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Abstract001

Current evaluations of large language models002
(LLMs) often overlook non-determinism, typ-003
ically focusing on a single output per exam-004
ple. This limits our understanding of LLM005
performance variability in real-world applica-006
tions. Our study addresses this issue by explor-007
ing key questions about the performance differ-008
ences between greedy decoding and sampling,009
identifying benchmarks’ consistency regarding010
non-determinism, and examining unique model011
behaviors. Our findings reveal and quantify sig-012
nificant performance gaps between greedy and013
sampling methods across various benchmarks,014
with sampling excelling in creative tasks and015
greedy decoding favoring deterministic tasks.016
We also observe consistent performance across017
different LLM sizes and alignment methods,018
noting that alignment can reduce sampling vari-019
ance. Moreover, our best-of-N sampling ap-020
proach demonstrates that smaller LLMs can021
match or surpass larger models such as GPT-4-022
Turbo, highlighting the untapped potential of023
smaller LLMs. This research shows the im-024
portance of considering non-determinism in025
LLM evaluations and provides insights for fu-026
ture LLM development and evaluation. 1027

1 Introduction028

When evaluating a large language model (LLM),029

two common generation configurations are com-030

monly used: greedy decoding and nucleus sam-031

pling (Holtzman et al., 2019). It’s important to note032

that given a particular input, the same LLM may033

generate significantly different outputs under vari-034

ous decoding configurations, a phenomenon known035

as non-determinism in generation. However, most036

evaluations of LLMs are based on a single output037

per example. This practice is primarily due to prac-038

tical considerations, as LLM inference and evalua-039

tion can be computationally expensive. Neglecting040

non-determinism in generation significantly limits041

1Our code, data, and results will be open-sourced.

our comprehensive understanding of LLMs. Addi- 042

tionally, without reporting the standard deviation 043

in most current LLM evaluations, it is difficult to 044

measure the variability and dynamics of LLMs in 045

real-world applications. 046

For certain capabilities such as math reason- 047

ing (Cobbe et al., 2021; Hendrycks et al., 2021) 048

and coding, greedy generation is preferred to en- 049

sure fair comparisons. Nonetheless, it remains un- 050

clear whether there are significant differences in 051

performance between greedy decoding and sam- 052

pling. Recent investigations have also highlighted 053

potential issues of instability in LLMs (Li et al., 054

2024a; Hassid et al., 2024). In a study where the 055

best answer was selected from 256 random genera- 056

tions, the Llama-2-7B model achieved an impres- 057

sive 97.7% accuracy in solving GSM8K questions, 058

even surpassing GPT-4 (Li et al., 2024a). This 059

phenomenon further underscores the enormous po- 060

tential of LLMs in their non-deterministic outputs. 061

Herein, we aim to investigate a series of critical 062

questions regarding the non-determinism of LLM 063

generations, which have not been fully explored: 064

• Q1: How does the performance gap between 065

greedy decoding and sampling differ? 066

• Q2: When is greedy decoding better than sam- 067

pling, and vice versa? Why? 068

• Q3: Which benchmark is most/least consistent 069

with respect to non-determinism? 070

• Q4: Do any models possess unique patterns? 071

Apart from Q1-Q4 in Sec. 3.1, we also explore the 072

scaling effect on non-determinism (Sec. 3.2), the 073

alignment effect on non-determinism (Sec. 3.3), 074

and the full potential of LLMs (Sec. 3.4). 075

Our extensive results reveal these findings: 076

• For most benchmarks we evaluated, a notable per- 077

formance gap is observed between greedy gener- 078

ation and the average score of multiple sampling. 079

In certain cases, the performance ranking under 080

different generation configurations differs. 081

• Sampling methods perform better on tasks de- 082
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Model AlpacaEval 2 (N=16) Arena-Hard (N=16) MixEval (N=16)

Greedy Sample Std. ∆ Greedy Sample Std. ∆ Greedy Sample Std. ∆

GPT-4-Turbo 49.6 50.1 0.76 2.5 80.1 75.2 1.31 3.6 89.2 88.8 0.18 0.8
Llama-3-8B-Instruct 26.8 29.2 0.88 2.8 23.5 18.4 0.71 2.7 74.6 72.5 0.25 0.9

Yi-1.5-6B-Chat 17.5 18.0 0.91 3.4 13.7 11.8 0.88 3.1 70.0 68.6 0.26 1.0
Yi-1.5-9B-Chat 23.1 24.1 0.91 3.4 32.8 27.0 1.25 4.4 74.0 72.7 0.35 1.4
Yi-1.5-34B-Chat 34.9 35.0 0.99 3.9 42.8 40.9 1.82 5.7 81.9 81.8 0.47 1.5

Qwen2-7B-Instruct 18.2 19.1 2.51 8.6 23.7 16.1 0.87 3.1 76.2 76.2 0.21 0.6
Mistral-7B-Instruct-v0.2 15.4 13.0 1.02 4.2 12.5 12.6 0.57 2.0 69.8 70.0 0.24 0.9

Model MMLU-Redux (N=32) GSM8K (N=128) HumanEval (N=128)

Greedy Sample Std. ∆ Greedy Sample Std. ∆ Greedy Sample Std. ∆

GPT-4-Turbo 82.6 82.4 0.43 1.6 84.5 83.8 0.77 2.5 89.6 84.1 2.65 11.0
Llama-3-8B-Instruct 50.4 50.7 0.70 2.8 58.6 64.4 2.50 13.4 30.5 31.8 3.62 18.3

Yi-1.5-6B-Chat 48.7 49.6 0.67 2.5 74.5 73.1 0.92 4.1 48.2 35.7 4.86 19.5
Yi-1.5-9B-Chat 64.4 64.3 0.53 2.3 82.9 81.0 0.69 3.9 55.5 36.4 4.92 27.5
Yi-1.5-34B-Chat 82.6 82.2 0.34 1.1 85.4 81.7 0.56 2.9 64.6 49.3 4.08 21.4

Qwen2-7B-Instruct 61.0 61.7 0.46 2.1 83.5 72.0 1.74 11.3 67.7 48.2 4.68 27.4
Mistral-7B-Instruct-v0.2 48.7 48.4 0.49 2.2 45.9 42.0 0.99 5.1 37.8 25.9 2.52 14.0

Table 1: Results on six popular benchmarks. “Sample” and “Std.” denotes the average score and the standard
deviation of “N” runs under sampling setup. “∆” denotes the performance gap between the best and worst run.
Scores where greedy decoding surpasses the sampling average are highlighted in green, while those lower are
marked in red. The intensity of the color indicates the magnitude of the difference (best viewed in color).

manding creative writing capabilities, such as Al-083

pacaEval, whereas deterministic tasks like those084

related to mathematics and coding favor greedy085

decoding for enhanced effectiveness.086

• LLMs displayed consistent performance across087

different generation configurations for bench-088

marks with constrained output spaces, such as089

MMLU and MixEval. Notably, tasks involving090

math reasoning and code generation were most091

impacted by sampling variance.092

• The above findings remain consistent across dif-093

ferent sizes and families of LLMs.094

• Alignment methods, e.g., DPO (Rafailov et al.,095

2024), can significantly reduce the sampling vari-096

ance for most benchmarks.097

• 7B-level LMs have the potential to outperform098

GPT-4-Turbo by best-of-N sampling.099

2 Experimental Setup100

Benchmarks. We select multiple benchmarks for101

our experiments, encompassing abilities of gen-102

eral instruction-following, knowledge, math rea-103

soning, coding, etc. The selected benchmarks are:104

AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li105

et al., 2024b), MMLU-Redux (Gema et al., 2024),106

MixEval (Ni et al., 2024), GSM8K (Cobbe et al.,107

2021), and HumanEval (Chen et al., 2021). See108

Appendix A for more descriptions about them.109

LLMs. We test several open-weight LLMs, in-110

cluding Llama-3-Instruct (Meta, 2024), Yi-1.5-111

Chat (Young et al., 2024), Qwen-2-Instruct (Bai112

et al., 2023), Mistral (Jiang et al., 2023a), which 113

are widely used. A proprietary LLM, GPT-4-Turbo, 114

is included for comparison. We also consider mod- 115

els of different sizes in the same family such as 116

Qwen2 and Yi-1.5 for more analysis. To study the 117

effect of alignment techniques, we evaluate models 118

trained with different alignment methods, includ- 119

ing DPO (Rafailov et al., 2024), KTO (Ethayarajh 120

et al., 2024), SimPO (Meng et al., 2024). We use 121

the checkpoints released by Meng et al. (2024). 122

Setup. We aim to compare the performance of 123

LLMs under different decoding configurations. We 124

select greedy decoding and sampling generation 125

for the main comparison. For sampling, we set the 126

temperature to 1.0 and top-p to 1.0. Please refer to 127

Appendix B for more details. 128

3 Experimental Results & Analysis 129

In this section, we first present our results and an- 130

alyze several research questions around the non- 131

determinism of LLM generations. 132

3.1 Main Results 133

Our extensive experiment results are shown in Ta- 134

ble 1. We analyze the results and answer several 135

important research questions as follows. 136

Q1. How does the performance gap be-
tween greedy decoding and sampling differ?

From Table 1, we observe a consistent perfor- 137

mance gap between greedy decoding and the sam- 138

pling method. This disparity holds true across 139
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various LLMs, whether they are proprietary or140

open-source, and across multiple benchmarks en-141

compassing instruction-following, language under-142

standing, math reasoning, and code generation.143

Different decoding configurations can even alter144

the model rankings in some cases. For exam-145

ple, on Arena-Hard, Qwen2-7B is slightly better146

than Llama-3-8B when both use greedy decoding;147

However, Llama-3-8B may outperform Qwen2-7B148

when both decode by sampling.149

Q2. When is greedy decoding better than
sampling, and vice versa? Why?

Most evaluated models show higher win rates with150

sampling on AlpacaEval. Conversely, on bench-151

marks like Arena-Hard, MixEval, GSM8K, and152

HumanEval, greedy decoding performs better.153

GSM8K and HumanEval are reasoning tasks154

requiring LLMs to solve specific math or coding155

problems with definite solutions. MixEval also fol-156

lows a deterministic pattern with its ground-truth-157

based benchmarks. Although both AlpacaEval and158

Arena-Hard are open-ended information-following159

benchmarks, their behavior diverges significantly.160

As noted by Lin et al. (2024), 50% of instances in161

AlpacaEval are information-seeking, whereas more162

than 50% in Arena-Hard are related to coding and163

debugging. In other words, AlpacaEval demands a164

higher degree of creativity.165

In summary: 1) For deterministic tasks, such166

as math and coding, greedy decoding is generally167

more effective. 2) For open-ended creative tasks,168

like information seeking and brainstorming, sam-169

pling tends to generate better responses.170

Q3. Which benchmark is most/least consis-
tent with respect to non-determinism?

MixEval and MMLU exhibit the highest stabil-171

ity, either in terms of the performance gap be-172

tween greedy decoding and sampling or the stan-173

dard deviation across different samplings. This174

stability can be attributed to the constrained answer175

space of these benchmarks. Specifically, MMLU is176

structured in a multiple-choice format, and MixE-177

val, comprising various ground-truth-based bench-178

marks, prompts LLMs to generate short answers,179

further limiting the output space.180

In contrast, GSM8K and HumanEval are rela-181

tively less stable with respect to non-deterministic182

generations. The performance gap between the best183

and worst samplings can exceed 10.0 points.184

Model AlpacaEval MMLU

G S Std. G S Std.

Qwen2-0.5B-Instruct 1.1 1.7 0.77 36.4 37.0 0.70
Qwen2-1.5B-Instruct 1.9 3.3 0.88 42.6 42.1 0.68
Qwen2-7B-Instruct 18.2 19.1 2.51 61.0 61.7 0.46

Model GSM8K HumanEval

G S Std. G S Std.

Qwen2-0.5B-Instruct 31.7 14.3 1.86 28.0 10.8 2.14
Qwen2-1.5B-Instruct 63.1 36.5 3.20 40.9 22.6 2.94
Qwen2-7B-Instruct 83.5 72.0 1.74 67.7 48.2 4.68

Table 2: Evaluation results on Qwen2-Instruct with
different model sizes.

Q4. Do the models possess distinctive char-
acteristics?

GPT-4-Turbo shows consistent performance 185

across multiple tasks, with a smaller performance 186

gap between greedy decoding and sampling, as 187

well as improved sampling quality. Some open- 188

weight LLMs, however, exhibit unique character- 189

istics. For example, Mistral-7B-Instruct-v0.2 dis- 190

plays inverse behavior on open-ended tasks like 191

AlpacaEval and Arena-Hard when compared to 192

other models. Similarly, Llama-3-8B-Instruct per- 193

forms better by sampling than by greedy decoding 194

on GSM8K and HumanEval, which is unlike the 195

behavior of other models. 196

These observations raise intriguing questions for 197

future research. Why do certain models exhibit in- 198

verse behavior on specific tasks? Can these unique 199

characteristics be leveraged to develop more ro- 200

bust LLMs? These questions highlight the need 201

for deeper explorations into the underlying mecha- 202

nisms of LLMs. Such research could significantly 203

enhance our understanding of how different models 204

and training impact model behavior. 205

3.2 Scaling Effect on Non-Determinism 206

Some might assume that larger LMs will have 207

lower uncertainty in decoding, leading to lower 208

variance in performance when sampling. However, 209

our results challenge this assumption. 210

We use the Yi-1.5-Chat and Qwen2-Instruct se- 211

ries to investigate the scaling effect. The results 212

for the Yi-1.5 and Qwen2 series are presented in 213

Table 1 and Table 2, respectively. Performance 214

differences are observed across LLMs of various 215

sizes, ranging from 0.5B to 34B parameters. The 216

findings in Section 3.1 are consistent across differ- 217

ent model sizes. However, no pattern related to the 218

number of model parameters could be identified. 219
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Figure 1: Alignment effects on non-determinism.

For instance, scaling parameters does not result220

in lower sampling variance. Notably, Qwen2-7B-221

Instruct shows higher variance on AlpacaEval and222

HumanEval compared to its smaller counterparts.223

3.3 Alignment Effect on Non-Determinism224

Alignment methods, such as DPO, enhance LLMs225

by learning from preference data. We evaluate226

the effects of alignment methods such as DPO,227

KTO, and SimPO, using Llama-3-8B-Instruct as228

the training starting point (Meng et al., 2024).229

As shown in Figure 1, after applying these meth-230

ods, both greedy decoding and sampling perfor-231

mances are affected. In several tasks, including232

AlpacaEval, MMLU, GSM8K, and HumanEval, a233

decrease in standard deviation is observed, suggest-234

ing that alignment may reduce the diversity of sam-235

pling outputs. However, it is crucial to note that not236

all alignment methods consistently improve model237

performance. For instance, KTO and SimPO lead238

to a performance decline in MMLU. Furthermore,239

SimPO’s effectiveness appears limited on the re-240

cently introduced MixEval benchmark.241

3.4 What is the full potential of LLM?242

Current evaluations of LLMs mainly assess them243

based on a single output per instance, which limits244

our understanding of their full potential. Follow-245

ing Jiang et al. (2023b) and Li et al. (2024a), we246

Model Setting AE MMLU GSM HE

GPT-4-Turbo Sample-Avg 50.1 82.4 83.8 84.1

Llama-3-8B-Ins.
Sample-Avg 29.2 50.7 64.4 31.8
Sample-Max 30.3 52.3 68.8 41.5
Best-of-N 41.2 90.3 99.4 92.1

Yi-1.5-6B-Chat
Sample-Avg 18.0 49.6 73.1 36.4
Sample-Max 19.5 51.0 75.0 45.7
Best-of-N 43.3 89.6 98.4 91.5

Table 3: Potential of LLMs. “Max” denotes the best
score of N runs. “Best-of-N” means we select the best
response form N outputs for each example.

adopt a Best-of-N setting, selecting the best an- 247

swer from N sampled responses. The results are 248

shown in Table 3. With these results, we observe 249

that smaller LLMs, such as Llama-3-8B-Instruct 250

and Yi-1.5-6B-Chat, can nearly match or even 251

surpass the performance of GPT-4-Turbo on Al- 252

pacaEval (AE), MMLU, GSM8K, and HumanEval. 253

This finding suggests that compact-sized LLMs al- 254

ready exhibit robust capabilities, highlighting that 255

a more significant challenge in alignment is to ro- 256

bustly decode such knowledge and reasoning paths. 257

Building upon these promising findings, there 258

are two ways to further enhance the performance 259

of smaller LLMs. Firstly, probability calibration 260

techniques can guide LLMs towards generating 261

superior answers with higher likelihoods. Align- 262

ment methods, specifically preference optimiza- 263

tion (Rafailov et al., 2024), play a pivotal role 264

in this process. Secondly, strategies for ensem- 265

ble learning or selecting the best answer from 266

multiple completions warrant attention. Reward 267

modeling for re-ranking and fusing multiple out- 268

puts is thus a key direction (Jiang et al., 2023b). 269

Self-consistency (Wang et al., 2022) and advanced 270

prompting techniques (Yao et al., 2023; Lin et al., 271

2023), which employs heuristic selection from mul- 272

tiple completions, is also worth further exploration. 273

4 Conclusion & Future directions 274

We investigate a series of critical yet overlooked 275

questions around non-determinism of LLM gener- 276

ations. After evaluating several LLMs across six 277

commonly used benchmarks, we have answered 278

several intriguing research questions. Further anal- 279

ysis also provides insights on how scaling and align- 280

ment will effect on non-determinism generation. 281

We hope this work can enhance our comprehen- 282

sion of the generation methods and the widely used 283

benchmarks. Our evaluation results can also be 284

used for improving future research. For example, 285

our best-of-N results can serve as a benchmark for 286

assessing reward models (Lambert et al., 2024). 287
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Limitations288

The comparison of greedy decoding and sampling289

in this work reveals intriguing findings. However,290

it is crucial to acknowledge the limitations of our291

research. 1) We only conduct experiments with292

temperature at 0.0 and 1.0, leaving the fine-grained293

ablation of different temperature values on LLM294

performance unexplored. 2) The influence of other295

generation parameters besides temperature, such as296

repetition penalty, on LLM performance remains to297

be future work. 3) Our evaluation exclusively relies298

on off-the-shelf benchmarks, neglecting the analy-299

sis of other content characteristics such as language300

style. 4) While we showcase the remarkable poten-301

tial of LLMs to exhibit robust capabilities, how to302

incorporate methods, such as self-consistency and303

blender, to improve the performance of LLMs in a304

multiple generation setting is under-explore.305

Ethics Statement306

This work fully complies with the ACL Ethics Pol-307

icy. We declare that there are no ethical issues in308

this paper, to the best of our knowledge.309
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Dataset Instance Num. Sample Num. Metric

AlpacaEval 2 805 16 LC
Arena-Hard 500 16 WR
MixEval 4000 16 Score
MMLU-Redux 3000 32 Acc
GSM8K 1319 128 EM
HumanEval 164 128 Pass@1

Table 4: Statistics of datasets.

A Evaluated Benchmarks448

We summarize the six benchmarks used in this449

work in Table 4. AlpacaEval 2 (Li et al., 2023)450

and Arena-Hard (Li et al., 2024b) are general451

instruction-following benchmarks. AlpacaEval452

consists of 805 questions, and Arena-Hard incorpo-453

rating 500 well-defined technical problem-solving454

queries. For AlpacaEval 2, we report the lenght-455

controlled win rate (LC). For Arena-Hard, we re-456

port the win rate (WR) against the baseline model.457

Since the original MMLU (Hendrycks et al.,458

2020) benchmark is huge and contain numerous459

ground truth errors (Wang et al., 2024; Gema et al.,460

2024), we use MMLU-Redux (Gema et al., 2024)461

which is a subset of 3000 manually re-annotated462

questions across 30 MMLU subjects. We also463

include GSM8K (Cobbe et al., 2021), and Hu-464

manEval (Chen et al., 2021), two popular bench-465

marks for evaluating the math and code generation466

abilities of LLMs.467

B Evaluation Setup468

We use official evaluation scripts for AlpacaEval469

2, Arena-Hard, and MixEval. For MMLU-Redux,470

instead of using the next token probability of the471

choice letters, we encourage the model to gener-472

ate the answer in the form of natural language473

sentence. For GSM8K and HumanEval, we use474

Open-Instruct framework (Wang et al., 2023) to475

evaluate the models. For non-deterministic sam-476

pling, to encourage the models to generate more477

diverse completions, we use nucleus sampling and478

set the generation temperature to 1.0 and top-p to479

1.0. We sample 16 completions for AlpacaEval480

2, Arena-Hard, and MixEval, 32 completions for481

MMLU-Redux, 128 for GSM8K and HumanEval.482
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