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ABSTRACT

There is a significant gap between our theoretical understanding of optimization
algorithms used in deep learning and their practical performance. Theoretical de-
velopment usually focuses on proving convergence guarantees under a variety of
different assumptions, which are themselves often chosen based on a rough com-
bination of intuitive match to practice and analytical convenience. In this paper,
we carefully measure the degree to which the standard optimization analyses are
capable of explaining modern algorithms. To do this, we develop new empirical
metrics that compare real optimization behavior with analytically predicted behav-
ior. Our investigation is notable for its tight integration with modern optimization
analysis: rather than simply checking high-level assumptions made in the analysis
(e.g. smoothness), we also verify key low-level identities used by the analysis to
explain optimization behavior that might hold even if the high-level motivating
assumptions do not. In general, we find that real optimizers often make progress
even when typical optimization analysis suggests that they should not. This high-
lights a need for developing new theoretical frameworks that are better aligned
with practice.

1 INTRODUCTION

In optimization theory, algorithmic development and analysis requires a set of assumptions about the
functions we aim to optimize. These assumptions fundamentally influence the behavior of optimiza-
tion algorithms and their efficacy in practice. For example, Adagrad (Duchi et al., 2011; McMahan &
Streeter, 2010) (which later inspired Adam (Kingma & Ba, 2014)) classically relies on the convexity
assumption to provide a theoretical convergence guarantee. When the loss is non-convex, a variety
of alternate assumptions are deployed, such as smoothness (e.g. a bounded Hessian) (Ghadimi &
Lan, 2013; Carmon et al., 2017; Li & Orabona, 2019; Ward et al., 2020; Wang et al., 2023) or “weak
convexity” (Davis & Drusvyatskiy, 2019; Mai & Johansson, 2020; Liu et al., 2023b). If these con-
ditions are not met, the convergence analyses of these algorithms may longer hold. In this paper, we
systematically verify these assumptions and related optimization analyses across various deep learn-
ing tasks using simple, computationally feasible methods. We hope that our findings will serve as
a guideline for future research, helping to develop theoretical frameworks that are both analytically
tractable and practically applicable.

Importantly, we do not want to just ask “do current assumptions apply to deep neural networks”.
Instead, we wish to ask whether the analyses based on currently prevalent techniques can predict
current practical performance. This is a subtly different question: it turns out that most modern
analyses actually rely on a few key identities. These identities are usually empirically measurable
from the iterates of an optimizer. In theoretical analysis, these identities are controlled via various
global assumptions (such as convexity or smoothness), but we instead measure directly these iden-
tities. This has a significant advantage: not only can it falsify the global assumptions, it can tell if
any different assumptions can be made that would “rescue” the analysis.

We propose simple, on-the-fly measures that capture how well modern analyses describe practice.
We measure these on a wide range of tasks, including basic convex optimization problems, image
classification tasks using deep residual networks, and pre-training large language models (LLMs).
Overall, our results suggest that most analytical techniques do not describe practical performance.
Our work fits into a recent trend of challenging and moving past classical optimization assumptions

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Simsekli et al. (2019); Zhang et al. (2020b;a); Davis et al. (2021; 2020). However, our focus is not on
algorithm development. Instead, we simply want to promote empirical verification of optimization
analysis.

Of independent interest, we develop a new smoothness measure closely approximating the sharpness
measure. This is an exciting finding, as our measure is computationally feasible even for very deep
networks, where computing sharpness is infeasible. This allows for the use of our smoothness mea-
sure in studying flat/sharp minima and their implications for generalization in much larger networks.
Finally, we offer alternative theoretical analyses for cases where common theoretical assumptions
do not hold.

Overall, we feel that our findings motivate two actions in the research community: first, it is im-
portant to develop new assumptions and analytical techniques to understand modern optimization.
Second, we advocate for verifying any new assumptions by carefully measuring quantities that ac-
tually appear in the optimization analysis rather than attempting to verify global assumptions.

2 BACKGROUND AND EXPERIMENT SETUP

In typical optimization analysis for machine learning, the goal is to minimize objective F given by
F (x) = Ez∼Pz

[f(x, z)], where f(x, z) : Rd × Z 7→ R is a differentiable function of x ∈ Rd. x
indicates the model parameters, z ∈ Z indicates an example data point or minibatch of examples,
and Pz is some data distribution. The function F represents either a train loss or a population loss
depending on various details of the problem setup.

The most common paradigm in optimization analysis is the following three-step strategy: first,
identify a ”convergence criterion” of interest - for example the loss of some weights output by an
algorithm minus the loss of the optimal weights. Second, identify an algebraic expression that can be
related to this convergence criterion (often through use of some assumption on the loss landscape).
Finally, establish that a given algorithm can guarantee a bound on this algebraic expression (often
again using some assumption on the loss landscape):

Convergence Criterion︸ ︷︷ ︸
e.g. 1

T

∑T
t=1 F (xt)−F (x⋆)

≤ Algebraic Expression︸ ︷︷ ︸
e.g. 1

T

∑T
t=1⟨∇F (xt),xt−x⋆⟩

≤ Upper Bound︸ ︷︷ ︸
e.g. O(1/

√
T )

(1)

The example values for the three terms above are typical of analysis of SGD for convex objectives,
in which x⋆ = argminF , and the middle “algebraic expression” is often termed the regret (see
Orabona (2019); Hazan (2022) for details).

This paradigm is used in two different ways: first, from a scientific perspective, one can try to prove
convergence properties for well-known algorithms such as AdamW to explain why these algorithms
work well in practice (see e.g. Li & Orabona (2019); Faw et al. (2022); Ward et al. (2020); Zaheer
et al. (2018b); Reddi et al. (2019)). Second, from an engineering perspective, one can try to design
better optimizers from first principles. For this second use-case, the typical approach is to identify a
large class algorithms, such as SGD parametrized by the learning rate, and then choose the member
of this class that analytically minimizes the upper bound (see e.g. Duchi et al. (2010); McMahan
& Streeter (2010); Hazan et al. (2007); Ghadimi & Lan (2013)). This exact approach is how the
AdaGrad family of algorithms (which was the intellectual precursor to Adam) was developed.

In order for this paradigm to provide meaningful answers, we must believe that the inequalities
in equation (1) hold at least approximately. We can investigate this from two angles: first, we
can ask whether the original assumptions that motivated the analysis hold. Second, we can often
empirically measure expressions related to those appearing in (1), and check the degree to which the
desired inequalities hold. These are more likely to hold than the underlying assumptions, because
the assumptions imply the inequalities, but the reverse may not be true.

Empirical verification of these inequalities is made especially attractive for two reasons. First, many
optimization analyses actually use only a few options for the “algebraic expression” in (1): the
only thing that changes is the analysis of the algorithm leading to improved upper bounds. Thus,
by empirically measuring the degree to which the first inequality in (1) holds, we can interrogate
whether popular analyses strategies can explain optimization success in deep learning in way that is
less tightly coupled to whether particular global assumptions hold or not.
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Two very popular assumptions about the loss landscape and the optimization process are smoothness
and convexity. Formally, a differentiable function f(·, ·) : Rd ×Z 7→ R is convex if it satisfies:

f(y, z) ≥ f(x, z) + ⟨∇f(x, z),y − x⟩ ∀x,y ∈ Rd, z ∈ Z

Further, f(·, ·) is L−smooth if it satisfies:

∥∇f(x, z)−∇f(y, z)∥ ≤ L∥x− y∥ ∀x,y ∈ Rd, z ∈ Z

These are some of the most common assumptions in optimization theory (Zinkevich, 2003; Duchi
et al., 2010; Ghadimi & Lan, 2013; Bubeck et al., 2015; Carmon et al., 2017; Zhao et al., 2020; Hu
et al., 2019; Hazan, 2022; Cutkosky & Orabona, 2019). We would like to quantify them in our ex-
periments. Since computing the global smoothness constant as well as the convexity of the true loss
functions F (x) is infeasible, we instead measure proxies that we call the instantaneous convexity
gap, denoted by inst gap, and instantaneous smoothness, denoted by inst smooth, to estimate the
levels of convexity and smoothness of the true loss function. Formally, the instantaneous convexity
gap with respect to a reference point yt of the function f(·, zt) (stochastic loss function computed
at iteration t using datapoint zt) is defined as:

inst gapt(yt) := f(xt, zt)− f(yt, zt)− ⟨∇f(xt, zt),xt − yt⟩ (2)

In our measurements, we use two settings for yt. First, we consider yt = xt−1 to analyze the
properties of consecutive points and their impact on the optimization path. Next, we use the constant
value yt = x⋆, where x⋆ is the final iterate produced by a previous training run. This setting provides
a more global view of the loss landscape. If f is convex, then the convexity gap defined in eq. (2)
should be non-positive. We also compute the average convexity gap and the exponential moving
average of the convexity gaps with respect to a sequence of reference points y1, . . . ,yt (denoted as
y1:t for short), respectively defined as

avg gapt(y1:t) =
1
t

∑t
i=1 inst gapi(yi),

exp gapt(y1:t) = β · exp gapt−1(y1:t−1) + (1− β) · inst gapt(yt). (3)

where β ∈ (0, 1) (we choose β = 0.99 for our measurements).

Next, we define the instantaneous smoothness at iteration t with respect to yt as:

inst smootht(yt) =
∥∇f(xt,zt)−∇f(yt,zt)∥

∥xt−yt∥ (4)

If the loss function is L-smooth, then inst smootht ≤ L for all t ∈ [T ]. Thus, if this instantaneous
smoothness quantity is uniformly bounded by a constant, it could indicate that our loss landscape is
smooth. Similar to the convexity gap, we also keep track of other forms of the smoothness measure
such as the maximum smoothness and the exponential average smoothness, respectively defined as

max smootht(y1:t) = max
i≤t

inst smoothi(yi),

exp smootht(y1:t) = β · exp smootht−1(y1:t−1) + (1− β) · inst smootht(yt). (5)

Our maximum smoothness is similar to the smoothness metric proposed in (Santurkar et al., 2018;
Zhang et al., 2019). However, instead of tracking the largest smoothness value along the line of the
update difference xt − xt−1, we keep track of the largest value across all iterations.

Most of our training runs involve multiple epochs. In this case, for the non-instantaneous metrics,
we “reset” the averages at the start of each epoch so that the averages contain only iterates from
the current epoch. The only exceptions are our pre-training tasks for BERT and GPT-2. Due to
the large size of the datasets used in these tasks, we completed the training without traversing the
entire dataset. Hence, we do not reset our metrics in these experiments. Beyond smoothness and
convexity, we also track many other key properties. We defer these results to the Appendix. These
metrics collectively offer deeper insights into the dynamic behavior of the loss function throughout
the optimization process.

We conduct experiments across a diverse array of tasks, ranging from simple convex problems to
complex NLP tasks involving models with hundreds of millions of parameters. For convex tasks, we
run gradient descent on a synthetic dataset using squared loss and also perform logistic regression
on various OpenML datasets (Aloi, Connect-4, Covertype, Poker). In the realm of non-convex tasks,
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we address both Image Classification and NLP benchmarks. For Image Classification tasks, we train
popular benchmark datasets Cifar10 and Imagenet (Deng et al., 2009) on Resnet18 (He et al., 2016)
using SGD with momentum (SGDM) and Adamw. we use the configurations reported in (Yao et al.,
2020; Tran & Cutkosky, 2022a). For NLP tasks, we pre-train Bert (Devlin et al., 2018b) using the
C4 dataset (Raffel et al., 2019) and GPT2 (Radford et al., 2019) using the Pile dataset (Gao et al.,
2020). Both tasks are trained using SGDM and AdamW. The learning rates for each optimizer are
fine-tuned through a grid search in the range [10−6, 0.1].

3 MEASURING CONVEXITY

Figure 1: Instantaneous convexity gap w.r.t. yt = xt−1

of Gradient Descent (GD) on the squared loss (left) and
Logistic Regression on OpenML datasets (Vanschoren
et al., 2013) (right).

Convexity is a fundamental assumption
in optimization theory since convex func-
tions have many pleasant theoretical guar-
antees. For instance, every local minimum
of a convex function is also a global min-
imum, which allows us to derive bounds
on the suboptimality gap (Bottou & Bous-
quet, 2007; Defazio et al., 2014; Cutkosky,
2019). Unfortunately, the landscape of
deep learning training is known to be non-
convex (Jain et al., 2017; Li et al., 2018;
Garipov et al., 2018; Choromanska et al.,
2015) due to the complex architectures of
deep learning models and the nonlinearity
of the activation functions. However, the
degree of non-convexity in practical scenarios still remains a bit of a mystery. In this section, we
aim to quantify the level of convexity across various machine learning tasks. As a sanity check, we
first examine the instantaneous convexity gaps with respect to the previous iterate in simple tasks
for which the objective is indeed convex to verify that they align with our theoretical expectations.
Results are presented in Fig.1. As we can see from Fig.1, the convexity gap is always non-positive
as expected. Now, let us turn our attention to more complex deep learning tasks.

3.1 ARE DEEP LEARNING LOSS LANDSCAPES CONVEX ALONG OPTIMIZATION PATHS?

In this section, we aim to examine the convexity along the paths taken by popular optimizers such as
Adam and SGD. To achieve this, we compute both the average and the exponential average convexity
gaps with respect to the previous iterates, i.e., yt = xt−1, across various deep learning benchmarks.
Setting yt = xt−1, allows us to measure convexity on a “small scale” along the optimization path,
rather than as a global property. The presence of any positive gap would indicates non-convexity.

By measuring average gaps (both avg gap and exp gap), we gain insight into whether the optimiza-
tion path could be in some sense “mostly” convex - i.e. whether instantaneous non-convexity is
essentially a “rare event”. Stochastic optimization analysis typically involves summing or averaging
identities derived from convexity, and so one might hope that it is possible to exploit a non-positive
average convexity gap.We also provide the instantaneous gap results in Section D in the Appendix.

Surprisingly, the convexity gap along the optimization trajectories of non-convex tasks is not consis-
tently negative or positive, as demonstrated in fig. 2. For instance, while the convexity gap remains
uniformly positive (indicating non-convnexity) during the training of ImageNet on ResNet18, the
optimization trajectory in the training of Bert frequently shifts between convex and non-convex
regions. Notably, in experiments involving CIFAR-10 and GPT-2, the convexity gap consistently
exhibits negative values. Similar phenomenon is also observed in (Xing et al., 2018), where they
demonstrated that the loss interpolation F (αxt + (1− α)xt+1) of deep neural networks trained on
CIFAR-10 by SGD is locally convex.

Negative convexity gaps in our experiments do not necessarily indicate convex loss landscapes (since
we only check the convexity gap at the points along the optimization trajectory) but rather suggests
that effective optimizers like SGD and ADAM can navigate these landscapes by finding paths that
are in some sense “locally convex”. Further, as illustrated in Figure 2, the dataset plays a significant
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Figure 2: Average convexity gap and exponential average convexity gap w.r.t. yt = xt−1 of deep
learning benchmarks. In most cases, the gaps are negative, indicating local convexity along training.

role in shaping the loss landscape. Despite using the same optimizer settings and the ResNet-18
architecture, the loss landscapes for the ImageNet and CIFAR-10 datasets show markedly different
levels of convexity.

3.2 CAN CONVEXITY-BASED ANALYSIS EXPLAIN OPTIMIZATION SUCCESS?

Though the results in Section 3.1 suggest convexity along the optimization path often occurs, we
might care more about global convexity, as this is useful to prove global convergence guarantees.
Moreover, while the convexity gap can be used to falsify convexity or give intuition about the local
properties of the loss landscape, this quantity does not appear in an obvious way in most optimization
analyses. So, in this section, we measure a different quantity called convexity ratio, which allows us
to probe more directly the degree to which analyses based on convexity apply to real problems.

convexity ratioT =

∑T
t=1⟨∇F (xt),xt − x⋆⟩∑T
t=1 F (xt)− F (x⋆)

(6)

Here we use a large batch loss to approximate F in cases where it is computationally infeasible to
compute F exactly (more details on this computation are in the Appendix). x⋆ is an approximate
stationary point given by the output of a previous training run. When F is convex, we should expect
the convexity ratio to be larger than 1 so that we have the following important inequality:∑T

t=1 F (xt)− F (x⋆) ≤
∑T

t=1⟨∇F (xt),xt − x⋆⟩ (7)

Equation (7) is the essential ingredient in many optimization analyses based on convexity. In fact,
many analyses of SGD and related methods actually prove convergence by upper-bounding the
RHS of the above equation - it is the standard instantiation of eq. (1) for convex analysis (Duchi
et al., 2010; McMahan & Streeter, 2010; Zinkevich, 2003; Reddi et al., 2018; Hazan et al., 2007;
2006). For example, a typical analysis of SGD (e.g. (Zinkevich, 2003)) would show that the RHS is
bounded by O(

√
T ), from which one can then conclude that 1

T

∑T
t=1 F (xt)−F (x⋆) ≤ O(1/

√
T ):

that is, the loss values of the iterates are “on average” approaching the loss of F (x⋆). This holds for
all possible values of x⋆, even though we will only evaluate it for one particular point.

As a result, even if our function does not satisfy eq. (7), it is still possible to derive global conver-
gence. Assume that the convexity ratio is larger than K for 0 < K < 1 instead (this condition would
be implied by “weak quasi-convexity” studied by Orabona & Tommasi (2017)). Then we still have:

T∑
t=1

F (xt)− F (x⋆) ≤
T∑

t=1

1

K
⟨∇F (xt),xt − x⋆⟩

Since our analysis typically bounds the RHS of this equation, the convergence bound degrades by
only a factor of 1/K. Therefore, as long as K ≥ Ω(1/

√
T ), popular algorithms like SGD can still

ensure global convergence. Interestingly, our experiments on CIFAR-10 and Bert (Figure 3) suggest
that this property may hold for certain deep learning tasks. Despite the fact that CIFAR-10 and
Bert losses are not globally convex, the standard analysis used with convexity assumptions may still
explain optimization success in these tasks.

For the CIFAR-10 experiments, AdamW’s convexity ratio suggests the optimization trajectory re-
mains globally convex relative to the stationary point. While SGDM shows slight non-convexity

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Convexity ratios of deep learning benchmarks. A convexity ratio greater than 1 indicates
a convex function. Ratios between 0 and 1 suggest slight non-convexity, still permitting the applica-
tion of classic convex optimization arguments. Ratios less than 0 denote strong non-convexity.

initially, its convexity ratio consistently exceeds 0.5, allowing for the application of classical convex
analysis arguments. In the BERT experiments, both AdamW and SGDM exhibit convexity ratios be-
low 1, indicating a globally non-convex trajectory. However, since the ratios are above 0.1, classical
convex analysis remains applicable, though with a 10x degradation in convergence bounds.

Unfortunately, since the convexity ratios of both optimizers are negative in the GPT2 experiments,
the convex analysis argument seems to be invalid. A similar lack of convexity is observed in the
ImageNet experiments. Interestingly, AdamW seems to often find a ”more convex” optimization
path compared to SGDM. Nevertheless, these data suggest that significant alterations to classical
analysis based on convexity would be needed to adequately explain optimization success for deep
learning in general.

4 MEASURING SMOOTHNESS

Smoothness assumptions plays a pivotal role in optimization theory. In convex optimization,
smoothness can help accelerate the training process and achieve superlinear convergence rate if
the loss is strictly convex or strongly convex (Nesterov et al., 2018). In non-convex optimization,
smoothness is the key ingredient that makes many convergence analyses possible (Ghadimi & Lan,
2013; Allen-Zhu & Hazan, 2016; Jain et al., 2017; Reddi et al., 2019). Although smoothness is as-
sumed for the majority of non-convex optimization results, it is unclear how well these smoothness
conditions are satisfied in practice.

In fact, from a purely theoretical point of view, it may seem unlikely that the objective could be truly
smooth: common activation functions such as the ReLU, and common layers such as MaxPools are
not globally differentiable and so cannot possibly be smooth. However, one might hope that such
issues are essentially pathological problems that do not affect practice. In this section, we attempt
to measure smoothness along the real optimization trajectory in an efficient way analogous to our
investigation of convexity in Section 3.

We will focus on the exponential average smoothness and the max smoothness defined in eq. (5)
since they provide insights into the smoothness level of local and global loss landscape respectively.

First, we compute these measures using the optimally tuned learning rate and schedule in each deep
learning experiment. As we can see from fig. 4 (top), in all experiments, the smoothness constants
appear to be upper-bounded. However, in many cases these constants are quite large (103 to 106),
making it hard to consider the loss landscapes in these experiments to be smooth in practice. Further-
more, we note that smoothness correlates with changes in the learning rate scheduler. For example,
as the learning rate approaches zero at the end of training, the smoothness value increases, as ob-
served in Cifar10 with cosine decay and BERT with linear decay. Similarly, for Imagenet, where we
used a piecewise linear scheduler, smoothness increases whenever the learning rate decreases. This
observation suggests that smaller learning rates tend to result in larger smoothness values.

To better understand the loss landscapes, we reran all experiments with a constant learning rate (fig. 4
bottom). With constant learning rates, the loss landscape appeared smoother and more stable. Both
the max and exponential average smoothness followed a similar pattern: a rapid drop initially (except
for SGDM on ImageNet), followed by a consistent rise until reaching a boundary, then stabilizing.
Adam typically achieved smaller (i.e., smoother) measures with a learning rate scheduler, while
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Figure 4: Smoothness measures w.r.t. yt = xt−1 of deep learning benchmarks using the optimal
configurations. (Top) are the experiments with optimal learning rate scheduler, and (bottom) are the
experiments with constant learning rate. Details of experiment setup can be found in Appendix B.

SGD found smaller measures with a constant rate. We conjecture that this phenomenon suggests
that SGD’s optimization path is more sensitive to changes in the learning rate, while Adam remains
robust across different learning rate settings.

4.1 SMOOTHNESS MEASURES AS PROXIES FOR SHARPNESS

As shown in fig. 4, the smoothness measured in most experiments exhibit similar behaviors. This
pattern closely resembles the edge-of-stability phenomenon observed by (Cohen et al., 2020; 2022)
in full-batch SGD and full-batch Adam for smaller tasks. Specifically, Cohen et al. (2020) defines
the “sharpness” as the operator norm of the Hessian ∇2F (xt). They observe that when training with
full-batch gradient descent on CIFAR-10, the sharpness increases until it reaches a value inversely
proportional to the learning rate, and then stabilizes.

Figure 5: Sharpness (maximum eigenvalue of the train-
ing loss Hessian Matrix) v.s. Smoothness.

Our measurements track different quanti-
ties than the sharpness, but are faster to
compute. Thus, these observations pose
an interesting question: Can our new met-
rics, max smooth and exp smooth, be used
as proxies for the sharpness? If this is
true, our approach could substantially ex-
pedite the evaluation of sharpness. Our
method also makes evaluating the sharp-
ness of much larger models possible (for
which computing Hessian information is
prohibitively expensive).

As discussed above, we notice that a
smaller learning rate results in a larger smoothness value. We can potentially explain this using
the edge-of-stability phenomenon. (Cohen et al., 2020; 2022) observe that the sharpness is oscil-
lating at the value c/η for some constant c > 0 and η is the learning rate at the edge of stability.
Thus, when the learning rate scheduler is applied, any time the learning drops, this boundary in-
creases and causes the smoothness/sharpness level to increase. This phenomenon is also observed in
(Cohen et al., 2022). To verify our conjecture, we replicate the experiments in (Cohen et al., 2020)
where we train Cifar10 on a simple linear network with tanh activation and on a VGG-11 network
(Simonyan & Zisserman, 2014) in Fig.5.

Our new smooth metrics track the actual sharpness value very closely (Fig.5). One possible justifica-
tion for this is when we measure ∥∇f(xt,z)−∇f(xt−1,z)∥

∥xt−xt−1∥ , we are effectively estimating how quickly
the gradient of the function changes, which is bounded by the Hessian’s spectral norm in smooth
functions. A higher value indicates a steeper change in the gradient, implying a larger maximum
eigenvalue of the Hessian matrix, hence a higher ”sharpness”. Thus, this metric and the sharpness
are inherently related to characterizing the function’s smoothness and curvature.
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4.2 CAN SMOOTHNESS-BASED ANALYSIS EXPLAIN OPTIMIZATION SUCCESS?

Figure 6: Update correlation of GD on the squared
loss (left) and logistic regression on OpenML datasets
(right). The blurred lines are the actual update correla-
tions, and the thick lines are the varage.

The smoothness measurements discussed
above are not actually the best criterion
for judging the applicability of smooth
non-convex optimization analysis. This
is because they only capture gradient be-
havior rather than linking gradients o
function values. In typical smoothness-
based analysis, one encounters the quan-
tity ⟨∇f(xt+1, zt+1),xt+1 − xt⟩. In al-
most all analyses of non-convex optimiza-
tion algorithms, this quantity usually plays
the role of the “algebraic expression” in
(1) (Khaled & Richtárik, 2020; Li et al.,
2024; Zaheer et al., 2018a; Carmon et al.,
2018; Li & Orabona, 2019; Faw et al.,
2022; Reddi et al., 2019). To illustrate, consider an optimizer with update xt+1 = xt + ∆t, and
assume that F is L-smooth, E[∆t] = −η∇F (xt) and E[∥∆t∥2] ≤ η2G2. Then:

E[F (xt+1)− F (xt)] ≤ E[⟨∇F (xt),xt+1 − xt⟩+ L
2 ∥xt+1 − xt∥2]

≤ −η E
[
∥∇F (xt)∥2

]
+ Lη2G2

2 . (8)

Typical analyses show that −η E[∥∇F (xt)∥2] dominates Lη2G2

2 so that F (xt) decreases over time.
Intuitively, this holds if we make η sufficiently small because the negative term is linear in η while
the positive term is quadratic in η. Note that this high-level idea is used even for analyses based on
less classical smoothness assumptions such as (L0,L1) smoothness (Zhang et al., 2019).

To check whether this analysis technique can explain the success of practical optimizers, we would
like to measure the inner-product ⟨∇F (xt),xt+1 −xt⟩ and see if it is negative. This would directly
capture the optimization analysis because in the typical analysis, all of the provable decrease in the
function value is caused negative inner-products.

Unfortunately, this inner-product is difficult to estimate empirically because we do not know
∇F (xt). One might consider instead estimating it using ⟨∇f(xt, zt),xt+1 − xt⟩. However, this
approach is flawed because xt+1−xt is not independent of zt, giving the correlation a negative bias.
Instead, we measure a quantity that we call the update correlation, which is defined as

update corrt := ⟨∇f(xt+1, zt+1),xt+1 − xt⟩. (9)

Since xt+1 − xt is independent of zt+1, the update correlation is an unbiased estimator of
⟨∇F (xt+1),xt+1−xt⟩. Moreover, it turns out that update correlation still captures the same notion
of “function” progress measured by typical analysis. Here’s a brief reasoning. Consider the update
xt+1 = xt +∆t and assume F is L-smooth (but this time we don’t make assumptions on ∆t). By
smoothness,

F (xt+1)− F (xt) ≥ ⟨∇F (xt+1),xt+1 − xt⟩ − L
2 ∥xt+1 − xt∥2 (10)

F (xt+1)− F (xt) ≤ ⟨∇F (xt+1),xt+1 − xt⟩+ L
2 ∥xt+1 − xt∥2 (11)

Consequently, if ⟨∇F (xt+1),xt+1 − xt⟩ is negative, for small enough learning rates η the global
loss decreases and the optimizer is consistently making progress. On the other hand, a positive
update correlation ⟨∇F (xt+1),xt+1−xt⟩ appears to be disastrous since this analysis would suggest
that the loss should increase. In particular, we are not aware of any analysis based upon negative
values of ⟨∇F (xt),xt+1 − xt⟩ that does not also predict negative values for the update correlation.
Therefore, if the standard analysis of smooth non-convex optimization can explain optimization
success in deep learning, then in every experiment we should expect that the update correlation
⟨∇f(xt+1, zt+1),xt+1 − xt⟩ should be negative on average.

First, we check if this is the case for simple convex experiments (fig. 6). In all of these experiments,
the update correlations are negative on average, which agrees with our intuition that a negative
update correlation indicates progress in the training.
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Figure 7: Update correlation on various Deep Learning tasks.

However, surprisingly, the update correlation is positive on average in almost every other Deep
Learning experiment (fig. 7). This is a fascinating phenomenon because it indicates that the opti-
mizer changes direction very often, and yet it still effectively minimizes the loss. This suggests that
the classic smooth non-convex analysis that relies on the descent lemma is problematic in practice.
The only case of negative correlations is GPT-2 on the Pile dataset, but they turn positive when the
dataset is shuffled or replaced with the C4 dataset. It would be interesting to find out exactly the
cause of this behavior.

The observation that ∇F (xt+1) is positively correlated with xt+1 − xt suggests that the objective
may be “poorly conditioned”, so that the optimizer is bouncing back-and-forth along the walls of a
narrow ravine in the optimization landscape. Previous empirical studies have also suggested similar
dynamics (Rosenfeld & Risteski, 2023). The classical mitigations for poorly conditioned objectives
in the deterministic or convex settings are preconditioning, including via second-order algorithms,
as well as accelerated gradient descent (e.g. Gupta et al. (2018); Liu et al. (2023a); Yao et al.
(2021); Nesterov et al. (2018); Dozat (2016)). However, the advantages of such techniques are
poorly understood in the stochastic setting (indeed, there is no advantage in the worst-case (Arjevani
et al., 2020)). Instead, most current analyses we are aware of in the stochastic setting appear to rely
on negative update correlations.

4.3 ALTERNATIVES FOR SMOOTH NON-CONVEX OPTIMIZATION

In previous sections, we observed that some common assumptions or identities used in analysis,
such as convexity, smoothness, or negative update correlation, might not hold in practice. In this
section, we will discuss alternative frameworks that do not rely on these assumptions.

The first direction focuses on a family of weakly convex objectives (Davis & Drusvyatskiy, 2019;
Mai & Johansson, 2020), where the goal is to minimize a proxy of the objectives called the Moreau
envelope (Moreau, 1965) . In a different direction, Zhang et al. (2020b) propose employing the Gold-
stein stationary point (Goldstein, 1977) as a convergence criterion that is tractable for non-smooth
objectives. Later, Cutkosky et al. (2023) proposes an online-to-non-convex conversion (O2NC)
technique that later inspires other works on non-smooth non-convex optimization (Ahn et al., 2024;
Zhang & Cutkosky, 2024). The key idea of their technique is the use of random scaling: suppose st
is sampled i.i.d. from Exp(1), then xt+1 = xt + st∆t satisfies

Est [F (xt+1)− F (xt)] = Est⟨∇F (xt+1),∆t⟩. (12)
We refer to the update form xt+1 = xt + st∆t where st ∼ Exp(1) i.i.d. as the update with random
scaling (RS), and the update with st ≡ 1 as the update without RS. Unlike the lower bound in equa-
tion 10, the equality in equation 12 suggests that ⟨∇F (xt+1),∆t⟩, which we referred to as update
correlation with RS, is an unbiased estimator of function progress F (xt+1) − F (xt) and a good
indicator of the training progress: we should expect F (xt) to decrease as long as ⟨∇F (xt+1),∆t⟩
is negative in average.

To verify if the theory holds in practice, we test SGDM and AdamW with random scaling updates
and compare them to their counterparts without RS. Specifically, we measure the following three
properties: update correlation, update correlation with random scaling, and instantaneous loss dif-
ference, where the first is defined in eq. (9) and the latter two are respectively defined as

update corr RSt = ⟨∇f(xt, zt),∆t−1⟩, loss difft = f(xt, zt)− ft(xt−1, zt). (13)
Note that if the update does not have random scaling applied, then update corr RSt = update corrt.

9
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Figure 8: Cumulative sum (symmetric log scale) of
update correlation, update correlation with RS, and
loss difference of GPT2 model trained on Pile dataset.
(Top) is SGDM and (bottom) is AdamW; (left) is up-
date with RS and (right) is the benchmark without RS.

In fig. 8 we plot the cumulative sum
of these quantities. The sum of update
correlation always increases, regardless
of whether random scaling is employed.
However, for optimizers with random scal-
ing, the sum of update corr RSt decreases
and closely aligns with the sum of loss
difference. This supports the theory that
update corr RSt is an unbiased estimator
of loss difference, even for complicated
LLM models. Also, it motivates a guide-
line for developing empirically effective
optimizers: keeping ⟨∇f(xt, zt),∆t−1⟩
as negative as possible while applying ran-
dom scaling to the update.

5 RELATED WORKS

There have been extensive studies on the
empirical properties and the loss land-
scape of modern machine learning. Good-
fellow & Vinyals (2015) proposed one-
dimensional and two-dimensional visualization tools for the loss landscape of various neural net-
works, demonstrating that SGD rarely encounters local minima during training. Im et al. (2017)
tested the training trajectories of different optimizers using the same visualization tools and ob-
served that different optimizers exhibit distinct behaviors when encountering saddle points. Li et al.
(2018) proposed more refined visualization techniques and showed that the smoothness of the loss
landscape closely correlates with generalization performance. Nakkiran et al. (2019) studied the
dynamics of SGD training, showing that SGD learns simple classifiers at early training stages and
learns more complex classifiers at later stages. Power et al. (2022) reported the grokking phe-
nomenon on a synthesized dataset such that after a long period of severe overfitting, validation score
suddenly increases to almost perfect generalization. Thilak et al. (2022) revealed the slingshot effect
of training neural networks with adaptive optimizers, which is a cyclic behavior between stable and
unstable regimes during training process. While these results provide general insight into neural
network landscapes, we focus on validating common assumptions and key identities fundamental to
the analysis of optimization theory.

There are several studies that align more closely with our work. Xing et al. (2018) demonstrated that
loss interpolation between consecutive iterates is locally convex, which agrees with our observations
in Sec 3.1. While their experiments focus on SGD and image classification tasks, we extended the
scope of our convexity measures to include AdamW and LLMs. Furthermore, we also tested a more
global convexity measure in Sec 3.2. Cohen et al. (2020; 2022) observed the “edge of stability”
phenomenon where the sharpness increases during early stage of training and then stabilizes. Our
observations in Sec 4 align with their finding and extend beyond CIFAR-10 tasks. Rosenfeld &
Risteski (2023) demonstrated the opposing signal phenomenon that there are groups of outliers
such that decreasing loss over one group increases loss over other groups, which could explain our
observation of positive update correlation in Sec 4.2. Unlike these works, our work does not only
verify common assumptions but also directly measures key quantities in modern analyses.

6 CONCLUSIONS

We address the critical question of whether modern analyses in stochastic optimization theory align
with practice. To this end, we empirically measure key quantities that are commonly used in theory
across a diverse range of machine learning benchmarks. Our results indicate that, in most cases,
these commonly assumed identities do not hold in practice. Further, we provide comparisons be-
tween the behaviors of SGD and Adam across various important properties. We hope that our
experiments results can contribute to a better understanding of what enables practical optimization,
as well as motivate more rigorous empirical verification of optimization analyses in the future.
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Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/21ce689121e39821d07d04faab328370-Paper.pdf.

Daniel Jiwoong Im, Michael Tao, and Kristin Branson. An empirical analysis of the optimization of
deep network loss surfaces, 2017.

Prateek Jain, Purushottam Kar, et al. Non-convex optimization for machine learning. Foundations
and Trends® in Machine Learning, 10(3-4):142–363, 2017.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/
file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf.
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