguities, or inherent biases present in the
questions or answers. To ensure the robustness of
our experiments, for datasets containing both types
of question-answer pairs, we maintained random-
ness in our sampling and ensured a consistent ratio
of closed to open-ended samples.

C.2 Vision-based LLMs, Hyperparameters,
and Evaluation Metrics

We perform CVIF with two distinct models on two
categories of datasets to assess our method in both
general and domain-specific scenarios, with the
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different vision-based LL.Ms and hyperparameter
configurations detailed as follows:

SLAKE and VQA-RAD: we employed the
MedVInT-TD model (Zhang et al., 2023b), utiliz-
ing the AdamW optimizer with an initial universal
learning rate set to 2 x 10, without weight decay.
The batch size was fixed at 8, and each experiment
was conducted over five training epochs.

GQA and OKVQA: we deployed the LLaVA
model (Liu et al., 2023) also using the AdamW
optimizer. The initial learning rate was set at 2 X
10~ for the LLM and 2 x 10~ for the projection
layer, both without weight decay. The experiments
were conducted with a fixed batch size of 16 over
five training epochs.

For closed-ended questions, we report accuracy
as the performance metric. For open-ended ques-
tions, we employ recall to evaluate the propor-
tion of true labels present within the generated
sequences. For each task, we conduct five inde-
pendent experiments with random seeds and report
the mean accuracy as the result.

D Ablation

We conducted ablation studies on the GQA and
OKVQA datasets to evaluate the effectiveness of
the key components in our proposed methods, with
results presented in Table 3. As discussed in Ap-
pendix B, overfitting to noisy labels deteriorates
the performance of the projection layer and LLMs.
To address this issue, we evaluate the effectiveness
of two components: (1) the application of Polyak
Averaging to the projection layer ~ for gradual pa-
rameter updates, which reduces overfitting; and (2)
the incorporation of Bias-learning in fine-tuning
LLM @ to improve its robustness against noisy data.
The experimental results demonstrate that these
strategies significantly enhance the model’s robust-
ness in VQA tasks in the presence of label noise.

Table 3: Ablation results on GQA and OKVQA tasks

Task Method 10% 20% 40%
Bias-learning 61.25 58.12 55.24
GQA Polyak Averaging 62.51 57.56 54.63
LEABNB 63.22 60.27 57.14
Bias-learning 43.19 41.33 36.44
OKVQA Polyak Averaging 4291 41.87 35.84
LEABNB 43.35 4256 37.12

To further elucidate the underlying mechanisms
of bias-leaning, we conducted tests within a se-



mantic environment solely containing uncertainty
prompts. The experimental results are detailed in
Table 4. When relying exclusively on uncertainty
prompts to guide the reasoning of MLLMs with-
out allowing the model to learn from biases, the
performance of the model was actually negatively
impacted. These findings further underscore the
importance and effectiveness of bias learning in

handling noisy data.

Table 4: Results of uncertain inference under standard

methods
Task Method 10% 20% 40%
GOA SFT 60.84 54.63 51.85
Uncertain-inference 58.62 53.26 50.52
SFT 42.76 39.21 34.74
OKVQA Uncertain-inference 40.51 39.86 31.94
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