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Abstract
Tabular data generation has attracted significant
research interest in recent years, with the tabu-
lar diffusion models greatly improving the qual-
ity of synthetic data. However, while memoriza-
tion—where models inadvertently replicate ex-
act or near-identical training data—has been thor-
oughly investigated in image and text generation,
its effects on tabular data remain largely unex-
plored. In this paper, we conduct the first compre-
hensive investigation of memorization phenom-
ena in diffusion models for tabular data. Our
empirical analysis reveals that memorization ap-
pears in tabular diffusion models and increases
with larger training epochs. We further examine
the influence of factors such as dataset sizes, fea-
ture dimensions, and different diffusion models
on memorization. Additionally, we provide a the-
oretical explanation for why memorization occurs
in tabular diffusion models. To address this issue,
we propose TabCutMix, a simple yet effective
data augmentation technique that exchanges ran-
domly selected feature segments between random
same-class training sample pairs. Building upon
this, we introduce TabCutMixPlus, an enhanced
method that clusters features based on feature
correlations and ensures that features within the
same cluster are exchanged together during aug-
mentation. This clustering mechanism mitigates
out-of-distribution (OOD) generation issues by
maintaining feature coherence. Experimental re-
sults across various datasets and diffusion models

*Equal contribution 1Department of Computer and Data
Sciences, Case Western Reserve University, Cleveland, USA
2Department of Computer Science & Engineering, Texas A&M
University, College Station, USA 3Department of Biochemistry,
Case Western Reserve University, Cleveland, USA 4Center for
RNA Science and Therapeutics, Case Western Reserve University,
Cleveland, USA 5Department of Biomedical Engineering, Case
Western Reserve University, Cleveland, USA. Correspondence to:
Jing Li <jingli@cwru.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

demonstrate that TabCutMix effectively mitigates
memorization while maintaining high-quality data
generation. Our code is available at https:
//github.com/fangzy96/TabCutMix.

1. Introduction
Tabular data generation has gained increasing attention due
to its broad applications, such as data imputation (Zheng &
Charoenphakdee, 2022; Liu et al., 2024; Villaizán-Vallelado
et al., 2024), data augmentation (Fonseca & Bacao, 2023),
and data privacy protection (Zhu et al., 2024; Assefa et al.,
2020). Unlike image or text data, tabular data consists of
structured datasets commonly found in fields such as health-
care (Hernandez et al., 2022), finance (Assefa et al., 2020),
and e-commerce (Cheng et al., 2023). Its heterogeneous and
mixed-type feature space often poses unique challenges for
generative models (Yang et al., 2024b; Zhang et al., 2023b).
Recent advances have led to the development of various
methods aimed at improving the quality of synthetic tabular
data, with diffusion models emerging as a particularly effec-
tive approach (Zhang et al., 2023a; Kotelnikov et al., 2023).
These models have demonstrated significant improvements
in generating high-quality tabular data, making them a pow-
erful tool for a wide range of applications.
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Figure 1. The overview performance of TabCutMix in TabDDPM
and TabSyn for Default dataset. “Mem. Ratio” represents the
memorization ratio.

Despite these advancements, an often-overlooked issue is
the phenomenon of memorization, where diffusion mod-
els unintentionally replicate exact or nearly identical sam-
ples from the training data. This not only introduces pri-

1

https://github.com/fangzy96/TabCutMix
https://github.com/fangzy96/TabCutMix


Understanding and Mitigating Memorization in Diffusion Models for Tabular Data

vacy concerns but also hampers model generalization (Yoon
et al., 2023; Kandpal et al., 2022). While this phenomenon
has been extensively investigated in image and text gener-
ation (Karras et al., 2022; Carlini et al., 2021; Song et al.,
2021; Ho et al., 2020), its occurrence and impact in tabular
data generation remain relatively unexplored. This gap in
understanding leads to a key question:

Does memorization occur in tabular diffusion models,
and if so, how can it be effectively mitigated?

In this paper, we aim to address this gap by conducting
the first comprehensive investigation into memorization be-
haviors within tabular diffusion models. Through rigorous
empirical analysis, we examine how various factors—such
as training dataset sizes, feature dimensions, and model ar-
chitecture—affect the extent of memorization. Additionally,
we provide a theoretical exploration of memorization in
tabular diffusion models, shedding light on the underlying
mechanisms that lead to the issue of memorization in tabular
data.

To mitigate memorization, we firstly introduce TabCut-
Mix, a simple yet effective data augmentation technique that
swaps randomly selected feature segments between training
samples within the same class. Building on this, we propose
TabCutMixPlus, an enhanced augmentation method that
clusters features based on feature correlations and ensures
that features within the same cluster are exchanged together.
This clustering mechanism not only mitigates memorization
but also mitigates OOD generation challenges by main-
taining feature coherence during augmentation. Extensive
experiments across multiple datasets and diffusion models
demonstrate that TabCutMixPlus outperforms TabCutMix
and other baseline methods in reducing memorization (See
Figure. 1) without compromising the quality of the synthetic
data, making it a practical solution for improving tabular
data generation in real-world scenarios.

2. Related Work
Tabular Generative Models. Generative models for tab-
ular data have gained attention due to their broad appli-
cability. Early approaches like CTGAN and TVAE (Xu
et al., 2019) leveraged Generative Adversarial Networks
(GANs) (Goodfellow et al., 2020) and VAEs (Kingma, 2013)
for handling imbalanced features. GOGGLE (Liu et al.,
2023) advanced this by modeling feature dependencies us-
ing graph neural networks. Inspired by NLP advancements,
GReaT (Borisov et al., 2023) transformed rows into natu-
ral language sequences to capture table-level distributions.
More recently, diffusion models, originally successful in
image generation (Ho et al., 2020), have been adapted for
tabular data, as demonstrated by STaSy (Kim et al., 2023),
TabDDPM (Kotelnikov et al., 2023), CoDi (Lee et al., 2023),

TabSyn (Zhang et al., 2023a), and balanced tabular diffu-
sion (Yang et al., 2024b).

Memorization in Generative Models. Memorization
has been widely studied in image and language do-
mains (van den Burg & Williams, 2021; Gu et al.,
2023; Huang et al., 2024). In image generation, re-
seasrchers (Somepalli et al., 2023a; Carlini et al., 2021)
found that diffusion models, like Stable Diffusion (Rom-
bach et al., 2022) and DDPM (Ho et al., 2020), memorize
portions of their training data at varying levels. Concept
ablation (Kumari et al., 2023) is proposed to mitigate mem-
orization via fine-tuning of pre-trained models to minimize
output disparity. AMG (Chen et al., 2024) uses real-time
similarity metrics to selectively apply guidance to likely
duplicates. For text generation, text conditioning amplifies
memorization risks, especially in large-scale language mod-
els (Somepalli et al., 2023a;b; Huang et al., 2024). Gold-
fish loss (Hans et al., 2024) randomly drops a subset of
tokens from the training loss computation to prevent the
model from memorizing. Memorization prediction (Bider-
man et al., 2024), i.e., predicting which sequences will be
memorized before full-scale training, is investigated by an-
alyzing the memorization patterns of lower-compute trial
runs for early intervention. Although these patterns are
evident in image and text generation, the impact of memo-
rization on tabular data remains underexplored.

3. Memorization in Tabular Diffusion Models
Despite the development of numerous high-performing dif-
fusion models for tabular data generation, it remains un-
clear whether these models are susceptible to memorization.
In this section, we introduce a criterion for detecting and
quantifying the intensity of memorization in tabular data.
Using this criterion, we explore memorization behaviors
across various diffusion models under different dataset sizes
and feature dimensions. We choose two state-of-the-art
(SOTA) generative models: TabSyn (Zhang et al., 2023a)
and TabDDPM (Kotelnikov et al., 2023) for our preliminary
memorization analysis. Furthermore four real-world tabu-
lar datasets—Adult, Default, Shoppers, and Magic—each
containing both numerical and categorical features are in-
cluded. The details of the datasets can be found in Section
5. Additionally, we provide a theoretical analysis to explain
the mechanisms behind memorization in tabular diffusion
models.

3.1. Memorization Detection Criterion

A quantitative criterion is essential for quantifying the mem-
orization ratio—i.e., the proportion of generated samples
that are memorized by a model. In natural language pro-
cessing, memorization is typically identified when a model
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can reproduce verbatim sequences from the training set
in response to an adversarial prompt (Carlini et al., 2021;
Kandpal et al., 2022). However, such a verbatim definition
is not directly applicable to image and tabular data, where
the intrinsic continuous nature of pixels and features makes
exact replication less meaningful.

Inspired by prior work in image generation (Yoon et al.,
2023; Gu et al., 2023), we adopt the “relative distance ratio”
criterion to detect whether a generated sample x is a memo-
rized replica from training data D in tabular dataset. Specif-
ically, x is considered memorized if d

(
x,NN1(x,D)

)
<

1
3 · d

(
x,NN2(x,D)

)
, where d(·, ·) is the distance metric

in the input sample space, NNi(x,D) represents i-th near-
est neighbor of x in training data D based on the distance
d(·, ·)1.

In the image generation domain, l2 norm is commonly
adopted as the distance metric to measure the sample simi-
larity in the input space. However, this metric is not suitable
for tabular data generation due to the mix-typed (categorical
and numerical) input features. To address this, and inspired
from mixed-type data clustering literature (Ji et al., 2013;
Ahmad & Khan, 2019), we define a mixed distance d(·, ·)
between generated sample x and real training sample x′ as
follows:

d(x,x′) =
1

M

(
norm

(√ ∑
i∈Fnum

(xi − x′
i)

2

)

+
∑

j∈Fcat

1(xj ̸= x′
j)

)
. (1)

whereFnum andFcat represent the index sets for numerical
and categorical features, respectively; norm(dn) represents
max-min normalization rescaling the distance values to a

[0, 1] range using norm(dk) =
dk−min

k
(dk)

max
k

(dk)−min
k

(dk)
, where k

is sample pair distance index; M is the total number of
features, such that |Fnum| + |Fcat| = M . In this equa-
tion, xi(x

′
i) represents i-th feature value for sample x(x′),

1(xj ̸= x′
j) is an indicator function that equals 1 if xj ̸= x′

j

and 0 otherwise. In this paper, we use Eq. (1) to measure
sample similarity and to quantify the memorization ratio in
tabular data generation.

3.2. Effect of Different Diffusion Models

In this subsection, we focus on examining the behavior of
the two diffusion models (TabSyn (Zhang et al., 2023a)
and TabDDPM (Kotelnikov et al., 2023)) on the memoriza-
tion ratio across the four tabular datasets (Adult, Default,

1The factor 1
3

is an empirical threshold and widely adopted
in image generation literature. Mem-AUC is also defined in Ap-
pendix D.6

Shoppers, and Magic). For each dataset, we check the
memorization ratio over the course of training of TabSyn
and TabDDPM. Figure 2 illustrates the memorization ratio
for both models. Based on our experiments, we make the
following observations:

Obs.1: TabSyn exhibits faster convergence with more stable
memorization ratios across all datasets compared to TabD-
DPM. This trend is particularly prominent for the Default
and Adult datasets, where TabSyn stabilizes its memoriza-
tion rate after approximately 500 epochs, while TabDDPM
continues to fluctuate over a much longer training duration,
up to 4000 epochs.

Obs.2: Although the converged memorization rates vary
between datasets, the final memorization levels are rela-
tively similar across both diffusion models. For instance,
in TabSyn, the memorization ratio for Magic can reach up
to 80%, indicating high memorization, whereas it stabilizes
at 20% in Default, showing lower memorization. Similar
trends are observed in TabDDPM, suggesting that while the
training dynamics differ, the overall memorization capacity
converges to comparable levels across models for the same
dataset.
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Figure 2. Memorization ratio curve of TabSyn and TabDDPM w.r.t.
training epochs.

3.3. Impact of Training Dataset Size

Building on the findings from Section 3.2, where TabSyn
demonstrated high training stability, we use TabSyn as the
backbone model to explore the impact of training dataset
size on memorization in tabular data. We conduct exper-
iment with four datasets (Default, Shoppers, Magic, and
Adult), randomly downsampling the training samples to
five different sizes: 0.1%, 1%, 10%, 50%, and 100% of the
original dataset. Figure 3 shows the memorization ratio for
each dataset size over the training epochs. We make the
following observations:

Obs.1: Smaller training datasets consistently exhibit higher
memorization ratios, as observed across all datasets when
the training size is reduced to 0.1%. For some datasets, such
as Shoppers, even moderate reductions in training size (e.g.,
10%) lead to noticeable increases in memorization, whereas
for others, such as Magic, the effect becomes prominent
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only at extremely small sizes (e.g., 0.1%).

Obs.2: The memorization ratio generally increases over
training epochs before stabilizing. The final converged
memorization ratio demonstrates a strong dependency on
training dataset size when the size is extremely small (e.g.,
0.1%). For larger sizes, such as 10%, the dependency is less
pronounced for datasets like Magic and Shoppers, possibly
due to the relatively larger sample pool. This observation
suggests that the impact of dataset size on memorization
becomes increasingly critical as the dataset size decreases.
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Figure 3. Impact of dataset size among different datasets for Tab-
Syn model.

3.4. Theoretical Analysis

In the previous section, we empirically investigate the mem-
orization phenomenon in existing tabular diffusion models.
However, the underlying cause of memorization in tabular
diffusion models remains unclear. To bridge the gap, we
applied theoretical analysis from image generation (Gu
et al., 2023) to rationalize why memorization occurs in
TabSyn (Zhang et al., 2023a), one of the SOTA tabular
generative models.

In TabSyn, a variational autoencoder (VAE) is used to map
the input features x into an embedding z = Encoder(x)
in latent space. Subsequently, a latent diffusion is applied
to generate samples in the latent space. The final synthetic
data is generated via the decoder of VAE. For simplicity, we
only consider latent diffusion in the analysis. Specifically,
the following forward and backward stochastic differential
equations are adopted in the latent diffusion:

zt = z0 + σ(t)ϵ, ϵ ∼ N (0, I), (2)

dzt = −2σ̇(t)σ(t)s(zt, t)dt+
√
2σ̇(t)σ(t)dωt,(3)

where z0 = z represents the initial embedding from the
encoder, zt is the diffused embedding at time t, and σ(t)
is the noise level at time t. The score function s(zt, t) is
defined as s(zt, t) = ∇zt log pt(zt), and ωt is the standard
Wiener process.

When the score function s(zt, t) is known, synthetic data
can be sampled by reversing the diffusion process. In prac-
tice, diffusion models train a neural network sθ(zt, t) to ap-
proximate the score function s(zt, t). However, score func-
tion ∇z log pt(z) is intractable since the marginal distribu-
tion pt(z) = p(zt) is unknown. Fortunately, the conditional
distribution p(zt|z0) is tractable and can be used to train
the denoising function to approximate the conditional score

function ∇zt
log p(zt|z0). The denoising score-matching

training process is formulated as:

minEz0∼p(z0)Ezt∼p(zt|z0)

∥∥∥sθ(zt, t)−∇zt log p(zt|z0)
∥∥∥2
2
.

(4)

where ∇zt
log p(zt|z0) can be calculated according to

∇zt
log p(zt|z0) = − ϵ

σ(t) .

Regarding memorization of synthetic data in the latent space,
we have

Proposition 3.1 ( (Gu et al., 2023)). Assume that the neural
network can perfectly approximate the optimal score func-
tion s∗θ(zt, t) given by Eq. (6) and a perfect SDE solver is
applied in backward SDE. The generated sample in latent
space z0 will exactly replicate the latent embedding of the
real sample in training data.

See proof in Appendix. B. Proposition. 3.1 demonstrates
that under ideal conditions, the generated sample in latent
space is an exact representation of a real training sample,
which contradicts the empirical observation in TabSyn (i.e.,
not 100% memorization). There are several possible rea-
sons for this discrepancy. First, the practical score-matching
function learned by the neural network may not perfectly
approximate the optimal score due to insufficient optimiza-
tion or limited model capacity. Additionally, TabSyn uses a
VAE to handle mixed-type tabular data, followed by latent
diffusion for generation. As a result, even if the generated
sample in latent space is identical to a training sample, the
final generated sample may differ due to the randomness
introduced by the VAE decoder.

4. Methodology
Building on the memorization study presented in Section 3,
we identify that the memorization in tabular diffusion mod-
els remains a significant yet underexplored issue, limiting
the diversity and utility of generated data. To address this
problem, we propose two novel data augmentation strategies
tailored for tabular data generation 2: TabCutMix and its
enhanced version, TabCutMixPlus. The pseudo-code of our
proposed algorithm is in Appendix C.

4.1. TabCutMix

TabCutMix generates a new training sample (x̃, ỹ) by com-
bining two samples (xA, yA) and (xB , yB) that belong to
the same class. In tabular data, ”same class” refers to in-
stances that share the same categorical target label, ensuring
that the generated sample remains consistent with its origi-
nal class and prevents label mismatches. The newly gener-

2These strategies are inspired by the CutMix (Yun et al., 2019)
data augmentation technique used in the image domain
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ated sample is defined using the following mix operation:

x̃ = M ⊙ xA + (1−M)⊙ xB , (5)

where M ∈ {0, 1}M is a binary mask matrix indicating
which features to swap between the two samples, 1 is a
mask filled with ones, and ⊙ represents element-wise multi-
plication. The portion of exchanged features λ is sampled
from the uniform distribution U(0, 1). Each element of
M is sampled independently from a Bernoulli distribution
Bern(λ). In each training iteration, we first sample the class
index c ∈ {1, 2, · · · , C} using the class prior distribution
and then randomly select two samples from that class.

4.2. TabCutMixPlus

While TabCutMix significantly reduces memorization, it
may inadvertently disrupt inter-feature relationships, partic-
ularly in highly correlated features. Such disruptions can
lead to the generation of out-of-distribution (OOD) samples,
thereby reducing the reliability of the synthetic data. To
overcome this limitation, we propose TabCutMixPlus, an
advanced augmentation strategy that preserves structural
integrity by clustering features based on their correlations
and performing swaps within clusters.

TabCutMixPlus identifies clusters of highly correlated fea-
tures using domain-specific correlation measures and hier-
archical clustering algorithm3. For numerical features, we
use the Pearson correlation coefficient, while for categori-
cal features, we employ Cramér’s V (Cramér, 1999). For
numerical-categorical feature pairs, we calculate the squared
ETA coefficient (Richardson, 2011). Each cluster is treated
as an atomic unit during the augmentation process, ensuring
that only features within the same cluster are exchanged
together. This clustering approach maintains the relation-
ships among highly correlated features, thereby mitigating
the risk of generating OOD samples.

By ensuring feature coherence during augmentation, Tab-
CutMixPlus strikes a balance between reducing memoriza-
tion and maintaining high-quality synthetic data. Extensive
experiments on OOD detection, detailed in Appendix D.4.6,
demonstrate that TabCutMixPlus significantly outperforms
TabCutMix and generates superior data utility.

5. Experiments
In this section, we extensively evaluate the effectiveness
of TabCutMix and TabCutMixPlus across several SOTA
tabular diffusion models in various datasets and compared
other augmentation methods Mixup (Zhang, 2017; Takase,
2023) and SMOTE (Chawla et al., 2002).

3https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html

5.1. Experimental Setup

Datasets. We use four real-world tabular datasets contain-
ing both numerical and categorical features: Adult Default,
Shoppers, and Magic. The detailed descriptions and overall
statistics of these datasets are provided in Appendix D.1.

Diffusion Models. We integrate TabCutMix with three ex-
isting SOTA diffusion-based tabular data generative models,
including TabDDPM (Kotelnikov et al., 2023) , STaSy (Kim
et al., 2023), and TabSyn (Zhang et al., 2023a). To the
best of our knowledge, this work is the first to comprehen-
sively evaluate both generation quality and memorization
performance for these models.

Evaluation Metrics. We evaluate the performance of syn-
thetic data generation from two perspectives: memorization
and synthetic data quality. For memorization evaluation, we
generate the same number of synthetic samples as the train-
ing dataset and use Eq. (1) to calculate the distance between
the generated and real samples. The generated sample is
considered memorized if its closest neighbor in the train-
ing data is less than 1

3 of the distance to its second closest
neighbor (Yoon et al., 2023; Gu et al., 2023). Memorization
ratio is defined as the proportion of generative samples that
are memorized, using a fixed threshold of 1

3 . To comple-
ment this, we introduce Mem-AUC in Appendix D.6, which
summarizes memorization behavior by averaging the mem-
orization ratio across a continuous range of thresholds. This
metric provides a more comprehensive and robust evalua-
tion, especially when the memorization behavior may vary
under different threshold settings. To validate the use of the
fixed 1

3 threshold in practice, we compute both Mem-AUC
and the memorization ratio at 1

3 , and analyze their correla-
tion in Appendix E.9. The results reveal a strong positive
correlation, indicating that the fixed-threshold metric serves
as a reliable proxy for the more holistic Mem-AUC. Further-
more, as shown in Figure 11, we also compute the corre-
lations among memorization ratios under thresholds 1

2 , 1
3 ,

and 1
4 , and observe consistently high correlations across all

threshold pairs. This further supports the robustness of the
memorization metric under different threshold choices, and
highlights 1

3 as a representative and stable threshold that bal-
ances simplicity and practical effectiveness. For synthetic
data quality evaluation, we consider 1) low-order statistics
(i.e., column-wise density and pair-wise column correlation)
measured by shape score4 and trend score 5; 2) high-order
metrics α-precision and β-recall scores measuring the over-

4Shape Score measures how closely the synthetic data matches
the distribution of individual columns in the real data using
Kolmogorov-Smirnov (KS) test.

5Trend Score assesses whether the relationships or correlations
between pairs of columns in the synthetic data are similar to those
in the real data
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Table 1. The overview performance comparison for tabular diffusion models on more datasets. “TCM” represents our proposed TabCut-
Mix and “TCMP” represents TabCutMixPlus. “Mem. Ratio” represents memorization ratio. “Improv” represents the improvement ratio
on memorization.

Methods Mem. Ratio (%) ↓ Improv. MLE (%)↑ α-Precision(%)↑ β-Recall(%)↑ Shape Score(%)↑ Trend Score(%)↑ C2ST(%)↑ DCR(%)

D
ef

au
lt

STaSy 17.57 ± 0.53 - 76.48 ± 1.18 87.78 ± 5.20 35.94 ± 5.48 90.27 ± 2.43 89.58 ± 1.35 67.68 ± 6.89 50.30 ± 0.36

STaSy+Mixup 17.89 ± 0.99 −1.80% ↓ 75.69 ± 1.26 82.65 ± 10.01 37.94 ± 2.57 85.77 ± 4.02 86.49 ± 4.66 50.81 ± 6.01 50.66 ± 1.39

STaSy+SMOTE 15.98 ± 0.04 9.07% ↓ 75.41 ± 0.95 86.75 ± 5.80 32.95 ± 2.93 87.89 ± 5.17 32.54 ± 0.91 48.57 ± 5.90 51.39 ± 2.23

STaSy+TCM 14.51 ± 0.46 17.44% ↓ 75.33 ± 1.32 86.04 ± 11.55 32.13 ± 5.07 90.30 ± 3.88 89.85 ± 3.16 49.51 ± 6.33 50.39 ± 0.99

STaSy+TCMP 15.53 ± 2.00 11.59% ↓ 76.30 ± 0.57 90.83 ± 4.51 32.81 ± 1.37 91.49 ± 0.77 92.08 ± 2.04 50.43 ± 2.00 50.70 ± 1.94

TabDDPM 19.33 ± 0.45 - 76.79 ± 0.69 98.15 ± 1.45 44.41 ± 0.70 97.58± 0.95 94.46 ± 0.68 91.85 ± 6.04 49.12 ± 0.94

TabDDPM+Mixup 18.46 ± 0.71 4.50% ↓ 77.18 ± 0.35 93.20 ± 4.16 42.59 ± 1.13 95.34 ± 1.79 90.32 ± 3.31 92.59 ± 2.82 52.36 ± 1.57

TabDDPM+SMOTE 17.46 ± 0.51 9.66% ↓ 76.92 ± 0.35 91.19 ± 0.68 40.52 ± 0.65 94.89 ± 1.46 28.63 ± 2.28 72.73 ± 0.69 50.95 ± 0.38

TabDDPM+TCM 16.76 ± 0.47 13.26% ↓ 76.47 ± 0.60 97.30 ± 0.46 38.72 ± 2.78 97.27 ± 1.74 93.27 ± 2.52 94.72 ± 3.87 50.23 ± 0.53

TabDDPM+TCMP 18.00 ± 0.24 6.88% ↓ 76.92 ± 0.17 98.26 ± 0.25 41.92 ± 0.52 97.37 ± 0.09 91.42 ± 1.15 95.64 ± 0.49 49.75 ± 0.32

TabSyn 20.11 ± 0.03 - 77.00 ± 0.33 98.66 ± 0.13 46.76 ± 0.50 98.96 ± 0.11 96.82 ± 1.71 98.27 ± 1.14 51.09 ± 0.32

TabSyn+Mixup 19.58 ± 0.33 2.65% ↓ 77.24 ± 0.42 99.05 ± 0.45 46.94 ± 0.19 97.84 ± 0.16 97.11 ± 0.42 96.82 ± 1.99 49.80 ± 0.17

TabSyn+SMOTE 18.72 ± 0.54 6.93% ↓ 77.24 ± 0.43 93.00 ± 0.29 42.78 ± 0.64 96.59 ± 0.10 32.70 ± 0.23 81.38 ± 0.90 50.79 ± 0.66

TabSyn+TCM 16.86 ± 1.36 16.16% ↓ 76.84 ± 0.34 96.16 ± 1.24 40.69 ± 2.46 98.02 ± 1.62 96.51 ± 1.42 97.65 ± 0.65 51.16 ± 1.82

TabSyn+TCMP 17.60 ± 0.28 12.48% ↓ 77.17 ± 0.51 97.61 ± 0.27 44.46 ± 0.60 99.03 ± 0.08 96.30 ± 1.48 98.16 ± 0.65 51.20 ± 0.90

A
du

lt

STaSy 26.02 ± 0.89 - 90.54 ± 0.17 85.79 ± 7.85 34.35 ± 2.46 89.14 ± 2.29 86.00 ± 2.97 51.89 ± 14.87 50.46 ± 0.39

STaSy+Mixup 24.89 ± 1.30 4.37% ↓ 90.74 ± 0.06 90.00 ± 1.91 34.24 ± 2.47 90.28 ± 1.69 87.56 ± 1.06 52.61 ± 6.52 50.08 ± 0.59

STaSy+SMOTE 22.92 ± 3.77 11.91% ↓ 90.50 ± 0.24 85.81 ± 11.39 32.11 ± 5.13 86.91 ± 0.81 84.36 ± 2.36 45.12 ± 8.82 50.46 ± 0.20

STaSy+TCM 20.89 ± 1.33 19.71% ↓ 90.45 ± 0.30 85.39 ± 1.61 31.24 ± 0.97 88.33 ± 3.63 85.39 ± 4.03 45.49 ± 4.78 50.92 ± 0.39

STaSy+TCMP 21.45 ± 2.60 17.59% ↓ 90.72 ± 0.06 86.71 ± 4.12 32.63 ± 1.81 89.62 ± 1.55 86.05 ± 2.44 49.12 ± 9.95 50.75± 0.59

TabDDPM 31.01 ± 0.18 - 91.09 ± 0.07 93.58 ± 1.99 51.52 ± 2.29 98.84 ± 0.03 97.78 ± 0.07 94.63 ± 1.19 51.56 ± 0.34

TabDDPM+Mixup 30.04 ± 0.41 3.14% ↓ 90.82 ± 0.12 95.78 ± 0.68 47.65 ± 1.35 98.02 ± 1.08 96.78 ± 1.33 93.65 ± 3.59 50.86 ± 0.86

TabDDPM+SMOTE 28.98 ± 0.78 6.56% ↓ 90.41 ± 0.36 94.93 ± 1.72 46.10 ± 0.65 93.40 ± 1.12 90.76 ± 1.76 80.75 ± 0.84 51.82 ± 0.56

TabDDPM+TCM 27.55 ± 0.19 11.16% ↓ 91.15 ± 0.06 94.97 ± 0.06 47.43 ± 1.46 98.65 ± 0.03 97.75 ± 0.07 85.61 ± 16.03 50.99 ± 0.65

TabDDPM+TCMP 26.10 ± 2.11 15.83% ↓ 90.54 ± 0.17 92.26 ± 6.97 43.49 ± 3.74 95.10 ± 4.27 91.50 ± 6.53 84.76 ± 10.12 50.68 ± 0.89

TabSyn 29.26 ± 0.23 - 91.13 ± 0.09 99.31 ± 0.39 48.00 ± 0.22 99.33 ± 0.09 98.19 ± 0.50 98.68 ± 0.41 50.42 ± 0.27

TabSyn+Mixup 28.29 ± 0.28 3.30% ↓ 90.75 ± 0.24 98.63 ± 0.81 45.73 ± 2.67 98.30 ± 0.90 97.91 ± 0.12 98.05 ± 2.22 50.97 ± 1.10

TabSyn+SMOTE 27.10 ± 0.15 7.36% ↓ 89.97 ± 0.76 98.60 ± 0.50 44.72 ± 0.45 94.47 ± 0.57 91.74 ± 0.42 82.55 ± 0.71 48.42 ± 0.78

TabSyn+TCM 27.03 ± 0.22 7.60% ↓ 91.09 ± 0.17 99.04 ± 0.42 44.95 ± 0.42 99.40 ± 0.07 98.51 ± 0.08 89.18 ± 1.94 50.67 ± 0.11

TabSyn+TCMP 25.99 ± 0.52 11.17% ↓ 90.96 ± 0.16 98.43 ± 1.04 43.23 ± 2.96 98.38 ± 0.91 96.53 ± 1.47 93.39 ± 6.01 50.30 ± 0.78

Sh
op

pe
rs

STaSy 25.51 ± 0.32 - 91.26 ± 0.23 88.02 ± 3.54 34.58 ± 1.84 88.18 ± 0.29 89.10 ± 0.53 47.85 ± 8.48 51.68 ± 0.56

STaSy+Mixup 24.80 ± 1.20 2.81% ↓ 91.79 ± 0.58 87.03 ± 5.46 38.48 ± 4.54 87.14 ± 1.87 88.72 ± 1.42 47.42 ± 4.84 50.36 ± 2.45

STaSy+SMOTE 22.52 ± 1.51 11.73% ↓ 91.31 ± 1.21 85.22 ± 3.20 30.53 ± 1.65 81.22 ± 2.23 84.74 ± 0.78 38.92 ± 2.63 46.47 ± 0.95

STaSy+TCM 22.78 ± 0.69 10.71% ↓ 90.56 ± 0.44 86.66 ± 4.18 34.08 ± 1.46 87.16 ± 3.78 86.56 ± 4.26 50.08 ± 6.30 50.61 ± 0.41

STaSy+TCMP 22.19 ± 1.21 13.03% ↓ 91.37 ± 0.65 85.82 ± 2.66 34.11 ± 2.08 87.38 ± 2.30 88.61 ± 1.64 52.42 ± 2.65 51.19 ± 0.95

TabDDPM 31.37 ± 0.31 - 92.17 ± 0.32 93.16 ± 1.58 52.57 ± 1.30 97.08 ± 0.46 92.92 ± 3.27 86.74 ± 0.63 51.36 ± 0.63

TabDDPM+Mixup 27.45 ± 1.88 12.50% ↓ 91.44 ± 1.37 94.80 ± 0.68 51.72 ± 1.05 92.14 ± 4.16 89.31± 3.91 82.34 ± 3.24 46.85 ± 5.81

TabDDPM+SMOTE 26.64 ± 1.46 15.07% ↓ 89.96 ± 0.95 94.41 ± 4.67 45.22 ± 3.26 90.78 ± 0.49 83.09± 2.47 64.05 ± 1.44 51.94 ± 1.52

TabDDPM+TCM 25.56 ± 1.17 18.51% ↓ 92.17 ± 0.26 94.41 ± 1.49 50.05 ± 1.59 97.18 ± 0.34 93.95± 0.51 86.96 ± 0.50 47.52± 1.81

TabDDPM+TCMP 28.51 ± 0.35 9.12% ↓ 92.09 ± 0.99 93.43 ± 1.65 52.30 ± 0.73 97.31 ± 0.22 94.79± 0.30 87.02 ± 2.04 50.83 ± 0.59

TabSyn 27.68 ± 0.10 - 91.76 ± 0.66 99.20 ± 0.29 47.79 ± 0.77 98.54 ± 0.19 97.83 ± 0.10 95.44 ± 0.39 52.50 ± 0.44

TabSyn+Mixup 28.01 ± 0.46 −1.18% ↓ 92.02 ± 0.29 98.57 ± 0.32 48.17 ± 0.84 97.59 ± 0.09 97.98 ± 0.14 98.37 ± 0.47 51.50 ± 2.63

TabSyn+SMOTE 26.43 ± 0.85 4.54% ↓ 91.96 ± 1.02 95.27 ± 0.97 44.57 ± 0.24 94.58 ± 0.48 94.59 ± 0.08 79.89 ± 1.22 49.99 ± 0.81

TabSyn+TCM 25.38 ± 0.18 8.30% ↓ 91.43 ± 0.26 99.11 ± 0.28 45.98 ± 0.90 98.56 ± 0.10 97.85 ± 0.06 97.28 ± 2.41 49.92 ± 1.59

TabSyn+TCMP 25.93 ± 0.23 6.33% ↓ 91.75 ± 0.47 99.24 ± 0.55 46.48 ± 0.77 98.60 ± 0.14 97.77 ± 0.09 97.40 ± 0.57 50.21 ± 3.33

all fidelity and diversity of synthetic data;6 3) downstream
tasks performance machine learning efficiency (MLE)7. We
report AUC in Table 1.., i.e., the testing performance (e.g.,
AUC) on real data when trained only on synthetically gener-
ated tabular datasets; 4) C2ST (Classifier Two-Sample Test)
evaluates data quality by measuring how well a classifier can
distinguish real from synthetic data—lower accuracy sug-
gests better distributional alignment; 5) DCR (Distance to
Closest Record) measures privacy risk by quantifying how
closely a synthetic sample resembles training vs. holdout
samples—lower differences indicate better privacy preserva-

6Please see more details on high-order metrics in Ap-
pendix D.4.3

7Please see more details on MLE in Appendix D.4.2

tion. The reported results are averaged over 5 independent
experimental runs. More details on evaluation metrics can
be found in Appendix D.4.

5.2. Memorization and Data Quality: Overall
Evaluation

To thoroughly compare the memorization and data gen-
eration quality, we incorporate several metrics, including
the memorization ratio, MLE, α-precision, β-recall, shape
score, and trend score. We report these metrics results of
applying TabCutMix and TabCutMixPlus to three SOTA
generative models (i.e., STaSy, TabDDPM, and TabSyn)
across four datasets in Table. 1. We observe that:

Obs.1: TabCutMix and TabCutMixPlus significantly reduce
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Figure 4. The nearest-neighbor distance ratio distributions of TabSyn with and without TabCutMixPlus across different datasets.
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Figure 5. The visualization of real and generated samples of Tab-
Syn with and without TabCutMix across different datasets.

the memorization ratio across all models and datasets. For
example, in Shoppers dataset, TabCutMix and TabCutMix-
Plus reduce the memorization ratio by 8.30% and 6.33%
for TabSyn model. Although the actual reduction rate varies
over dataset and model combination, the overall results in-
dicate that TabCutMix is more effective in mitigating mem-
orization than TabCutMixPlus.

Obs.2: TabCutMixPlus demonstrates higher data quality
compared to TabCutMix across various metrics, datasets,
and diffusion models. For example, in the Default dataset,
TabCutMix achieves an MLE of 76.84%, α-precision of
96.16%, while TabCutMixPlus slightly improves it to
77.17% and 97.61% on TabSyn model, suggesting its supe-
rior ability to generate high data utility.

5.3. A Closer Look at Memorization

5.3.1. DISTANCE RATIO DISTRIBUTION

We analyze the distribution of the nearest-neighbor distance
ratio, defined as r(x) = NN1(x,D)

NN2(x,D) , to assess the severity of
memorization. A more zero-concentrated ratio distribution
indicates a more severe memorization issue, as the generated
sample x is closer to a real sample in the training set D.
Figure 4 illustrates the distance ratio distribution for both
the original TabSyn and TabSyn with TabCutMixPlus, and
we observe the following:

Obs.1: TabCutMixPlus shifts the distance ratio distribution
further away from zero compared to TabSyn, indicating

a further reduction in memorization. For example, in the
Magic dataset, TabCutMixPlus reduces the memorization
ratio from 80.01% to 76.46%, generating samples that are
less tightly aligned with the real data D.

Obs.2: The distance ratio distributions with TabCutMix-
Plus exhibit a bipolar pattern, with high probabilities near
0 and 1. However, TabCutMixPlus improves the spread
of the distribution by reducing the probability mass near
0 and increasing it near 1. This indicates that TabCutMix-
Plus better balances memorization reduction and diversity
improvement.

5.3.2. VISUALIZATION OF REAL AND GENERATION
SAMPLES

We visualize the distribution of real and generative samples
for four datasets (i.e., Adult, Default, Shoppers, and Magic)
in Figure. 5. For each dataset, we sample 100 generated sam-
ples while preserving the memorization ratio consistent with
that of the entire generated dataset. For each of these 100
samples, we then select their nearest and second-nearest real
samples from the training set to visualize. Using t-SNE, we
embed both the generative samples and their corresponding
nearest and second-nearest real samples from the training
data. We make the following observations:

Obs.1: In the TabSyn model, memorized generative samples
(marked with ×) are tightly clustered around their nearest
real samples (shown in blue), indicating a high level of
memorization. This clustering is particularly pronounced in
the Magic dataset, where most generative samples are con-
centrated near their nearest neighbors, corresponding to a
memorization ratio of 80.01%. In contrast, non-memorized
samples are more dispersed, demonstrating better diversity.

Obs.2: While the visual impact of TabCutMix is subtle,
we observe that the generative samples exhibit a slightly
broader distribution, particularly in datasets like Default
and Shoppers. This suggests a reduction in tight clustering
around real samples, which correlates with the reduction
in memorization ratios. However, in some datasets like
Magic, the visual distinction remains modest, indicating
that TabCutMix quantitatively reduces memorization.

7
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Table 2. The real and generative samples by TabSyn and TabSyn with TabCutMix and TabCutMixPlus in Adult dataset. TCM and TCMP
represent TabCutMix and TabCutMixPlus, respectively.

Samples Age Workclass fnlwgt Education Education.num Marital Status Occupation Relationship Race Sex Capital Gain Capital Loss Hours per Week Native Country Income
Real 47.0 Private 207207.0 HS-grad 9.0 Divorced Sales Unmarried White Female 0.0 0.0 45.0 United-States ¡=50K

TabSyn 48.0 Private 207915.31 HS-grad 9.0 Divorced Sales Unmarried White Female 0.0 0.0 45.0 United-States ¡=50K
TabSyn+TCM 36.0 Private 201703.6 HS-grad 9.0 Divorced Sales Unmarried White Female 0.0 0.0 60.0 Germany ¡=50K

Real 20.0 Private 205970.0 Some-college 10.0 Never-married Craft-repair Own-child White Female 0.0 0.0 25.0 United-States ¡=50K
TabSyn 19.0 Private 208743.81 Some-college 10.0 Never-married Craft-repair Own-child White Female 0.0 0.0 18.0 United-States ¡=50K

TabSyn+TCM 44.0 Private 197128.89 Some-college 10.0 Never-married Craft-repair Own-child White Female 0.0 0.0 40.0 United-States ¡=50K
Real 67.0 Self-emp-not-inc 106143.0 Doctorate 16.0 Married-civ-spouse Sales Husband White Male 20051.0 0.0 40.0 United-States ¿50K

TabSyn 50.0 Self-emp-not-inc 151815.17 Doctorate 16.0 Married-civ-spouse Sales Husband White Male 15024.0 0.0 60.0 United-States ¿50K
TabSyn+TCM 43.0 Self-emp-not-inc 250019.6 Doctorate 16.0 Married-civ-spouse Sales Husband White Male 0.0 1977.0 40.0 United-States ¿50K

5.4. Case Study on Adult Dataset: Real vs. Generated
Samples

Table. 2 provides a comparison between real samples, syn-
thetic samples generated by TabSyn, and synthetic samples
generated with TabSyn and TabCutMix (w/ TCM) for the
Adult dataset. We report key feature (e.g., age, Workclass,
education, marital status, occupation, income, etc.) values
of two real samples and the corresponding nearest genera-
tive samples to study the quality and characteristics of the
generated data.

Obs.1: The results 2 suggest that TabSyn alone tends to
generate samples that closely resemble real data, raising
concerns about memorization. For instance, the top real
sample has an age of 47.0 years. TabSyn generates a sam-
ple with an age of 48.0 years, which is nearly identical.
Similarly, other features like workclass, marital status, and
occupation are also closely reproduced.

Obs.2: When TabCutMix 2 is applied, the generated age for
the top sample changes to 36.0 while the key relationships
between other features such as marital status, occupation,
and workclass are preserved. For instance, for the work-
class feature, all samples across real data, TabSyn, and
TabSyn+TCM show ”Private,” and for the relationship fea-
ture, they show ”Unmarried” or ”Own-child,” depending
on the context. For the bottom sample, prior to applying
TabCutMix, the distance ratio is 0.17, which is less than the
threshold of 1

3 and thus considered memorized. However,
after applying TabCutMix, the closest sample achieves a
distance ratio of 0.88, significantly exceeding the 1

3 thresh-
old, indicating a much lower likelihood of memorization.
This demonstrates that TabCutMix can introduce diversity
in specific features like age while preserving categorical
feature relationships.
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Figure 6. The memorization ratio v.s. training epochs with differ-
ent augmented ratios for TabSyn.

5.5. Hyperparameter Study: Impact of Augmented
Ratio

In this section, we investigate the effect of the augmented
ratio in TabCutMix on the memorization rate. Figure 6 and
Table 3 present the memorization ratio for different aug-
mented ratios across two datasets, Default and Shoppers.
We test various augmented ratios, including 0%, 10%, 20%,
30%, and 100%, to analyze their impact on the memoriza-
tion behavior over training epochs.

Table 3. Different augmentation ratios
(Aug. Ratio) for TabCutMix.

Aug. Ratio Default Shoppers

0% 20.11% 27.68%
10% 19.45% 27.20%
20% 17.82% 26.05%
30% 16.86% 25.38%
100% 15.34% 22.06%

We observe that
the memorization
ratio decreases con-
sistently as the aug-
mented ratio in-
creases. Without
augmentation (i.e.,
0% augmented ra-
tio), the memoriza-
tion ratio is higher,
stabilizing around
20.11% for Default and 27.68% for Shoppers. In contrast,
the 100% augmented ratio (purple curve) yields the lowest
memorization ratio, stabilizing at approximately 15.34%
for Default and 22.06% for Shoppers. This suggests that
higher augmented ratios introduce more data diversity, ef-
fectively reducing overfitting and preventing the model from
memorizing specific training samples.

6. Conclusions
In this study, we first investigate memorization phenom-
ena in diffusion models for tabular data using quantitative
metrics. Our findings reveal the prevalent memorization be-
haviors in existing tabular diffusion models, with the memo-
rization ratio increasing as training epochs grow. We further
study the effects of the diffusion model instantiation, dataset
size, and feature dimensions through the lens of memoriza-
tion ratio and observe the heterogeneous trend dependent on
the dataset. The theoretical analysis provides new insights
into why memorization occurs within the SOTA model Tab-
Syn. To address this issue, we propose TabCutMix, which
reduces memorization by swapping feature segments be-
tween samples, and TabCutMixPlus, which improves upon
this by clustering correlated features to preserve feature
relationships and address out-of-distribution challenges. Ex-
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periments demonstrate that both TabCutMix and TabCut-
MixPlus significantly mitigate memorization while main-
taining high-quality synthetic data generation. Our work
not only highlights the critical issue of memorization in
tabular diffusion models but also offers effective solutions
with TabCutMix and TabCutMixPlus.
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A. Proposition A.1
For the denoising score matching objective, we have the following result8:

Proposition A.1. For empirical denoising score matching objective in Eq. (4) with training data {z̃n|n = 1, 2, · · · , N},
the optimal score function is given by

s∗θ(zt, t) =

(
N∑

n=1

exp

(
− ∥z̃n − zt∥22

2σ2(t)

))−1

×
N∑

n=1

exp

(
− ∥z̃n − zt∥22

2σ2(t)

)
· z̃n − zt

σ2(t)
. (6)

Proposition.A.1 provides a closed-form expression for the optimal score matching function given a finite training set. In this
section, we prove the close form of optimal score matching function s∗θ(zt, t). Note that the objective of denoising score
matching is given by

min
θ

Ez0∼p(z0)Ezt∼p(zt|z0)∥sθ(zt, t)−∇zt
log p(zt|z0)∥22, (7)

Note that the score function can be simplified as

∇zt
log p(zt|z0) =

1

p(zt|z0)
∇zt

p(zt|z0)

=
1

p(zt|z0)
·
(
− zt − z0

σ2(t)

)
· p(zt|z0)

= − 1

σ2(t)

(
z0 + σ(t)ϵ− z0

)
= − ϵ

σ(t)
(8)

Additionally, the noise sample zt = z̃n+σ(t)ϵ, we have ϵ = − z̃n−zt

σ(t) and dϵ = dzt

σ(t) We can obtain the empirical objective
of denoising score matching as follows:

Lemp =
1

N

∫ N∑
n=1

∥∥∥sθ(zt, t) +
ϵ

σ(t)

∥∥∥2
2
N (ϵ;0, I)dϵ

=
1

N

∫ N∑
n=1

∥∥∥sθ(zt, t)−
z̃n − zt

σ2(t)

∥∥∥2
2
N
(
zt; z̃n, σ

2(t)I
)
dσ(t)dzt. (9)

The minimization of empirical loss Lemp is a convex optimization problem. Therefore, the optimum can be obtained via
first-order gradient w.r.t. score function sθ(zt, t):

0 = ∇sθ(zt,t)

[ 1
N

N∑
n=1

∥∥∥sθ(zt, t)−
z̃n − zt

σ2(t)

∥∥∥2
2
N
(
zt; z̃n, σ

2(t)I
)]

=
2

N

N∑
n=1

[
sθ(zt, t)−

z̃n − zt

σ2(t)

]
N
(
zt; z̃n, σ

2(t)I
)

=
2

N

{ N∑
n=1

N
(
zt; z̃n, σ

2(t)I
)
sθ(zt, t)−

N∑
n=1

N
(
zt; z̃n, σ

2(t)I
) z̃n − zt

σ2(t)

}
, (10)

8The analysis is closely related to prior work (Gu et al., 2023) in image generation, where a similar analysis was performed in different
generative models. Our work specifically addresses tabular data with mixed feature types by combining a VAE with latent diffusion to
handle tabular data.

12



Understanding and Mitigating Memorization in Diffusion Models for Tabular Data

Therefore, the optimal score function can be written as

s∗θ(zt, t) =

∑N
n=1N

(
zt; z̃n, σ

2(t)I
) z̃n−zt

σ2(t)∑N
n=1N

(
zt; z̃n, σ2(t)I

)
=

( N∑
n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

))−1 N∑
n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

)
· z̃n − zt

σ2(t)
(11)

B. Proof of Proposition. 3.1
Consider the reverse process of a diffusion model defined by the score function sθ(z, t) and the following backward
stochastic differential equation (SDE):

dzt = −2σ̇(t)σ(t)s(zt, t)dt+
√
2σ̇(t)σ(t)dωt, (12)

where ωt is standard Brownian motion, and σ(t) are noise ratio at time instant t.

For solving this backward SDE given optimal score function s∗θ(zt, t), we consider the following steps:

Step 1: Euler Approximation. We use Euler approximation for backward SDE via sampling multiple time steps
0 = t0 < t1 = τ < t2 = 2τ < · · · < tn = nτ = T , where τ is time sampling resolution and small value indicates low
approximation error. Using an Euler discretization, the backward SDE can be approximated at discrete time steps tn, leading
to the following update rule:

ztn = ztn+1 − 2σ̇(t)σ(t)
∥∥∥
t=tn+1

s(zt, t)(tn − tn+1) +
√

2σ̇(t)σ(t)∥t=tn+1 · ϵ · (tn − tn+1), (13)

Step 2: Update Rule Calculation. Next, we calculate the update rule considering infinite short time resolution τ → 0,

lim
tn−tn+1→0−

2σ̇(t)σ(t)
∥∥∥
t=tn+1

= 2σ(tn+1)
σ(tn)− σ(tn+1)

tn − tn+1
, (14)

then we have

ztn = ztn+1
− 2σ(tn+1)

(
σ(tn)− σ(tn+1)

)
s(zt, t)

+
√
2σ(tn+1)

(
σ(tn)− σ(tn+1)

)
(tn − tn+1) · ϵ, (15)

For t0 = 0, it is easy to obtain σ(t) = 0, the generated sample in latent space z0 is giving by

z0 = zτ + 2σ2(τ)s(zt, t) +
√

2τσ2(τ) · ϵ. (16)

Step 3: The generated sample in latent space under τ → 0. When the denoising score function perfectly approximates
the optimal solution, we have

s(zt, t) = s∗θ(zt, t) =
( N∑

n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

))−1 N∑
n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

)
· z̃n − zt

σ2(t)
, (17)

Subsequently, we consider the optimal score function under τ → 0. Suppose the nearest neighbor of z is z̃m = NN1(z,D),
we have

∥z − z̃m∥22 − ∥z − z̃n∥22 < 0, for n ̸= m. (18)

Define distribution:

pt(z = z̃n) =
( N∑

n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

))−1 N∑
n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

)
, (19)
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where n = 1, 2, · · · , N. Note that σ(τ)→ 0 if τ → 0. It is easy to calculate

lim
τ→0

pτ (z = z̃m) = lim
τ→0

( N∑
n=1

exp
(
− ∥z̃m − zτ∥22

2σ2(τ)

))−1 N∑
n=1

exp
(
− ∥z̃m − zτ∥22

2σ2(τ)

)
= lim

τ→0

[
1 +

∑
n ̸=m

exp
(
− ∥z̃m − zτ∥22

2σ2(τ)

)]−1

=
[
1 + lim

σ(τ)→0

∑
n ̸=m

exp
(
− ∥z̃m − zτ∥22

2σ2(τ)

)]−1

= 1, (20)

similarly, we have, for any n′ ̸= m,

lim
τ→0

pτ (z = z̃n′) = 0. (21)

According to the above equations, the optimal score function is given by

lim
τ→0

s∗θ(zt, t) =
z̃m − zt

σ2(t)
, (22)

and the generated sample in latent space z0 is as follows:

lim
τ→0

z0 = lim
τ→0

zτ + 2σ2(τ)s(zt, t) +
√
2τσ2(τ) · ϵ

= lim
τ→0

zτ + 2σ2(τ)
z̃m − zt

σ2(t)
+
√

2τσ2(τ) · ϵ

= 2z̃m − lim
τ→0

zτ , (23)

Therefore, we have lim
τ→0

z0 = z̃m = NN1(zτ ,D).

To summarize, under the assumption (1) the neural network can perfectly approximate the score function s(zt, t) = s∗θ(zt, t)
(2) perfect SDE solver with infinite time solution (τ → 0), the generated sample z0 replicates one of the training samples
from the dataset D.

C. Algorithm
In this section, we provide an algorithmic illustration of the proposed TabCutMix and TabCutMixPlus in Algorithms 1 and
2, respectively. In TabCutMix/TabCutMixPlus, the hyperparameter rn determines the augmentation ratio, i.e., the number of
augmented samples over the whole number of the original training samples.

Algorithm 1 Pseudo-code of TabCutMix

Require: Training set D, Number of samples N
1: Augmented sample set D̃ = ∅
2: for i = 1 to N do
3: Sample class c from {1, · · · , C} with prior class distribution; ▷ Keep class ratio after augmentation.
4: Sample (xA, yA) and (xB , yB) from class c in D; ▷ Randomly select two training samples from the same class.
5: Sample λ ∼ Unif(0, 1) and sampling binary mask M with Bernoulli distribution Bern(λ); ▷ Proportion of features

to exchange.
6: x̃←M ⊙ xA + (1−M)⊙ xB ; ▷ Mix the features based on binary mask M .
7: ỹ ← c; ▷ Assign the label of the new sample.
8: D̃ = D̃ ∪ (x̃, ỹ); ▷ Save the augmented sample.
9: end for

10: return New Training Set D ∪ D̃
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Algorithm 2 Pseudo-code of TabCutMixPlus

Require: Training set D, Number of samples N
1: Augmented sample set D̃ = ∅
2: for i = 1 to N do
3: Sample class c from {1, · · · , C} with prior class distribution; ▷ Keep class ratio after augmentation.
4: Sample (xA, yA) and (xB , yB) from class c in D; ▷ Randomly select two training samples from the same class.
5: Calculate correlation metrics for features: (a) Pearson correlation coefficient for numerical feature; (b) Cramér’s V

based on contingency tables for categorical features; (c) ETA coefficient for numerical-categorical pairs.
6: Perform hierarchical clustering on features using correlation metrics; ▷ Group features based on similarity.
7: for each cluster k do
8: Sample λ ∼ Unif(0, 1) and sampling binary mask Mk with Bernoulli distribution Bern(λ); ▷ Proportion of

features to exchange within cluster k.
9: x̃k ←Mk ⊙ xA,k + (1−Mk)⊙ xB,k; ▷ Mix features in cluster k based on binary mask Mk.

10: Add x̃k to x̃;
11: end for
12: ỹ ← c; ▷ Assign the label of the new sample.
13: D̃ = D̃ ∪ (x̃, ỹ); ▷ Save the augmented sample.
14: end for
15: return New Training Set D ∪ D̃

D. Experimental Details
We implement TabCutMix and all the baseline methods with PyTorch. All the methods are optimized with Adam optimizer.

D.1. Datasets

We select 7 datasets, 5 of 7 datasets come from UCI Machine Learning Repository: Adult, Default, Shoppers, Magic, and
Wilt. The other two are Cardio and Churn Modeling. All datasets are associated with classification tasks.

The statistics are shown in Table. 4. The detailed introduction for these datasets are given as follows:

• Adult Dataset9: The Adult Census Income dataset consists of demographic and employment-related information about
individuals, derived from the 1994 U.S. Census. The dataset’s primary task is to predict whether an individual earns more
or less than 50, 000 per year. It includes features such as age, education, work class, marital status, and occupation, with
48, 842 records. This dataset is widely used in binary classification tasks, especially for exploring income prediction and
socio-economic factors.

• Default Dataset10: The Default of Credit Card Clients Dataset contains records of default payments, credit history,
demographic factors, and bill statements of credit card holders in Taiwan, covering data from April 2005 to September
2005. It features 30, 000 clients and aims to predict whether a client will default on payment the following month. Key
features include credit limit, past payment status, and monthly bill amounts, making it useful for credit risk modeling and
financial behavior analysis.

• Shoppers Dataset11: The Online Shoppers Purchasing Intention Dataset includes detailed information about user
interactions with online shopping websites, with data from 12, 330 user sessions. It records features such as the number
of pages viewed, time spent on different sections of the site, and user behavior metrics. The primary task is to predict
whether a user’s session will result in a purchase. This dataset is particularly useful for studying customer behavior,
e-commerce optimization, and purchase prediction models.

• Magic Dataset12: The Magic Gamma Telescope Dataset is designed for the classification of high-energy gamma particles
collected by a ground-based atmospheric Cherenkov telescope. The dataset contains 19, 019 instances and is used to
distinguish between signals from gamma particles and background noise generated by hadrons. The features include

9https://archive.ics.uci.edu/dataset/2/adult
10https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
11https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
12https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
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statistical properties of the events such as length, width, and energy distribution, making it useful for astronomical data
analysis and high-energy particle research.

• Wilt Dataset13: The Wilt dataset is a high-resolution remote sensing dataset used for binary classification tasks, focusing
on detecting diseased trees (’w’) versus other land cover (’n’). It includes 4, 889 instances. Features include spectral and
texture information derived from Quickbird imagery, such as GLCM mean texture, mean green, red, NIR values, and
standard deviation of the Pan band. The dataset is imbalanced, with only 74 samples of diseased trees.

• Cardio Dataset14: The Cardiovascular Disease dataset consists of 70, 000 patient records, featuring 11 attributes and a
binary target variable indicating the presence or absence of cardiovascular disease. The attributes are categorized into
three types: objective (e.g., age, height, weight, gender), examination (e.g., blood pressure, cholesterol, glucose), and
subjective (e.g., smoking, alcohol intake, physical activity).

• Churn Modeling Dataset15: The Churn Modeling dataset contains data on 10, 000 customers from a bank, with the
target variable indicating whether a customer has churned (closed their account) or not. The dataset includes 14 columns
that represent various features such as customer demographics (e.g., age, gender, and geography), account details (e.g.,
balance, number of products, tenure), and behaviors (e.g., credit score, activity, and churn status).

Table 4. Statistics of datasets. Num indicates the number of numerical columns, and Cat indicates the number of categorical columns.
Dataset #Rows #Num #Cat #Train #Validation #Test Task
Adult 48,842 6 9 28,943 3,618 16,281 Classification
Default 30,000 14 11 24,000 3,000 3,000 Classification
Shoppers 12,330 10 8 9,864 1,233 1,233 Classification
Magic 19,019 10 1 15,215 1,902 1,902 Classification
Cardio 70,000 5 7 44,800 11,200 14,000 Classification
Churn Modeling 10,000 7 5 6,400 1,600 2,000 Classification
Wilt 4,839 5 1 3,096 775 968 Classification

In Table 4, the column “# Rows” represents the number of records in each dataset, while “# Num” and ”# Cat” indicate the
number of numerical and categorical features (including the target feature), respectively. Each dataset is split into training,
validation, and testing sets for machine learning efficiency experiments. For the Adult dataset, which has an official test
set, we directly use it for testing, while the training set is split into training and validation sets in a ratio of 8 : 1. For the
remaining datasets, the data is split into training, validation, and test sets with a ratio of 8:1:1, ensuring consistent splitting
with a fixed random seed.

D.2. Alternative Models

In this section, we present and compare the characteristics of the baseline methods employed in this study.

• CTGAN (Xu et al., 2019) is a generative model designed specifically for synthetic tabular data generation using a
GAN-based framework. CTGAN employs mode-specific normalization to effectively handle numerical columns with
complex distributions, ensuring better learning of their patterns. Additionally, it incorporates conditional generation to
address imbalances in categorical features by conditioning on specific class distributions, which improves the diversity
and utility of the generated data.

• TVAE (Xu et al., 2019) is a VAE-based approach tailored for synthetic tabular data generation. Like CTGAN, it uses
mode-specific normalization for numerical features and conditional generation for categorical features, but relies on
the VAE framework to model data. This approach allows TVAE to capture latent relationships in tabular datasets while
addressing challenges like class imbalance and mixed-type data.

• STaSy (Kim et al., 2023) is a recently developed diffusion-based model designed for synthetic tabular data generation. It
treats one-hot encoded categorical columns as continuous features, allowing them to be processed alongside numerical
columns. STaSy utilizes the VP/VE stochastic differential equations (SDEs) to model the distribution of tabular data.

13https://archive.ics.uci.edu/dataset/285/wilt
14https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
15https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling?resource=download
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Additionally, the model introduces several training strategies, such as self-paced learning and fine-tuning, to stabilize the
training process, thereby improving both the quality and diversity of the generated data.

• TabDDPM (Kotelnikov et al., 2023) follows a similar framework to CoDi by applying diffusion models to both numerical
and categorical data. Like CoDi, it uses DDPM with Gaussian noise for numerical columns and multinomial diffusion for
categorical data. However, TabDDPM simplifies the modeling process by concatenating both numerical and categorical
features as inputs to a denoising function, which is implemented as a multi-layer perceptron (MLP). While CoDi
incorporates more advanced techniques like inter-conditioning and contrastive learning, TabDDPM’s more streamlined
approach has been shown to outperform CoDi in experimental evaluations, proving that simplicity can sometimes yield
better results.

• TabSyn (Zhang et al., 2023a) is a SOTA approach for generating high-quality synthetic tabular data by leveraging
diffusion models in a unified latent space. Unlike previous methods that struggle to handle mixed data types, such
as numerical and categorical features, TabSyn first transforms raw tabular data into a continuous latent space, where
diffusion models with Gaussian noise can be effectively applied. To maintain the underlying relationships between
columns, TabSyn uses a Variational AutoEncoder (VAE) architecture that captures both inter-column dependencies and
token-level representations. The method employs an adaptive loss weighting technique to fine-tune the balance between
reconstruction performance and smooth embedding generation. TabSyn’s diffusion process is simplified with Gaussian
noise that progressively reduces as the reverse

D.3. Baselines

In this section, we describe and compare the data augmentation baselines employed in this study: SMOTE, Mixup, and
Independent Joint Family (IJF).

• SMOTE: SMOTE (Synthetic Minority Oversampling Technique) (Chawla et al., 2002) is a widely-used oversampling
method designed for numerical data augmentation. It generates synthetic samples by interpolating between existing
data points within the same class. While effective for numerical features, SMOTE is not designed to handle categorical
features directly, which may limit its application in mixed-type tabular datasets.

• Mixup: Mixup (Zhang, 2017) is a data augmentation technique that creates new samples by taking a convex combination
of two existing samples and their labels. While Mixup is straightforward and effective for enhancing data diversity,
it assumes linear relationships between features, which might not hold true in tabular data. Additionally, Mixup can
struggle with preserving the inherent relationships between numerical and categorical features.

• Independent Joint Family (IJF): IJF is a simple augmentation method based on independent feature assumption. Unlike
generative models like GANs or VAEs, which are computationally expensive and often unsuitable for generating single-
dimensional features, IJF estimates the parameter distribution for numerical features and uses empirical frequency
distributions for categorical features. This approach assumes independence between features during augmentation,
allowing for efficient and flexible sample generation. The default augmentation ratio for IJF is set to 30%, providing a
balanced trade-off between data diversity and computational overhead.

D.4. Evaluation Metrics

D.4.1. LOW-ORDER STATISTICS

In this part, we will introduce the details of the shape score and trend score16 for each feature and feature pair, respectively.

The Shape Score of numerical and categorical features are determined by the KSComplement and TVComplement metrics in
SDMetrics package, respectively. KSComplement compares the shapes of real and synthetic distributions using the maximum
difference between their cumulative distribution function (CDFs). TVComplement is based on the TVComplement, which
assesses how well the categorical distributions in the real and synthetic datasets align, with smaller differences leading to a
higher score.

• Shape Score of Numerical Features: The KSComplement is computed based on the Kolmogorov-Smirnov (KS) statistic.
The KS statistic quantifies the maximum distance between the Cumulative Distribution Functions (CDFs) of real and

16We calculate these scores based on SDMetrics package, available at https://docs.sdv.dev/sdmetrics.
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synthetic data distributions. The formula is given by:

KST = sup
x
|Fr(x)− Fs(x)|, (24)

where Fr(x) and Fs(x) are the CDFs of the real distribution pr(x) and the synthetic distribution ps(x), respectively. To
ensure that a higher score represents higher quality, we use KSComplement based on shape score = 1−KST . A higher
shape score indicates greater similarity between the real and synthetic data distributions, resulting in a higher Shape Score.

• Shape Score of Categorical Features: The TVComplement is calculated derived from the Total Variation Distance
(TVD). The TVD measures the difference between the probabilities of categorical values in the real and synthetic datasets.
It is defined as:

TV D =
1

2

∑
ω∈Ω

|R(ω)− S(ω)|, (25)

where Ω represents the set of all possible categories, and R(ω) and S(ω) denote the real and synthetic frequencies for
each category. The shape score is defined as shape score = 1− TV D, which returns a score where higher values reflect
a smaller difference between real and synthetic category distributions.

In this paper, we report the average shape score across all numerical and categorical features.

The Trend Score is used to evaluate how well the synthetic data captures the relationships between column pairs in the real
dataset. Different metrics are applied depending on the types of columns involved: numerical, categorical, or a combination
of both.

• Numerical-Numerical Pairs. For numerical column pairs, the Pearson Correlation Coefficient is used to measure the
linear correlation between the two columns. The Pearson correlation, ρ(x, y), is defined as:

ρx,y =
Cov(x, y)

σxσy
, (26)

where Cov(x, y) is the covariance, and σx and σy are the standard deviations of columns x and y, respectively. The trend
score for numerical-numerical pair (i.e., correlation similarity) is calculated as 1 minus the average absolute difference
between the real data’s and synthetic data’s correlation values:

Trend Score = 1− 1

2
Ex,y

[
|ρR(x, y)− ρS(x, y)|

]
, (27)

where ρR(x, y) and ρS(x, y) denote the Pearson correlation coefficients of the real and synthetic datasets, respectively.

• Categorical-Categorical Pairs. For categorical column pairs, the Contingency Similarity metric is used. This metric
measures the difference between real and synthetic contingency tables using the Total Variation Distance (TVD). The
contingency score is defined as:

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|Rα,β − Sα,β |, (28)

where A and B are the sets of all possible categories in the two columns, and Rα,β and Sα,β represent the joint
frequencies of category combinations α and β for real and synthetic data, respectively. The trend score is calculated as
1− Contingency Score.

• Mixed Pairs (Numerical-Categorical). For column pairs involving one numerical and one categorical column, the
numerical column is first discretized into bins. After discretization, the contingency similarity metric is applied to
evaluate the relationship between the binned numerical data and the categorical column, similar to how it is used for
categorical-categorical pairs. The trend score for mixed pair is calculated as 1− Contingency Score.

Finally, the Trend Score is computed as the average of all pairwise scores (Pearson Score for numerical-numerical pairs, and
Contingency Score for categorical-categorical and numerical-categorical pairs). This score reflects how well the synthetic
data captures the relationships and trends between columns in the real dataset.
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D.4.2. MACHINE LEARNING EFFICIENCY EVALUATION

We follow the experimental setting in work (Zhang et al., 2023a). We split each dataset into training and testing sets. The
generative models are trained using the real training data, and subsequently, a synthetic dataset of equal size is generated for
further experimentation.

To assess the quality of synthetic data in Machine Learning Efficiency (MLE) tasks, we evaluate the divergence in
performance when models are trained on either real or synthetic data. The procedure follows these steps: First, the machine
learning model is trained using real data, which is split into training and validation sets in an 8:1 ratio. The classifier or
regressor is trained on this data, and hyperparameters are optimized based on validation performance. Once the optimal
hyperparameters are determined, the model is retrained on the complete training set and evaluated using the real test data.
The synthetic data undergoes the same evaluation procedure to assess its impact on model performance.

The following lists the hyperparameter search space for the XGBoost classifier applied during the MLE tasks, where grid
search is used to determine the best parameter configurations:

• Number of estimators: {10, 50, 100}
• Minimum child weight: {5, 10, 20}
• Maximum tree depth: {1, 10}
• Gamma: {0.0, 1.0}

The implementations of these evaluation metrics are sourced from SDMetrics17, and we follow their guidelines for ensuring
consistency across real and synthetic data assessments.

D.4.3. SAMPLE-LEVEL QUALITY METRICS: α-PRECISION AND β-RECALL

To rigorously evaluate the quality of synthetic data, we employ two complementary metrics proposed in work (Alaa et al.,
2022): α-Precision and β-Recall. These metrics offer a refined approach to assessing the fidelity and diversity of synthetic
data samples by focusing on their relationship with the real data distribution.

• α-Precision. The α-Precision metric quantifies the fidelity of synthetic data by measuring the probability that a
generated sample lies within the α-support of the real data distribution, denoted as Sα

r . The α-support includes the most
representative regions of the real data, containing the highest probability mass. Therefore, a high α-Precision score
ensures that the synthetic samples are realistic, falling within these high-density areas of the real data. This metric is
particularly important because it distinguishes between synthetic samples that resemble real data in a typical way and
those that might still be valid but are more akin to outliers. By focusing on the high-density areas, α-Precision ensures that
the generated data looks both realistic and “typical” compared to real-world data. Mathematically, this is expressed as:

Pα = P(X̃g ∈ Sα
r ), α ∈ [0, 1]. (29)

• β-Recall. Conversely, β-Recall evaluates the coverage of synthetic data. It measures whether the synthetic data captures
the entire real data distribution, particularly focusing on the β-support of the generative model, denoted as Sβ

g . The
β-support includes all regions of the real distribution, not just the frequent or typical areas. A high β-Recall score
indicates that the synthetic data can represent even the rare or low-density parts of the real distribution. This metric is
crucial because it ensures that the synthetic data does not merely replicate the most common patterns but also spans the
broader diversity of the real data, capturing rare or edge cases. Mathematically, it is defined as:

Rβ = P(X̃r ∈ Sβ
g ), β ∈ [0, 1]. (30)

Importance of α-Precision and β-Recall. The combination of α-Precision and β-Recall allows for a holistic assessment
of synthetic data. While α-Precision ensures that the synthetic data aligns well with the most typical regions of the real data
distribution (fidelity), β-Recall ensures that the synthetic data covers the full diversity of the real data (coverage). Together,
these metrics provide insight into both the accuracy and diversity of the synthetic data. By sweeping through values of

17https://docs.sdv.dev/sdmetrics
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α and β, one can gain a more dynamic understanding of how synthetic data aligns with different aspects of the real data
distribution, offering a comprehensive evaluation of its quality.

In summary, α-Precision ensures the generated data looks realistic and falls within typical regions of the real distribution,
while β-Recall ensures that the generated data covers the entire distribution, including rare cases. The complementary nature
of these two metrics makes them essential for evaluating the fidelity and diversity of synthetic data.
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Figure 7. Visualization of synthetic data’s single column distribution density v.s. the real data.

D.4.4. DISTANCE TO CLOSEST RECORD (DCR) SCORE

The Distance to the Closest Record (DCR) score is a commonly used metric for assessing privacy leakage risks in synthetic
data. This metric quantifies how similar a synthetic sample is to records in the training set compared to those in a holdout
set. By calculating the DCR score for each synthetic sample against both the training and holdout sets, we can determine
whether the synthetic data poses privacy concerns. If privacy risks are present, DCR scores for the training set would tend
to be significantly lower than those for the holdout set, indicating potential memorization of training data. In contrast,
the absence of such risks would result in overlapping distributions of DCR scores between the training and holdout sets.
Moreover, a probability close to 50% that a synthetic sample is closer to the training set than the holdout set reflects a lack
of systematic bias toward the training set, which is a positive indicator for privacy preservation.

Following (Zhang et al., 2023a), employ a ”synthetic vs. holdout” evaluation protocol. The dataset is split evenly into two
parts: one serves as the training set for the generative model, while the other acts as the holdout set and is excluded from
training. After generating a synthetic dataset of the same size as the training and holdout sets, we calculate DCR scores for
synthetic samples.

D.4.5. CLASSIFIER TWO SAMPLE TESTS (C2ST)

The Classifier Two-Sample Test (C2ST) (Zhang et al., 2023a) is used to evaluate how well synthetic data replicates the
distribution of real data. This approach involves training a binary classifier to distinguish between real and synthetic samples.
If the synthetic data closely matches the distribution of the real data, the classifier should struggle to differentiate the
two, resulting in a test accuracy close to 50%. Conversely, if the synthetic data deviates significantly from the real data
distribution, the classifier will achieve higher accuracy, indicating poor alignment. The C2ST score provides a quantitative
measure of this alignment, offering insights into the quality of the synthetic data. A low C2ST score suggests that the
synthetic data effectively captures the real data distribution, making it difficult for the classifier to distinguish between real
and synthetic samples.
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D.4.6. OUT-OF-DISTRIBUTION (OOD) DETECTION

TabCutMix may introduce a degree of OOD (Yang et al., 2024a) issues. To investigate the potential relationship between
TabCutMix and OOD, we conducted OOD detection experiments. These experiments also aimed to evaluate whether
TabCutMixPlus could mitigate OOD-related challenges to some extent. We framed the OOD detection task as a classification
problem, treating normal samples as negative and OOD samples as positive. Since our dataset lacks explicit labels for OOD
samples, we synthesized positive samples following the approach outlined in (Ulmer et al., 2020). For numerical features,
we randomly selected one feature and scaled it by a factor F (where F = 100). This approach aligns with the methodology
in (Azizmalayeri et al., 2023), which experimented with F values of 10, 100, and 1000; we adopted F = 100 as a balanced
choice for our experiments. For categorical features, we randomly selected a value from the existing categories of the chosen
feature. This process was repeated for a single feature at a time. We used the original training set as the negative class
and the synthesized samples as the positive class. A multi-layer perceptron (MLP) was trained to classify between these
two classes. Subsequently, we tested the samples generated by TabCutMix and TabCutMixPlus using the trained MLP
and calculated the proportion of samples classified as OOD. This analysis provides insights into the extent of OOD issues
introduced by TabCutMix and the potential of TabCutMixPlus to alleviate such issues.

5 indicates that the OOD issue introduced by TabCutMix is relatively minor across most datasets, as evidenced by low
OOD ratios (e.g., 2.06% for Adult and 0.61% for Magic) and high F1 scores (e.g., above 90% in several cases). While
some datasets, such as Default and Cardio, exhibit higher OOD ratios (39.47% and 4.83%, respectively). TabCutMixPlus
significantly mitigates the OOD problem, reducing the OOD ratio by substantial margins across all datasets. For instance, in
the Adult dataset, the OOD ratio is reduced from 2.06% to 0.36%, while in the Default dataset, it decreases from 39.47%
to 25.44%. These findings highlight the effectiveness of TabCutMixPlus in addressing potential OOD challenges while
maintaining robust classification capabilities, reinforcing its utility in synthetic data augmentation workflows.

Table 5. OOD detection of datasets.
Method Adult Default Shoppers Magic Cardio Churn Modeling Wilt Avg. Rank
Mixup (F1 Score%) 92.32 ± 0.67 71.64 ± 0.74 83.30 ± 0.77 99.67 ± 0.04 60.32 ± 0.47 98.01 ± 0.07 99.94 ± 0.01 1.86
Mixup (Ratio%) 0.03 ± 0.06 5.19 ± 2.49 0.16 ± 0.26 0.00 ± 0.00 1.98 ± 0.75 0.00 ± 0.00 0.00 ± 0.00 1.14
SMOTE (F1 Score%) 92.24 ± 0.79 71.55 ± 0.78 83.16 ± 1.03 99.68 ± 0.05 60.30 ± 0.49 98.01 ± 0.09 99.95 ± 0.02 2.14
SMOTE (Ratio%) 0.75 ± 1.40 28.43 ± 3.18 0.12 ± 0.37 0.00 ± 0.00 3.18 ± 1.83 0.00 ± 0.00 0.00 ± 0.00 1.57
TabCutMix (F1 Score%) 92.67 ± 0.22 71.42 ± 1.32 82.47 ± 0.35 99.27 ± 0.07 60.33 ± 0.25 97.94 ± 0.13 99.94 ± 0.01 2.43
TabCutMix (Ratio%) 2.06 ± 1.10 39.47 ± 6.70 1.58 ± 0.76 0.61 ± 0.03 4.83 ± 1.39 0.00 ± 0.00 0.00 ± 0.00 3.14
TabCutMixPlus (F1 Score%) 92.63 ± 0.20 71.39 ± 0.94 82.28 ± 0.39 99.19 ± 0.05 60.39 ± 0.17 97.97 ± 0.02 99.95 ± 0.03 2.57
TabCutMixPlus (Ratio%) 0.36 ± 0.27 25.44 ± 2.81 0.70 ± 0.39 0.43 ± 0.25 3.88 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 2.00

D.5. Discussion on Memorization Ratio and DCR

The DCR metric measures the closest distance of each synthetic sample to the training and holdout sets, offering insights into
potential privacy risks. Synthetic samples that closely resemble training data can indicate privacy concerns. However, DCR’s
dependence on the holdout set limits its robustness, as the results can vary with changes in the holdout set composition. This
reliance underscores the need for alternative metrics that are less influenced by external data partitions.

To address this, we focus on the Memorization Ratio, which uses a distance ratio to detect overfitting by identifying synthetic
samples that are disproportionately close to their nearest training neighbor compared to the second-closest. Unlike DCR,
this metric is independent of the holdout set, directly assessing overfitting within the generative process. While the fixed
threshold for the distance ratio is inspired by image generation literature, it provides a practical baseline for tabular data. We
acknowledge that tailoring the threshold to account for tabular-specific features (e.g., categorical and numerical distributions)
could improve its accuracy and plan to explore this in future work. Together, these metrics provide complementary insights
into privacy risks and overfitting in generative models.

D.6. Memorization Evaluation Metrics

In the context of generative modeling, memorization occurs when a model reproduces training samples too closely, rather
than generating novel samples that reflect the underlying data distribution. While some degree of memorization might be
acceptable or even desirable in certain scenarios (e.g., when high fidelity is required), excessive memorization can lead
to overfitting, lack of diversity in generated samples, and potential privacy risks if sensitive data from the training set is
replicated. Therefore, it is crucial to develop quantitative metrics to detect and measure memorization in generative models,
especially for applications involving tabular data, where exact replication of training samples is particularly problematic.
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To address this challenge, we propose the concept of the memorization ratio based on the relative distance ratio criterion.
Let x be a generated sample, and let D denote the training dataset. We define the distance ratio r(x) of x as:

r(x) =
d(x,NN1(x,D))
d(x,NN2(x,D))

,

where d(·, ·) is a distance metric in the input sample space, NN1(x,D) is the nearest neighbor of x in D, and NN2(x,D)
is the second-nearest neighbor of x in D. Intuitively, a small value of r(x) indicates that the generated sample x is nearly
identical to a training sample, suggesting memorization. To formalize this notion, we follow the threshold of memorization
in the image generation domain and consider a sample x to be memorized if r(x) < 1

3 .

To quantify the extent of memorization across all generated samples, we compute the memorization ratio, defined as the
proportion of generated samples that satisfy r(x) < 1

3 :

Mem. Ratio =
1

|G|
∑
x∈G

I(r(x) <
1

3
),

where G is the set of generated samples and I(·) is the indicator function.

While the memorization ratio provides a point estimate of memorization intensity at a fixed threshold 1
3 , it is also important

to understand how the degree of memorization varies under different thresholds τ . To this end, we propose the Memorization
Area Under Curve (Mem-AUC). Mem-AUC is computed as:

Mem-AUC =

∫ 1

0

Mem. Ratio(τ) dτ,

where Memorization Ratio(τ) represents the proportion of generated samples for which r(x) < τ as a function of the
threshold τ . Mem-AUC captures the overall memorization behavior across a continuous range of thresholds. Higher
Mem-AUC values indicate stronger memorization, while lower Mem-AUC values correspond to weaker memorization and
better generalization.

E. More Experimental Results
E.1. Distance Ratio Distribution of TabCutMix

We analyze the distribution of the nearest-neighbor distance ratio, defined as r = NN1(x,D)
NN2(x,D) , to assess the severity of

memorization. A more zero-concentrated ratio distribution indicates more severe memorization issue, as the generated
sample x is closer to a real sample in training set D. Figure. 8 illustrates the distance ratio distribution for both the original
TabSyn and TabSyn with TabCutMix, and we observe the following:

Obs.1: TabCutMix consistently shifts the distribution away from zero, indicating a reduction in memorization. For example,
in the Magic dataset, TabCutMix reduces the memorization ratio from 80.01% to 52.06% by generating samples that are
less tightly aligned with the real data in D.

Obs.2: The distance ratio distributions for both TabSyn and TabSyn with TabCutMix exhibit a bipolar pattern, with a
higher probability mass concentrated near 0 or 1, while the probability in the middle remains low. This indicates that more
generated samples are either very close to real data points (suggesting memorization) or relatively far apart (suggesting
diversity). In the Magic dataset, for instance, this bipolarization is prominent, with TabCutMix shifting a greater proportion
of samples towards higher distance ratios, thus reducing memorization.
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Figure 8. The nearest-neighbor distance ratio distributions of TabSyn with and without TabCutMix across different datasets.
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E.2. Data Distribution Comparison

Figure. 7 compares the distribution of real and synthetic data, with and without TabCutMix, for both numerical and
categorical features across four datasets: Adult, Default, Shoppers, and Magic. We use one numerical feature and one
categorical feature as examples from each dataset. We observe that

Obs.1: In the numerical feature distributions, TabCutMix generally synthesizes data, similar to w/o TabCutMix, aligned
with the real data’s distribution. For instance, in the Magic dataset, the Asym feature shows that the synthetic data generated
by TabSyn has a good alignment with real data.

Obs.2: The categorical feature distributions show a similar improvement. In the Shoppers dataset, the proportion of values
for the ”VisitorType” feature generated by TabCutMix closely matches the real data, similar to the synthetic data generated
without TabCutMix. This suggests that TabCutMix preserves the alignment between real and synthetic data for categorical
features as well.

E.3. Feature Correlation Matrix Comparison

Figure. 9 presents heatmaps of the pairwise column correlations between synthetic and real data. We compare the correlation
matrices of synthetic data generated by TabSyn with TabCutMix against the real data. We observe that

Obs.1: TabCutMix preserves the quality of data generation in terms of correlation matrices, maintaining similar patterns to
the synthetic data generated by TabSyn without introducing further errors. In datasets like Default and Shoppers, TabCutMix
ensures that the synthetic data retains the essential correlation structure of the real data, without significant degradation in
correlation matrix accuracy.

Obs.2: In the Magic dataset, while discrepancies between the synthetic and real data’s correlation patterns persist, TabCutMix
helps to maintain the existing data generation quality. Although it does not reduce the correlation matrix error, it ensures
that the synthetic data continues to represent feature relationships similarly to TabSyn, preserving the overall structure.
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Figure 9. Heatmaps of the pair-wise column correlation of synthetic data v.s. the real data. The value represents the absolute divergence
between the real and estimated correlations (the lighter, the better).

E.4. More experimental Results on Shape Score

Figure 10 visualizes the shape scores for synthetic data generated by TabSyn and TabSyn combined with TabCutMix (w/
TCM) across multiple datasets (Adult, Default, Magic, and Shoppers). Shape scores reflect how closely the distribution of
individual columns in synthetic data matches the real data. This figure compares these scores for different features to assess
the fidelity of the generated data. We make the following observations:

Obs. 1: TabSyn and TabSyn+TabCutMix produce high-fidelity distributions across datasets. Across all datasets (Adult,
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Default, Magic, Shoppers), both TabSyn and TabSyn+TabCutMix maintain high shape scores, suggesting that the gener-
ated samples from both methods capture the real data’s feature distributions effectively. For instance, in the Adult and
Default datasets, shape scores are consistently close to 1.0, indicating minimal divergence between synthetic and real data
distributions.

Obs. 2: Low variance in shape scores across features. One notable observation across all datasets (Adult, Default, Magic,
and Shoppers) is the consistently high shape scores across features, with minimal variance. For most features, the shape
scores are very close to 1.0, indicating that both TabSyn and TabCutMix can replicate the real data distributions with high
fidelity, regardless of feature type. The small variance in shape scores suggests that both methods generalize well across a
wide range of features, from categorical to continuous, without significant degradation in performance for any particular
feature.

The shape score comparison demonstrates that both TabSyn and TabCutMix generate synthetic data with high fidelity to the
real data across multiple datasets.
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Figure 10. Shape score comparison for each feature in synthetic data generated by TabSyn and TabSyn+TabCutMix across multiple
datasets.

E.5. Case Study: Evaluating Augmented Data Quality with TabCutMix and TabCutMixPlus

To assess the quality of augmented data and identify potential issues with TabCutMix, we conducted a detailed case study
using the Magic dataset, as summarized in Table 6. The table presents a comparison of real and generative samples produced
by TabSyn with TabCutMix (denoted as TCM) and TabSyn with TabCutMixPlus (denoted as TCMP).

The results reveal that TabCutMix disrupts feature correlations, evident in unrealistic relationships like the Length being
smaller than Width, which contradicts the inherent structure of the data. In contrast, TabCutMixPlus preserves feature
coherence by clustering correlated features and swapping them within the same cluster. This approach ensures the generation
of more realistic and consistent samples, demonstrating its effectiveness in maintaining data quality and utility compared to
TabCutMix.

Table 6. The real and generative samples by TabSyn with TabCutMix and TabSyn with TabCutMixPlus in Magic dataset. TCM represents
TabCutMix, TCMP represents TabCutMixPlus.

Samples Length Width Size Conc Conc1 Asym M3Long M3Trans Alpha Dist class
TabSyn+TCM 24.72 32.12 3.35 0.15 0.09 150.69 -40.91 -21.80 5.11 205.42 g

TabSyn+TCMP 17.56 11.20 2.29 0.58 0.37 2.29 17.12 2.40 22.44 211.00 g

E.6. Experimental Results on More Datasets

To broaden the evaluation of TabCutMix and TabCutMixPlus, we included 3 additional datasets Churn, Cardio, and Wilt.
The results are summarized in Table 7, and the following observations are made:

Obs. 1: TabCutMix and TabCutMixPlus consistently reduce the memorization ratio across all datasets compared to various
baselines. For instance, in the Churn dataset, the memorization ratio for TabSyn is reduced from 25.42% to 24.61% by
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TabCutMix and to 24.79% by TabCutMixPlus, representing an improvement of 3.21% and 2.49% compared to the vanilla
method. This highlights the effectiveness of TabCutMix and TabCutMixPlus in mitigating memorization.

Obs. 2: For data quality, TabCutMixPlus achieves superior results in metrics such as MLE, α-Precision, and β-Recall,
indicating its ability to maintain data fidelity and enhance synthetic data utility. For example, in the Wilt dataset, TabCut-
MixPlus achieves the highest α-Precision (99.10%) and β-Recall (48.14%), reflecting its capability to preserve structural
coherence while reducing memorization. In contrast, TabCutMix shows competitive but slightly lower performance (e.g.,
98.73% α-Precision and 47.04% β-Recall ), demonstrating that the clustering-based feature swaps in TabCutMixPlus offer
additional advantages.

E.7. More experiments on Baseline IJF

To compare the effectiveness of IJF with the proposed TabCutMix and TabCutMixPlus, we evaluate memorization and data
generation quality using metrics such as memorization ratio, MLE, α-Precision, β-Recall, shape score, and trend score
across four datasets. The results are presented in Table 8, and we observe the following:

Obs.1: IJF demonstrates moderate success in reducing memorization ratios compared to the baseline generative models
without augmentation. However, In terms of data quality metrics such as MLE, α-Precision, and β-Recall, IJF performs
weaker compared to TabCutMix and TabCutMixPlus in maintaining structural fidelity. For example, in the Adult dataset, the
shape score for IJF (96.55%) is slightly lower than that for TabCutMix (97.26%) and TabCutMixPlus (97.50%), suggesting
that IJF may not fully capture the complex relationships between features that are preserved in the proposed methods.

Obs.2: IJF shows consistent performance across datasets but lags behind TabCutMix and TabCutMixPlus in scenarios where
feature dependencies play a critical role. For instance, in the Shoppers dataset, TabCutMixPlus achieves the highest trend
score (97.77%), indicating its superiority in generating coherent and realistic data samples.

E.8. Experimental Results on More Generative Models

The results in Table 9 demonstrate that TabCutMixPlus (TCMP) effectively reduces memorization across various generative
models, including GAN-based models (e.g., CTGAN (Xu et al., 2019)) and VAE-based models (e.g., TVAE (Xu et al.,
2019)). Specifically, for CTGAN, TCMP achieves a reduction in memorization ratio by 8.03%, 2.23%, 0.52%, and 6.70%
on the Default, Adult, Shoppers, and Magic datasets, respectively. Similarly, for TVAE, TCMP reduces memorization by
9.47%, 2.93%, 12.98%, and 8.98% across the same datasets. These results indicate that TabCutMixPlus is not limited to
diffusion models but is also broadly applicable to other types of generative models. By preserving feature correlations and
addressing issues introduced by traditional TabCutMix, TCMP significantly mitigates memorization while maintaining or
even improving key performance metrics such as MLE, shape score, and trend score.

E.9. More Experiments on Mem-AUC

To verify the validity of using a fixed threshold of 1
3 for measuring memorization, we computed both the Mem-AUC and the

memorization ratio based on the 1
3 threshold. We then evaluated the correlation between these two metrics. The results, as

depicted in Figure 11, reveal a strong positive correlation across all scenarios. The high correlation between Mem-AUC and
the memorization ratio supports the appropriateness of the 1

3 threshold for practical applications. While Mem-AUC provides
a more holistic evaluation by integrating memorization over the entire threshold range, the 1

3 threshold remains a valid and
reliable metric for assessing memorization, balancing simplicity and effectiveness in practice. Table 10 highlights the results
for different augmentation techniques, including TabCutMixPlus, TabCutMix, Mixup, and SMOTE. These findings reinforce
that the 1

3 threshold remains a valid choice for simplicity and effectiveness in practice.

F. Limitation Discussion
While this work makes significant contributions to augmenting tabular data with TabCutMix and its improved version,
TabCutMixPlus, several limitations remain that warrant further exploration:

• Assumptions About Feature Independence. TabCutMix assumes that features can be swapped between samples
independently without disrupting the data manifold. However, this assumption does not hold for datasets with strongly
correlated features or complex interdependencies. For instance, in the Cardio dataset, the high feature correlation led to
a relatively high OOD ratio (4.83%), highlighting a limitation of the current method in preserving feature relationships
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Table 7. The overview performance comparison for tabular diffusion models on more datasets. “TCM” represents our proposed TabCut-
Mix and “TCMP” represents TabCutMixPlus. “Mem. Ratio” represents memorization ratio. “Improv” represents the improvement ratio
on memorization.

Methods Mem. Ratio (%) ↓ Improv. MLE (%)↑ α-Precision(%)↑ β-Recall(%)↑ Shape Score(%)↑ Trend Score(%)↑ C2ST(%)↑ DCR(%)

M
ag

ic

STaSy 77.52 ± 0.27 - 92.92 ± 0.30 91.18 ± 1.30 46.07 ± 1.61 88.12 ± 7.05 90.27 ± 6.53 75.02 ± 4.03 52.57 ± 0.92

STaSy+Mixup 78.11 ± 0.18 −0.77% ↓ 93.03 ± 0.16 91.03 ± 3.57 50.19 ± 0.84 94.30 ± 1.91 96.67 ± 1.10 79.72 ± 6.80 50.27 ± 1.42

STaSy+SMOTE 76.88 ± 0.43 0.83% ↓ 92.95 ± 1.59 67.32 ± 1.04 52.39 ± 2.18 88.78 ± 0.91 89.78 ± 1.45 53.08 ± 3.70 51.24 ± 0.74

STaSy+TCM 75.12 ± 0.29 3.10% ↓ 91.49 ± 0.63 92.50 ± 3.01 35.24 ± 1.48 89.62 ± 5.33 89.96 ± 6.44 75.70 ± 5.53 49.85 ± 0.21

STaSy+TCMP 76.70 ± 0.38 1.06% ↓ 92.77 ± 0.20 97.27 ± 1.30 40.11 ± 1.65 95.37 ± 1.51 96.34 ± 0.42 76.63 ± 6.85 48.41 ± 0.28

TabDDPM 77.62 ± 2.11 - 92.78 ± 0.23 98.41 ± 0.37 46.67 ± 1.18 99.07 ± 0.06 98.58 ± 0.51 99.05 ± 0.70 50.47 ± 0.42

TabDDPM+Mixup 78.37 ± 0.81 −0.97% ↓ 92.08 ± 0.58 92.01 ± 1.24 45.45 ± 1.38 96.22 ± 0.53 97.26 ± 1.69 98.33 ± 2.34 50.92 ± 0.20

TabDDPM+SMOTE 72.31 ± 1.56 6.84% ↓ 91.68 ± 0.52 66.45 ± 3.04 45.35 ± 2.70 89.30 ± 0.77 88.04 ± 1.54 54.27 ± 0.56 50.83 ± 0.71

TabDDPM+TCM 72.99 ± 0.22 5.96% ↓ 91.69 ± 0.86 97.92 ± 0.38 32.51 ± 0.70 98.97 ± 0.08 99.19 ± 0.11 97.62 ± 2.44 49.73 ± 0.35

TabDDPM+TCMP 76.22 ± 0.39 1.81% ↓ 91.50 ± 0.22 96.50 ± 4.02 36.52 ± 2.43 98.08 ± 1.32 95.17 ± 3.05 95.29 ± 6.22 49.88 ± 0.74

TabSyn 80.02 ± 0.39 - 93.18 ± 0.31 99.10 ± 0.68 48.28 ± 0.41 99.00 ± 0.28 99.15 ± 0.08 99.75 ± 0.29 50.48 ± 0.16

TabSyn+Mixup 78.88 ± 0.78 1.42% ↓ 92.63 ± 0.45 91.68 ± 0.20 48.50 ± 0.17 96.70 ± 0.10 98.41 ± 0.34 99.68 ± 0.43 51.01 ± 0.51

TabSyn+SMOTE 72.14 ± 1.27 9.85% ↓ 92.74 ± 0.12 63.32 ± 0.79 48.73 ± 2.69 89.36 ± 0.86 89.02 ± 0.89 56.26 ± 2.53 50.29 ± 0.53

TabSyn+TCM 52.06 ± 7.12 34.94% ↓ 91.77 ± 0.12 96.83 ± 0.40 30.79 ± 2.92 97.83 ± 0.65 98.09 ± 0.17 93.55 ± 1.49 51.76 ± 0.49

TabSyn+TCMP 76.46 ± 0.36 4.44% ↓ 91.91 ± 0.42 98.03 ± 1.76 39.54 ± 1.54 98.87 ± 0.57 97.26 ± 0.27 97.58 ± 3.36 51.32 ± 0.63

C
hu

rn

STaSy 27.01 ± 0.30 - 84.80 ± 2.24 92.39 ± 2.97 37.42 ± 8.07 87.17 ± 6.64 86.95 ± 5.99 48.42 ± 10.89 50.70 ± 2.00

STaSy+Mixup 24.86 ± 3.47 7.97% ↓ 85.08 ± 2.46 89.09 ± 1.40 46.08 ± 2.81 87.44 ± 2.82 87.95 ± 0.58 47.19 ± 7.58 51.79 ± 0.48

STaSy+SMOTE 22.36 ± 0.87 17.20% ↓ 83.73 ± 1.37 82.44 ± 1.78 35.85 ± 4.59 84.51 ± 3.71 86.23 ± 0.43 40.76 ± 4.83 51.90 ± 0.58

STaSy+IJF 22.96 ± 2.42 14.98% ↓ 82.62 ± 0.77 82.90 ± 1.10 41.34 ± 2.21 87.23 ± 0.63 70.33 ± 2.38 48.53 ± 1.61 47.25 ± 0.43

STaSy+TCM 22.86 ± 2.32 15.36% ↓ 84.01 ± 2.62 96.22 ± 2.87 43.16 ± 1.19 91.03 ± 1.60 90.30 ± 1.57 49.73 ± 4.26 52.26 ± 1.29

STaSy+TCMP 24.12 ± 1.05 10.69% ↓ 85.36 ± 2.16 94.92 ± 3.45 43.61 ± 2.21 91.10± 1.20 90.22 ± 0.76 50.68 ± 0.79 50.10 ± 1.80

TabDDPM 25.43 ± 1.00 - 86.31 ± 2.57 99.10 ± 0.36 51.03 ± 0.90 98.84± 0.30 98.06 ± 0.37 98.71 ± 1.40 49.23± 2.27

TabDDPM+Mixup 25.00 ± 0.68 1.69% ↓ 85.99 ± 1.49 95.04 ± 2.25 49.52 ± 1.49 95.98 ± 1.37 93.84± 2.43 88.77 ± 3.39 48.73 ± 0.82

TabDDPM+SMOTE 24.57 ± 0.61 3.41% ↓ 84.57 ± 2.14 86.46 ± 3.22 46.25 ± 1.18 94.53 ± 0.90 92.02 ± 2.19 80.12 ± 3.96 50.42 ± 0.23

TabDDPM+IJF 24.96 ± 0.53 1.86% ↓ 85.36 ± 1.78 89.12 ± 9.43 43.81 ± 4.20 93.40 ± 6.26 73.58 ± 2.61 89.12 ± 8.12 50.86 ± 0.84

TabDDPM+TCM 24.42 ± 0.71 4.00% ↓ 86.39 ± 1.82 98.51 ± 0.87 50.41 ± 0.75 98.55 ± 0.52 98.18 ± 0.81 96.62 ± 3.13 52.98 ± 0.53

TabDDPM+TCMP 24.66 ± 0.32 3.03% ↓ 86.55 ± 2.96 98.13 ± 1.21 51.82 ± 2.19 98.15 ± 0.33 97.78 ± 0.27 96.62 ± 2.20 50.37 ± 2.43

TabSyn 25.42 ± 0.21 - 86.04 ± 2.38 99.31 ± 0.31 50.45 ± 1.06 99.14 ± 0.13 98.15 ± 0.19 99.89 ± 0.06 50.80 ± 0.61

TabSyn+Mixup 24.74 ± 0.51 2.70% ↓ 85.84 ± 1.56 98.37 ± 0.16 49.43 ± 0.74 98.02 ± 0.65 97.10 ± 0.73 95.94 ± 5.81 50.43 ± 0.25

TabSyn+SMOTE 24.87 ± 0.46 2.19% ↓ 85.60 ± 1.97 98.63 ± 0.50 44.68 ± 0.40 98.25 ± 0.34 75.00 ± 1.50 99.08 ± 0.79 50.73 ± 1.42

TabSyn+IJF 24.53 ± 0.38 3.50% ↓ 83.12 ± 1.76 88.51 ± 0.40 46.62 ± 1.02 94.98 ± 0.54 93.31 ± 0.34 83.22 ± 2.14 52.28 ± 0.45

TabSyn+TCM 24.61 ± 0.17 3.21% ↓ 85.60 ± 2.41 99.12 ± 0.46 49.60 ± 0.38 99.14 ± 0.19 98.25 ± 0.28 99.70 ± 0.33 52.15 ± 0.77

TabSyn+TCMP 24.79 ± 0.15 2.49% ↓ 86.28 ± 2.15 99.10 ± 0.28 49.62± 0.64 98.99 ± 0.50 98.70 ± 0.32 99.49 ± 0.32 49.30 ± 1.90

C
ar

di
o

STaSy 23.94 ± 0.12 - 79.89 ± 0.74 93.72 ± 3.19 46.46 ± 0.87 96.17 ± 1.24 96.37 ± 0.80 85.00 ± 4.66 50.10 ± 0.71

STaSy+Mixup 23.84 ± 0.15 0.42% ↓ 79.30 ± 0.28 94.86 ± 3.17 46.32 ± 0.47 95.14 ± 0.79 95.90 ± 0.15 82.90 ± 3.11 49.79 ± 0.53

STaSy+SMOTE 22.77 ± 0.27 4.87% ↓ 78.81 ± 0.18 90.57 ± 3.00 45.11 ± 1.24 95.37 ± 0.48 95.16 ± 1.34 76.82 ± 5.21 50.48 ± 0.24

STaSy+IJF 22.51 ± 1.12 5.99% ↓ 79.63 ± 0.91 95.48 ± 1.24 40.96 ± 0.19 96.24 ± 0.43 92.42 ± 0.47 85.98 ± 4.76 50.54 ± 1.51

STaSy+TCM 22.50 ± 0.35 6.00% ↓ 79.71 ± 0.46 95.11 ± 3.87 45.92 ± 1.76 95.79 ± 2.18 95.95 ± 1.74 85.34 ± 2.49 52.24 ± 3.03

STaSy+TCMP 22.81 ± 0.48 4.73% ↓ 79.96 ± 0.33 94.93 ± 2.82 46.09 ± 2.68 96.37± 1.59 96.07 ± 1.06 85.99 ± 2.21 50.43 ± 0.74

TabDDPM 24.63 ± 0.18 - 80.24 ± 0.78 99.14 ± 0.15 49.11 ± 0.17 99.61 ± 0.03 98.95 ± 0.30 99.43 ± 0.55 49.91 ± 0.36

TabDDPM+Mixup 24.00 ± 0.36 2.57% ↓ 79.62 ± 0.27 99.22 ± 0.45 48.17 ± 0.17 97.80 ± 0.72 97.38 ± 0.85 95.01 ± 2.25 50.15 ± 0.54

TabDDPM+SMOTE 23.10 ± 0.69 6.21% ↓ 79.47 ± 0.45 96.35 ± 2.38 47.44 ± 1.17 96.58 ± 0.75 94.39 ± 1.28 85.43 ± 1.69 50.73 ± 0.19

TabDDPM+IJF 22.00 ± 0.83 10.68% ↓ 79.37 ± 0.79 98.12 ± 0.27 42.58 ± 0.33 97.87 ± 0.13 94.49 ± 0.32 99.46 ± 0.16 50.10 ± 0.48

TabDDPM+TCM 23.05 ± 0.38 6.40% ↓ 79.71 ± 0.58 97.82 ± 2.05 48.37 ± 1.11 98.66 ± 1.35 95.86 ± 3.43 96.31 ± 0.42 49.24 ± 1.58

TabDDPM+TCMP 23.54 ± 0.34 4.43% ↓ 79.82 ± 0.27 98.71 ± 0.49 48.87 ± 0.34 98.88± 0.62 98.67 ± 0.20 96.31 ± 0.42 49.34 ± 0.38

TabSyn 25.31 ± 0.45 - 80.04 ± 0.79 95.70 ± 2.65 49.63 ± 0.69 97.43± 0.76 96.63 ± 1.67 91.46 ± 1.99 50.34 ± 0.79

TabSyn+Mixup 24.46 ± 0.43 3.33% ↓ 79.85 ± 0.30 98.48 ± 0.78 48.15 ± 0.56 98.32 ± 0.53 96.10 ± 2.38 96.64 ± 3.19 50.69 ± 0.34

TabSyn+SMOTE 23.85 ± 0.68 5.77% ↓ 79.76 ± 0.49 97.54 ± 0.82 47.47 ± 0.44 97.06 ± 0.71 95.00 ± 3.33 86.30 ± 3.50 48.73 ± 0.36

TabSyn+IJF 22.53 ± 0.80 10.97% ↓ 79.43 ± 0.15 98.09 ± 0.17 42.83 ± 0.32 97.96 ± 0.17 94.62 ± 0.60 99.49 ± 0.19 50.48 ± 0.36

TabSyn+TCM 22.97 ± 0.17 9.23% ↓ 79.92 ± 0.44 98.59 ± 0.98 48.62 ± 0.76 98.90 ± 0.63 97.93 ± 0.99 95.97 ± 3.13 50.27± 1.22

TabSyn+TCMP 23.90 ± 0.42 5.55% ↓ 79.79 ± 0.60 98.32 ± 0.36 48.60 ± 0.90 98.55 ± 0.14 98.12 ± 0.99 95.78 ± 0.60 49.95 ± 0.27

W
ilt

STaSy 98.42 ± 0.24 - 98.74 ± 1.15 86.68 ± 5.50 42.20 ± 1.00 82.39 ± 8.05 91.16 ± 5.11 36.64 ± 6.77 52.27 ± 5.18

STaSy+Mixup 97.61 ± 0.81 0.77% ↓ 99.05 ± 0.84 91.78 ± 8.33 43.48 ± 3.40 85.41 ± 4.54 88.76 ± 1.65 47.88 ± 6.39 45.45 ± 8.90

STaSy+SMOTE 97.31 ± 0.82 1.13% ↓ 98.88 ± 0.71 76.07 ± 2.06 36.07 ± 2.25 80.96 ± 2.64 85.34 ± 5.12 35.63 ± 3.54 50.49 ± 0.33

STaSy+IJF 96.53 ± 0.31 1.92% ↓ 96.86 ± 1.75 79.48 ± 6.34 35.22 ± 7.30 79.20 ± 4.54 79.41 ± 4.02 37.17 ± 10.11 54.27 ± 1.13

STaSy+TCM 92.47 ± 5.97 6.05% ↓ 98.80 ± 0.64 91.10 ± 9.72 42.21 ± 8.70 87.34 ± 12.46 91.68 ± 7.60 47.49 ± 14.75 51.65 ± 2.80

STaSy+TCMP 97.60 ± 0.84 0.84% ↓ 99.33 ± 0.31 90.66 ± 7.37 42.22 ± 9.77 85.32 ± 8.57 90.94 ± 7.43 49.98 ± 4.59 48.19 ± 3.51

TabDDPM 98.48 ± 0.35 - 99.32 ± 0.58 98.63 ± 0.73 50.53 ± 0.47 98.58 ± 1.51 98.48 ± 0.35 98.63 ± 1.68 52.47 ± 0.54

TabDDPM+Mixup 98.16 ± 0.24 0.32% ↓ 99.34 ± 0.44 96.29 ± 0.49 52.13 ± 1.11 97.34 ± 0.99 92.24 ± 3.21 96.05 ± 1.97 50.84 ± 0.26

TabDDPM+SMOTE 96.78 ± 0.41 1.72% ↓ 99.22 ± 0.54 79.49 ± 0.78 43.76 ± 1.37 91.09 ± 0.50 88.04 ± 4.73 76.66 ± 2.61 50.29 ± 0.28

TabDDPM+IJF 94.16 ± 0.18 4.39% ↓ 98.90 ± 0.66 96.51 ± 0.63 43.95 ± 1.12 96.69 ± 0.26 86.63 ± 0.61 98.57 ± 0.87 52.46 ± 3.66

TabDDPM+TCM 97.17 ± 0.12 1.33% ↓ 99.22 ± 0.38 97.93 ± 1.01 48.47 ± 1.17 97.31 ± 1.28 95.71 ± 2.49 96.92 ± 1.72 48.75 ± 2.18

TabDDPM+TCMP 96.75 ± 0.67 1.76% ↓ 99.52 ± 0.37 98.55 ± 0.14 49.36 ± 0.99 97.12 ± 0.84 96.81 ± 0.63 96.76 ± 3.44 45.52 ± 1.35

TabSyn 97.67 ± 0.39 - 99.85 ± 0.07 98.83 ± 0.28 47.96 ± 0.64 98.73 ± 0.12 98.62 ± 0.19 99.91 ± 0.07 51.71 ± 2.94

TabSyn+Mixup 97.62 ± 0.22 0.05% ↓ 99.44 ± 0.34 97.03 ± 0.13 48.89 ± 1.61 98.51 ± 0.08 93.38 ± 4.39 98.85 ± 0.14 50.68 ± 0.42

TabSyn+SMOTE 94.84 ± 0.60 2.89% ↓ 99.13 ± 0.84 77.86 ± 1.27 41.96 ± 0.26 90.57 ± 0.61 87.85 ± 3.33 77.73 ± 1.02 47.10 ± 2.18

TabSyn+IJF 93.62 ± 0.52 4.14% ↓ 99.06 ± 0.65 96.48 ± 0.22 42.12 ± 0.69 97.28 ± 0.64 85.05 ± 0.22 99.64 ± 0.35 51.66 ± 0.89

TabSyn+TCM 95.95 ± 0.19 1.76% ↓ 99.45 ± 0.29 98.73 ± 0.51 47.04 ± 0.25 98.64 ± 0.06 98.11 ± 0.30 99.73 ± 0.24 49.44 ± 4.08

TabSyn+TCMP 96.79 ± 0.23 0.90% ↓ 99.70 ± 0.14 99.10 ± 0.23 48.14 ± 0.41 98.47 ± 0.29 98.74 ± 0.07 99.06 ± 0.78 49.72 ± 1.02
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Table 8. The overview performance comparison for tabular diffusion models on IJF and our proposed methods. “TCM” represents our
proposed TabCutMix and “TCMP” represents TabCutMixPlus. “Mem. Ratio” represents the memorization ratio. “Improv” represents
the improvement ratio on memorization.

Methods Mem. Ratio (%) ↓ Improv. MLE (%)↑ α-Precision(%)↑ β-Recall(%)↑ Shape Score(%)↑ Trend Score(%)↑ C2ST(%)↑ DCR(%)

D
ef

au
lt

STaSy 17.57 ± 0.53 - 76.48 ± 1.18 87.78 ± 5.20 35.94 ± 5.48 90.27 ± 2.43 89.58 ± 1.35 67.68 ± 6.89 50.30 ± 0.36

STaSy+IJF 14.59 ± 1.77 16.94% ↓ 75.15 ± 0.96 86.59 ± 3.71 31.56 ± 0.16 89.19 ± 1.12 31.42 ± 0.72 49.28 ± 1.46 51.30 ± 2.78

STaSy+TCM 14.51 ± 0.46 17.44% ↓ 75.33 ± 1.32 86.04 ± 11.55 32.13 ± 5.07 90.30 ± 3.88 89.85 ± 3.16 49.51 ± 6.33 50.39 ± 0.99

STaSy+TCMP 15.53 ± 2.00 11.59% ↓ 76.30 ± 0.57 90.83 ± 4.51 32.81 ± 1.37 91.49 ± 0.77 92.08 ± 2.04 50.43 ± 2.00 50.70 ± 1.94

TabDDPM 19.33 ± 0.45 - 76.79 ± 0.69 98.15 ± 1.45 44.41 ± 0.70 97.58± 0.95 94.46 ± 0.68 91.85 ± 6.04 49.12 ± 0.94

TabDDPM+IJF 14.02 ± 1.12 27.47% ↓ 76.19 ± 0.87 93.82 ± 0.68 38.59 ± 0.49 96.36 ± 0.53 28.49 ± 1.27 95.91 ± 1.77 49.86 ± 1.22

TabDDPM+TCM 16.76 ± 0.47 13.26% ↓ 76.47 ± 0.60 97.30 ± 0.46 38.72 ± 2.78 97.27 ± 1.74 93.27 ± 2.52 94.72 ± 3.87 50.23 ± 0.53

TabDDPM+TCMP 18.00 ± 0.24 6.88% ↓ 76.92 ± 0.17 98.26 ± 0.25 41.92 ± 0.52 97.37 ± 0.09 91.42 ± 1.15 95.64 ± 0.49 49.75 ± 0.32

TabSyn 20.11 ± 0.03 - 77.00 ± 0.33 98.66 ± 0.13 46.76 ± 0.50 98.96 ± 0.11 96.82 ± 1.71 98.27 ± 1.14 51.09 ± 0.32

TabSyn+IJF 15.82 ± 0.33 21.33% ↓ 76.53 ± 0.56 92.66 ± 0.39 39.11 ± 0.35 96.51 ± 0.30 31.84 ± 0.31 97.64 ± 0.80 49.58 ± 0.67

TabSyn+TCM 16.86 ± 1.36 16.16% ↓ 76.84 ± 0.34 96.16 ± 1.24 40.69 ± 2.46 98.02 ± 1.62 96.51 ± 1.42 97.65 ± 0.65 51.16 ± 1.82

TabSyn+TCMP 17.60 ± 0.28 12.48% ↓ 77.17 ± 0.51 97.61 ± 0.27 44.46 ± 0.60 99.03 ± 0.08 96.30 ± 1.48 98.16 ± 0.65 51.20 ± 0.90

A
du

lt

STaSy 26.02 ± 0.89 - 90.54 ± 0.17 85.79 ± 7.85 34.35 ± 2.46 89.14 ± 2.29 86.00 ± 2.97 51.89 ± 14.87 50.46 ± 0.39

STaSy+IJF 20.80 ± 2.03 20.07% ↓ 90.55 ± 0.18 81.69 ± 10.52 28.41 ± 5.36 88.19 ± 3.23 58.59 ± 1.91 45.93 ± 10.41 50.46 ± 0.32

STaSy+TCM 20.89 ± 1.33 19.71% ↓ 90.45 ± 0.30 85.39 ± 1.61 31.24 ± 0.97 88.33 ± 3.63 85.39 ± 4.03 45.49 ± 4.78 50.92 ± 0.39

STaSy+TCMP 21.45 ± 2.60 17.59% ↓ 90.72 ± 0.06 86.71 ± 4.12 32.63 ± 1.81 89.62 ± 1.55 86.05 ± 2.44 49.12 ± 9.95 50.75± 0.59

TabDDPM 31.01 ± 0.18 - 91.09 ± 0.07 93.58 ± 1.99 51.52 ± 2.29 98.84 ± 0.03 97.78 ± 0.07 94.63 ± 1.19 51.56 ± 0.34

TabDDPM+IJF 24.98 ± 0.41 19.45% ↓ 89.96 ± 0.52 95.32 ± 0.18 42.57 ± 0.30 97.45 ± 0.66 62.80 ± 0.97 95.68 ± 0.49 50.47 ± 0.27

TabDDPM+TCM 27.55 ± 0.19 11.16% ↓ 91.15 ± 0.06 94.97 ± 0.06 47.43 ± 1.46 98.65 ± 0.03 97.75 ± 0.07 85.61 ± 16.03 50.99 ± 0.65

TabDDPM+TCMP 26.10 ± 2.11 15.83% ↓ 90.54 ± 0.17 92.26 ± 6.97 43.49 ± 3.74 95.10 ± 4.27 91.50 ± 6.53 84.76 ± 10.12 50.68 ± 0.89

TabSyn 29.26 ± 0.23 - 91.13 ± 0.09 99.31 ± 0.39 48.00 ± 0.22 99.33 ± 0.09 98.19 ± 0.50 98.68 ± 0.41 50.42 ± 0.27

TabSyn+IJF 24.71 ± 0.80 15.53% ↓ 90.82 ± 0.13 98.94 ± 0.38 41.61 ± 0.57 97.40 ± 0.54 63.93 ± 1.19 99.55 ± 0.27 50.57 ± 0.43

TabSyn+TCM 27.03 ± 0.22 7.60% ↓ 91.09 ± 0.17 99.04 ± 0.42 44.95 ± 0.42 99.40 ± 0.07 98.51 ± 0.08 89.18 ± 1.94 50.67 ± 0.11

TabSyn+TCMP 25.99 ± 0.52 11.17% ↓ 90.96 ± 0.16 98.43 ± 1.04 43.23 ± 2.96 98.38 ± 0.91 96.53 ± 1.47 93.39 ± 6.01 50.30 ± 0.78

Sh
op

pe
rs

STaSy 25.51 ± 0.32 - 91.26 ± 0.23 88.02 ± 3.54 34.58 ± 1.84 88.18 ± 0.29 89.10 ± 0.53 47.85 ± 8.48 51.68 ± 0.56

STaSy+IJF 23.71 ± 0.39 7.06% ↓ 90.28 ± 0.95 85.79 ± 6.83 34.04 ± 7.18 87.15 ± 4.48 51.55 ± 1.20 50.70 ± 12.74 50.29 ± 0.20

STaSy+TCM 22.78 ± 0.69 10.71% ↓ 90.56 ± 0.44 86.66 ± 4.18 34.08 ± 1.46 87.16 ± 3.78 86.56 ± 4.26 50.08 ± 6.30 50.61 ± 0.41

STaSy+TCMP 22.19 ± 1.21 13.03% ↓ 91.37 ± 0.65 85.82 ± 2.66 34.11 ± 2.08 87.38 ± 2.30 88.61 ± 1.64 52.42 ± 2.65 51.19 ± 0.95

TabDDPM 31.37 ± 0.31 - 92.17 ± 0.32 93.16 ± 1.58 52.57 ± 1.30 97.08 ± 0.46 92.92 ± 3.27 86.74 ± 0.63 51.36 ± 0.63

TabDDPM+IJF 26.45 ± 0.61 15.67% ↓ 91.29 ± 0.43 87.90 ± 0.43 46.28 ± 0.89 95.18 ± 0.60 58.69± 4.57 85.11 ± 0.54 50.44 ± 2.24

TabDDPM+TCM 25.56 ± 1.17 18.51% ↓ 92.17 ± 0.26 94.41 ± 1.49 50.05 ± 1.59 97.18 ± 0.34 93.95± 0.51 86.96 ± 0.50 47.52± 1.81

TabDDPM+TCMP 28.51 ± 0.35 9.12% ↓ 92.09 ± 0.99 93.43 ± 1.65 52.30 ± 0.73 97.31 ± 0.22 94.79± 0.30 87.02 ± 2.04 50.83 ± 0.59

TabSyn 27.68 ± 0.10 - 91.76 ± 0.66 99.20 ± 0.29 47.79 ± 0.77 98.54 ± 0.19 97.83 ± 0.10 95.44 ± 0.39 52.50 ± 0.44

TabSyn+IJF 25.54 ± 0.28 7.73% ↓ 91.41 ± 1.01 98.46 ± 0.93 43.72 ± 4.30 96.22 ± 1.85 96.39 ± 1.80 94.05 ± 4.58 51.35 ± 1.61

TabSyn+TCM 25.38 ± 0.18 8.30% ↓ 91.43 ± 0.26 99.11 ± 0.28 45.98 ± 0.90 98.56 ± 0.10 97.85 ± 0.06 97.28 ± 2.41 49.92 ± 1.59

TabSyn+TCMP 25.93 ± 0.23 6.33% ↓ 91.75 ± 0.47 99.24 ± 0.55 46.48 ± 0.77 98.60 ± 0.14 97.77 ± 0.09 97.40 ± 0.57 50.21 ± 3.33

M
ag

ic

STaSy 77.52 ± 0.27 - 92.92 ± 0.30 91.18 ± 1.30 46.07 ± 1.61 88.12 ± 7.05 90.27 ± 6.53 75.02 ± 4.03 52.57 ± 0.92

STaSy+IJF 72.52 ± 6.59 6.45% ↓ 90.90 ± 0.59 90.54 ± 1.86 24.11 ± 0.86 89.21 ± 1.28 84.58 ± 0.49 75.70 ± 5.89 50.79 ± 1.14

STaSy+TCM 75.12 ± 0.29 3.10% ↓ 91.49 ± 0.63 92.50 ± 3.01 35.24 ± 1.48 89.62 ± 5.33 89.96 ± 6.44 75.70 ± 5.53 49.85 ± 0.21

STaSy+TCMP 76.70 ± 0.38 1.06% ↓ 92.77 ± 0.20 97.27 ± 1.30 40.11 ± 1.65 95.37 ± 1.51 96.34 ± 0.42 76.63 ± 6.85 48.41 ± 0.28

TabDDPM 77.62 ± 2.11 - 92.78 ± 0.23 98.41 ± 0.37 46.67 ± 1.18 99.07 ± 0.06 98.58 ± 0.51 99.05 ± 0.70 50.47 ± 0.42

TabDDPM+IJF 63.54 ± 1.55 18.15% ↓ 90.20 ± 0.52 91.81 ± 0.67 21.05 ± 1.48 93.69 ± 0.73 84.60 ± 0.78 95.90 ± 3.00 50.47 ± 0.86

TabDDPM+TCM 72.99 ± 0.22 5.96% ↓ 91.69 ± 0.86 97.92 ± 0.38 32.51 ± 0.70 98.97 ± 0.08 99.19 ± 0.11 97.62 ± 2.44 49.73 ± 0.35

TabDDPM+TCMP 76.22 ± 0.39 1.81% ↓ 91.50 ± 0.22 96.50 ± 4.02 36.52 ± 2.43 98.08 ± 1.32 95.17 ± 3.05 95.29 ± 6.22 49.88 ± 0.74

TabSyn 80.02 ± 0.39 - 93.18 ± 0.31 99.10 ± 0.68 48.28 ± 0.41 99.00 ± 0.28 99.15 ± 0.08 99.75 ± 0.29 50.48 ± 0.16

TabSyn+IJF 57.03 ± 5.52 28.73% ↓ 90.41 ± 1.65 90.52 ± 1.70 21.43 ± 3.77 92.89 ± 0.16 84.95 ± 0.67 95.73 ± 3.80 50.05 ± 0.76

TabSyn+TCM 52.06 ± 7.12 34.94% ↓ 91.77 ± 0.12 96.83 ± 0.40 30.79 ± 2.92 97.83 ± 0.65 98.09 ± 0.17 93.55 ± 1.49 51.76 ± 0.49

TabSyn+TCMP 76.46 ± 0.36 4.44% ↓ 91.91 ± 0.42 98.03 ± 1.76 39.54 ± 1.54 98.87 ± 0.57 97.26 ± 0.27 97.58 ± 3.36 51.32 ± 0.63
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Table 9. The overview performance comparison for tabular diffusion models on more generative models. “TCM” represents our
proposed TabCutMix and “TCMP” represents TabCutMixPlus. “Mem. Ratio” represents memorization ratio. “Improv” represents the
improvement ratio on memorization.

Methods Mem. Ratio (%) ↓ Improv. MLE (%)↑ α-Precision(%)↑ β-Recall(%)↑ Shape Score(%)↑ Trend Score(%)↑ C2ST(%)↑ DCR(%)

D
ef

au
lt

CTGAN 12.83 ± 0.63 - 68.68 ± 0.21 68.95 ± 1.70 16.49 ± 0.55 85.04 ± 0.93 77.05 ± 2.47 61.89 ± 4.89 49.45 ± 0.80

CTGAN+TCMP 11.80 ± 0.25 8.03% ↓ 70.05 ± 0.81 71.33 ± 0.82 17.02 ± 0.60 85.28 ± 0.97 78.09 ± 0.32 63.67 ± 3.07 50.14 ± 0.60

TVAE 17.22 ± 0.43 - 72.24 ± 0.36 82.97 ± 0.37 20.57 ± 0.42 89.37± 0.54 83.36 ± 0.99 52.63 ± 0.37 51.33 ± 0.96

TVAE+TCMP 15.59 ± 0.28 9.47% ↓ 72.75 ± 0.52 81.57 ± 0.32 19.52 ± 0.39 89.33 ± 0.48 78.04 ± 6.05 45.60 ± 0.90 50.07 ± 0.52

A
du

lt

CTGAN 21.68 ± 0.62 - 88.64 ± 0.32 78.15 ± 3.66 26.27 ± 0.67 82.43 ± 0.90 82.83 ± 0.93 63.64 ± 2.74 49.14 ± 0.27

CTGAN+TCMP 21.20 ± 0.31 2.23% ↓ 88.63 ± 0.66 76.27 ± 0.60 25.56 ± 0.33 81.42 ± 0.32 82.11 ± 1.01 60.98 ± 1.67 50.96± 0.17

TVAE 30.78 ± 0.41 - 88.61 ± 0.49 92.34 ± 2.19 29.90 ± 1.00 82.71 ± 0.45 79.06 ± 0.90 48.67 ± 2.70 48.76 ± 0.25

TVAE+TCMP 29.88 ± 0.34 2.93% ↓ 88.42 ± 0.26 88.02 ± 0.72 29.78 ± 1.42 82.76 ± 0.92 77.92 ± 0.66 52.52± 7.24 51.35 ± 0.29

Sh
op

pe
rs

CTGAN 19.80 ± 1.15 - 83.22 ± 1.30 85.26 ± 5.17 26.67 ± 1.66 77.73 ± 0.50 86.48 ± 0.69 67.18± 5.84 48.54 ± 0.74

CTGAN+TCMP 19.69 ± 0.35 0.52% ↓ 83.94 ± 0.80 82.07 ± 9.62 23.47 ± 0.43 76.15 ± 0.22 84.56 ± 0.40 64.60 ± 0.82 52.02 ± 0.13

TVAE 23.17 ± 0.77 - 86.65 ± 0.48 50.32 ± 2.98 11.16 ± 1.33 74.75 ± 0.92 77.56 ± 1.11 21.29 ± 3.28 43.31 ± 0.65

TVAE+TCMP 20.16 ± 0.80 12.98% ↓ 87.07 ± 0.74 50.69 ± 0.44 10.54 ± 1.68 74.86 ± 0.26 78.55± 0.48 21.78 ± 4.28 43.21 ± 0.69

M
ag

ic

CTGAN 74.08 ± 0.69 - 83.62 ± 0.33 82.96 ± 0.83 8.70 ± 0.69 89.65 ± 0.45 91.81± 1.18 63.18 ± 0.53 51.53 ± 2.07

CTGAN+TCMP 69.12 ± 1.94 6.70% ↓ 82.21 ± 0.43 82.72± 1.19 8.52 ± 0.76 90.70 ± 1.40 89.07 ± 0.16 65.99 ± 10.68 49.37 ± 0.31

TVAE 77.20 ± 0.32 - 88.71 ± 0.45 92.17 ± 0.43 32.11 ± 0.81 91.67 ± 0.75 93.75 ± 0.43 77.18 ± 1.38 48.71 ± 0.59

TVAE+TCMP 70.26 ± 0.97 8.98% ↓ 87.36 ± 0.51 91.31 ± 1.33 26.17 ± 0.83 89.01 ± 0.79 92.06 ± 0.23 73.95 ± 1.79 53.14 ± 0.52
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Figure 11. Correlation analysis between the memorization ratio with threshold 1/3 and Mem-AUC and the memorization ratio with
different thresholds.
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Table 10. Mem-Ratio vs. Mem-AUC
Methods Metrics Default Magic Shoppers Adult

TabSyn TabDDPM STaSy TabSyn TabDDPM STaSy TabSyn TabDDPM STaSy TabSyn TabDDPM STaSy

TabCutMixPlus Mem-Ratio 17.60 17.73 14.81 76.26 75.80 76.99 26.11 28.81 23.57 26.20 26.10 22.24
Mem-AUC 33.73 33.70 29.71 79.21 77.15 79.53 37.85 42.44 34.99 38.36 40.54 33.98

TabCutMix Mem-Ratio 17.59 17.17 14.11 45.99 73.19 75.18 25.30 26.27 23.02 27.20 27.37 21.78
Mem-AUC 32.61 32.10 29.15 78.26 78.93 79.37 37.08 42.44 32.99 38.23 41.93 34.35

Mixup Mem-Ratio 19.66 18.89 18.66 78.45 78.48 77.97 28.54 28.76 26.04 28.33 30.06 23.73
Mem-AUC 35.45 34.65 33.64 79.24 80.07 79.57 40.12 41.74 37.24 42.42 44.62 36.15

SMOTE Mem-Ratio 19.29 18.02 15.95 70.81 72.14 76.42 25.48 26.63 22.85 26.96 29.34 24.31
Mem-AUC 34.12 33.23 30.21 73.63 74.55 77.58 36.70 37.77 34.14 39.76 42.45 36.54

during augmentation.

• Challenges in Complex Domains. TabCutMix struggles in sensitive domains, such as healthcare or finance, where
feature interactions often carry critical domain-specific meanings. Arbitrary feature exchanges may result in implausible
or nonsensical combinations, reducing the utility of augmented data for downstream tasks. For example, relationships
between features like age and medical diagnosis may be violated, leading to unrealistic augmented samples.

• Classification-specific applicability: TabCutMix and TabCutMixPlus are specifically designed for classification tasks,
where samples can be grouped based on discrete class labels. This design makes it challenging to directly apply the
methods to regression tasks, where the target variable is continuous and lacks discrete boundaries for grouping. Future
work could explore strategies such as pseudo-labeling, binning continuous targets, or developing regression-aware
augmentation techniques to adapt the core ideas of TabCutMix to regression settings and expand the scope of its
applicability.

• Sensitivity to Outliers. The proposed mixed-distance metric, like many distance-based measures, is sensitive to outliers,
particularly in numerical features, which can disproportionately affect distance calculations and distort relationships
between samples. While normalization mitigates feature dominance, it does not fully address the impact of extreme
values. Future work could explore robust distance metrics, such as adaptive scaling or trimming, to reduce the influence
of outliers and improve the reliability of distance-based approaches in tabular data modeling.

• Lack of General Insights into Data-Centric Factors. While this work identifies the influence of data-centric factors, such
as dataset complexity and feature interactions, on the effectiveness of TabCutMix, it does not provide a comprehensive
framework for understanding or addressing these factors. A deeper investigation into these data-centric elements is
necessary to fully realize the potential of TabCutMix and similar augmentation techniques.

G. Future Work
While this study makes significant strides in addressing the issue of memorization in tabular data generation, several
directions remain open for future exploration:

1. Theoretical Analysis of Factor Heterogeneity: A deeper theoretical investigation is valuable into how different factors,
such as dataset size and feature dimensionality, influence memorization in heterogeneous ways. Specifically, understanding
the nonlinear relationships between these factors and their combined effect on model memorization could provide further
insights.

2. Exploring Alternative Memorization Mitigation Techniques: Beyond data augmentation, future work could explore
different strategies to mitigate memorization. These could include more advanced generative model training techniques,
such as regularization methods or differential privacy mechanisms that limit model overfitting to specific data points.
Additionally, techniques like model pruning, weight clipping, or dropout variations could be explored for their
potential to reduce memorization during model training. The model architecture design by leveraging architectures like
variational autoencoders (VAEs), normalizing flows, or GAN variations with modified loss functions can be developed
to mitigate memorization. The prior information of the flag to the model to indicate whether it is processing real or
augmented data can also integrated for advanced memorization mitigation method.

3. Evaluation Metrics for Memorization: Developing more comprehensive and practical evaluation metrics specifically
tailored to detect memorization in tabular data models remains a key area for future work. These metrics could better
assess the trade-off between generating high-quality synthetic data and avoiding overfitting to the training data.
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4. Real-World Applications and Use Cases: Applying these methods to a broader range of real-world use cases could
provide valuable feedback and improvements. Specific industries such as healthcare, finance, and marketing, where
tabular data is prevalent, would be ideal candidates for testing how well these approaches generalize and perform in
production environments.

5. Data-Centric Investigation for Tabular Diffusion Models: This study reveals that memorization in tabular diffusion
models may be predominantly driven by dataset-specific factors such as feature complexity, sparsity, and redundancy,
rather than model-specific architecture. A deeper exploration into these data-centric influences could provide valuable
insights into the interplay between dataset properties and memorization behavior. Future work could focus on developing
strategies to quantify the impact of dataset characteristics on generative performance and proposing adaptive preprocessing,
augmentation, or sampling methods tailored to diverse datasets. Such investigations would enhance the robustness and
applicability of diffusion models across a wide range of tabular data scenarios.

6. Cross-Domain Generalization and Transferability of Memorization Mitigation: The generalization of memorization
insights and mitigation strategies developed for tabular diffusion models to other data modalities (e.g., text, images,
multimodal data) and diverse generative architectures (e.g., VAEs, GANs, autoregressive models) are under-explored.
This includes investigating shared factors (e.g., data sparsity, complexity) and domain-specific drivers of memorization to
establish unified detection frameworks and evaluating the adaptability of techniques like TabCutMix and TabCutMixPlus
across models and domains. Empirical studies will assess their effectiveness in reducing memorization while preserving
generation quality, and adaptive variants tailored to specific architectures (e.g., sequential text models) or data characteris-
tics (e.g., high-dimensional images) will be developed to broaden real-world applicability. Theoretical comparisons of
memorization behaviors across heterogeneous data types will further clarify universal principles and context-dependent
challenges.
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