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ABSTRACT

When training neural networks, it has been widely observed that a large step size
is essential in stochastic gradient descent (SGD) for obtaining superior models.
However, the effect of large step sizes on the success of SGD is not well under-
stood theoretically. Several previous works have attributed this success to the
stochastic noise present in SGD. However, we show through a novel set of ex-
periments that the stochastic noise is not sufficient to explain good non-convex
training, and that instead the effect of a large learning rate itself is essential for ob-
taining best performance. We demonstrate the same effects also in the noise-less
case, i.e. for full-batch GD. We formally prove that GD with large step size—on
certain non-convex function classes—follows a different trajectory than GD with
a small step size, which can lead to convergence to a global minimum instead of a
local one. Finally, we also demonstrate the difference in trajectories for small and
large learning rates for real neural networks, again observing that large learning
rates allow escaping from a local minimum, confirming this behavior is indeed
relevant in practice.

1 INTRODUCTION

While using variants of gradient descent (GD), namely stochastic gradient descent (SGD), has be-
come standard for optimizing neural networks, the reason behind their success and the effect of
various hyperparameters is not yet fully understood. One example is the practical observation that
using a large learning rate in the initial phase of training is necessary for obtaining well performing
models (Li et al., 2019). Though this behavior has been widely observed in practice, it is not fully
captured by existing theoretical frameworks.

Recent investigations of SGD’s success (Kleinberg et al., 2018; Pesme et al., 2021) have focused on
understanding the implicit bias induced by the stochasticity. Note that the effective variance of the
trajectory due to the stochasticity of the gradient is moderated by the learning rate (see Appendix F
for more intuition). Therefore, using a larger learning rate amplifies the stochasticity and the implicit
bias induced by it which can provide a possible explanation for the need for larger learning rates.
We show that this explanation is incomplete by demonstrating cases where using stochasticity with
arbitrary magnitude but with a small learning rate, can not guarantee convergence to global minimum
whereas using a large learning rate can. Furthermore, we provide a practical method to increase
stochasticity without changing the learning rate when training neural networks and observe that
increased stochasticity can not replace the effects of large learning rates. Therefore, it is important
to study how a larger learning rate affects the trajectory beyond increasing the stochasticity.

To that end, in this work we show that randomly initialized gradient descent with a high learning rate
provably escapes local minima and converges to the global minimum over of a class of non-convex
functions. In contrast, when using a small learning rate, GD over these functions can converge to a
local minimum instead. We note that for brevity, we focus our results on the full-batch GD.

We further show the positive effect of using a high learning rate to increase the chance of completely
avoiding undesirable regions of the landscape such as a local minimum. Note that this behavior does
not happen when using the continuous version of GD, i.e. gradient flow which corresponds to using
infinitesimal step sizes. The difference remains even after adding the implicit regularization term
identified in (Smith et al., 2021) in order to bring trajectories of gradient flow and gradient descent
closer.
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We would like to note that throughout the paper, we sometimes misuse the terms “global” and “local”
minimum to refer to desirable and undesirable minima respectively. For example when discussing
generalization, a desirable minimum might not have the lowest objective value but enjoy properties
such as flatness.

Finally, to show the relevance of our theoretical results in practice, we demonstrate similar effects
can happen in neural network training by showing evidence of an escape from local minimum when
applying GD with a high learning rate on a commonly used neural network architecture. Our obser-
vations signify the importance of considering the effects of high learning rates for understanding the
success of GD.

Overall, our contributions can be summarized as follows:

e Demonstrating the exclusive effects of large learning rates even in the stochastic setting both in
theory and in practice, showing that they can not be reproduced by increasing stochasticity and
establishing the importance of analyzing them.

e Capturing the distinct trajectories of large learning rate GD and small learning rate GD in theory
on a class of functions, demonstrating the empowering effect of large learning rate to escape from
local minima.

e Providing experimental evidence showing that gradient descent escapes from local minima in neu-
ral network training when using a large learning rate, establishing the relevance of our theoretical
results in practice.

2 RELATED WORK

Extensive literature exists on studying the effect of stochastic noise on the convergence of GD. Sev-
eral works have focused on the smoothing effect of injected noise (Chaudhari et al., 2017; Kleinberg
et al., 2018; Orvieto et al., 2022; Wang et al., 2021a). In (Vardhan & Stich, 2022) it has been shown
that by perturbing the parameters at every step (called perturbed GD) it is possible to converge to the
minimum of a function f while receiving gradients of f + g, assuming certain bounds on g. Other
works use different models for the stochastic noise in SGD and use it to obtain convergence bounds
or to show SGD prefers certain type (usually flat) of minima (Wu et al., 2018; Xie et al., 2021). In
order to better understand the effect of various hyperparameters on convergence, Jastrzebski et al.
(2019); Jastrzbski et al. (2018) show the learning rate (and its ratio to batch size) plays an important
role in determining the minima found by SGD. In (Pesme et al., 2021) it was shown that SGD has an
implicit bias in comparison with gradient flow and its magnitude depends on the learning rate. While
this shows one benefit of using large learning rates, in this work, we provide evidence that the effect
of learning rate on optimization goes beyond controlling the amount of induced stochastic noise.

Prior work also experimentally establish existence of different phases during training of a neural
network. Cohen et al. (2021) show that initially Hessian eigenvalues tend to grow until reaching the
convergence threshold for the used learning rate, a state they call "Edge of Stability". This growth is
also reported in (Lewkowycz et al., 2020) for the maximum eigenvalue of the Neural Tangent Kernel
(Jacot et al., 2018) where it has also been observed that this value decreases later in training, leading
to convergence. Recent works have also investigated GD’s behavior at the edge of stability for some
settings (Arora et al., 2022) obtaining insights such as its effect on balancing norms of the layers
of a two layer ReLU network (Chen & Bruna, 2022). In our results, GD is above the conventional
stability threshold while it is escaping from a local minimum but returns to stability once the escape
is finished.

In (Elkabetz & Cohen, 2021) it is conjectured that gradient descent and gradient flow have close
trajectories for neural networks. However, the aforementioned observations suggest that gradient
descent with a large learning rate visits a different set of points in the landscape than GD with a
small learning rate. Therefore, this conjecture might not hold for general networks. The difference
in trajectory is also supported by the practical observation that a large learning rate leads to a better
model (Li et al., 2019).

To bridge this gap and by comparing gradient flow and gradient descent trajectories, Barrett &
Dherin (2021) identify an implicit regularization term on gradient norm induced by using discrete
steps. Still, this term is not enough to remove a local minimum from the landscape. Other implicit
regularization terms specific to various problems have also been proposed in the literature (Ma et al.,
2020; Razin & Cohen, 2020; Wang et al., 2021b). In this paper, we provide experimental evidence
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and showcase the benefits of using large step sizes that are unlikely to be representable through a
regularization term, suggesting that considering discrete steps might be necessary to understand the
success of GD.

The type of obstacles encountered during optimization of a neural network is a long-standing ques-
tion in the literature. Lee et al. (2016) show that gradient descent with random initialization almost
surely avoids saddle points. However it is still unclear whether local minima are encountered during
training. In (Goodfellow & Vinyals, 2015) it was observed that the loss decreases monotonically
over the line between the initialization and the final convergence points. However, it was later
shown that this observation does not hold when using larger learning rates (Lucas et al., 2021).
Swirszcz et al. (2017) also show that it is possible to create datasets which lead to a landscape
containing local minima. Furthermore, better visualization of the landscape shows non-convexities
can be observed on some loss functions (Li et al., 2018). For the concrete case of two layer ReLU
networks, Safran & Shamir (2018) show gradient descent converges to local minima quite often
without the help of over-parameterization. Also, it was shown that in the over-parameterized setting,
the network is not locally convex around any differentiable global minimum and one-point strong
convexity only holds in most but not all directions (Safran et al., 2021). These observations show
the importance of understanding the mechanisms of escaping local minima. We also use these
observations to make assumptions that are practically justifiable.

There also exists a body of work on which properties of a minimum leads to better generalization
(Dinh et al., 2017; Dziugaite & Roy, 2017; Keskar et al., 2017; Tsuzuku et al., 2020). In this work,
our goal is to show the ability of gradient descent to avoid certain minima when using a high learning
rate. However, the argument about whether these minima offer better or worse generalization is
outside the scope of this work.

3 MAIN RESULTS

Theoretical Proof of Escaping From Local Minima with a Large Learning Rate The need for a
large learning rate in practice is commonly explained based on the intuition of escaping certain local
minima. However, a theoretical setting where GD escapes from a local minimum and converges to
a global minimum is lacking. Such settings are necessary both for understanding success of GD and
for analyzing the effectiveness of other optimizers. In this work, we introduce a class of functions
where such behavior can be observed from GD. This is stated in Theorem 1 which we describe here
informally and leave the formal version to Section 4.1.

Theorem 1 (Informal). There exists a class of functions having at least two minima x' and x, where
GD initialized on a random point, converges to X, with a large learning rate almost surely but might
converge to x' with a small learning rate.

Theoretical Analysis of Avoiding Local Minima As an alternative to escaping from minima, we
note that due to discrete steps in GD, it may not visit any point in an arbitrary but small part of the
landscape X, such as a local minimum. However, note that there may still exist a set of starting
points for which GD iterates reach a point in X. Therefore, assuming the starting point is chosen
randomly, not visiting any point in X is a probabilistic event. In this work, we provide a lower
bound for the probability of this event in Theorem 2 which we state here informally and postpone
the formal statement to Section 4.2.

Theorem 2 (Informal). For any arbitrary part (subset) of the landscape X sufficiently far from the
global minimum, let Ex be the probabilistic event that GD, when initialized randomly from a large
enough set, will not iterate over any point in X. Then under certain assumptions on the landscape,
Pr[Ex] can be lower bounded where the bound depends monotonically increasing on the learning
rate and inversely on the size of X (as measured by Lebesgue measure). In particular, if X is finite,
this probability is 1.

The dependence of the lower bound on the learning rate is intuitive as a larger learning rate allows
larger steps and makes it less probable (but not impossible) to visit a small part of the landscape as
illustrated in Figure 1. We note that avoiding a region is inherently different from escaping from
it. In particular, as can be seen in the example, this region can be almost completely flat. In this
case, once that GD reaches a point in this region, it will instantly converge. Furthermore, the region
can even contain points where the function can not be differentiated. Therefore, such effect can not
be compensated for by adding previously identified implicit regularization terms such as the one in
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(a) GD escapes with large LR. (b) GD escapes with both LRs. (c) GD does not escape.

Figure 1: Success of GD to avoid a region based on the magnitude of learning rate when initialized from differ-
ent points. While various cases are possible, it is more likely to avoid the minimum with a higher learning rate.

(Smith et al., 2021). This suggests other methods are needed to bridge the gap between gradient
flow and GD. We demonstrate both effects of escaping and avoiding local minima on an example
function in Appendix H.

Importance of Large Learning Rate Despite the Effects of Stochastic Noise One possible ex-
planation for the need of large learning rate is the magnification of the effect of stochastic noise (see
Appendix F for further intuition), facilitating escaping from local minima. While this explanation
can not explain the success of full-batch GD, it is more common to use SGD in practice. Therefore,
this explanation makes it questionable whether it is necessary to understand direct effects of learning
rate on the trajectory or is it enough to only consider the stochastic noise.

In this work, we show that the effects of using a large learning rate goes beyond magnifying stochas-
tic noise. To that end, we first provide an example in Section 4.3 where escaping from a local mini-
mum and converging to the global minimum can only be achieved with a large learning rate even in
presence of stochastic noise. Furthermore, we demonstrate this result in practice in Section 5.1 by de-
coupling the effect of stochastic noise on the trajectory and the magnitude of the learning rate when
training neural networks. Our experiment results show that the effects of the large learning rate re-
main crucial for converging to the correct minimum even in presence of (magnified) stochastic noise.

Demonstrating Effects of Large Learning Rate in Neural Networks While escaping local min-
ima is an intuitive explanation, an escape is not clearly observed while training a neural network
using GD with a large learning rate even though it converges to a different minimum. In particular,
it seems GD automatically avoids cases where it gets close to a local minima and then escapes from
it. This makes it hard to verify the relevance of escaping behavior for neural network landscape. We
do so in Section 5.2 by deliberately finding a point close to a minimum that GD would converge to
with a small learning rate. In contrast, when applying GD with a large learning rate from this point,
we can clearly observe an escape both in the trajectory and in the value of the loss.

4 THEORETICAL ANALYSIS

We now state our results more formally. For our theoretical analysis, we focus on optimizing the
minimization problem
fx := min f(x)

x€R4d
using (full-batch) gradient descent with random initialization. For completeness, we provide a
pseudo code in the Appendix A, Algorithm 1.

As is done widely in the literature, we assume smoothness (as defined in Definition 1) over regions
of the landscape to ensure the gradient does not change too sharply.

Definition 1 (L-smoothness). A function f: R? — R is L-smooth if it is differentiable and there
exists a constant L > 0 such that:

IVix) =Vl < Lix=yl,

Similarly, we need to ensure sharpness of certain regions, in particular around a local minima, to
obtain our results. Therefore, to ensure a lower bound for sharpness in our analysis, we use one-
point strong convexity assumption on these regions as defined in the following definition which also
commonly appears in the literature:

Vx,y € R?. (1)



Under review as a conference paper at ICLR 2023

= diverging from M 300 HEE falling into minima 300{ M falling into minima
B returning to M B converging into minima N escaping from minima
—m 250

%
N

0 1 2 3 4 0 1 2 3 4
x x

Figure 2: A case where GD keeps ~ (a) GD with small LR converges (b) GD with large LR escapes the
returning to a sharp minimum  to the minimum. minimum.

showing that a lower bound on

the distance to the global mini- Figure 3: Different behaviors of GD based on the magnitude of learning
mum might be necessary to show  rate in escaping or converging a sharp minima. GD with a high enough
it can be avoided. learning rate always escapes the minimum.

Definition 2 (u-one-point-strongly-convex (OPSC) with respect to x, over M). A function
f: R* — R is one-point strongly convex with respect to x, if it is differentiable and there exists
a constant p > 0 such that:

(VIx),x=x) > pllx = x?,  VxeM. 2)

Assuming OPSC property is common in the literature. When this assumption is applied over the
whole landscape, it has been shown to guarantee convergence to x, (Kleinberg et al., 2018; Lee et al.,
2016; Safran et al., 2021). However, in this work we only make this assumption hold on a limited
part of the landscape, namely regions around a local minima. Furthermore, we use this assumption
to ensure sharpness which we show can result in escaping from the regions where this assumption
holds rather than converging to them. Note that recent works have verified both theoretically and
empirically that landscapes of neural networks satisfy this property to some extent (Kleinberg et al.,
2018; Safran et al., 2021). For example, Safran et al. (2021) show that the condition is satisfied
with high probability over the trajectory of perturbed gradient descent on over-parameterized two-
layer ReLLU networks when initialized in a neighborhood of a global minimum. We also note that
there exists other variants of this definition such as quasi-strong convexity (Necoara et al., 2019) or
(1, u)-(strong) quasar convexity (Hinder et al., 2020), which are similar but slightly stronger.

4.1 ESCAPING FROM LOCAL MINIMA WITH A LARGE LEARNING RATE

We first state a lemma which is the key to proving Theorem 1. In particular, this lemma defines a
set of criteria for the region M around a minimum xT as well as the region around M, called P(M),
that ensures GD escapes from M moving toward a different minimum x,. To build further intuition,
Figure 3 provides an example of how GD with large learning rate may escape a sharp minimum.
Figure 4 provides an illustration of different regions defined in the theorem’s statement.

Lemma 1. Let f be a function that is Lgjopai-smooth and consider running GD with learning rate -y
and randomly initialized over a set W with L(W') > 0. Let M be a set with diameter r, containing a

local minimum x' and define P(M) := {x ¢ M | |x —xT|s < r V2L — 3} to be the set sur-

rounding M. Assume f is L < Lygjppa-smooth and p.-OPSC over P(M) with respect to a (global)
1+\/(72L§[oba173)(177/‘1‘*)
IEVAET :

2
Finally, assume f is ;if-OPSC with respect to ¥ over M where it > % Then, using a suitable

e = xflls > 7

minimum X, that is sufficiently far from M, formally,

learning rate % < v < &, if GD reaches a point M, it will escape M and reach a point with

distance to x, of less than ||x' — x,|| — 7 almost surely.

Note that this lemma allows for multiple local minima to exist on the landscape and only applies
constraints around each local minimum. Furthermore, we point out that the lemma only ensures that
GD will exit the local minima after some steps. In order to obtain convergence guarantees to the
global minimum, it is necessary to assume a convergence property on the rest of the landscape as
well. Indeed, this is how we build the class of functions to prove Theorem 1. We provide a complete
proof of Lemma 1 in Appendix D and proceed by discussing some of our assumptions:

OPSC condition inside M/ We assume [ is OPSC with respect to a different minima inside M
in order to ensure GD will escape from M. However, other conditions might also ensure the same
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both stochastic noise and large learning rate but
not with either used alone.

effect. The theorem would also hold with those assumptions. Note that the sharpness of M with
respect to the rest of landscape is reflected through the lower bound on 4 and is necessary so we can
set the learning rate in the given range. As an example, when f is a quadratic function everywhere
except M (such as in Figure 4), we have u, = L and the lower bound becomes ;ﬁ > 2L.

OPSC condition around M/ We combine this assumption with the assumption on M being suffi-
ciently far from the global minimum in order to ensure that once GD escapes from a local minima,
the gradient points strongly towards x,. This ensures that GD will reach a point closer to the global
minimum after escaping M. While the OPSC assumption is not necessary to show GD will never
converge to M and may be replaceable by alternatives, an assumption on the distance to x, might
be necessary to show GD will not return to M. For example, consider a quadratic function where
the region around minimum is replaced by a sharper quadratic function, as plotted in Figure 2. In
this case, GD with a high learning rate will keep returning to M though it will never converge to
it. As alternatives to OPSC assumption on P(M), one can assume GD converges in at most a fixed
number of steps (which Corollary 1 states can not be to any point in M almost surely) or assume
directly that the gradient points strongly away from M. Finding similar assumptions is grounds for
future work.

Given Lemma 1, it can be seen that if it is possible to ensure the iterations of GD get closer to the
global minimum on the rest of the landscape, it is possible to ignore existence of the region M. This
is because either the iterations would never cross M or if they do, they will eventually reach a point
closer to the global minimum according to Lemma 1. We build the class of functions for Theorem 1
based on this observation. We now state the formal statement of Theorem 1 and leave the proof to
Appendix E.

Theorem 1 (Formal). Consider any function f that is L-smooth and p,-OPSC with respect to
the global minimum X, in its landscape except on a region M containing a local minimum x'
satisfying the conditions in Lemma 1. GD initialized randomly inside M converges to x! with a
. T Coe g .
small learning rate v < Lg[ — In contrast, GD initialized randomly over any arbitrary set W
sloba

with positive Lebesgue measure L(W) > 0 will instead converge to x, with a large learning rate
2 <~ < Y5 almost surely.
m L

4.2 AVOIDING LOCAL MINIMA

The following key lemma is used to prove Theorem 2.

Lemma 2. Assume gradient descent is initialized randomly on the set W and is run with learning
rate vy < ﬁ Let X € R? be an arbitrary set of points in the landscape. Assume f is L-smooth
over R4\ X. Let L(S) denote the Lebesgue measure of any set S. The probability of encountering

any points of X in the first T steps of gradient descent, i.e. x; € X for some 1 < 1 < T is at most
o(T+1)-d , [ﬁl((;(/))

We provide the complete proof in Appendix B. Note that the lemma makes no assumption on f
over X. Furthermore, the dependence of the bound on 7" seems inevitable in general since the opti-
mization might force the iterations toward certain regions, such as the region around the minimum.
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When using standard GD, by making assumptions on the landscape to ensure the iterations of GD
move away from the undesired region X, the bound can be instead adapted to depend inversely on
the learning rate which controls the speed of progression. We use one such assumption to prove
Theorem 2 which we state formally here and leave its proof to Appendix C.

Theorem 2 (Formal). Let X be an arbitrary set of points. Assume f is L-smooth and i,.-OPSC

with respect to a minima x, ¢ X over RY\ X. Define cx = inf{||x — x,|| | x € X} and

rw = sup{||x — x.|| | x € W}. The probability of not encountering any points of X during
- d

running gradient descent with v < % is at least 1 — 2% . %{V Togz(1—~ux) . % when cx < rw

and is 1 otherwise.

4.3 IMPORTANCE OF LARGE LEARNING RATE DESPITE THE EFFECTS OF STOCHASTIC
NOISE

We now consider the case of SGD where the stochastic noise is applied as an additive term to the
gradient. The update step of SGD in this case would be:

X1 =X —Y(Vf(x) + &) 3)

For example, when the global objective f(x) is a finite sum of n different objectives, e.g. one for
each data point, we will have &, := Vf,., (x) — V f(x) where r; is the index of data point used in
t-th step.

In this section we consider the case where the noise &; is drawn from a uniform distribution
Uniform(—o,0) and assess the convergence point of GD on an example function plotted in Fig-
ure 5. This function contains a local minima z! and a global minimum z,. Optimally, we would
like to ensure convergence to the global minimum regardless of the initialization point. We now
show that this is not possible using a small learning rate regardless of the magnitude of the noise.
However, we show that when using a large enough learning rate alongside the stochastic noise, it
is possible to obtain the desired result. We state this in the following proposition and leave a more
formal description and its proof to Appendix G.

Proposition 3. Consider running SGD on the function plotted in Figure 5. If the learning rate is
sufficiently small, starting close to x¥, the iterates will never converge to the optimum x, nor to a
small region around it regardless of the magnitude of the noise.On the other hand, by using a large
learning rate, given that the stochastic noise satisfies certain bounds, GD will succeed to converge
to the optimum x, given any starting point.

5 EXPERIMENTS

We now provide practical evidence to show the effects of high learning rate also apply and are
essential in optimization of neural networks. In our experiments we train a ResNet-18 (He et al.,
2016) without batch normalization on CIFAR10 (Krizhevsky & Hinton, 2009) dataset.

5.1 DISENTANGLING EFFECTS OF STOCHASTIC NOISE AND LEARNING RATE

As can be seen from (3), reducing the learning rate would also reduce the variance of the effective
stochastic noise v&;. This entanglement makes it hard to assess the effects of stochastic noise and
large learning rate separately. We design the following method to maintain the level of noise when
reducing the learning rate.

SGD with Repeats In order to simulate the same magnitude of noise while still using a smaller
learning rate, every time a mini-batch is drawn, we use it for k steps before drawing another mini-
batch. Note that when & = 1, we recover standard SGD. Re-using the same batch & times, allows
the bias of the mini-batch to be amplified k times, so when reducing learning rate by % the overall
magnitude remains unchanged. This is explained in more detail in Appendix F.

We compare standard SGD with learning rate 0.01, standard SGD with learning rate 0.001, and
SGD with £ = 10 and learning rate 0.001. We apply 0.0005 weight decay, 0.9 momentum, and
decay the learning rate at epochs 80, 120, and 160 by 0.1. Results without momentum are reported
in Appendix M. When training with standard SGD and learning rate 0.001 we train the model for
10 times more epochs (2000 epochs) in order to obtain a fair comparison and rescale its plot to
200 epochs. In this case, learning rate decay happens at epochs 800, 1200, and 1600. Note that
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Figure 6: Comparsion between performance of SGD with different learning rates. The gap in performance
between large and small learning rates, even after repeatedly using the same batch to maintain the effect of
stochastic noise, suggests that learning rate has an effect on trajectory beyond controlling stochastic noise. Re-
peating batches is turned off at epoch 200 and 10 additional epochs are performed (green). For the experiment
with 2000 epochs (orange), the plot is normalized to 200 epochs.

when running SGD with k& = 10 repeats, we perform 10 steps using each batch while going through
the whole dataset at each epoch. Therefore, the total number of steps in SGD with k¥ = 10 is
the same as standard SGD with 2000 epochs. Furthermore, when we have k > 1 we train the
model for 10 more epochs at the end and use each batch only once (as in standard SGD) during
the additional epochs. We perform these additional steps since training for several steps on one
batch at the end of training might lead to overfitting on that batch which is not desirable for test
performance. In Appendix K we also experiment with turning off repeats earlier in the training and
observe no significant improvement. Finally, we ensure that the experiment with £ = 10 uses the
same initialization point and the same ordering of batches used for training with learning rate 0.01.

The results (averaged over 3 runs) are plotted in Figure 6. The first clear observation is that SGD with
learning rate 0.01 leads to a much better model than SGD with learning rate 0.001. More importantly,
while amplifying the noise through repeats helps lower the gap, it still has a performance below
training with the large learning rate.

Explaining the positive effect of using SGD over GD on convergence has been the focus of several
prior work. For example, Kleinberg et al. (2018) argue that applying SGD allows optimization to
be done over a smoothed version of the function which empirically satisfies good convergence prop-
erties, particularly, one-point strong convexity toward a minimum. We argue that our observation
provides a more complete overview and suggests that even after applying stochastic noise (which
for example can lead to a smoothing of the function), there might be certain regions of the landscape
that can only be avoided using a high learning rate. As we described above, one can consider the
effect of stochastic noise to be the improvement observed when using repeats with a small learning
rate in comparison with training in a standard way which still does not close the gap with training us-
ing a high learning rate. Therefore, the effects of using a high learning rate, such as those described
in Section 4, are still important in determining the optimization trajectory even in stochastic setting.

5.2 COMPARING TRAJECTORIES OF LARGE AND SMALL LEARNING RATES

In Section 4, we proved some of the effects of using large step sizes in avoiding or escaping certain
minima in the landscape. We now demonstrate that these effects can be observed in real world
applications such as training neural networks. To be able to observe the effect of large learning rate
more clearly, we first warm-start the optimization by running SGD with a small learning rate 0.001
with & = 10 repeats (as described in Section 5.1) for 20 epochs to obtain parameters Xyum. We do
this to get near a minimum that would be found when using the small learning rate. Then, we start
full-batch GD from X,m with two different learning rate 0.001 (small) and 0.01 (large). We do not
apply momentum when performing full-batch GD but apply 0.0005 weight decay. However we did
not observe any visible difference in the results without weight decay. Similar to (Li et al., 2018),
we obtain the first two principal components of the vectors x; — x¢, X2 — Xg, . . . , Xy — Xo and plot
the trajectory along these two directions in Figure 7. We can clearly observe that GD with a large
learning rate changes path and moves toward a different place in the landscape. GD continues on
the different path even when the learning rate is reduced back to 0.001 after 400 steps. Furthermore,
looking at the loss values, we can observe a peak at the beginning of training that closely resembles
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Figure 7: Behavior of GD for learning rates 0.001 (small) and 0.01 (large). The initialization is obtained by
warm-starting the network using SGD with a small learning rate 0.001. Using a large learning rate changes the
trajectory sharply and even if the learning rate is reduced again after several steps (blue line) we move toward
a different direction in the landscape. This is accompanied by a sharp increase of loss at the beginning that can
be attributed to GD escaping from a local sharp region in the landscape.

what we expect to observe when GD is escaping from a local sharp region. This clearly shows that
these behaviors of GD are not merely theoretical and are also relevant in real world applications.

Note that while we do not observe similar high spikes in the loss in the next steps, we conjecture
that this behavior of escaping sharp regions is constantly happening throughout training. This is also
confirmed by observations in (Cohen et al., 2021) which show sharpness increases throughout train-
ing until reaching the threshold 2 where  is the learning rate. GD will then oscillate between being
sharper and smoother than this threshold. As a result of constantly avoiding sharp regions, symptoms
of an escape such as a spike in loss is not observed. While we observe smaller increases in the loss,
these can be due to oscillations also observed in (Cohen et al., 2021) along the highest eigenvectors
which are not the same as escaping. Results in the same work show that in these cases the param-
eters do not move in these directions and only oscillate around the same center. Developing better
visualization techniques or identifying other effects of using a high learning rate on GD’s trajectory
can help explain this behavior further and both of these directions are ground for future work.

6 FUTURE WORK

Obtaining further insight on how GD avoids locally sharp regions, for example by developing better
methods for visualization of the landscape and trajectory, is grounds for future work. Furthermore,
there are various extensions possible on the theoretical results obtained in this paper. For example,
it might be possible to show other effects of using a large learning rate on trajectory that facilitate
escaping from local minima. Finally, obtaining similar results with a relaxed set of assumptions
would also be an interesting direction of research.

7 CONCLUSION

In this paper, we highlight that a high learning rate can provably lead to avoiding or escaping
local minima and reaching a global minimum. Based on this result, we argue that analyzing GD
with infinitesimally small learning rate is not sufficient to understand its success unlike what was
suggested in prior work (Elkabetz & Cohen, 2021). Furthermore, by designing a method to amplify
stochastic noise without increasing the learning rate, we disentangle the effects of stochastic noise
and high learning rates. We observe that while a higher stochastic noise leads to a better model, it
is not enough to close the gap with the model obtained using a high learning rate. Therefore, we
argue that the effect of learning rate goes beyond controlling the impact of stochastic noise even
in SGD. In contrast, recent works on analyzing success of SGD focus on continuous settings (Xie
et al., 2021) and only take step size into account when modeling the noise (Pesme et al., 2021). We
hope that our results will encourage future work on large step size regime. Finally, we demonstrate
that the escape from sharp regions can happen in training of neural networks, hence signifying the
relevance of the effects of large learning rate in real world applications.
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A GRADIENT DESCENT WITH RANDOM INITIALIZATION

Algorithm 1 Gradient Descent with Random Initialization

1: Pick x(y randomly from the set W.
2: fort=1...7T do

3 Xt < X1 — YV f(xe-1)

4: end for

B PROOF OF LEMMA 2

Lemma. Assume gradient descent is initialized randomly on the set W and is run with learning
rate v < ﬁ Let X € RY be the set of points that should not be encountered by GD and assume
f is L-smooth over R\ X. Let L(S) denote the Lebesgue measure of any set S. The probability
of encountering any points of X in the first T steps of gradient descent, i.e. x; € X for some
. . T+1)-d L£(X)

1 <i < Tisat most 2T+ o

Proof. Define g(x) := x—~+V f(x). Whenv < +, since f is L-smooth over D, := R%\ X, results
of Lee et al. (2016) show g(x) is a diffeomorphism over D,. As a result, the function g" obtained
by applying g for T times is also a diffeomorphism over the set

Dyr =R\ (XUg H(X)U...U (¢ ") H(X)).

According to the change of variable formula for Lebesgue measure (for example, see (Bogachev,
2006, Eq. (3.7.2))), for any measurable set Y C Dyr

LT (V) = /Y | det Vg (y)|dy

L

Since v < S5L°

we have forany y € D,

| det Vg(y)| = [det(I =7V f(y))| > 277.

The last equality holds because smoothness ensures all eigenvalues of V2 f(x) are at most L. So for
any eigenvalue \;, 1 —y\; > 1. Using this result, we also can obtain |det Vg% (y)| > 2774 for
anyy € DgT. Thus, we have

L(g"(Y)) = 27TL(Y),

which means,
L((gT)"HX)NDyr) < 2T4L(X).

Note that while the above argument works for 7' > 1, the former inequality also trivially holds for
T = 0. Hence

L(UZo((¢")HX) N W) < L(UZo(9") 1 (X))
= L(Uo((¢")H(X) N Dyr))
<D L((¢") T (X)NDy)
t=0
T
< 2ML(X)
t=0 .
< L(X)(D_ 24"
t=0

< 2(T+1)d£(X) ,

where in the last inequality we used 2° + 2! +...27 < 27+1 The theorem follows directly from
this result. [

13



Under review as a conference paper at ICLR 2023

The following corollary directly follows from Lemma 2. We use this corollary in proving Lemma 1
to avoid cases where we directly land on a minimum with V f(x) = 0.

Corollary 1. Let f be L smooth. If X is a set with L(X) = 0, for example when it is a finite set of
points, the probability of encountering X throughout training with gradient descent using v < ﬁ
and random initialization over a set W with L(W') > 0 is 0.

C PROOF OF THEOREM 2

Theorem. Let f be L-smooth and ji,-OPSC with respect to a minima x, over R? \ X. Define
ex = inf{||x — x4 | x € X} and rw = sup{||x — x4|| | x € W}. The probability of
encountering any points of X during running gradient descent with v < %% is upper bounded by

2
d
— — L(X . .
2d . %{V Toga (1—7vux) . % when cx < ryw and is zero otherwise.

Proof. Due to 11,-OPSC property of the landscape over R? \ X, as long as x; ¢ X, we have

Ixe1 = %43 = lIxe =7V (x0) — x5
= |Ixt = xu[l5 = 29 (Vf(x1), x¢ — %) + 72V F (x2) I3
< (1= 2y +7°L2) |[x¢ — %53
< (1= 9(2pe — L)) 1%t — %[5
< (1 =) — x5

where the last inequality holds because v < %%. Hence, if x; ¢ X for ¢ € [T' — 1], we have
Iz =313 < (1= y) " e — %13
<(1- ’VN*)TTW .

log, =X
Let Ty := 2w - For T > Ty, we have

logy (1—vpx

[xr — x.]|5 < (1 = ype)ex < ex,

which means xr ¢ X. Therefore, if GD does not reach any point in X in the first T} steps, it will
not reach any point in X afterwards neither. Therefore, the probability of encountering any point
in X is the same as the probability of encountering such points in the first Ty steps. According to
Lemma 2, this value is bounded as:

gt LX) _ pa ex mmom | LX)

LW) rw LW)
e L(X)
_ 2d . rl g2 (I—vHx) . ]
Cx E( )

D PROOF OF LEMMA 1

Lemma. Let f be a function that is Lgjgpa-smooth and consider running GD with learning rate
randomly initialized over a set W with L(W) > 0. Let M be a set with diameter r, containing a

local minimum x' and define P(M) == {x ¢ M | ||x —xT|]z < r, V2L opar — 3} 10 be the set sur-

rounding M. Assume f is L < Lygjppa-smooth and p.-OPSC over P(M) with respect to a (global)
1+\/(72L§Ioba173)(177y’*)

minimum x, that is sufficiently far from M, formally, ||x, — xT|o > 7 -

1—vI—vp«
Finally, assume f is ;1f-OPSC with respect to x over M where it > 2}% Then, using a suitable
learning rate % < v < &, if GD reaches a point M, it will escape M and reach a point with

distance to x, of less than ||x" — x, || — r almost surely.
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Proof. Let t be the smallest step where x; € M. Using Corollary 1, x; # x' almost surely.
Therefore ||x; — x'|| > 0. Since ¥ > %, we have

e+ = x5 = llxe =7V f(xe) = x5
=[x = x"[13 = 29 (VS (xe), %0 = xT) + 92V (%) 13
> [l = x5 = 29[V F(xe) 12t — x" |2 + 2V £ ()2
= llxe = x'[I3 + IV o) 2 (VI V£ (xe) |2 = 2l — xT2)
> [lxe = x5 + 7V f (xe) |2 (v e = x|2 = 2l[xe —x"]|2)
> [lxe — x5 + AV f (xe)ll2llx = x"[[2(yu" — 2)

(4)
> [|xe — x5 4+ vl llxe — x5 (vu —2)

(B)
> (2yp’ = 3)[]x. — x'|3,

where (A) holds because yu! — 2 > 0 and (B) is obtained by using the lower bound vyu! > 2.
Therefore, the distance to x' grows at least with the rate 2yu' — 3 > 1. Hence, GD is guaranteed
to reach a point x;, outside M for some k > 0. If ||x; 4 — x| < [|x — x,|| — 7, we are done.
Otherwise, we verify that this condition holds for x; 1.

First note that

%4 = X3 = [[%eph-1 = YV f (Repr—1) = X3
= ||Xprh-1 — XT||§ — 2y <vf(xt+k71)vxt+k71 — XT> + V2V f (xern—1) 13
< Ixegr—1 — x3(1 = 2yut + 72L§lobal)
<7r?(1—2ypf + 72L§10ba1)
< 7"2(’72L§10ba1 -3),

where the last inequality holds because v > %
[%etk41 = X3 = (%ot = YV I (Xesr) = Xl
= [Ixerr = %13 = 29 (Vf (Rerr), Xern — X0) + 72V F (x4 15
< lxer — X*H%(l — 2 + ’YQLQ)
< xesr = xall3(1 = ) s

where in the last inequality we used v < #5. We can now write

ks — X llo < (IxT = .2 + s = xTll2) /T 72,

< (I = xall2 + /12 LEapa = 3) VI = 7t -

Given the lower bound on distance ||x' — x,||, we have

T(\/(VQLglobal = 3)(1 =) +1) < [Ix" —x,]l2(1 - V1=yp).

This yields
41 = Xull2 < X" = x4l =7,
completing the proof. [

E PROOF OF THEOREM 1

Consider any function f thatis L-smooth and z,-OPSC with respect to some minimum X, in its land-
scape except on a region M containing a local minimum x' satisfying the conditions in Lemma 1.

GD initialized randomly inside M converges to x! with a small learning rate v < 72— but will

global

instead converge to x, with a large learning rate % < v < &% almost surely.
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Proof. When GD is initialized inside M and the learning rate is small satisfying v < L‘;—T, since
global
we have /ﬁ—OPSC and Lgjopai-smoothness inside M, the iterates will satisfy
%1 — xF[3 = [lx¢ =V f(xe) — xT[|3
= [lxe = x"[3 = 2y (VF(xe), %0 —x") + V|V f(x0) 13
< (1= 2yt + 92 L) 1% — XT3
< (1= y(2p" = Y Lgopa)) 1% — %713
< (1=l — T3,
Therefore, GD will converge to x'. Let us now consider the case when GD is instead applied using a
large learning rate satisfying % < v < &%, Furthermore, we allow initialization over any arbitrary
set (instead of only subsets of M) as long as they satisfy £(W) > 0. In this case, for each iterate, if
x; ¢ M, similar to above we have
%41 = %[5 < (1= )% — xstar]3.

If x, € M, Lemma 1 shows that there exists k¥ > 0 such that x;1; ¢ M and ||x;1x — X.||3 is
less than the distance of any point in M to x,. Since x;4; ¢ M the above argument holds and the
distance to x, decreases. Therefore, for any ¢ > ¢ + k this distance ||x;; — X,||3 remains less than
the distance of any point in M to x,. This guarantees that x;» ¢ M. Hence the distance to x, keeps
decreasing which means GD will converge to x. O

F EFFECT OF LEARNING RATE ON STOCHASTICITY

Let us focus on the case where f(x) is the finite-sum + Zf\;l fi(x). Then, using a large learning
rate kv, the iterates would satisfy

Xt+1 — Xt

= —kVfr,(xt) = —kV f(xt) = k(Vfr,(x:) = V(x1)) - “)

Let us assume that the deviation direction of each data point from the true gradient changes very
slowly, i.e. the functions f; — f are extremely smooth. Then, using a smaller learning rate we
instead have

k—1
Xt+k — Xt
- = - Z VthJri (Xt+i)
v i=0

E
—

k—1
=Y VS e4i) = D (Ve (Rii) = VI (xe14))
1=0

PT'W
—_ O

k—1
= Vi) = > (Vi (x1) = V(1))
=0

0

Q

.
I

To compare the strength of noise in each case we can for example compare the variance of the right
hand side. Let 02 := & S°N [V fi(x;) — Vf(x;)||3. Then, the variance when using the large
learning rate would be k202. When using a smaller learning rate and sampling at each step to obtain
r; the variance is instead ko2 and is therefore reduced. However, using SGD with repeats, i.e. using
reys = refor 1 <4 < k—1, we recover the same variance as the large learning rate. Therefore, using
SGD with repeats, allows maintaining the same level of noise while still using a smaller learning
rate.

G PROOF OF PROPOSITION 3

We first state the following key theorem which describes criteria ensuring escaping from or staying
around a minimum:
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Theorem 4. Let M be a ball with radius r centered at a minimum x' and assume f is Ly;-smooth
over M and ;1t-OPSC with respect to x!. Consider running SGD with a small learning rate v <

f . ..
St Assume that when running SGD such that the oracle noise is bounded as
M

2L

Ellg — V/(x)l3 < 0°.
Furthermore assume that for some ¢ < 1we have Pr [||g; — V f(x¢)||3 > ¢*0?| > 0forallx, € M.
Assume SGD reaches a point in M. If 0 < ’%7"2 it will remain in M with probability at least ﬁ

On the other hand, if c?o? > QLTMTQ + € for some € > 0 it will escape M almost surely.

Proof. Lett denote the parameters at an iteration such that x; € M. We have
El[x¢41 — XT”2 = |lx¢ — XTHQ -2y <Egtaxt - XT> + ’YQEHgtHQ
= fIx¢ = xT[? = 29 (Vf(x0), % = xT) + P2V f(x) > + 7707
< llxe = xT|2(1 = 20t +42L3)) +r2ut
<72 (1—yut +42LY))

;
<r(1- %).
Thus, using Markov inequality we have
1
12 2
Pr[||xt+1—x II©>r ] < 1_%,

which shows the claim. On the other hand, let p := Pr [||g; — V f(x¢)||3 > ¢?0?]. Then with
probability at least p > 0 we have

(8 — Vf(x)3

=[xt = x5 = 29 (Vf(xe), %0 = xT) + VIV F(x) 15 + 77 l&e — V£ (x0) [l
> |Ixi = xT[I5 = 29[V f(x) [lallx: — xT[[2 + 2V f(x0)I[5 + *7°0”

=[xt = x5 + AV )2V F(x0)[l2 = 2lIxe = xT||2) + P70

> [lxe = XI5 + A1V £ Gxo)ll2(viet e = xT[|2 = 2[[x1 — xT[|2) + P20

> |Ixe — XT3 + A1V £ (x0)l|2lxe = % |2 (" = 2) + P40

> |Ixe — x5 + v Laallxe — x5 (v’ = 2) + 407

> |lx¢ — xT[|3 + yLar® (vt —2) + 2yLyr® + €

> |lxe — x5+ V°Larp'r? + €.

[xe1 — xT|3 = [|lxe =7V f(x) —x —

. . . 2 .
This means the distance to x! grows at least with the constant e. Let ¢ := 7? Therefore, with

probability at least p?, one of x;41,..., X4+, Will be out of M. This holds for any consecutive ¢
iterates. Partitioning the iterates to parts of consecutive iterates of size g, each part has a positive
probability of containing a point outside M. Therefore SGD will reach a point outside of M almost
surely. O

The function plotted in Figure 5 can be formally defined as follows:
fi(z) == 86400((z — @) — (2.9 — @)?) 4+ 2.92

fa(z) := B((z — 3.1)> + 0.001) + £1(3)
f3(z) == —300(x — 3.1)% + f2(3.1)

x? <29

fi(x) 29<z<3
fm(z) == < fo(z) 3<x <31

ol 31<a<37

450 % ((z — 4.1)2 = 0.16) + f3(3.7) 3.7 <z
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witha = 2.9 — % and 3 = 8640000(3 — «)?. This function satisfies the following properties:

® fim is 2-smooth over {z | x < 2.9}.
o fun is 900-OPSC towards 4.1 and 900-smooth over {x | 3.7 < z}.
e fim is 4.5-OPSC towards 4.1 over {z | 3.108 < z}.

We now proceed to proving Proposition 3, stating it formally here:

Proposition 3. Consider running SGD on f,, with stochastic noise & drawn i.i.d. at each step
from the uniform distribution Uniform(—o, o). If the learning rate is small such that it satisfies
v < ﬁ the algorithm will not converge to x, for some set of initialization points with positive
Lebesgue measure. In contrast, with a large learning rate satisfying 0.4 < v < 0.5 it is possible to
choose o such that the algorithm will converge to x, almost surely.

Proof. Assume v < ﬁ. Consider the case where the algorithm is initialized inside My := {x |

3.7 < x < 4.5}. Then if o satisfies 02 < % - 0.42 it will remain in M; with positive probability
according Theorem 4. According to the same theorem, If this bound is not satisfied, then we have

%2 > % which means any time SGD reaches a point in M, := {z | —2.9 < x < 2.9}, it will
escape from it almost surely within a constant number of steps. This means that the algorithm will

never stay close to x, = 0 forever or for an arbitrarily long number of steps.

Now consider the case where the learning rate is large enough. Choose o such that 5.1 < o < 5.5.
Note that if the iterates reach the set {x | —2.9 < < 2.9} they will never exit it since we have

|z =722 4+ &)| = |(1 = 27)z — &
< (1=29)(2.9) ++(5.5)
< (1 —29)(2.9) + 27(2.9)

<29.

We will now show that from any other point there is a positive probability of reaching the range

[—2.9,2.9]. This fact combined with the almost sure guarantee of not escaping from [—2.9,2.9],
proves that the algorithm will converge to this set almost surely.

Note that fi, is 4.5-OPSC towards @ = 4 over the set {z | 3.108 < z}. Since v > 0.45, it can
be seen from the proof of Lemma 1 that SGD will continue to get further from = = 4 while it is in
this set. Furthermore, given the direction of the gradients it is clear that the iterates would alternate
between being less and more than 4. Therefore, at some point, the iterates will exit this set reaching
apoint z; < 3.108. Note that with a positive probability, the noise will not interfere with this escape
since there is at least 0.5 probability that the noise is aligned with the gradient direction.

If 3.1 < x < 3.108, the gradient value is less than 5. Since o > 5.1 there is a positive probability
of moving to the region x < 3.1. When 2.9 < x < 3.1, because of the positive probability of
alignment between the gradient and the noise, SGD will move to x < 2.9 with positive probability.
Finally, given the smoothness of the region x < 2.9, if x < —2.9 SGD will converge toward
z, = 0, ultimately reaching the region —2.9 < x < 2.9 with positive probability. This completes
the proof. O

H Toy EXAMPLE

In order to demonstrate the effects discussed in Section 4, we experiment with running GD over a
simple function. The landscape of this function is plotted in Figure 8a and its formula is presented
in Appendix I. The function has two minima, one near the initialization and one further away. Since
the near-init minimum is almost completely flat, i.e. gradient is constant and equal to zero (except
for the edges which are extremely sharp lines in order to ensure the function remains continuous), if
GD reaches a point in this region, it will remain there. However, as this region is very close to the
initialization, Lemma 2 (more particularly Corollary 2) suggests that GD with large enough learning
rate, will probably not reach any points in this region. To demonstrate this more clearly, we plot
the trajectory of GD from several initialization points in Figure 1. It is worth noting that even with
large learning rate it is possible for GD to get stuck in this region while it is possible to avoid this
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Figure 8: The function used in the toy experiments which has two local minima, a mostly flat minima near the
initialization points and a sharp minima further away. It can be clearly observed how as the learning rate grows
the two effects of avoiding parts of the landscape and escaping sharp minimas allow GD to converge to the
global minimum.

region even with a small learning rate. However, as suggested by our theoretical upper bound, the
probability of this phenomenon increases with the learning rate.

The other minimum is much sharper than the rest of the function and therefore we can expect an
escaping behavior similar to the one described by Lemma 1. This behavior is demonstrated in
Figure 3. Note that unlike the previous case, GD with large learning rate always (except when
landing directly at the minimum) escapes the sharp minimum while GD with small learning rate
converges.

We measure rate of convergence of GD for 100 different random initialization to each of these
three regions for different learning rates. The results are plotted in Figure 8b. We observe that as the
learning increases, the rate of avoiding the near initialization minimum increases. While the learning
rate is not still high enough, GD will converge to the sharp minimum while as the learning rate
increases further, it is also able to escape the sharp minimum and converge to the global minimum.
This behavior is completely compatible with what can be expected based on the results and effects
discussed in Section 4.

I FUNCTION FOR TOY EXAMPLE

—1600(z — 2.5)® — 2000(x — 2.5)* + 800(z — 2.5)% + 1020(x — 2.5)? 2 <z <3,

1411.2 x (1 — 10%(z — 8.4)) 8.4 < z < 8.40001,

flx):==40 8.40001 < z < 8.59999,
1479.2 x (10%(x — 8.6) + 1) 8.59999 < x < 8.6,
2022 otherwise.

J 2D Toy EXAMPLE

To build more intuition and show the effect of large learning rate extends to multi-dimensions,
we also provide a toy example on 2D. Figure 9 shows the landscape of our toy example which
contains four local minima that are also sharp. Consider GD initialized randomly on the region
W = {(z,y) | 3 <z,y < 4}. Then, using a small learning rate GD will converge to the minimum
in the region [1,2] x [1,2]. However, using a larger learning rate allows escaping that minimum.
Increasing the magnitude, GD can also jump over the minimum completely. In these cases, GD will
converge towards the global minimum at (0, 0).

19



Under review as a conference paper at ICLR 2023

Figure 9: The landscape of the function f(x,y) := 2> +4* — 200ReLU (|| — 1)ReLU (|y| — 1) ReLU (2 —
|z) ReLU (2 = |y).

K RESULTS OF STOPPING REPEATS FROM DIFFERENT EPOCHS

In Section 5.1, we explained that at the end of training we stop using the same batch for k steps and
train in the standard way (each batch used just once) for additional 10 epochs. This was done to
make sure the model that is used to obtain the accuracy on the test data is not overfitted on one batch
which might be more likely to happen at the end of the training. In this section, we also experiment
with stopping repeats, i.e. using the same batch for k steps, earlier in the training. The result is
plotted in Figure 10. No significant improvement is observed.

901 W
80
o
@ 70
3 y=0.01 - Standard
% y =0.001 - 10 Repeats (Until 201)
601 —— y=0.001 - Standard - 2000epoch
—— y=0.001 - 10 Repeats (Until 71)
501 —— y=0.001 - 10 Repeats (Until 101)
—— y=0.001 - 10 Repeats (Until 131)
40—

0 50 100 150 200
Figure 10: Plot of test accuracy when we stop using the same batch several times (doing repeats) at different

epochs. It can be clearly observed that the stopping epoch does not affect the final accuracy and the gap with
the case of GD with a large learning rate can be clearly observed.

L  EXPERIMENTS ON CIFAR100

In order to make sure our results extend to other scenarios, we repeat the experiments in Section 5.1
on CIFAR100 and observe a similar behavior. The accuracy on the train and test datasets during
training are plotted in Figure 11.
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Figure 11: Comparsion between performance of SGD with different learning rates on CIFAR100. Repeating
batches is turned off at epoch 200 and 10 additional epochs are performed (green). For the experiment with
2000 epochs (orange), the plot is normalized to 200 epochs. For more explanations refer to Figure 6 and
Section 5.1.

M EXPERIMENTS ON SGD WITHOUT MOMENTUM

In Section 5.1, we designed an experiment to show the effect of large learning rate is important
and goes beyond controlling the effect of stochastic noise on the trajectory. Since our goal was to
demonstrate the relevance and importance of analyzing these effects for the practical scenarios, we
used the standard training settings including momentum and weight decay. For completeness, in this
section we also include the results of applying SGD with repeats without momentum and without
weight decay. We compare standard SGD with learning rate 0.05. standard SGD with learning rate
0.005, and SGD with k = 10 repeats and learning rate 0.005. Accuracy on test and train datasets
throughout training is plotted in Figure 12. The figure also contains the accuracy during training
with momentum to allow comparison. As expected, applying SGD without momentum performs
worse than SGD with momentum. The gap between small and large learning rate can be observed
in this case as well. However, we do not observe an improvement when applying repeats.
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204 y = 0.005 - Standard - 2000epoch 204 y = 0.005 - Standard - 2000epoch
—— y=0.005 - 10 Repeats —— y=0.005 - 10 Repeats
0 50 100 150 200 0 50 100 150 200
(Normalized) Epoch (Normalized) Epoch

Figure 12: Comparsion between performance of SGD without momentum and weight decay and with different
learning rates on CIFAR10. Repeating batches is turned off at epoch 200 and 10 additional epochs are per-
formed (green). For the experiment with 2000 epochs (orange), the plot is normalized to 200 epochs. For more
explanations refer to Figure 6 and Section 5.1.

N LOSS ON THE LINE BETWEEN LARGE AND SMALL LEARNING RATE
TRAJECTORIES

In Section 5.2, we observed that GD with a large learning rate shows behavior similar to escaping and
follows a different trajectory than GD with the small learning rate. In this section, we plot the loss
along the line between the first point in the trajectory of GD with small learning rate (hereafter called
the origin) and different points along the trajectory of GD with the large learning rate. Figure 13
shows the loss based on the norm of the distance to the origin. As expected the loss increases along
the line between the origin and points at the beginning of the trajectory. This is when GD is showing
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escaping behaviors. However, interestingly, the loss is decreasing along the line between the origin
and points encountered later in the trajectory.

10
30
100
399

w

T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Distance Norm

Figure 13: The value of loss along the line between the first point in the trajectory of GD with small learning
rate and different points in the trajectory of GD with a large learning rate. For more detailed explanation of the
settings, refer to Section 5.2. Each line corresponds to the value of loss measured on 30 points along the line
between the initialization and the parameters after an step. The step number for each line is written in the box
located on the top-right of the plot.
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