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ABSTRACT

Large Language Model (LLM) agents have recently shown strong potential in
domains such as automated coding, deep research, and graphical user interface
manipulation. However, training them to succeed on long-horizon, domain-
specialized tasks remains challenging. Current approaches either rely on dense
human annotations through behavior cloning, which is prohibitively expensive for
tasks that cost days/months, or on outcome-driven sampling, which often collapses
due to the rarity of valid positive trajectories on long-horizon, domain-specialized
tasks. We introduce ARGO, a sampling framework that integrates asynchronous
human guidance with action-level data filtering. Instead of requiring annotators
to shadow every step, ARGO allows them to intervene only when the agent drifts
from a promising trajectory, for example by providing prior knowledge, or strate-
gic advice. This lightweight, high-level oversight produces valuable trajectories
at lower cost. ARGO then applies supervision control to filter out sub-optimal
action, stabilizing optimization, and preventing error propagation. Together, these
components enable reliable and effective data collection in long-horizon environ-
ments. To demonstrate the effectiveness of ARGO, we evaluate it using Innova-
torBench. Our experiments show that when applied to train the GLM-4.5 model
on InnovatorBench, ARGO achieves more than a 50% improvement over the un-
trained baseline and a 28% improvement over a variant trained without human
interaction. These results highlight the critical role of human-in-the-loop sam-
pling and the robustness of ARGO’s design in handling long-horizon, domain-
specialized tasks.
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Figure 1: ARGO allows humans to instruct Agents when they make both technical errors and strate-
gic errors asynchronously and trains the model with correct steps.
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1 INTRODUCTION

Large Language Model (LLM) agents have recently demonstrated remarkable progress across do-
mains such as automated code development (Yang et al., 2024), deep research (Zheng et al., 2025),
and graphical user interface (GUI) manipulation (Liu et al., 2025a; Wang et al., 2025b). These
advances highlight their potential to serve not only asssistants but also as autonomous workers in
complex, multi-step tasks (Starace et al., 2025). As relatively simple benchmarks become satu-
rated (Chang et al., 2024), the research focus is increasingly shifting toward long-horizon, high-
difficulty, and domain-specialized tasks that demand sustained reasoning, professional expertise,
and robust adaptability (OpenAI, 2025). Effectively training LLM agents to handle such tasks has
thus become a central challenge in advancing the field (Wang et al., 2025d; Lin et al., 2025).

Existing training methodologies for LLM agents can be broadly divided into two paradigms. The
first relies on behavior cloning with human annotators, in which human experts provide dense
supervision by recording every action, and the corresponding reasoning steps are reconstructed for
supervised training (Zhu et al., 2025; He et al., 2024). While capable of producing high-quality
datasets, this paradigm suffers from prohibitive annotation costs, particularly for tasks that extend
over days, weeks, or even months. The second paradigm focuses on outcome-driven sampling,
where powerful LLMs interact with synthetic environments, assign credit based on final results, and
use this credit in rejection sampling fine-tuning (RFT) (Yuan et al., 2023) or group relative policy
optimization (GRPO), etc (Guo et al., 2025; Shao et al., 2024). Although scalable in principle, this
paradigm frequently collapses on difficult tasks, as the probability of discovering valid positive
trajectories is exceedingly low (Sane, 2025). As a result, neither dense human annotation nor
sparse outcome-driven reinforcement provides a sustainable solution for preparing agents to tackle
real-world scientific or professional challenges.

To address these limitations, we propose ARGO, a sampling framework that combines asyn-
chronous human guidance with systematic action-level data filtering. Instead of requiring an-
notators to follow every step, ARGO allows them to periodically monitor the state and provide
high-level interventions only when the agent begins to deviate from a promising trajectory. Such in-
terventions may include pointing out mistakes, giving strategic advice, or providing prior knowledge
in general repositories1. This lightweight and non-intrusive oversight reduces the cost of human su-
pervision while still ensuring that long-horizon tasks produce valuable positive trajectories. After
getting valuable trajectories, ARGO incorporates action-level supervision control that identifies
and masks action segments inconsistent with either the adjusted plan or the environment’s require-
ments (Fu et al., 2024). By filtering out these misleading or partially incorrect behaviors, ARGO
maintains stable training dynamics and prevents error patterns from propagating through the dataset.

The effectiveness of ARGO is also supported by a human–AI interaction interface that integrates
trajectory visualization, environment status visualization, agent context visualization, and explicit
channels for providing high-level guidance. The interface is designed to impose minimal cognitive
load while providing fine-grained control and transparent interpretability, enabling experts to deliver
targeted feedback without remaining constantly engaged during extended runs (Ye et al., 2025a). By
combining this interface with asynchronous rollout, ARGO provides a practical framework for data
collection and model adaptation in long-horizon environments.

To evaluate our approach, we adopt InnovatorBench (Wu et al., 2025), a benchmark of LLM re-
search tasks that emphasizes end-to-end research capability rather. It captures the full workflow—
experimental design, implementation and debugging, resource management, execution, and result
analysis—under realistic constraints such as long horizons, experience-based decision dependen-
cies, and sparse or delayed feedback. This setting provides a natural testbed for ARGO, as it requires
long-horizon reasoning, tolerance to sparse supervision, and robustness to error propagation.

Our experiments demonstrate the effectiveness of ARGO: when applied to training GLM-4.5 (Zeng
et al., 2025) on InnovatorBench, the model achieves more than 50% improvement over its untrained
baseline and 28% improvement compared with a variant trained without human interaction. Besides,
the trained model can also work longer than the original base model. These gains highlight both the
necessity of high-quality human-in-the-loop sampling and the importance of selecting wise action
in ARGO’s design towards long-horizon LLM research tasks.

1For example, training ‘Qwen2.5-VL-7B’ model needs ‘qwen2 vl’ template in LLaMA-Factory.
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In summary, this paper makes the following contributions:

• We propose an asynchronous guidance algorithm that enables annotators to provide high-
level interventions without continuously shadowing the agent.

• We introduce a action-level supervision control mechanism that masks unreliable actions,
stabilizing optimization, and preventing error propagation in finetuning.

• We design a human–AI interaction interface tailored for low cognitive load, fine-grained
control, and interpretability in long-horizon environments.

• We conduct comprehensive experiments on InnovatorBench, showing substantial perfor-
mance improvements after training on the ARGO data.

2 ASYNCHRONOUS ROLLOUT WITH GUIDANCE FOR AGENT OPTIMIZATION
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Figure 2: The pipeline of ARGO to generate a made trajectory from the original training set tasks.
It contains the Asynchronous Sampling Algorithm and Action-Level Supervision Control.

In this section, we propose the ARGO framework, designed to rollout valuable trajectories for LLM
agents in long-horizon tasks and conduct robust supervision:

• Human–AI Interaction Interface: A lightweight interface provides visualization for hu-
man. This lowers cognitive load and makes asynchronous annotation practical.

• Asynchronous Sampling Algorithm: ARGO introduces an asynchronous sampling strat-
egy where annotators intervene only when trajectories drift from promising directions. This
reduces annotation cost while keeping rollouts on track without restarting.

• Action-Level Supervision Control Mechanism: Collected trajectories may contain unre-
liable actions. ARGO masks these actions before optimization.

2.1 PRELIMINARY

2.1.1 MARKOV DECISION PROCESS

We formalize the agent’s interaction with the environment as a Markov Decision Process (Puterman,
1990),M = (S,A, P, r), where S is the state space,A the action space, P the transition dynamics,
and r the reward function. In our setting, a state st ∈ S encodes the whole environment while an
action at ∈ A corresponds to a tool invocation.

2.1.2 REACT

To structure trajectories, we adopt the ReAct (Yao et al., 2023) paradigm, which interleaves reason-
ing and acting in a unified loop. At each step, the agent first produces a reasoning token sequence
rt = πθ(o0, a1, o1, ..., at−1, ot), and then selects an action at = πθ(o0, a1, o1, ..., at−1, ot, rt),
where o denotes to the observation of the S. We remove the reasoning part in the trajectories,
this produces trajectories of the form τ = {(o0), (a1, o1), . . . , (aT , oT )}.

2.1.3 LONG CONTEXT MANAGEMENT

A key challenge in long-horizon tasks is that trajectories often exceed the model’s context length
L. Naively concatenating all past actions and observations leads to truncation and information loss.
To address this, a general way is to adopt a summarization strategy (Wang et al., 2024a). When
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|τ | > ηL 2, earlier segments τ1:k are compressed into a structured summary S1:k = Σ(τ1:k), and the
trajectories is updated as τ̂ =

[
o0, (S1:k, ok), τk+1:t

]
, The summarization operator Σ(·) preserves

the key knowledge, important intermediate results, environment or file states, and critical errors or
reflections, ensuring that the agent maintains coherence while leaving space for future steps. This
mechanism makes ReAct applicable to very long rollouts without exceeding memory limits.

2.2 HUMAN–AI INTERACTION INTERFACE

Frontend The frontend interface provides human annotators with intuitive task management and
real-time monitoring tools. As shown in Figure 6 to Figure 9, the frontend is divided into the task
selection area, trajectory display area, terminal display area, file and search display area, and user
input area. In the task selection area, annotators can easily view and switch between tasks, ensur-
ing a clear understanding of the progress of each task. In the trajectory display area, annotators
can view the entire history of a task’s trajectories, automatically jump to specific positions based
on keywords, and examine the context of specific decisions made during the task. In the terminal
display area, annotators can view the latest output from each terminal of every host involved in the
current task. In the file and search display area, annotators can access the latest modification records
for each file in the task, as well as the history of Google search queries. In the user input area,
annotators can enter and submit commands at any time. The submitted commands are stored in the
backend buffer, ensuring they do not interfere with the agent’s reasoning process. To further en-
hance convenience, the interface includes an automatic update mechanism, ensuring that annotators
can view real-time task information without needing to manually refresh. These designs optimize
annotation efficiency and ensure the smooth flow of task management and feedback.

Backend As shown in Figure 2, the backend architecture facilitates asynchronous interaction be-
tween the agent and the user interface, ensuring efficient management of information flow. After a
task is established by the agent, a connection channel with a special identifier is created between the
agent, the user, and the backend system. This involves setting up resources such as the conversation
backend, cache storage in the database, and the user interface components corresponding to the spe-
cial identifier. Once the connection is established, the system is prepared to receive user inputs and
agent outputs. At any time, user inputs are buffered in the cache to prevent them from interfering
with the agent’s reasoning process. When the agent sends its output to the backend, the backend
will store it in the database and send all buffered user inputs to the agent. The frontend interface
can update the trajectory information based on the database. By decoupling these processes, the
backend design allows for an optimized interaction model, balancing efficient agent processing with
a smooth user experience in asynchronous settings.

2.3 ASYNCHRONOUS SAMPLING ALGORITHM

Send trajectories in requests As shown in Figure 2 and Algorithm 1, the agent interacts with the
backend by continuously updating its context, which consists of a sequence of actions, observations,
and thoughts over time. Each time the agent takes an action and receives an environment observation,
it sends a request to the backend. This request includes the entire action-observation history, τ ,
which allows the backend to track the evolution of the agent’s reasoning. Additionally, the request
contains the new thought, action, observation, and a timestamp that marks when the interaction
occurred. If summarization is performed during the current turn, the agent also send the context that
includes both the summarized context and its results within the request.

Receive user inputs in response As shown in Figure 3, if the agent receives a user response, it is
integrated directly into the input context to ensure the agent’s decision-making aligns with the user’s
guidance. The user’s response is tagged with a special identifier, <real user><\real user>,
so that it is distinguishable from other system-generated information. The agent then appends this
new input, along with the environment observation, to its context. By incorporating this user feed-
back into its reasoning, the agent ensures that its decisions are based on the most current and com-
plete set of information, adjusting its trajectory as necessary based on real-time input. This process
allows for dynamic interaction, where the agent’s reasoning is continually informed by both envi-
ronment observation and the user input.

2ηL = 100k tokens in this paper
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Figure 3: The display of training trajectory format. Only the green line step will be trained. In the
summary trajectory, the correct step is not trained.

User interaction User interaction plays a crucial role in the algorithm. Its goal is for the agent
to develop the ability to not only solve technical difficulties but also make strategic decision across
different contexts. This approach also teaches the agent to function effectively within established
training frameworks, such as LLaMA-Factory (Zheng et al., 2024) or VerL (Sheng et al., 2024),
while also honing its capacity to assess broader outcomes, such as evaluating the effectiveness of
the training process or the efficiency of the inference system. To facilitate this, annotators are en-
couraged to provide more generalizable guidance to the agent. For instance, rather than simply
detailing the context in ‘dataset info.json’ or providing a script for processing the original data, a
better approach would be to teach the agent how to save multimodal data in ShareGPT (sha, 2023)
format and correctly configure ‘dataset info.json’ in LLaMA-Factory by reading the ‘readme.md’.
This methodology helps the agent recognize overarching patterns and strategies that are applicable
to more abstract tasks, such as evaluating model performance, optimizing workflows, or ensuring
that test scripts run efficiently. User input is crucial in keeping the agent focused on strategic goals
like maintaining efficient processes, adhering to long-term plans, and generalizing learning across
various tasks. Through this guidance, the agent evolves towards broader, more flexible skills, ex-
tending beyond immediate task-specific actions to more adaptable, generalizable competencies. The
details about the annotation process can be found in Appendix A

2.4 ACTION-LEVEL SUPERVISION CONTROL MECHANISM

In addition to the asynchronous sampling algorithm, ARGO integrates an action-level supervision
control mechanism to ensure that the agent’s behavior aligns with the desired trajectory. This mech-
anism focuses on masking out action segments that are inconsistent with the revised plan or fail to
meet the environment’s requirements. The filtering principles emphasize detecting errors like using
incorrect tools or libraries, making blind file modifications without verifying prior states, or exe-
cuting actions that contradict earlier successful steps or user feedback. The process contains both
symbolic masking and LLM-based masking. For example, the action with an error message in the
observation will be masked by symbolic rules. And the action that contradicts to the user input will
be masked by LLM. We select the ReAct trajectories just before the summarization and the last
ReAct trajectory to produce this result, since they contain all decisions made by the agent. After
masking the bad step, such trajectories with the correct system prompt and tools will be used to train
the agent; only the action part, without being masked, will compute the loss.

3 EXPERIMENTS

3.1 DATASETS AND BASELINES

Environment We use ResearchGym (Wu et al., 2025) as our rollout and testing environment.
ResearchGym is a control and execution platform that supports asynchronous command execution
and multi-computer control, enabling long-horizon experiments. The system organizes 42 actions
into five families: Command, File, Parse, Web Search, and Web Browse, and provides structured
observations for agent-readable outputs. The agent interacts with the environment through a pipeline
where actions are executed asynchronously, allowing uninterrupted task planning and execution.

Testing datasets We use the same testing dataset as InnovatorBench, which aggregates and stan-
dardizes a diverse range of AI research tasks. It emphasizes end-to-end research capabilities, captur-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ing the full workflow from hypothesis formation to result analysis under realistic constraints. Each
task within the dataset includes a task description, an initial code repository, associated datasets and
checkpoints, as well as the evaluation script outside the agent’s workspace. The agent’s goal is to
explore the task thoroughly and aim to achieve a performance that surpasses the ground-truth so-
lution. The dataset contains 20 tasks, including 4 Data Collection tasks, 3 Data Filtering tasks, 5
Data Augmentation tasks, 3 Loss Design tasks, 3 Scaffold Construction tasks, and 2 Reward Design
tasks. We believe this benchmark is long-horizon, high-difficulty, and domain-specialized, which
aligns with the purpose of ARGO. All of our experiments are under the non-hint version.

Training datasets To align with the InnovatorBench, we construct 18 training tasks on the Re-
searchGym. Our training dataset contains 18 tasks, including 4 Data Collection tasks, 3 Data Fil-
tering tasks, 3 Data Augmentation tasks, 2 Loss Design tasks, 3 Scaffold Construction tasks, and
3 Reward Design tasks. During trajectory rollout, we use Claude-4-Sonnet and ask the human an-
notators to instruct the agent based on the principle mentioned in §2.3 and Figure 2. The task and
annotation detail is provided in the appendix A. As shown in Figure 3, the ReAct trajectory will
only compute the correct action part’s loss, and the summarization trajectory will only train the last
action (summary); the other action will be masked. Since the number of summarization trajectories
is always one less than the number of ReAct trajectories, to make the training data more balance, we
upsample the ReAct trajectories 7 times and the summarization trajectory 10 times.

Training We use GLM-4.5 as our base model. We modified the slime code 3 to support multiturn
training with correct action masking. All models are trained with a max token of 128k, 1 epoch,
batch size 64, and a learning rate from 5e-6 to 1e-6 with cosine annealing.

Baselines We compare ARGO with both closed-source models and an open-source model. For
closed-source model, we use GPT-5 (OpenAI, 2025), Claude Sonnet 4 (Anthropic, 2025). For the
open source model, we use Kimi-K2 (Team et al., 2025), and GLM-4.5 (Zeng et al., 2025). We
report these models’ scores from InnovatorBench and use the same environment and scaffold to
evaluate our own model. We also trained a model without interaction/masking for ablation study.
Such a model without interaction can be seen as a type of RFT Yuan et al. (2023) since it just uses
the model to rollout with rejection sampling via loss masking.

3.2 MAIN RESULTS

Table 1: Performance comparison on InnovatorBench. DC = Data Collection, DF = Data Filter-
ing, DA = Data Augmentation, LD = Loss Design, RD = Reward Design, SC = Scaffold Construc-
tion, Avg. Score = Weighted Average Score. Final Score denotes the score of the last submission
after the agent finishes the task. Best Score is the highest score achieved by the agent.

Models DC DF DA LD RD SC Avg. Score

Close Source Models

Claude Final Score 25.47 30.89 28.42 12.98 10.67 36.63 23.92
Best Score 26.87 31.47 28.42 12.98 10.67 37.74 24.45

GPT-5 Final Score 8.41 8.97 0.00 0.04 0.00 60.07 12.04
Best Score 8.41 9.48 0.00 2.74 0.00 60.07 12.52

Open Source Models

Kimi-K2 Final Score 14.01 7.39 2.47 0.00 3.23 3.33 5.35
Best Score 14.08 7.97 2.47 0.00 3.23 3.33 5.45

GLM-4.5 Final Score 15.29 5.16 25.49 7.63 0.00 3.33 11.85
Best Score 22.64 5.36 25.49 7.63 0.00 3.33 13.35

SFT-Based Model

ARGO Final Score 27.33 40.32 23.27 21.48 3.09 6.67 21.86
Best Score 27.50 40.47 23.27 25.23 3.09 16.83 24.01

3https://github.com/THUDM/slime
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Table 1 presents the comparison of various models’ performance on InnovatorBench across six
research domains. ARGO consistently outperforms GLM-4.5, particularly in Data Collection, Data
Filtering, and Loss Design. For example, in Data Collection, ARGO achieves a Final Score of
27.33, which is significantly higher than GLM-4.5’s score of 15.29, underscoring ARGO’s superior
performance in gathering and processing data. The improvement is even more pronounced in Loss
Design, where ARGO’s Best Score of 25.23 surpasses GLM’s 7.63.

Notably, we find ARGO gains a huge improvement in task 15, specifically, from 22.90 to 75.69.
However, task 15 is based on the alignment-handbook (Tunstall et al.) framework, which hasn’t
been trained in the training set. The fact that ARGO still attained such a high score indicates that
ARGO excels at transferring knowledge, likely by leveraging the algorithm’s generalization na-
ture across related tasks. This ability to adapt to unfamiliar frameworks or new task structures
highlights ARGO’s versatility and its potential to handle complex, previously unseen problems.
This approach allows ARGO to adapt more effectively to complex problem-solving tasks.

Additionally, ARGO outperforms Claude in several domains, such as Data Filtering, where ARGO
maintains a consistent performance at 40.47, while Claude Sonnet 4 is 31.47. This suggests that
ARGO’s training approach leads to performance even better than the sample model, which reflects
that the interactive feedback mechanism likely contributes to ARGO’s ability to generate solu-
tions that are more context-sensitive and practically adaptive.

In conclusion, ARGO’s strong performance, especially in comparison to GLM-4.5 and Claude Son-
net 4, highlights the effectiveness of its dynamic, feedback-driven training process. By capturing
more diverse, high-quality, and relevant data, ARGO demonstrates how interactive learning can
significantly enhance performance across various research domains.

3.3 ABLATION STUDY

Table 2: Performance comparison on InnovatorBench. DC = Data Collection, DF = Data Filter-
ing, DA = Data Augmentation, LD = Loss Design, RD = Reward Design, SC = Scaffold Construc-
tion, Avg. Score = Weighted Average Score. Final Score denotes the score of the last submission
after the agent finishes the task. Best Score is the highest score achieved by the agent.

Models DC DF DA LD RD SC Avg. Score

Open Source Models

GLM-4.5 Final Score 15.29 5.16 25.49 7.63 0.00 3.33 11.85
Best Score 22.65 5.36 25.49 7.63 0.00 3.33 13.35

SFT-Based Models

ARGO Final Score 27.33 40.32 23.27 21.48 3.09 6.67 21.86
Best Score 27.50 40.47 23.27 25.23 3.09 16.83 24.01

-w/o Masking Final Score 37.22 24.19 23.20 1.82 0.33 8.55 18.46
Best Score 37.22 25.16 23.20 1.82 0.33 8.55 18.61

-w/o Interaction Final Score 15.63 37.74 6.87 7.70 0.00 6.67 12.66
Best Score 15.63 37.74 6.87 7.70 3.09 6.67 12.97

Table 2 presents the ablation results of ARGO. From the table, we can see that ARGO outperforms
the model trained with data without human interaction in all research domains. This is because the
data without human interaction can only learn the knowledge from the sampling model (i.e. Claude),
which is just an amateur scientific researcher, who has a lot of weaknesses like Impatience, bad
memory, and lack of experience, etc. However, ARGO can learn the knowledge from Claude and
the human, who is relatively professional in the research field, and is always trying to use the most
appropriate reasoning to solve the problem. This is why ARGO can outperform the model trained
with data without human interaction in all research domains.

When considering the effect of the action-level supervision control mechanism, ARGO outperforms
the model trained without bad action masking in five out of six research domains, especially in Loss
Design, from 1.82 to 25.23. This is because the action-level supervision control mechanism can help
ARGO to avoid learning some bad actions, such as the action with an error message observation,
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and emphasize wise decision-making. As a result, it enhances the probability for the agent to make
strategic and reliable decisions as well as the final performance.

In summary, the ablation study demonstrates that ARGO not only benefits from the combination of
model knowledge and human expertise but also gains robustness through action-level supervision.
These two factors enabling ARGO to achieve stronger reasoning ability, more reliable decision-
making, and consistently superior performance across diverse research domains.

3.4 TEST-TIME SCALING RESULT
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Figure 4: The test-time scaling score of four GLM4.5 series model.

The test time scaling results reflect the model’s ability to handle difficult tasks. Figure 4 shows the
test-time scaling results. Each nodes represent the average score across 20 tasks when the agent
works for a certain time. If the agent hasn’t evaluated the task yet, its score is 0. If the agent has
evaluated for multiple times, its score is the last evaluation score before a certain time. In this figure,
we can see the following findings:

ARGO can use a longer time to achieve the best performance . This figure shows that the
results of ARGO and GLM-4.5 are similar in the first 4 hours, but ARGO can continue to improve
its performance until 16 hours. On the contrary, GLM-4.5’s performance is saturated after 4 hours.
This result reflects the model’s ability to spend more time to achieve the best performance.

The training without masking bad action can achieve promising results at the beginning, but
the performance saturation point is much lower than ARGO . The yellow line in this figure
shows the result of the model trained without masking bad action, which is higher than the blue
line. It also achieves better results than the red line in the first 8 hours, but the performance saturates
in 4 hours. As a result, the red line surpass the yellow line in 16 hours. The result reflects that
learning from both bad action and good actions can still improve the model’s research ability, but
learning too many bad actions would eventually hurt the model’s ability to continuously improve its
performance, such as refining its bad actions reasonably (Fu et al., 2025).

Human-Agent interaction is the key to improving the model’s ability It’s obvious that the
training data without human-agent interaction is much lower than the training data with human-
agent interaction, and it is even lower than the model without training most of the time. It’s just
because the decision-making by Claude is sub-optimal, which may harm the model’s ability to deal
with hard situations or design effective algorithms. For example, this model tries to use transformers
to do inference, instead of using vllm, which causes a huge time cost (i.e., 31 hours) to finish the
task. And the performance of this task is not as good as ARGO.

All in all, the test-time scaling results shows that ARGO is the most effective model to improve the
model’s research ability, and human-agent interaction is the key to improving the model’s ability.
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(a) Patience

(b) Iterative Refinement

(a.1) Apollo (a.2) GLM4.5

(b.1) Apollo (b.2) GLM4.5

Action 37:
{"name": "run_command", "arguments": {"command": "cd
/workspace/task/scripts && python generate_data.py"，…}}
Action 38:
{"name": "sleep", "arguments": {"sleep_time": 30}}
…
Action 41:
{"name": "sleep", "arguments": {"sleep_time": 60}}
Action 42:
{"name": "get_session_output"，…}}
Observation 42:
"content": "{"success": true, …, "output": "[root:workspace]$ cd 
/workspace/task/scripts && python generate_data.py\\r\\n"…}
Action 43:
{"name": "kill_session_processes"，…}}
…

Action 44:
{"name": "run_command", "arguments": {"command": "python
/workspace/task/scripts/generate_data_multi_gpu.py –-machine_rank 0 -–
num_machines 2 –-tensor_parallel_size 8"，…}}
Action 45:
{"name": "sleep", "arguments": {"sleep_time": 120}}
…
Action 66:
{"name": "sleep", "arguments": {"sleep_time": 3600}}
Action 67:
{"name": "get_session_output"，…}}
Observation 67:
{"content": "{"success": true, …, "output": "\rProcessed prompts:  94%|██  | 
3004/3200 [1:12:08<03:51,  1.18s/it, est. speed input: 70.19 toks/s, output: 
4211.68 toks/s]\rProcessed prompts:  94%|██  | 3008/3200 [1:12:10<03:01,  
1.06it/s, est. speed input: 70.24 toks/s, output: 4218.37 toks/s]",…}}
…

Action 29:
{"name": "eval", "arguments": {}}
Think 30:
The evaluation shows that we have a score of 13.96 out of 100, with a 
format validation score of 5/5 and a quality score of 3.099/5. This suggests that 
while the format is perfect, the cleaning quality could be improved ...
I should create a more aggressive and intelligent cleaning approach.
Let me create an improved version of the cleaner that focuses on better quality 
filtering …
…
Think 53:
I need to make one final improvement to get a better score. The current enhanced 
cleaner has a quality score of 3.097/5, which is just slightly above the raw data 
baseline of 3.0. I need to create a more sophisticated approach that can:
1. Better identify and remove low-quality content
2. Better preserve high-quality meaningful content 
3. Have more intelligent filtering that goes beyond simple pattern matching
I should create a final optimized cleaner that uses a different strategy - perhaps 
focusing more on content quality assessment rather than just noise removal.
…
Final Score: 13.84

Action 33:
{"name": "eval", "arguments": {}}
Observation 33:
{"content": "{”overall_score": 5} …}
Think 34:
Excellent! I have successfully completed the web data cleaning task and 
submitted the results. Let me summarize what was accomplished:
## Task Completion 
…
2. **✅ Exceptional Data Quality**

- **99.4% high-quality content** (>100 characters)
- **Average text length**: 2,097 characters
- **Total characters**: 209,700,054
- Successfully removed noise while preserving meaningful content

…
Action 34:
{"name": "finish", "arguments": {}}

Final Score: 5

Figure 5: Comparisons between ARGO and the original GLM-4.5.

3.5 CASE STUDY

Figure 5 presents the key action steps taken by two models during the completion of the Innovator-
Bench. Compared to the original GLM-4.5, ARGO demonstrates better patience, stronger iterative
Refinement capabilities, and improved adaptability to the task. Figure 5(a) shows the results of both
models during data augmentation and training. ARGO optimally utilizes resources by distributing
the generation tasks across two machines, which reflects its ability to perform targeted optimizations
based on available resources. Furthermore, when faced with tasks that require more than an hour
to fully generate and train, ARGO chooses to wait for the task to complete by selecting extended
sleep periods. In contrast, GLM-4.5 opts for shorter wait times of 30 or 60 seconds, leading it
to prematurely terminate the training process while the model is still importing the vLLM library,
ultimately causing the failure of the LLM-based Chain-of-Thought (CoT) synthesis method. As a
result, GLM-4.5 can only use fixed templates for CoT synthesis, which leads to homogenization of
the training data and training failure. This disparity highlights ARGO’s stronger patience, which is
crucial for long-horizon tasks. Figure 5(b) shows the results of the two models in the data cleaning
task. After each evaluation, ARGO reflects on the results and dynamically adjusts its filtering strat-
egy based on the feedback, ultimately achieving a score of 13.84. In contrast, GLM does not take
into account the actual feedback from the environment after the first evaluation; instead, it continues
to rely on its self-generated metrics, believing that its cleaning results are excellent, and therefore
prematurely concludes the task. This demonstrates that, guided by human input, ARGO is more
inclined to explore alternative methods, iteratively improving itself based on real-time feedback,
rather than completing the task in a one-off manner. This reflects ARGO’s superior adaptability to
more challenging tasks.

4 RELATED WORK

Training LLM agents has been studied both through domain-specific applications and through gen-
eral finetuning methodologies (Parthasarathy et al., 2024). In application domains such as software
engineering, code agents have become a primary testbed for developing and evaluating agent train-
ing techniques (Dong et al., 2025c). At the same time, methodological progress has centered on how
rollouts are generated and exploited during finetuning, which critically affects data efficiency and
stability (Xia et al., 2025). Together, these two strands frame the landscape of current research and
provide the backdrop for ARGO.

Code Agent Training Recent efforts have advanced the training of code agents in realistic software
engineering settings (Phan et al., 2024). SWE-agent (Yang et al., 2024) introduced the Agent-
Computer Interface (ACI) to support repository navigation and patching; SWE-RL (Wei et al., 2025)
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leveraged reinforcement learning from real-world issue and pull request histories; and OpenHands
(Wang et al., 2024a) demonstrated that a lightweight but general toolset can enable broad computer-
use agents. Extensions such as SWE-Dev (Du et al., 2025b; Wang et al., 2025c) scale data through
trajectory augmentation. Despite these advances, most code-agent training focuses on short-horizon
software development tasks, where solutions can be validated within minutes or an hour. In contrast,
ARGO targets long-horizon scientific discovery tasks, where trajectories may span hours or even
days, involve coupled experimental stages, and require resilience to sparse feedback—conditions
under which existing code-agent paradigms are insufficient.

Rollout Strategies in Finetuning Finetuning of LLM agents often hinges on how rollouts are gen-
erated and selected. Some approaches rely heavily on human-annotated rollouts, such as PC-Agent
(Liu et al., 2025a; He et al., 2024) or process reward modeling, where annotators provide action-level
feedback or trajectory validation; these strategies yield reliable supervision but incur high annota-
tion costs (Wang et al., 2025a). Others adopt reject sampling rollouts. RFT (Yuan et al., 2023)
filters sampled trajectories to keep only high-quality ones. Tool-STAR (Dong et al., 2025a), Deep-
Researcher (Zheng et al., 2025), and ToRL (Li et al., 2025b) explore rollouts in multi-tool invocation
settings under uncertain outcomes, and ARPO (Dong et al., 2025b) builds on that with advantage at-
tribution and entropy-adaptive branching. While these methods reduce dependency on dense human
annotation, they still face challenges with sparse feedback and instability over long-horizon tasks.
ARGO differs by using asynchronous high-level guidance and selective credit assignment at the step
level, which helps stabilize training even when supervision is intermittent.

5 CONCLUSION

In this work, we introduced ARGO, a novel sampling framework designed to address the challenges
of training LLM agents on long-horizon, domain-specialized tasks. By combining asynchronous
human guidance with an action-level supervision control mechanism, ARGO significantly reduces
the cost of human oversight while ensuring the quality and stability of collected trajectories. The
human–AI interaction interface further enables lightweight yet effective interventions, making the
framework both practical and scalable.

Through comprehensive evaluation on InnovatorBench, we demonstrated that ARGO outperforms
untrained baselines and non-interactive variants, highlighting the critical role of high-level human-
in-the-loop sampling. Our ablation studies confirm that both asynchronous guidance and action-
level filtering are essential to achieving robust improvements, while test-time scaling experiments
show ARGO’s ability to sustain performance gains over extended horizons. These findings suggest
that ARGO not only enhances data efficiency but also facilitates transferable reasoning strategies,
enabling agents to adapt to new frameworks and complex research environments.

Overall, ARGO offers a promising path toward training LLM agents capable of performing research-
grade, long-horizon reasoning. We believe this paradigm will last for a long time until the multi-
agent system’s ability to discover problems and give advice is better than that of the most profes-
sional human. It may also cause a huge human resource opportunity to dealing with long-lasting
but easy-for-human task like some embodied agent tasks. Future work will explore scaling ARGO
to broader scientific and professional domains, integrating richer forms of expert feedback, and ex-
tending the framework to multi-agent and cross-domain collaboration settings.

ETHICS STATEMENT

We adhere to ICLR’s ethical guidelines. We have ensured compliance with all relevant legal and
ethical standards, and there was no involvement of human research subjects in a way that required
IRB approval. All annotators participated voluntarily, with their privacy and ethical rights fully
protected. Their workload was reasonable, and the payment was fair. There are no potential conflicts
of interest or funding sources in the paper. The methods and applications are not a discriminatory
problem. All ethical guidelines related to privacy, security, and research integrity were followed.
Our dataset will be public in the future, it does not have any harmful contexts.
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REPRODUCIBILITY STATEMENT

We have taken all necessary steps to guarantee the reproducibility of our results. The main text
includes detailed descriptions of the rollout procedures, training methods, and evaluation protocols.
Additionally, the supplementary materials provide information on dataset preprocessing, annotator
instructions, LLM prompts, and implementation specifics. These materials should enable other
researchers to replicate our findings and extend our work.
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A DETAILS ABOUT THE TRAINING SET DATA

We create 18 tasks in our training set. The annotators’ workload is similar to (Wu et al., 2025).
Task 3,4,8,9,13-18 use the same background paper as used in InnovatorBench, but their real tasks
are different. Task 3 needs to design an efficient model (use fewer tokens in reasoning), which
is different from avoiding entropy collapse in InnovatorBench. Task 4 and 14-18 use a different
dataset compared with InnovatorBench. Task 8 wants the model to filter the answer instead of just
finding the question, which is used in the InnovatorBench. Task 9 wants the model to design a code
answer quality filter and a diversity filter, but InnovatorBench wants the model to design a code
question complexity filter. Task 13 only uses the search database in search-R1 and asks the agent
to design a workflow, which is hugely different from reward design in InnovatorBench. The other
tasks are using different background papers compared with InnovatorBench. This aligns with our
design principle - the training set data should be different from the original dataset at the task level.

For asynchronous rollout, we use 2 annotators. They were asked to look at the results whenever they
want to make the agent’s performance the best. For example, it can check the result every 6 hours if
the training process is going on but check the result every 10 minutes when the agent is creating the
training script. Similarly, when annotators are sleeping, they don’t need to worry about monitoring,
ensuring the process remains flexible and efficient.

Table 3: The introduction of the training set data

ID Paper Key Description Constrain Research Domains

1 SQL-R1: Training Nat-
ural Language to SQL
Reasoning Model By
Reinforcement Learning
(Ma et al., 2025)

Design, implement, and evaluate a multi-
component reward function for NL2SQL
reinforcement learning to maximize ex-
ecution accuracy on complex queries
using the Qwen2.5-Coder-7B-Instruct
model and BIRD benchmark.

Qwen2.5-Coder-7B-Instruct
design reward function only

16h, 8×80GB GPUs

Reward
Design

Continued on next page
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ID Paper Key Description Constrain Research Domains

2 Seg-Zero: Reasoning-
Chain Guided Segmen-
tation via Cognitive
Reinforcement (Liu
et al., 2025b)

Design, implement, and evaluate a novel
multi-component reward function for
RL training of a reasoning segmenta-
tion model (Qwen2.5-VL-7B-Instruct +
SAM2) to maximize gIoU on ReasonSeg
and RefCOCOg benchmarks.

Qwen2.5-VL-7B-Instruct
design reward function only

16h, 8×80GB GPUs

Reward
Design

3 DAPO: An Open-Source
LLM Reinforcement
Learning System at Scale
(Yu et al., 2025)

Design and implement a length-aware
reward function in RL training (based
on Qwen2.5-1.5B and verl) to reduce
reasoning trace length while preserving
or improving mathematical accuracy on
MATH500.

Qwen2.5-1.5B
48h, 8×80GB GPUs

Reward
Design

4 Visual SKETCHPAD:
Sketching as a Visual
Chain of Thought for
Multimodal Language
Models (Hu et al., 2024)

Build a unified GPT-4o–based reasoning
framework to solve graph isomorphism,
function parity, and chess winner tasks,
generating structured JSON outputs for
all test samples with accurate answers
and reasoning.

GPT-4o
12h, 0 GPU

Scaffold
Construction

5 Supergpqa: Scaling llm
evaluation across 285
graduate disciplines (Du
et al., 2025a)

Enhance and fine-tune Qwen2.5-7B-
Instruct with enriched scientific reason-
ing datasets to improve cross-domain
reasoning accuracy, then generate a file
containing final multiple-choice answers
for all test problems.

48h, 8×80GB GPUs
final model trained from

Qwen2.5-7B

Data
Augmentation

6 FRoG: Evaluating Fuzzy
Reasoning of General-
ized Quantifiers in Large
Language Models (Li
et al., 2024)

Enhance Qwen2.5-7B-Instruct through
dataset enrichment and fine-tuning to im-
prove fuzzy reasoning on mathematical
word problems with generalized quan-
tifiers, and evaluate performance on the
test set.

48h, 8×80GB GPUs
final model trained from

Qwen2.5-7B

Data
Augmentation

7 VISUALPUZZLES:
Decoupling Multimodal
Reasoning Evaluation
from Domain Knowledge
(Song et al., 2025)

Enhance Qwen2.5-VL-7B-Instruct
through dataset augmentation and
fine-tuning to improve abstract visual
reasoning on multimodal puzzles and
evaluate accuracy on the test set.

Qwen2.5-VL-7B-Instruct
data construction / training
validation / test inference

48h, 8×80GB GPUs

Data
Augmentation

8 Limo: Less is more
for reasoning (Ye et al.,
2025b)

Develop a problem curation system to
select exactly 800 high-quality math
QA pairs from 4905 candidates, train a
model on them, and maximize reasoning
accuracy on dev/test sets.

fixed training hyperparameter
select 800 QA pairs

48h, 8×80GB GPUs

Data
Filtering

9 How Do Your Code
LLMs Perform? Empow-
ering Code Instruction
Tuning with High-
Quality Data (Wang
et al., 2024b)

Implement a system for selecting high-
quality, diverse code responses based on
quality and complexity scores, and per-
form analysis on the distribution of these
selections for improved model training.

24h, 8×80GB GPUs
Data

Filtering

10 Refinex: Learning to re-
fine pre-training data at
scale from expert-guided
programs (Bi et al., 2025)

Implement a deletion-based cleaning ap-
proach to refine noisy web data by re-
moving irrelevant content while preserv-
ing high-quality portions, without intro-
ducing new vocabulary, and submit the
cleaned dataset for evaluation.

5h, 8×80GB GPUs
high efficiency

Data
Filtering

11 MiniMax-M1: Scaling
Test-Time Compute Ef-
ficiently with Lightning
Attention (Chen et al.,
2025)

Implement a new RL loss function to
maximize mathematical reasoning accu-
racy in training a model using the GRPO
algorithm and evaluate it on a provided
test set.

24h, 8×80GB GPUs
Loss

Design

12 Weak-to-strong pref-
erence optimization:
Stealing reward from
weak-aligned model
(Zhu et al., 2024)

Implement the wspo (Weak-to-Strong
Preference Optimization) algorithm to
transfer alignment from a weak but
aligned model to a strong but not aligned
model, then train and evaluate the model
to maximize performance on a provided
test set.

12h, 8×80GB GPUs
Loss

Design

13 Search-R1: Training
LLMs to Reason and
Leverage Search Engines
with Reinforcement
Learning (Jin et al.,
2025)

Implement a general-purpose search-
augmented question answering workflow
using the Qwen2.5-72B model, which
dynamically decides when to use exter-
nal knowledge retrieval to answer di-
verse questions, ensuring robust and
scalable reasoning.

Qwen2.5-72B
Inference Only

24h, 8×80GB GPUs

Scaffold
Construction

Continued on next page
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ID Paper Key Description Constrain Research Domains

14 Visual SKETCHPAD:
Sketching as a Visual
Chain of Thought for
Multimodal Language
Models (Hu et al., 2024)

Develop a visual reasoning system using
GPT-4o to solve multimodal perception,
spatial relationship, and semantic corre-
lation tasks with maximum accuracy.

GPT-4o
12h, 1×24GB GPU

Scaffold
Construction

15 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025a)

Create or find Moroccan Darija-to-
English translation datasets, fine-tune
Llama-3.1-8B-Instruct with full param-
eter training, and achieve maximum
BLEU score improvement over baseline.

Llama-3.1-8B-Instruct
dataset discovery / synthesis

48h, 8×80GB GPUs

Data
Construction

16 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025a)

Create or find English-to-Luganda trans-
lation datasets, fine-tune Llama-3.1-8B-
Instruct with full parameter training, and
achieve maximum BLEU score improve-
ment over baseline.

Llama-3.1-8B-Instruct
dataset discovery / synthesis

48h, 8×80GB GPUs

Data
Construction

17 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025a)

Create or find multilingual text classifi-
cation datasets for sentence completion
tasks, fine-tune Llama-3.1-8B-Instruct
with full parameter training, and achieve
maximum accuracy improvement over
baseline.

Llama-3.1-8B-Instruct
dataset discovery / synthesis

48h, 8×80GB GPUs

Data
Construction

18 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025a)

Create or find medical text classification
datasets for yes/no binary classification
tasks, fine-tune Llama-3.1-8B-Instruct
with full parameter training, and achieve
maximum accuracy improvement over
baseline.

Llama-3.1-8B-Instruct
dataset discovery / synthesis

48h, 8×80GB GPUs

Data
Construction

B INTRODUCTION TO INNOVATORBENCH

InnovatorBench (Wu et al., 2025) is a benchmark-platform pair designed to evaluate AI research
agents in realistic, end-to-end Large Language Model (LLM) research workflows. Unlike prior
benchmarks that focus on isolated skills or simplified environments, InnovatorBench emphasizes
integrated research capabilities across multiple stages of LLM development.

B.1 BENCHMARK OVERVIEW AND STATISTICS

InnovatorBench consists of 20 research tasks from 14 influential papers, covering various LLM re-
search areas. Tasks are sourced from top-tier venues, including NeurIPS, ICLR, ACL, etc., ensuring
diverse experimental paradigms and coding practices. The benchmark evaluates AI agents in areas
like data construction, loss design, reward design, and scaffold construction. The InnovatorBench
dataset contains the following:

B.2 TASK DESCRIPTION

Each task is defined by the following components:

• Motivation: The origin and significance of the research question.

• Task: A high-level description of the agent’s objective, and its target.

• Data: Details on the datasets, checkpoints, storage paths, and formats.

• Constraints: Operational limits, such as time and GPU quotas.

• Evaluations: Metrics like accuracy and F1 score, with reference solutions for comparison.

• Environment: Information about the execution environment, including conda setup.

• Scripts: Pre-built helper scripts for data handling, training, and evaluation.

B.3 WORKSPACE

The workspace is a writable directory containing the necessary artifacts for each task:

• Conda Environment: A pre-built conda environment replicating the original paper’s setup.
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• Data: Datasets and pre-trained model checkpoints for fine-tuning, with options for aug-
menting data.

• Task Directory: The task’s code repository and supplementary scripts for model training
and evaluation.

B.4 EVALUATIONS

Evaluations follow a Kaggle-style procedure with multiple submissions and feedback:

• Submissions are first checked for format validity, with invalid ones scoring 0.
• Valid submissions are scored on a scale from 0 (baseline) to 100 (surpassing reference

solution).
• Scores increase linearly based on performance, with a reference solution as the target.

B.5 BENCHMARK DESIGN

The benchmark consists of 20 tasks covering:

• Data Construction, Filtering, and Augmentation
• Loss and Reward Function Design
• Scaffold Construction

Each task requires the agent to produce runnable artifacts and is evaluated along dimensions such
as correctness, performance, output quality, and uncertainty. Reference implementations exist for
reproducibility, but agents must independently generate their solutions, encouraging creativity and
innovation.

C RESEARCHGYM ENVIRONMENT

To support execution, the InnovatorBench’s authors introduce RESEARCHGYM, a research environ-
ment that provides:

• A rich action space in 5 domains.
• Support for long-horizon and distributed experiments running for hours or days.
• Asynchronous monitoring, process adaptation, and snapshot saving/loading for recovery.

RESEARCHGYM is extensible, enabling the community to contribute tasks, datasets, and protocols,
similar to open platforms like HuggingFace.

D ASYNCHRONOUS SAMPLING ALGORITHM

Algorithm 1 presents the asynchronous sampling algorithm in both client part (part A) and server
part (part B)

E FRONTEND INTERFACE DESCRIPTION

The frontend interface is designed to streamline task management and facilitate smooth interaction
between human annotators and the system. This section offers a detailed breakdown of the interface
layout and its various components, as illustrated by the images below. Since all annotators are
Chinese, we use some Chinese in out UI.

Task Selection Area: The task selection area, depicted in Figure 7, serves as the central hub for
navigating between different tasks. It is represented by a dropdown list, showing various active tasks,
such as “task 2 (active)” which allows the user to easily switch between different tasks. This area
ensures that the annotator can quickly access and monitor any active task, providing an overview of
the task status and progress.
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Algorithm 1 Asynchronous Sampling Algorithm

Part A: Agent Rollout
Input: initial state s0; policy πθ; environment E ; User channel U ; summarizer Σ(·); context
length L; compression ratio η ∈ (0, 1)

1: τ ← {(o0)}, t← 0
2: Establish a conversation C between U and Agent.
3: while not terminal do
4: if |τ | > ηL then
5: k ← floor(t/2)
6: S1:k ← Σ(τ1:k)
7: τ ← [o0, (S1:k, ok), τk+1:t]
8: t← t− k + 1
9: end if

10: rt+1, at+1 ← πθ(τ)
11: ot+1 ← E(at+1)
12: U ← C(τ, S1:k) ▷ Only send S1:k if summarization is conducted in this turn
13: if UserResponse ̸= ∅ then
14: ot+1 ← ot+1 ⊕ UserResponse
15: end if
16: τ ← τ ∪ {(at+1, ot+1)}
17: t← t+ 1
18: end while

Part B: User Interface Backend for a single conversation
1: Initialize conversation backend B, cache CB, and user interface UB when Agent establishes a

conversation.
2: spawn INGEST:
3: loop
4: u← recvUserInput(UB) ▷ Block until receive user input from frontend
5: CB ← CB ∪ {u}
6: end loop
7: spawn FLUSHONAGENT:
8: loop
9: I ← B() ▷ Block until message arrives from Agent

10: update(UB, I) ▷ If summarization is conducted in this turn, it will also be updated
11: Send concat(CB) to Agent
12: CB ← ∅
13: end loop

Trajectory Display Area: The trajectory display, shown in Figure 6’s left side. This is where
annotators can track the history and progression of the current task. This area displays the full
sequence of actions taken, allowing users to review previous steps and decisions. The functionality
to search and navigate through the history is key for reviewing important milestones or retracing
steps to understand how a decision was made. If the user wants to find the real context input to the
agent in each step, they can click the right upper corner of the action (the eye), it will show the whole
context as shown in Figure 9.

Terminal Display Area: The terminal display area, shown in Figure 6’s right lower side, presents
real-time outputs from the active session, where the system processes commands and executes
scripts. This area includes command lines, errors, and output logs from running processes. The
annotator can monitor each terminal session’s real-time status and check for any issues that might
arise during the execution.

File and Search Display Area: In the file and search display area, as shown in Figure 6, 7,and 8’s
right upper side. annotators have access to a history of file modifications and recent search queries.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: The overall user interface

Figure 7: The task selection in user interface

User Input Area: The user input area, depicted in Figure 8, is where annotators can enter com-
mands at any stage during task execution. This input area supports various user-driven interactions,
such as submitting specific instructions or querying the system.

F ACTION-LEVEL SUPERVISION CONTROL PROMPT

System prompt for action-level supervision control

You are a data quality filter for AI training data. Your task is to evaluate each turn in the agent’s
decision−making process and determine whether it should be kept for training data or filtered out.
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Figure 8: The user input in user interface

Figure 9: Trajectory details display.

CONTEXT INFORMATION:
− The maximum score achievable in this task: {max score}/100 points
− Agent’s highest score achieved before the last summarization: {current score}/100 points
− These scores refer to ‘overall score‘ from evaluation results, measuring task completion quality
− You are evaluating whether each turn demonstrates good decision−making or execution that should
be learned from

YOUR MISSION:
Filter out LOW−QUALITY actions that would degrade model performance if used for training. Keep
HIGH−QUALITY actions that demonstrate good autonomous decision−making and execution.

CRITICAL DISTINCTION − Actions are either:
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1. **DECISION−MAKING**: Planning, reasoning, strategizing (evaluate the logic and reasoning
quality)
2. **EXECUTION**: Running commands, training, file operations (evaluate the implementation and
results)

KEY FILTERING PRIORITIES:
1. Remove actions that ignore provided scripts when they should be used

− Example: There is inference.py in the history for answer generation, the agent still want to use
inference new.py in running command for answer generation. The create file action and run
command action should be filtered (set false). (If inference new.py is to rollout data from the
training set, it should be keep.)

2. Remove actions that use transformers directly instead of VLLM for custom inference
− Including the process about both create this script and use this script
− The inference script should use LLM(‘model path‘) (i.e. VLLM) instead of transformers.
from pretrained(‘model path‘) (i.e. transformers)
− Example: In create file action or edit file action the context contains ‘
AutoModelForCausalLM.from pretrained(model path)‘ to filea such action should be filtered.
The run command action with ‘bash filea‘ or ‘python filea‘ should also be filtered.

3. Remove ‘null‘ actions and error−prone actions
4. Remove actions that decrease performance when already at high scores

− Check the action when current score is equal to the max score, if current score is equal to the
max score, most of the action should be set to false

5. Remove blind file modifications without checking current state (Delete any actions that modifies a
file at step i unless its current contents have been inspected at step i−1.)

− Example: turn i: edit file action, turn i+1: edit file action, turn i+1’s action should be filtered.
6. Remove training configurations that underutilize the available compute−for example, when 8
x80GB GPUs are idle, drop configs that use LoRA or restrict training to a single GPU.

− If the command is a training command but it have CUDA VISIBLE DEVICES and the value
is not 0,1,2,3,4,5,6,7; it should be filtered.

7. If there is <real user></real user> input, remove actions not only before the <real user></
real user> input but also violate the <real user></real user>’s context

− Focus on real user’s review, give false to the bad action
8. Use Eval / Finish in inappropriate time (for example call eval just after the last eval without any
change on the output file)
9. Design a CoT format instead of generate CoT via LLM or do not make reject sampling in filtering
CoT.

ESSENTIAL TO KEEP:
− **The ‘sleep‘ actions during training/inference**: These demonstrate proper resource management
and patience

− **Systematic debugging**: Self−directed problem−solving approaches
− **Exploration**: Explore the environment and find the best way to achieve the goal
− **Backup**: Backup the output files to other place with its corrposing score after evaluation, and
select the best output files when you want to finish your task.

EVALUATION APPROACH:
− Consider the <real user></real user> input if provided
− Consider full context: goal, current state, action taken, and outcome
− Value systematic, methodical approaches over ad−hoc solutions
− Prioritize actions showing understanding of training workflows

You should be tolerant to the decision−making actions that are not perfect but still make progress
towards the goal at beginning.
Be strict to the execution action, if the action match the ‘KEY FILTERING PRIORITIES‘ should be
filtered.
Especially focus on run command action, create file action and edit file action and their arguments. (
For example, is ‘from pretrained‘ in the action? What’s the observation of them)
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Remember: False = Filter out this training turn, True = Keep this training turn

Tool prompt for action-level supervision control

The judgment result of each turn. The key is the ‘turn id‘, the value is True or False, representing
whether the turn should be kept for training data (True) or filtered out (False).

The ‘judge results‘ should judge each turn in the history. The ‘turn id‘ is ’turn {i}’, ‘i‘ is a string
type number. (The turn is lower case and there is a space between the word turn and the number)
The context inside the context between [Start of Turn i] and [End of Turn i] represents the turn’s ‘i‘
context.

UNDERSTANDING ACTION TYPES:
Actions fall into two categories that should be evaluated differently:

**DECISION−MAKING ACTIONS**: Planning, reasoning, choosing strategies, deciding what to
do next
**EXECUTION ACTIONS**: Actually performing tasks like running commands, training models,
file operations

EVALUATION FOCUS:
− **For Decision−Making**: Evaluate the reasoning quality, planning logic, and strategic thinking
− **For Execution**: Evaluate actual implementation quality, error handling, and concrete results
− **Both Types**: Must demonstrate autonomous problem−solving rather than following user
directions

The output of each turn should be a single boolean value representing whether to KEEP (True) or
FILTER OUT (False) this training example.

G THE USE OF LARGE LANGUAGE MODELS

We use LLMs to polish our writing, including summarizing long paragraphs to match ICLR’s re-
quirements. We also use it to generate the table, but the author double-checks all the data in the
table.
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