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Abstract

In recent years, multimodal large language001
models (MLLMs) with vision processing ca-002
pability have shown substantial advancements,003
excelling particularly in interpreting general004
images. Their application in domain-specific005
tasks, like those in the medical fields, is fur-006
ther enhanced through continuous visual in-007
struction fine-tuning (CVIF). Despite these ad-008
vancements, a significant challenge arises from009
label noise encountered during the collection010
of domain-specific data. Our studies reveal that011
this label noise can adversely affect the learn-012
ing of vision projection embeddings and con-013
tribute to inaccuracies in LLMs’ fine-tuning,014
often leading to hallucinations. In this paper,015
we introduce a novel framework designed to016
minimize the impact of label noise. Our ap-017
proach focuses on stabilizing the learning of018
vision embeddings and reducing the effect of019
label noise through the inherent semantic un-020
derstanding of uncertainty in LLMs. Extensive021
experiments demonstrate that our framework022
maintains robust performance in general visual023
question-answer (VQA) tasks while showing024
significant effectiveness in medical VQA tasks.025
To the best of our knowledge, this is the first026
study to specifically address and analyze the027
impact of label noise in CVIF.028

1 Introduction029

Recent advancements in large language models030

(LLMs) have significantly advanced artificial gen-031

eral intelligence (AGI) (Touvron et al., 2023;032

Floridi and Chiriatti, 2020; Chiang et al., 2023).033

Enhancing LLMs’ ability to process multimodal034

real-world data, particularly integrating visual data,035

is key to developing universal AGI interfaces that036

facilitate human interaction (Radford et al., 2021).037

Studies have focused on using vision-instructed038

tuning to align visual inputs with semantic repre-039

sentations in LLMs, enabling them to process real-040

world visual signals (Li et al., 2023b; Zhu et al.,041

2023; Liu et al., 2023). This alignment enhances 042

the capabilities of AGI assistants, allowing users 043

to interact with and manipulate visual inputs using 044

natural language commands. 045

To improve the performance of multimodal large 046

language models (MLLMs) in specific domains, 047

it’s crucial to apply continuous multimodal instruc- 048

tion fine-tuning using tailored datasets (Zhang et al., 049

2023a; Yan et al., 2021; Wu et al., 2023). This tech- 050

nique is also vital for visual-based LLMs, where 051

continual vision instruction fine-tuning (CVIF) 052

leverages domain-specific images and guidance (Li 053

et al., 2023a; Zhang et al., 2023b). However, build- 054

ing these datasets often encounters the challenge 055

of label noise—incorrect or inaccurate labels stem- 056

ming from data annotation inconsistencies, auto- 057

mated processing errors, or subjective human judg- 058

ment, especially in complex areas like medicine 059

where expert interpretations vary (Han et al., 2018; 060

Liu et al., 2020; Xia et al., 2020; Liu et al., 2021b). 061

Label noise in instructional data induces halluci- 062

nations in LLMs post fine-tuning, notably in text- 063

based LLMs (Qi et al., 2023; Dong et al., 2023) but 064

is under-researched in vision-based models, par- 065

ticularly in general visual question-answer (VQA) 066

tasks. Section B of our study reveals that label 067

noise not only triggers hallucinations in vision- 068

based LLMs but also adversely affects the projec- 069

tion layer, crucial for visual interpretation (Li et al., 070

2023b; Zhu et al., 2023; Liu et al., 2023). This dual 071

impact significantly biases inference. Prior studies 072

mainly consider label noise in classification tasks 073

using label transition matrices (Zhang and Sabuncu, 074

2018; Wang et al., 2017; Chen and Gupta, 2015; 075

Yong et al., 2022), which are insufficient for the 076

nuanced demands of VQA tasks. 077

We propose a novel framework targeting VQA 078

tasks that mitigates label noise by focusing on both 079

the projection layer and LLMs. We first employ 080

Polyak averaging techniques (Polyak, 1964) to re- 081

duce the overfitting of bias in projection layers. 082
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Concurrently, we leverage the inherent bias under-083

standing of certain phrases within LLMs (Zhou084

et al., 2023), which learned from extensive text085

corpus learning, to learn the bias instruction data086

and infer uncertainly to mitigate the label noise087

influence. Hence, we term our framework “Leave088

the Bias in Bias” (LEABNB). We conduct ex-089

periments in general VQA tasks using the Llava090

model (Liu et al., 2023) and domain-specific medi-091

cal VQA tasks employing MedVInT_TD (Zhang092

et al., 2023b). Experimental results indicate that093

LEABNB demonstrates significant robustness to094

label noise and achieves performance comparable095

to the standard fine-tuning process when applied to096

clean datasets. This makes LEABNB well-suited097

for general CVIF scenarios. Our contributions are098

concluded as follows:099

• We first investigate the label noise effect of100

vision-based LLMs in CVIF.101

• Building upon these findings, we introduce102

LEABNB, a novel framework designed to ef-103

fectively mitigate the effects of label noise in104

CVIF.105

• Our methodology validates and leverages the106

LLMs’ inherent bias understanding of certain107

phrases in label noise reduction.108

• To the best of our knowledge, LEABNB rep-109

resents the first framework for mitigating the110

effect of label noise in CVIF.111

2 Method112

2.1 Preliminary113

Vision-based LLMs integrate pre-trained textual114

LLMs (Chiang et al., 2023; Touvron et al., 2023)115

with visual models (Radford et al., 2021), which116

are initially trained on distinct datasets for text and117

images. For applications like VQA, it is crucial to118

align visual information with the text-based knowl-119

edge of LLMs. A standard pre-trained LLM, pθ,120

undergoes fine-tuning with an instruction dataset121

DIF , comprising instruction-response pairs (x,y).122

This process aims to maximize the log-likelihood123

of generating correct responses, formulated as:124

EDIF
log pθ(y) = EDIF

log
k∏

i=1

pθ(yi|x), (1)125

Additionally, techniques like RLHF (Ouyang et al.,126

2022) are utilized to enhance alignment with hu-127

man instructions and promote the LLMs’ helpful- 128

ness, harmlessness, and honesty. 129

To enable LLMs to process visual information, 130

we employ a pre-trained visual model, specifically 131

CLIP (Radford et al., 2021), to generate visual 132

embeddings ze = g(z). These embeddings are in- 133

tegrated into LLMs using a projection encoder hγ 134

and a vision instruction fine-tuning (VIF) dataset 135

DV , which consists of tuples (z,x,y). The vision- 136

augmented LLM, denoted as πθ,γ , merges param- 137

eters θ from the LLM and γ from the projection 138

layer. Optimization is achieved by maximizing the 139

model’s log-likelihood: 140

EDV
log πθ,γ(y) = EDV

log
k∏

i=1

pθ(yi|hγ(ze),x),

(2) 141

where the expectation is calculated over the VIF 142

dataset, considering output tokens yi, conditioned 143

on projected embeddings and input tokens. For 144

domain-specific applications like medical VQA, 145

we adapt the LLM using a specialized dataset DC , 146

following Equation (2). 147

However, a critical issue in CVIF is the intro- 148

duction of label noise during the learning process. 149

Label noise, which stems from human or machine 150

errors in dataset labels (Algan and Ulusoy, 2021), 151

can significantly undermine the learning process. 152

For instance, a benign skin lesion in a medical 153

dataset might be mislabeled as malignant due to 154

diagnostic inaccuracies (Liu et al., 2021b). Such 155

errors can cause inconsistencies across datasets 156

and conflict with the intrinsic knowledge of LLMs. 157

Consequently, when πθ,γ is fine-tuned with these 158

datasets, it may destabilize the learning process 159

and lead to misinterpretations of medical images, a 160

critical concern in healthcare. 161

2.2 Leave the Bias in Bias 162

By analyzing the impact of label noise in Appendix 163

B, the label noise can influence both θ and γ, and 164

induce compounded performance drop. Here, we 165

present the LEABNB framework to mitigate label 166

noise influence in CVIF, which is shown in Figure 1. 167

Based on the case study results shown in the Table 168

2, we can initially froze the projection layer to mit- 169

igate overfitting from noisy labels, which proved 170

somewhat effective. However, this approach lim- 171

ited the model’s ability to generalize to new tasks. 172

Consequently, we adopted Polyak Averaging for 173

the projection layer γ, employing a decay factor 174

λ to modulate updates, as illustrated in Equation 175
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Figure 1: The CVIF phase for vision-based LLMs, depicted on the left, incorporates a specific preprocessing
protocol. We use a graphical template to format “Questions” and “Answers” for VQA tasks and initiate with a
biased, leading prompt to evoke an overly confident response from the model. The Polyak averaging strategy
manages the weight updates in the projection layer. The inference phase, shown on the right, demonstrates that
using promptc (e.g., “100% confidence”) leads to biased and often incorrect responses. Conversely, employing
promptu (e.g., “90% confidence”) helps the model shed its biases and produce more accurate answers.

(3). At each iteration t + 1, the parameters are176

updated by combining them, scaled by λ = 0.05,177

with the parameters from the previous time step t.178

This method not only preserves the model’s gen-179

eralization across new tasks but also counters the180

detrimental effects of noisy data.181

γ̄t+1 = λγ̄t+1 + (1− λ)γt, (3)182

where λ tuning the update extent and γt+1 updated183

by Equation (2).184

In the field of LLMs, which are generative rather185

than typical classification-based, traditional meth-186

ods (Radford et al., 2019) for handling label noise187

are ineffective. This is because LLMs depend on188

semantic comprehension rather than purely prob-189

abilistic learning on labeled data. Our proposed190

framework, LEABNB, seeks to mitigate label noise191

in LLMs by exploiting their semantic capabilities.192

Several studies (Laranjo et al., 2018; Kadavath193

et al., 2022; Zhou et al., 2023) have shown LLMs194

may develop biased reasoning from phrases with195

overconfident meanings, a bias rooted in human196

language’s unique features that can be observed in197

our daily lives. For example, the human may utilize198

phrase “I’m 100% certain...” with false statements199

due to overconfidence. Also, such phrase often im-200

plies negation in LLMs’ pre-training corpora (e.g.,201

“I’m not 100% sure”), which can also bias LLMs202

reasoning.203

Inspired by (Liu et al., 2022) that utilizes over-204

parameterization to handle label noise by assign-205

ing a specific output parameter to each data point206

and then mitigating corrupted label noise through207

inference without these parameters, we introduce208

a new strategy within our LEABNB framework,209

termed Bias-learning. This method employs the210

prompt promptc, characterized by overconfidence 211

and certainty, to update the model parameter θ. 212

In contrast, during inference, we employ prompts 213

promptu that are uncertain and conservative. The 214

name of our method, “Leave the bias in bias,” re- 215

flects its purpose. In QA tasks, using overly con- 216

fident phrases during model fine-tuning can intro- 217

duce biases. These biases originate from the corpus 218

knowledge acquired in the pre-training phase, often 219

associated with expressions of negation and incor- 220

rect answers. By introducing uncertainty during the 221

inference stage, we can modify the semantic envi- 222

ronment, enabling LLMs to confine the biases they 223

have learned within specific, overconfident prompt 224

environments, and encourage them to re-reason 225

their answers. As fine-tuning activates existing ca- 226

pabilities without adding new knowledge, correct 227

labeling remains unaffected, and the issue of hal- 228

lucinations due to overfitting on incorrect labels is 229

addressed. Consequently, the model parameters at 230

time step t are updated according to the following 231

sequential rules: 232

θt+1 = θt + α∇θEDV
log pθ(y|hγ̄t(ze),xc,

γt+1 = γ̄t + α∇γEDV
log pθ(y|hγ̄t(ze),xc,

γ̄t+1 = λγ̄t + (1− λ)γt+1,xc = promptc(x))
(4) 233

where α represents the learning rate. After the 234

training, we perform the VQA task by sampling 235

model answers y′ with uncertain prompts: y′ ∼ 236

pθ(·|hγ(ze), promptu(x)). 237

3 Experiment 238

To evaluate our method’s efficacy, we experimented 239

on four recognized datasets and designed three ex- 240

perimental settings: standard SFT training, MW- 241
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Table 1: The performance of LEABNB on four datasets

Task Method 0% 10% 20% 40%

Slake
SFT 74.45± 0.62 70.53± 0.54 65.96± 1.02 45.42± 0.83
MW-Net - 71.32± 0.33 66.82± 0.89 47.46± 0.23
ours - 71.82 ± 0.51 68.53 ± 0.63 51.67 ± 0.92

VQA-RAD
SFT 52.02± 0.53 48.84± 0.81 46.46± 0.41 37.25± 0.73
MW-Net - 49.82± 0.53 47.62± 1.23 38.86± 0.63
ours - 50.17 ± 0.43 48.48 ± 0.68 41.69 ± 1.22

GQA
SFT 64.51± 0.62 60.84± 0.58 54.63± 1.33 51.85± 0.91
MW-Net - 61.72± 0.63 55.58± 0.66 54.72± 0.86
ours - 63.22 ± 0.73 60.27 ± 1.29 57.14 ± 0.97

OKVQA
SFT 44.82± 1.22 42.76± 0.98 39.21± 0.75 34.74± 0.86
MW-Net - 43.42 ± 0.63 39.74± 0.56 34.24± 0.94
ours - 43.35± 0.54 42.56 ± 1.29 37.12 ± 0.49

Net, and our approach. MW-Net excels in fine-242

tuning MLLMs through a meta-network that dy-243

namically adjusts loss function weights to alleviate244

label noise impacts and prevent overfitting (Huang245

et al., 2023; Friend et al., 1993; Zhang and Sabuncu,246

2018). Other approaches handle label noise by esti-247

mating a transition matrix, suitable only for classi-248

fication with fixed classes (Yao et al., 2020; Yang249

et al., 2022; Bae et al., 2024). In contrast, MW-250

Net, a model-agnostic method, recalculates loss251

values across various models and tasks, serving as252

a versatile baseline in our experiments. We refer253

the readers to Appendix C.1 for more information254

about the dataset preparation and construction for255

our experiment.256

As shown in Table 1, we introduced different257

levels of label noise into these datasets, specifically258

including three noise levels of 10%, 20%, and 40%.259

As the noise ratio increases, the memory effect of260

deep learning models causes them to fit more incor-261

rect knowledge, resulting in a significant decrease262

in test accuracy. However, our method exhibits ex-263

cellent robustness in handling high proportions of264

noise. As noise levels increase, our method allows265

the LLM to learn more biased information, which266

significantly enhances its performance. We refer267

the readers to Appendix C.2 for the information268

about evaluation metrics and model hyperparame-269

ters for the experiment.270

The experimental results demonstrate that271

LEABNB surpasses the baseline in almost all four272

datasets. By observing the inference log, the results273

likely arises from how language model responses274

under LEABNB, consisting of multiple tokens, are275

minimally affected by noisy labels that only al-276

ter a few key tokens crucial for semantic meaning.277

The answer of MW-Net, however, struggles with278

these fine semantic distinctions between clean and279

noisy labels, failing to adjust weights adequately 280

to prevent overfitting due to noisy data. Specifi- 281

cally, in the specialized medical VQA datasets, our 282

method performed better in the SLAKE dataset 283

than in the VQA-RAD dataset, likely due to dif- 284

ferences in handling open-ended questions. VQA- 285

RAD’s lengthier and more complex answers add 286

to the prediction challenges. Conversely, in the 287

general VQA datasets, our approach showed supe- 288

rior performance on the GQA dataset compared to 289

the OKVQA dataset because GQA questions de- 290

pend solely on the image and its contents, whereas 291

OKVQA requires integrating extensive external 292

knowledge, complicating the model’s ability to cap- 293

ture accurate answers. 294

To further evaluate our proposed LEABNB, we 295

ablate the effectiveness of Polyak Averaging and 296

Bias-learning to improve its robustness against 297

noisy data. The ablation results are shown in the 298

Appendix D. 299

4 Conclusion 300

In this study, we observe that label noise detri- 301

mentally affects both the visual and language mod- 302

ules of vision-based LLMs during the CVIF pro- 303

cess, reducing model performance. We introduce 304

LEABNB, a novel framework designed to miti- 305

gate label noise in vision-based LLMs by using 306

Polyak Averaging for enhanced stability in the 307

projection layer and employing bias learning to 308

utilize LLMs’ inherent deterministic semantic un- 309

derstanding. We tested LEABNB on two popular 310

vision-based LLMs across four open-source bench- 311

mark datasets, where it demonstrated substantial 312

improvements in general and domain-specific VQA 313

tasks. To the best of our knowledge, LEABNB is 314

the first framework specifically aimed at counter- 315

acting label noise during the CVIF process. 316
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5 Limitations317

In this study, we encountered several limitations318

that can be addressed in the future. First, our ex-319

periments were exclusively conducted using vision-320

based LLMs on the Llama (Touvron et al., 2023)321

and Vicuna (Chiang et al., 2023) with 7B parameter322

sizes, leaving the impact of our research framework323

on LLMs with large parameter scales as area for324

future exploration. Second, we limited our inves-325

tigation to four datasets, observing varied perfor-326

mances of our framework across different general327

and domain-specific VQA datasets. This varia-328

tion highlights the need for further research to as-329

sess the generalizability of our framework across330

a wider range of VQA datasets from diverse do-331

mains. Lastly, we discovered that the design of332

the prompts plays a crucial role in influencing the333

results of the inference process during learning.334

Therefore, future studies will focus on developing335

strategies for designing optimal and stable prompts336

to improve inferential effectiveness.337
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A Related work643

A.1 Multimodal Large Language Models644

LLMs have driven transformative advancements645

in artificial intelligence and related fields. For in-646

stance, ChatGPT (Abdullah et al., 2022), leverag-647

ing cutting-edge techniques such as instructional648

fine-tuning (Li et al., 2023c; Liu et al., 2023;649

Ouyang et al., 2022) and reinforcement learning650

from human feedback (RLHF) (Stiennon et al.,651

2020), has demonstrated exceptional capabilities652

in language understanding and logical reasoning.653

Since the introduction of GPT-4 (Achiam et al.,654

2023), researchers have explored its significant655

multimodal capabilities. Multimodal learning in-656

volves mapping data from different modalities657

(i.e., text, images, and audio.) to a shared rep-658

resentational space, enabling comparison, associ-659

ation, or joint processing of data from these vari-660

ous sources.CLIP (Radford et al., 2021) employs661

contrastive learning to map images and text into662

a shared vector space, thereby improving the se-663

mantic alignment between visual and linguistic de-664

scriptions. Subsequently, GIT (Wang et al., 2022)665

refined spatial alignment between images and text,666

while BLIP2 (Li et al., 2023b) improved the effi-667

ciency of pre-trained models, optimizing their per-668

formance. Flamingo (Alayrac et al., 2022) lever-669

aged unsupervised pre-training on a large scale670

of unannotated multimodal data, making it adept671

at visual tasks with limited annotated resources.672

MiniGPT-4 (Zhu et al., 2023) improved text genera-673

tion through a training strategy using self-generated674

data. LLaVA (Liu et al., 2023) achieved a map-675

ping of visual and textual information to same-676

dimensional embeddings, with updates in model677

weights and fine-tuning significantly boosting per-678

formance on complex semantic tasks.679

A.2 The Impact of Uncertainty and680

Overconfidence on Language Models681

Early research on biases in language models and682

computer systems (Friedman and Nissenbaum,683

1996) revealed that such systems could exhibit bias684

due to inherent data prejudices. This research un-685

derscored the importance of understanding and ad-686

dressing uncertainties and overconfidence in sys-687

tems.688

With advancements in deep learning in the 21st689

century, more attention has been given to issues of690

uncertainty and overconfidence in language mod-691

els. However, earlier efforts primarily focused on692

improving the accuracy of model confidence es- 693

timates(Sun et al., 2022; Kuhn et al., 2023), pre- 694

cisely measuring uncertainty(Kwiatkowski et al., 695

2019; Liang et al., 2022), and optimizing cali- 696

bration performance. These studies adopted a 697

multi-dimensional approach ranging from model 698

ensembles to fine-tuning single-model details, aim- 699

ing to refine the models’ recognition and expres- 700

sion of predictive uncertainty.On the other hand, 701

some studies have examined the impact of certainty 702

in language expressions on model performance. 703

Mielke et al.(Mielke et al., 2022) proposed a solu- 704

tion to reduce model overconfidence through lin- 705

guistic calibration. Their research prioritized im- 706

proving the model’s certainty in responses to better 707

reflect the accuracy of its answers. Kadavath et 708

al.(Kadavath et al., 2022) experimented with the 709

model’s ability to express confidence after deter- 710

mining the correctness of its answers and found 711

the model to be relatively well-calibrated in vari- 712

ous scenarios. Their work further demonstrated the 713

model’s potential in self-assessing the accuracy of 714

its expressions. Recent work(Zhou et al., 2023) has 715

revealed the high sensitivity of Large Language 716

Models (LLMs) to certainty, uncertainty, or evi- 717

dential language prompts, indicating that prompts 718

with extreme certainty might compromise model 719

performance, while those containing uncertainty or 720

evidential cues could enhance it. This finding is sig- 721

nificant for optimizing the model’s input process- 722

ing mechanisms, showing potential for promoting 723

output accuracy through fine-tuning input prompts. 724

A.3 Label Noise 725

Learning from noisy data has been a persistent 726

area of focus for researchers aiming to mitigate 727

the impact of noise in training data, primarily con- 728

centrating on classification tasks. Existing studies, 729

such as Song et al.(Song et al., 2022), typically 730

employ robust architectural designs, regularization 731

techniques, loss function adjustments, or sample 732

selection strategies to suppress the adverse effects 733

of noisy labels. 734

Here, we discuss several popular works. Robust 735

loss functions(Zhang and Sabuncu, 2018; Wang 736

et al., 2019; Amid et al., 2019; Ma et al., 2020) are 737

among the most prevalent methods for addressing 738

label noise, aiming to reduce the loss impact of 739

outliers and thereby alleviate the effects of label 740

noise. Similar concepts are also present in gradient 741

clipping(Menon et al., 2019) and loss reweighting 742

strategies(Liu and Tao, 2015; Wang et al., 2017). 743
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Among them, Meta-weight-net(Shu et al., 2019) is744

a meta-learning method that aims to improve the745

robustness of models on noisy labeled data by learn-746

ing sample weights. It introduces a meta-network747

to predict the weight of each training sample and748

alternately optimizes with the main network. How-749

ever, this method still faces challenges in practical750

applications, such as the difficulty in designing and751

optimizing the meta-network, high computational752

overhead, and sensitivity to the distribution of noisy753

labels.Another method to handle label noise oper-754

ates on the assumption that noise labels are gener-755

ated according to the conditional probability distri-756

bution of the true labels. The key lies in estimating757

this transition probability. Previous research(Chen758

and Gupta, 2015; Goldberger and Ben-Reuven,759

2016) achieved this by adding a noise adaptation760

layer on top of the classification network and train-761

ing it jointly. Later works(Patrini et al., 2017) es-762

timate the transition probabilities independently,763

but this typically relies on noise-free validation764

data or additional assumptions.A third strategy for765

combating label noise is sample selection, which766

involves identifying and selecting clean samples767

from noisy data. For instance, Arpit et al.(Arpit768

et al., 2017) explored the tendency of deep net-769

works to first learn simple (clean) patterns before770

gradually adapting to the memorization of noisy771

data. Based on this effect, Arazo et al. in 2019772

used a bimodal Gaussian mixture model (GMM) to773

fit the distribution of sample losses, thereby distin-774

guishing clean samples as those with lower losses.775

This method implies that networks can preferen-776

tially learn "cleaner" samples first when faced with777

complex, noisy data, providing another perspec-778

tive for addressing the issue of noisy labels.In the779

robust training of multimodal models, Elad Am-780

rani et al.(Amrani et al., 2021) proposed a noise781

estimation method based on multimodal density782

estimation. By leveraging the inherent correlations783

between different modalities, this method identi-784

fies noisy samples and improves the robustness of785

multimodal models, achieving comparable perfor-786

mance to state-of-the-art methods on multiple tasks.787

However, in the context of Large Language Models788

(LLMs), the method assumes that noisy labels arise789

from inconsistencies between modalities, which790

does not fully align with the situations of human791

or machine labeling errors. Furthermore, it does792

not sufficiently consider the interaction between793

noisy labels and the inherent knowledge of LLMs,794

as well as the importance of domain knowledge.795

B The Label Noise Effects on VQA Tasks 796

During CVIF 797

To comprehensively analyze the impact of label 798

noise in both general and domain-specific contexts, 799

we selected two widely recognized vision-based 800

LLMs: Llava and MedVInT_TD (Zhang et al., 801

2023b). These models differ in their VIF processes 802

but both involve training parameters θ and γ. To 803

isolate the effects of label noise on θ and γ, we per- 804

form CVIF following the training procedure simi- 805

lar to Equation (2) but optimize different parts of 806

the parameters independently. Initially, we freeze θ 807

and fine-tune γ to solely investigate the influence of 808

γ. Next, we freeze γ and fine-tune θ to observe the 809

label noise effects on LLM’s side. Finally, both θ 810

and γ are fine-tuned simultaneously on the dataset 811

to observe the overall influence under label noise. 812

This case study allows for a detailed examination of 813

how label noise distinctly affects each parameter. 814

The experimental results are presented in Ta- 815

ble 2. It is evident that label noise in dataset DC 816

substantially impacts the learning of parameters 817

γ and θ, leading to decreased accuracy in VQA 818

tasks. This effect is observed in both open-ended 819

and multiple-choice (cloze) VQA formats. Notably, 820

when both γ and θ are influenced by label noise, 821

the error is not just additive but compounded, lead- 822

ing to more pronounced inaccuracies. Therefore, 823

in the development of the LEABNB framework, we 824

focus on mitigating the impact of label noise from 825

the perspectives of both γ and θ. 826

Table 2: Case study conducted on the SLAKE dataset

Method 0% 10% 20% 40%

SFT 74.45 70.53 65.96 45.42
Freeze Projection Layer - 71.24 66.52 46.76
Freeze LLMs - 68.83 63.25 42.66

C Experiment Details 827

C.1 Datasets 828

Experiments in this study were conducted on 829

four open-source benchmark datasets: SLAKE 830

(Liu et al., 2021a), VQA-RAD (Lau et al., 2018), 831

GQA (Hudson and Manning, 2019), and OKVQA 832

(Marino et al., 2019). The SLAKE and VQA-RAD 833

datasets are dedicated to medical VQA tasks, while 834

GQA and OKVQA are widely used for evaluat- 835

ing general VQA tasks. Since the aforementioned 836

datasets are clean with accurately labeled data, to 837
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simulate label noise, we employed a manual label838

corruption approach. Considering the resource-839

intensive nature of manual annotation, we opted to840

randomly select 3,000 samples from the training841

sets of the three datasets, excluding the complete842

training set of VQA-RAD, to construct our exper-843

imental training set. Additionally, we randomly844

drew 800 samples from each corresponding set to845

create our test set.846

Figure 2: The figure illustrates the label noise discussed,
with “closed-ended” and “open-ended” classes repre-
sented on the left and right, respectively. Red texts
indicate clean labels, while pink texts denote manually
annotated label noise. All manual noise perturbations
are controlled within the same context, only changing
target words’ semantics without altering context, e.g.,
replacing "left" with "right" maintains context while
introducing semantic noise.

As shown in Figure 2, we utilized a label flipping847

strategy for closed-ended question-answer pairs by848

altering “yes” labels to “no” with given probability849

and vice versa to generate erroneous labels, which850

was in alignment with previous works (Han et al.,851

2018; Liu et al., 2020; Xia et al., 2020). For open-852

ended question-answer pairs, we manually injected853

noise into the original labels with a given proba-854

bility to simulate the presence of erroneous labels.855

This noise strategically introduces deviations in856

conceptual entities, effectively affecting label se-857

mantics without altering the overall semantic con-858

text of the sentence. This approach closely resem-859

bles actual noise scenarios commonly encountered860

in open-ended question-answering tasks, as incor-861

rect labels often stem from subtle misunderstand-862

ings, ambiguities, or inherent biases present in the863

questions or answers. To ensure the robustness of864

our experiments, for datasets containing both types865

of question-answer pairs, we maintained random-866

ness in our sampling and ensured a consistent ratio867

of closed to open-ended samples.868

C.2 Vision-based LLMs, Hyperparameters,869

and Evaluation Metrics870

We perform CVIF with two distinct models on two871

categories of datasets to assess our method in both872

general and domain-specific scenarios, with the873

different vision-based LLMs and hyperparameter 874

configurations detailed as follows: 875

SLAKE and VQA-RAD: we employed the 876

MedVInT-TD model (Zhang et al., 2023b), utiliz- 877

ing the AdamW optimizer with an initial universal 878

learning rate set to 2× 10−5, without weight decay. 879

The batch size was fixed at 8, and each experiment 880

was conducted over five training epochs. 881

GQA and OKVQA: we deployed the LLaVA 882

model (Liu et al., 2023) also using the AdamW 883

optimizer. The initial learning rate was set at 2× 884

10−5 for the LLM and 2× 10−4 for the projection 885

layer, both without weight decay. The experiments 886

were conducted with a fixed batch size of 16 over 887

five training epochs. 888

For closed-ended questions, we report accuracy 889

as the performance metric. For open-ended ques- 890

tions, we employ recall to evaluate the propor- 891

tion of true labels present within the generated 892

sequences. For each task, we conduct five inde- 893

pendent experiments with random seeds and report 894

the mean accuracy as the result. 895

D Ablation 896

We conducted ablation studies on the GQA and 897

OKVQA datasets to evaluate the effectiveness of 898

the key components in our proposed methods, with 899

results presented in Table 3. As discussed in Ap- 900

pendix B, overfitting to noisy labels deteriorates 901

the performance of the projection layer and LLMs. 902

To address this issue, we evaluate the effectiveness 903

of two components: (1) the application of Polyak 904

Averaging to the projection layer γ for gradual pa- 905

rameter updates, which reduces overfitting; and (2) 906

the incorporation of Bias-learning in fine-tuning 907

LLM θ to improve its robustness against noisy data. 908

The experimental results demonstrate that these 909

strategies significantly enhance the model’s robust- 910

ness in VQA tasks in the presence of label noise. 911

Table 3: Ablation results on GQA and OKVQA tasks

Task Method 10% 20% 40%

GQA
Bias-learning 61.25 58.12 55.24
Polyak Averaging 62.51 57.56 54.63
LEABNB 63.22 60.27 57.14

OKVQA
Bias-learning 43.19 41.33 36.44
Polyak Averaging 42.91 41.87 35.84
LEABNB 43.35 42.56 37.12

To further elucidate the underlying mechanisms 912

of bias-leaning, we conducted tests within a se- 913
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mantic environment solely containing uncertainty914

prompts. The experimental results are detailed in915

Table 4. When relying exclusively on uncertainty916

prompts to guide the reasoning of MLLMs with-917

out allowing the model to learn from biases, the918

performance of the model was actually negatively919

impacted. These findings further underscore the920

importance and effectiveness of bias learning in921

handling noisy data.922

Table 4: Results of uncertain inference under standard
methods

Task Method 10% 20% 40%

GQA
SFT 60.84 54.63 51.85
Uncertain-inference 58.62 53.26 50.52

OKVQA
SFT 42.76 39.21 34.74
Uncertain-inference 40.51 39.86 31.94
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