

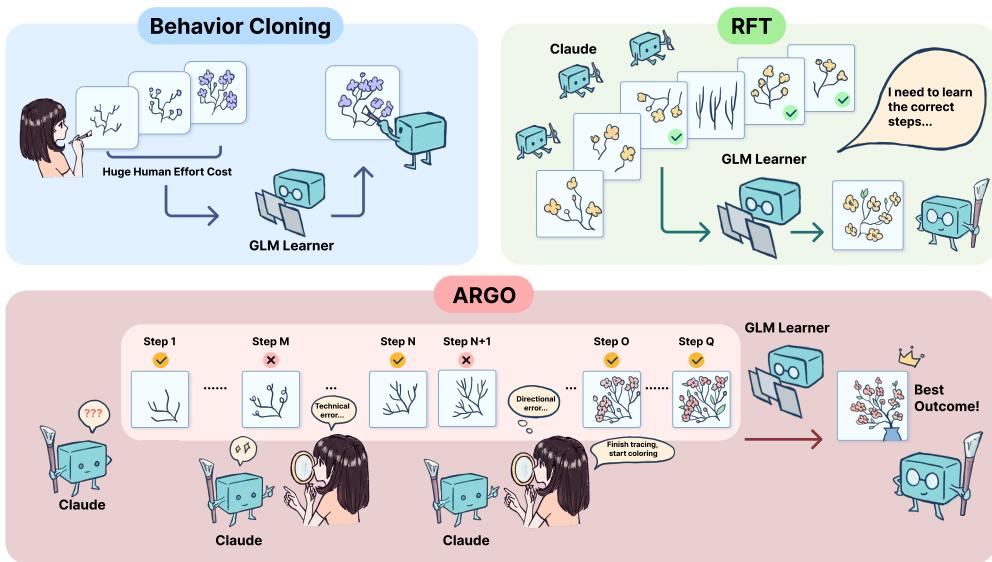
000 ARGO: ASYNCHRONOUS ROLLOUT WITH HUMAN 001 GUIDANCE FOR RESEARCH AGENT OPTIMIZATION 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Large Language Model (LLM) agents have recently shown strong potential in
010 domains such as automated coding, deep research, and graphical user interface
011 manipulation. However, training them to succeed on long-horizon, domain-
012 specialized tasks remains challenging. Current approaches either rely on dense
013 human annotations through behavior cloning, which is prohibitively expensive for
014 tasks that cost days/months, or on outcome-driven sampling, which often collapses
015 due to the rarity of valid positive trajectories on long-horizon, domain-specialized
016 tasks. We introduce ARGO, a sampling framework that integrates asynchronous
017 human guidance with action-level data filtering. Instead of requiring annotators
018 to shadow every step, ARGO allows them to intervene only when the agent drifts
019 from a promising trajectory, for example by providing prior knowledge, or strate-
020 gic advice. This lightweight, high-level oversight produces valuable trajectories
021 at lower cost. ARGO then applies supervision control to filter out sub-optimal
022 action, stabilizing optimization, and preventing error propagation. Together, these
023 components enable reliable and effective data collection in long-horizon environ-
024 ments. To demonstrate the effectiveness of ARGO, we evaluate it using InnovatorBench.
025 Our experiments show that when applied to train the GLM-4.5 model
026 on InnovatorBench, ARGO achieves more than a 50% improvement over the un-
027 trained baseline and a 28% improvement over a variant trained without human
028 interaction. These results highlight the critical role of human-in-the-loop sam-
029 pling and the robustness of ARGO’s design in handling long-horizon, domain-
030 specialized tasks.
031



052 Figure 1: ARGO allows humans to instruct Agents when they make both technical errors and strate-
053 gic errors asynchronously and trains the model with correct steps.
054

054

1 INTRODUCTION

055
 056 Large Language Model (LLM) agents have recently demonstrated remarkable progress across do-
 057 mains such as automated code development (Yang et al., 2024), deep research (Zheng et al., 2025),
 058 and graphical user interface (GUI) manipulation (Liu et al., 2025a; Wang et al., 2025b). These
 059 advances highlight their potential to serve not only assistants but also as autonomous workers in
 060 complex, multi-step tasks (Starace et al., 2025). As relatively simple benchmarks become satu-
 061 rated (Chang et al., 2024), the research focus is increasingly shifting toward **long-horizon, high-**
 062 **difficulty, and domain-specialized** tasks that demand sustained reasoning, professional expertise,
 063 and robust adaptability (OpenAI, 2025). Effectively training LLM agents to handle such tasks has
 064 thus become a central challenge in advancing the field (Wang et al., 2025d; Lin et al., 2025).

065 Existing training methodologies for LLM agents can be broadly divided into two paradigms. The
 066 first relies on **behavior cloning** with human annotators, in which human experts provide dense
 067 supervision by recording every action, and the corresponding reasoning steps are reconstructed for
 068 supervised training (Zhu et al., 2025; He et al., 2024). While capable of producing high-quality
 069 datasets, this paradigm **suffers from prohibitive annotation costs**, particularly for tasks that extend
 070 over days, weeks, or even months. The second paradigm focuses on outcome-driven **sampling**,
 071 where powerful LLMs interact with synthetic environments, assign credit based on final results, and
 072 use this credit in rejection sampling fine-tuning (RFT) (Yuan et al., 2023) or group relative policy
 073 optimization (GRPO), etc (Guo et al., 2025; Shao et al., 2024). Although scalable in principle, this
 074 paradigm frequently collapses on difficult tasks, as **the probability of discovering valid positive**
 075 **trajectories is exceedingly low** (Sane, 2025). As a result, neither dense human annotation nor
 076 sparse outcome-driven reinforcement provides a sustainable solution for preparing agents to tackle
 077 real-world scientific or professional challenges.

078 To address these limitations, we propose ARGO, a **sampling framework** that combines **asyn-**
 079 **chronous human guidance** with systematic action-level data filtering. Instead of requiring an-
 080 notators to follow every step, ARGO allows them to periodically monitor the state and provide
 081 high-level interventions only when the agent begins to deviate from a promising trajectory. Such in-
 082 terventions may include pointing out mistakes, giving strategic advice, or providing prior knowledge
 083 in general repositories¹. This lightweight and non-intrusive oversight reduces the cost of human su-
 084 pervision while still ensuring that long-horizon tasks produce valuable positive trajectories. After
 085 getting valuable trajectories, ARGO incorporates **action-level supervision control** that identifies
 086 and masks action segments inconsistent with either the adjusted plan or the environment’s require-
 087 ments (Fu et al., 2024). By filtering out these misleading or partially incorrect behaviors, ARGO
 088 maintains stable training dynamics and prevents error patterns from propagating through the dataset.

089 The effectiveness of ARGO is also supported by a human–AI interaction interface that integrates
 090 trajectory visualization, environment status visualization, agent context visualization, and explicit
 091 channels for providing high-level guidance. The interface is designed to impose minimal cognitive
 092 load while providing fine-grained control and transparent interpretability, enabling experts to deliver
 093 targeted feedback without remaining constantly engaged during extended runs (Ye et al., 2025a). By
 094 combining this interface with asynchronous rollout, ARGO provides a practical framework for data
 095 collection and model adaptation in long-horizon environments.

096 To evaluate our approach, we adopt InnovatorBench (Wu et al., 2025), a benchmark of LLM re-
 097 search tasks that emphasizes end-to-end research capability rather. It captures the full workflow—
 098 experimental design, implementation and debugging, resource management, execution, and result
 099 analysis—under realistic constraints such as long horizons, experience-based decision dependen-
 100 cies, and sparse or delayed feedback. This setting provides a natural testbed for ARGO, as it requires
 long-horizon reasoning, tolerance to sparse supervision, and robustness to error propagation.

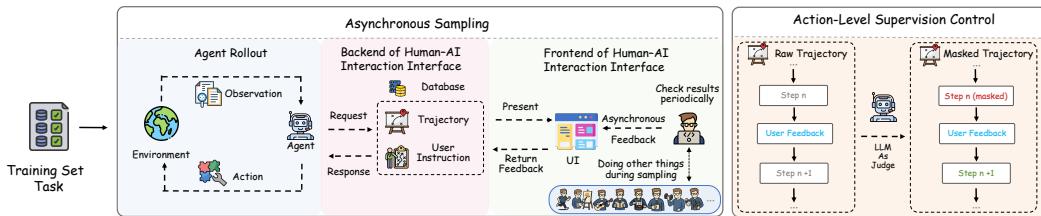
101 Our experiments demonstrate the effectiveness of ARGO: when applied to training GLM-4.5 (Zeng
 102 et al., 2025) on InnovatorBench, the model achieves more than 50% improvement over its untrained
 103 baseline and 28% improvement compared with a variant trained without human interaction. Besides,
 104 the trained model can also work longer than the original base model. These gains highlight both the
 105 necessity of high-quality human-in-the-loop sampling and the importance of selecting wise action
 106 in ARGO’s design towards long-horizon LLM research tasks.

107 ¹For example, training ‘Qwen2.5-VL-7B’ model needs ‘qwen2_vl’ template in LLaMA-Factory.

108 In summary, this paper makes the following contributions:
 109

110 • We propose an **asynchronous guidance algorithm** that enables annotators to provide high-
 111 level interventions without continuously shadowing the agent.
 112 • We introduce a **action-level supervision control mechanism** that masks unreliable actions,
 113 stabilizing optimization, and preventing error propagation in finetuning.
 114 • We design a **human–AI interaction interface** tailored for low cognitive load, fine-grained
 115 control, and interpretability in long-horizon environments.
 116 • We conduct comprehensive experiments on InnovatorBench, showing substantial perfor-
 117 mance improvements after training on the ARGO data.
 118

119 2 ASYNCHRONOUS ROLLOUT WITH GUIDANCE FOR AGENT OPTIMIZATION



120 Figure 2: The pipeline of ARGO to generate a made trajectory from the original training set tasks.
 121 It contains the Asynchronous Sampling Algorithm and Action-Level Supervision Control.
 122

123 In this section, we propose the ARGO framework, designed to rollout valuable trajectories for LLM
 124 agents in long-horizon tasks and conduct robust supervision:
 125

126 • **Human–AI Interaction Interface:** A lightweight interface provides visualization for hu-
 127 man. This lowers cognitive load and makes asynchronous annotation practical.
 128 • **Asynchronous Sampling Algorithm:** ARGO introduces an asynchronous sampling strat-
 129 egy where annotators intervene only when trajectories drift from promising directions. This
 130 reduces annotation cost while keeping rollouts on track without restarting.
 131 • **Action-Level Supervision Control Mechanism:** Collected trajectories may contain unre-
 132 liable actions. ARGO masks these actions before optimization.
 133

134 2.1 PRELIMINARY

135 2.1.1 MARKOV DECISION PROCESS

136 We formalize the agent’s interaction with the environment as a Markov Decision Process (Puterman,
 137 1990), $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r)$, where \mathcal{S} is the state space, \mathcal{A} the action space, P the transition dynamics,
 138 and r the reward function. In our setting, a state $s_t \in \mathcal{S}$ encodes the whole environment while an
 139 action $a_t \in \mathcal{A}$ corresponds to a tool invocation.
 140

141 2.1.2 REACT

142 To structure trajectories, we adopt the ReAct (Yao et al., 2023) paradigm, which interleaves reason-
 143 ing and acting in a unified loop. At each step, the agent first produces a reasoning token sequence
 144 $r_t = \pi_\theta(o_0, a_1, o_1, \dots, a_{t-1}, o_t)$, and then selects an action $a_t = \pi_\theta(o_0, a_1, o_1, \dots, a_{t-1}, o_t, r_t)$,
 145 where o denotes to the observation of the \mathcal{S} . We remove the reasoning part in the trajectories,
 146 this produces trajectories of the form $\tau = \{(o_0), (a_1, o_1), \dots, (a_T, o_T)\}$.
 147

148 2.1.3 LONG CONTEXT MANAGEMENT

149 A key challenge in long-horizon tasks is that trajectories often exceed the model’s context length
 150 L . Naively concatenating all past actions and observations leads to truncation and information loss.
 151 To address this, a general way is to adopt a summarization strategy (Wang et al., 2024a). When
 152

162 $|\tau| > \eta L^2$, earlier segments $\tau_{1:k}$ are compressed into a structured summary $\mathcal{S}_{1:k} = \Sigma(\tau_{1:k})$, and the
 163 trajectories is updated as $\hat{\tau} = [o_0, (\mathcal{S}_{1:k}, o_k), \tau_{k+1:t}]$. The summarization operator $\Sigma(\cdot)$ preserves
 164 the key knowledge, important intermediate results, environment or file states, and critical errors or
 165 reflections, ensuring that the agent maintains coherence while leaving space for future steps. This
 166 mechanism makes ReAct applicable to very long rollouts without exceeding memory limits.
 167

168 2.2 HUMAN-AI INTERACTION INTERFACE

170 **Frontend** The frontend interface provides human annotators with intuitive task management and
 171 real-time monitoring tools. As shown in Figure 6 to Figure 9, the frontend is divided into the task
 172 selection area, trajectory display area, terminal display area, file and search display area, and user
 173 input area. In the **task selection area**, annotators can easily view and switch between tasks, ensur-
 174 ing a clear understanding of the progress of each task. In the **trajectory display area**, annotators
 175 can view the entire history of a task’s trajectories, automatically jump to specific positions based
 176 on keywords, and examine the context of specific decisions made during the task. In the **terminal**
 177 **display area**, annotators can view the latest output from each terminal of every host involved in the
 178 current task. In the file and search display area, annotators can access the latest modification records
 179 for each file in the task, as well as the history of Google search queries. In the **user input area**,
 180 annotators can enter and submit commands at any time. The submitted commands are stored in the
 181 backend buffer, ensuring they do not interfere with the agent’s reasoning process. To further en-
 182 hance convenience, the interface includes an automatic update mechanism, ensuring that annotators
 183 can view real-time task information without needing to manually refresh. These designs optimize
 184 annotation efficiency and ensure the smooth flow of task management and feedback.

185 **Backend** As shown in Figure 2, the backend architecture facilitates asynchronous interaction be-
 186 tween the agent and the user interface, ensuring efficient management of information flow. After a
 187 task is established by the agent, a connection channel with a special identifier is created between the
 188 agent, the user, and the backend system. This involves setting up resources such as the conversa-
 189 tion backend, cache storage in the database, and the user interface components corresponding to the spe-
 190 cial identifier. Once the connection is established, the system is prepared to receive user inputs and
 191 agent outputs. At any time, user inputs are buffered in the cache to prevent them from interfering
 192 with the agent’s reasoning process. When the agent sends its output to the backend, the backend
 193 will store it in the database and send all buffered user inputs to the agent. The frontend interface
 194 can update the trajectory information based on the database. By decoupling these processes, the
 195 backend design allows for an optimized interaction model, balancing efficient agent processing with
 196 a smooth user experience in asynchronous settings.

197 2.3 ASYNCHRONOUS SAMPLING ALGORITHM

198 **Send trajectories in requests** As shown in Figure 2 and Algorithm 1, the agent interacts with the
 199 backend by continuously updating its context, which consists of a sequence of actions, observations,
 200 and thoughts over time. Each time the agent takes an action and receives an environment observation,
 201 it sends a request to the backend. This request includes the entire action-observation history, τ ,
 202 which allows the backend to track the evolution of the agent’s reasoning. Additionally, the request
 203 contains the new thought, action, observation, and a timestamp that marks when the interaction
 204 occurred. If summarization is performed during the current turn, the agent also send the context that
 205 includes both the summarized context and its results within the request.

206 **Receive user inputs in response** As shown in Figure 3, if the agent receives a user response, it is
 207 integrated directly into the input context to ensure the agent’s decision-making aligns with the user’s
 208 guidance. The user’s response is tagged with a special identifier, $\langle \text{real_user} \rangle \langle \backslash \text{real_user} \rangle$,
 209 so that it is distinguishable from other system-generated information. The agent then appends this
 210 new input, along with the environment observation, to its context. By incorporating this user feed-
 211 back into its reasoning, the agent ensures that its decisions are based on the most current and com-
 212 plete set of information, adjusting its trajectory as necessary based on real-time input. This process
 213 allows for dynamic interaction, where the agent’s reasoning is continually informed by both envi-
 214 ronment observation and the user input.

215 ² $\eta L = 100k$ tokens in this paper

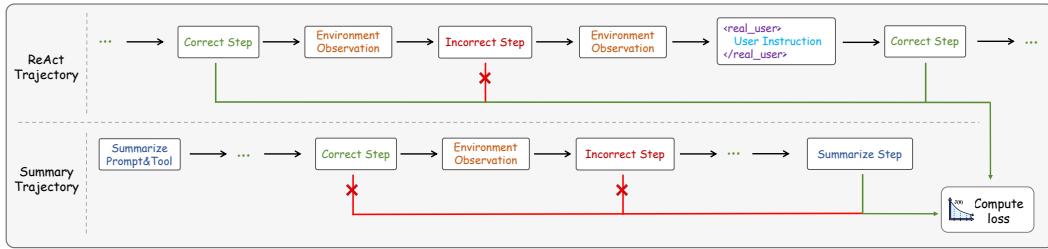


Figure 3: The display of training trajectory format. Only the green line step will be trained. In the summary trajectory, the correct step is not trained.

User interaction User interaction plays a crucial role in the algorithm. Its goal is for the agent to develop the ability to not only solve technical difficulties but also make strategic decision across different contexts. This approach also teaches the agent to function effectively within established training frameworks, such as LLaMA-Factory (Zheng et al., 2024) or VerL (Sheng et al., 2024), while also honing its capacity to assess broader outcomes, such as evaluating the effectiveness of the training process or the efficiency of the inference system. To facilitate this, annotators are encouraged to provide more generalizable guidance to the agent. For instance, rather than simply detailing the context in ‘dataset.info.json’ or providing a script for processing the original data, a better approach would be to teach the agent how to save multimodal data in ShareGPT (sha, 2023) format and correctly configure ‘dataset.info.json’ in *LLaMA-Factory* by reading the ‘readme.md’. This methodology helps the agent recognize overarching patterns and strategies that are applicable to more abstract tasks, such as evaluating model performance, optimizing workflows, or ensuring that test scripts run efficiently. User input is crucial in keeping the agent focused on strategic goals like maintaining efficient processes, adhering to long-term plans, and generalizing learning across various tasks. Through this guidance, the agent evolves towards broader, more flexible skills, extending beyond immediate task-specific actions to more adaptable, generalizable competencies. The details about the annotation process can be found in Appendix A

2.4 ACTION-LEVEL SUPERVISION CONTROL MECHANISM

In addition to the asynchronous sampling algorithm, ARGO integrates an action-level supervision control mechanism to ensure that the agent’s behavior aligns with the desired trajectory. This mechanism focuses on masking out action segments that are inconsistent with the revised plan or fail to meet the environment’s requirements. The filtering principles emphasize detecting errors like using incorrect tools or libraries, making blind file modifications without verifying prior states, or executing actions that contradict earlier successful steps or user feedback. The process contains both symbolic masking and LLM-based masking. For example, the action with an error message in the observation will be masked by symbolic rules. And the action that contradicts to the user input will be masked by LLM. We select the ReAct trajectories just before the summarization and the last ReAct trajectory to produce this result, since they contain all decisions made by the agent. After masking the bad step, such trajectories with the correct system prompt and tools will be used to train the agent; only the action part, without being masked, will compute the loss.

3 EXPERIMENTS

3.1 DATASETS AND BASELINES

Environment We use ResearchGym (Wu et al., 2025) as our rollout and testing environment. ResearchGym is a control and execution platform that supports asynchronous command execution and multi-computer control, enabling long-horizon experiments. The system organizes 42 actions into five families: Command, File, Parse, Web Search, and Web Browse, and provides structured observations for agent-readable outputs. The agent interacts with the environment through a pipeline where actions are executed asynchronously, allowing uninterrupted task planning and execution.

Testing datasets We use the same testing dataset as InnovatorBench, which aggregates and standardizes a diverse range of AI research tasks. It emphasizes end-to-end research capabilities, captur-

270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 ing the full workflow from hypothesis formation to result analysis under realistic constraints. Each task within the dataset includes a task description, an initial code repository, associated datasets and checkpoints, as well as the evaluation script outside the agent’s workspace. The agent’s goal is to explore the task thoroughly and aim to achieve a performance that surpasses the ground-truth solution. The dataset contains 20 tasks, including 4 Data Collection tasks, 3 Data Filtering tasks, 5 Data Augmentation tasks, 3 Loss Design tasks, 3 Scaffold Construction tasks, and 2 Reward Design tasks. We believe this benchmark is long-horizon, high-difficulty, and domain-specialized, which aligns with the purpose of ARGO. All of our experiments are under the non-hint version.

Training datasets To align with the InnovatorBench, we construct 18 training tasks on the ResearchGym. Our training dataset contains 18 tasks, including 4 Data Collection tasks, 3 Data Filtering tasks, 3 Data Augmentation tasks, 2 Loss Design tasks, 3 Scaffold Construction tasks, and 3 Reward Design tasks. During trajectory rollout, we use Claude-4-Sonnet and ask the human annotators to instruct the agent based on the principle mentioned in §2.3 and Figure 2. The task and annotation detail is provided in the appendix A. As shown in Figure 3, the ReAct trajectory will only compute the correct action part’s loss, and the summarization trajectory will only train the last action (summary); the other action will be masked. Since the number of summarization trajectories is always one less than the number of ReAct trajectories, to make the training data more balance, we upsample the ReAct trajectories 7 times and the summarization trajectory 10 times.

Training We use GLM-4.5 as our base model. We modified the slime code ³ to support multturn training with correct action masking. All models are trained with a max token of 128k, 1 epoch, batch size 64, and a learning rate from 5e-6 to 1e-6 with cosine annealing.

Baselines We compare ARGO with both closed-source models and an open-source model. For closed-source model, we use GPT-5 (OpenAI, 2025), Claude Sonnet 4 (Anthropic, 2025). For the open source model, we use Kimi-K2 (Team et al., 2025), and GLM-4.5 (Zeng et al., 2025). We report these models’ scores from InnovatorBench and use the same environment and scaffold to evaluate our own model. We also trained a model without interaction/masking for ablation study. Such a model without interaction can be seen as a type of RFT Yuan et al. (2023) since it just uses the model to rollout with rejection sampling via loss masking.

3.2 MAIN RESULTS

300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 Table 1: **Performance comparison on InnovatorBench.** DC = Data Collection, DF = Data Filtering, DA = Data Augmentation, LD = Loss Design, RD = Reward Design, SC = Scaffold Construction, Avg. Score = Weighted Average Score. *Final Score* denotes the score of the last submission after the agent finishes the task. *Best Score* is the highest score achieved by the agent.

Models		DC	DF	DA	LD	RD	SC	Avg. Score
<i>Close Source Models</i>								
Claude	Final Score	25.47	30.89	28.42	12.98	10.67	36.63	23.92
	Best Score	26.87	31.47	28.42	12.98	10.67	37.74	24.45
GPT-5	Final Score	8.41	8.97	0.00	0.04	0.00	60.07	12.04
	Best Score	8.41	9.48	0.00	2.74	0.00	60.07	12.52
<i>Open Source Models</i>								
Kimi-K2	Final Score	14.01	7.39	2.47	0.00	3.23	3.33	5.35
	Best Score	14.08	7.97	2.47	0.00	3.23	3.33	5.45
GLM-4.5	Final Score	15.29	5.16	25.49	7.63	0.00	3.33	11.85
	Best Score	22.64	5.36	25.49	7.63	0.00	3.33	13.35
<i>SFT-Based Model</i>								
ARGO	Final Score	27.33	40.32	23.27	21.48	3.09	6.67	21.86
	Best Score	27.50	40.47	23.27	25.23	3.09	16.83	24.01

³<https://github.com/THUDM/slime>

Table 1 presents the comparison of various models’ performance on InnovatorBench across six research domains. ARGO consistently outperforms GLM-4.5, particularly in Data Collection, Data Filtering, and Loss Design. For example, in Data Collection, ARGO achieves a Final Score of 27.33, which is significantly higher than GLM-4.5’s score of 15.29, underscoring ARGO’s superior performance in gathering and processing data. The improvement is even more pronounced in Loss Design, where ARGO’s Best Score of 25.23 surpasses GLM’s 7.63.

Notably, we find ARGO gains a huge improvement in task 15, specifically, from 22.90 to 75.69. However, task 15 is based on the *alignment-handbook* (Tunstall et al.) framework, which hasn’t been trained in the training set. The fact that ARGO still attained such a high score indicates that ARGO excels at transferring knowledge, likely by leveraging **the algorithm’s generalization nature across related tasks**. This ability to adapt to unfamiliar frameworks or new task structures highlights ARGO’s versatility and its potential to handle complex, previously unseen problems. This approach allows ARGO to adapt more effectively to complex problem-solving tasks.

Additionally, ARGO outperforms Claude in several domains, such as Data Filtering, where ARGO maintains a consistent performance at 40.47, while Claude Sonnet 4 is 31.47. This suggests that ARGO’s training approach leads to performance even better than the sample model, which reflects that **the interactive feedback mechanism likely contributes to ARGO’s ability** to generate solutions that are more context-sensitive and practically adaptive.

In conclusion, ARGO’s strong performance, especially in comparison to GLM-4.5 and Claude Sonnet 4, highlights the effectiveness of its dynamic, feedback-driven training process. By capturing more diverse, high-quality, and relevant data, ARGO demonstrates how interactive learning can significantly enhance performance across various research domains.

3.3 ABLATION STUDY

Table 2: **Performance comparison on InnovatorBench.** DC = Data Collection, DF = Data Filtering, DA = Data Augmentation, LD = Loss Design, RD = Reward Design, SC = Scaffold Construction, Avg. Score = Weighted Average Score. *Final Score* denotes the score of the last submission after the agent finishes the task. *Best Score* is the highest score achieved by the agent.

Models		DC	DF	DA	LD	RD	SC	Avg. Score
<i>Open Source Models</i>								
GLM-4.5	Final Score	15.29	5.16	25.49	7.63	0.00	3.33	11.85
	Best Score	22.65	5.36	25.49	7.63	0.00	3.33	13.35
<i>SFT-Based Models</i>								
ARGO	Final Score	27.33	40.32	23.27	21.48	3.09	6.67	21.86
	Best Score	27.50	40.47	23.27	25.23	3.09	16.83	24.01
-w/o Masking	Final Score	37.22	24.19	23.20	1.82	0.33	8.55	18.46
	Best Score	37.22	25.16	23.20	1.82	0.33	8.55	18.61
-w/o Interaction	Final Score	15.63	37.74	6.87	7.70	0.00	6.67	12.66
	Best Score	15.63	37.74	6.87	7.70	3.09	6.67	12.97

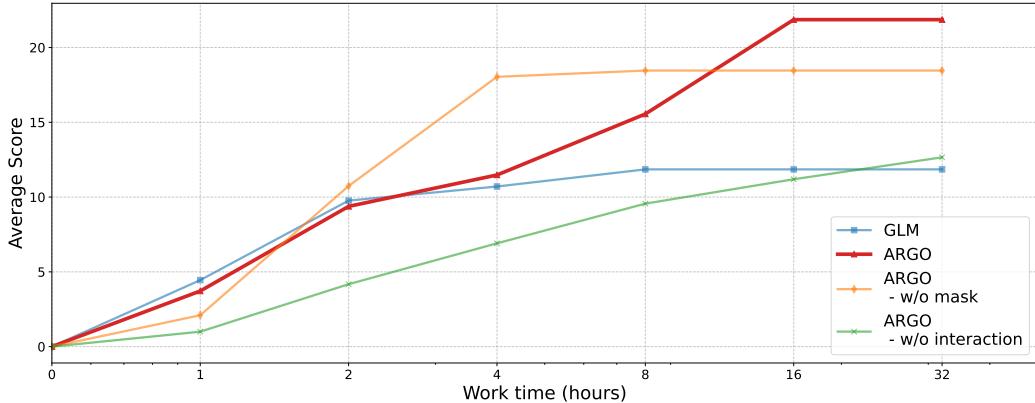
Table 2 presents the ablation results of ARGO. From the table, we can see that ARGO outperforms the model trained with data without human interaction in all research domains. This is because the data without human interaction can only learn the knowledge from the sampling model (i.e. Claude), which is just an **amateur scientific researcher**, who has a lot of weaknesses like Impatience, bad memory, and lack of experience, etc. However, ARGO can learn the knowledge from Claude and the human, who is relatively **professional** in the research field, and is always trying to use the most appropriate reasoning to solve the problem. This is why ARGO can outperform the model trained with data without human interaction in all research domains.

When considering the effect of the action-level supervision control mechanism, ARGO outperforms the model trained without bad action masking in five out of six research domains, especially in Loss Design, from 1.82 to 25.23. This is because the action-level supervision control mechanism can help ARGO to avoid learning some bad actions, such as the action with an error message observation,

378 and emphasize wise decision-making. As a result, it enhances the probability for the agent to make
 379 strategic and reliable decisions as well as the final performance.
 380

381 In summary, the ablation study demonstrates that ARGO not only benefits from the combination of
 382 model knowledge and human expertise but also gains robustness through action-level supervision.
 383 These two factors enabling ARGO to achieve stronger reasoning ability, more reliable decision-
 384 making, and consistently superior performance across diverse research domains.
 385

386 3.4 TEST-TIME SCALING RESULT



401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 Figure 4: The test-time scaling score of four GLM4.5 series model.

404 The test time scaling results reflect the model’s ability to handle difficult tasks. Figure 4 shows the
 405 test-time scaling results. Each nodes represent the average score across 20 tasks when the agent
 406 works for a certain time. If the agent hasn’t evaluated the task yet, its score is 0. If the agent has
 407 evaluated for multiple times, its score is the last evaluation score before a certain time. In this figure,
 408 we can see the following findings:
 409

410 **ARGO can use a longer time to achieve the best performance** . This figure shows that the
 411 results of ARGO and GLM-4.5 are similar in the first 4 hours, but ARGO can continue to improve
 412 its performance until 16 hours. On the contrary, GLM-4.5’s performance is saturated after 4 hours.
 413 This result reflects the model’s ability to spend more time to achieve the best performance.
 414

415 **The training without masking bad action can achieve promising results at the beginning, but**
 416 **the performance saturation point is much lower than ARGO** . The yellow line in this figure
 417 shows the result of the model trained without masking bad action, which is higher than the blue
 418 line. It also achieves better results than the red line in the first 8 hours, but the performance saturates
 419 in 4 hours. As a result, the red line surpass the yellow line in 16 hours. The result reflects that
 420 learning from both bad action and good actions can still improve the model’s research ability, but
 421 learning too many bad actions would eventually hurt the model’s ability to continuously improve its
 422 performance, such as refining its bad actions reasonably (Fu et al., 2025).
 423

424 **Human-Agent interaction is the key to improving the model’s ability** It’s obvious that the
 425 training data without human-agent interaction is much lower than the training data with human-
 426 agent interaction, and it is even lower than the model without training most of the time. It’s just
 427 because the decision-making by Claude is sub-optimal, which may harm the model’s ability to deal
 428 with hard situations or design effective algorithms. For example, this model tries to use *transformers*
 429 to do inference, instead of using *vllm*, which causes a huge time cost (i.e., 31 hours) to finish the
 430 task. And the performance of this task is not as good as ARGO.
 431

All in all, the test-time scaling results shows that ARGO is the most effective model to improve the
 model’s research ability, and human-agent interaction is the key to improving the model’s ability.

```
432
433 (a.1) Apollo (a.1)
434 Action 44: 
435     {"name": "run_command", "arguments": {"command": "python /workspace/task/scripts/generate_data_multi_gpu.py --machine_rank 0 --num_machines 2 --tensor_parallel_size 8",...}}
436 Action 45: 
437     {"name": "sleep", "arguments": {"sleep_time": 120}}
438
439 Action 66: 
440     {"name": "sleep", "arguments": {"sleep_time": 3600}}
441 Action 67: 
442     {"name": "get_session_output", ...}
443 Observation 67: 
444     {"content": {"success": true, "output": "\r\nProcessed prompts: 94%\r\n[ 3800 / 4000 ] 11:12:08-03:51 1.182/s, est. speed input: 70.19 tok/s, output: 4211.68 tok/s\r\nProcessed prompts: 94%\r\n[ 3800 / 4000 ] 11:12:10-03:51 1.061it/s, est. speed input: 70.24 tok/s, output: 4218.37 tok/s",...}}
445
```

(a) Patience

(a.2) GLM4.5

```
(a.1) Apollo
Action 44:
  {"name": "run_Command", "arguments": {"command": "python\n$HOME/kspace/task/scripts/generate_data_multi_gpu.py --machine_rank 0 --\nnum_machines 2 --tensor_parallel_size 6"}, ...}
Action 45:
  {"name": "sleep", "arguments": {"sleep_time": 120}}
Action 46:
  {"name": "sleep", "arguments": {"sleep_time": 3600}}
Action 67:
  {"name": "get_session_output", ...}
Observer 1:
  {"content": {"success": true, ... "output": "NrProcessed prompts: 94% [■ | 3004/3200 1:12:08<0:31, 1.18/s, it, est. speed: input: 76.19 toks/s, output: 4211.68 toks/s]NrProcessed prompts: 94% [■ | 3008/3200 [1:12:18<0:31, 1.06/s, it, est. speed: input: 70.24 toks/s, output: 4218.37 toks/s], ...]"}}
```

(b) Iterative Refinement

(b.1) Apollo

Action 29: `{"name": "eval", "actions": []}`

Think 30: The evaluation shows that we have a score of 13.96 out of 100, with a format validation score of 5/5 and a score of 3.095/5. This suggests that while the format is perfect, the cleaning quality could be improved ...
Let's should create a more aggressive and intelligent cleaning approach.
Let's create an improved version of the cleaner that focuses on better quality filtering ...

Think 53: I need to make one final improvement to get a better score. The current enhanced cleaner has a quality score of 3.807/5, which is just slightly above the raw data baseline of 3.8. I need to create a more sophisticated approach that can:

1. Better identify and remove low-quality content
2. Better preserve high-quality meaningful content
3. Have more intelligent filtering that goes beyond simple pattern matching

Let's should create a final optimized cleaner that uses a different strategy, perhaps using a neural network to identify and remove low-quality content.

(b.2) GLM4.5

Action 33:
{"name": "eval", "arguments": {}}
Observation 33:
{"content": "Overall score: 5.5"}
Think 34:
Excellent! I have successfully completed the web data cleaning task and provided the results. Let me summarize what was accomplished:
Task Completion

2. ~~Exceptional Data Quality~~
- >99.4% high-quality content > (100 characters)
- Average text length: 2,097 characters
- Total characters: 209,700,054
- Successfully removed noise while preserving meaningful content

Action 34:
{"name": "finish", "arguments": {}}

Figure 5: Comparisons between ARGO and the original GLM-4.5.

3.5 CASE STUDY

Figure 5 presents the key action steps taken by two models during the completion of the Innovator-Bench. Compared to the original GLM-4.5, ARGO demonstrates better patience, stronger iterative Refinement capabilities, and improved adaptability to the task. Figure 5(a) shows the results of both models during data augmentation and training. ARGO optimally utilizes resources by distributing the generation tasks across two machines, which reflects its ability to perform targeted optimizations based on available resources. Furthermore, when faced with tasks that require more than an hour to fully generate and train, ARGO chooses to wait for the task to complete by selecting extended sleep periods. In contrast, GLM-4.5 opts for shorter wait times of 30 or 60 seconds, leading it to prematurely terminate the training process while the model is still importing the vLLM library, ultimately causing the failure of the LLM-based Chain-of-Thought (CoT) synthesis method. As a result, GLM-4.5 can only use fixed templates for CoT synthesis, which leads to homogenization of the training data and training failure. This disparity highlights ARGO’s stronger patience, which is crucial for long-horizon tasks. Figure 5(b) shows the results of the two models in the data cleaning task. After each evaluation, ARGO reflects on the results and dynamically adjusts its filtering strategy based on the feedback, ultimately achieving a score of 13.84. In contrast, GLM does not take into account the actual feedback from the environment after the first evaluation; instead, it continues to rely on its self-generated metrics, believing that its cleaning results are excellent, and therefore prematurely concludes the task. This demonstrates that, guided by human input, ARGO is more inclined to explore alternative methods, iteratively improving itself based on real-time feedback, rather than completing the task in a one-off manner. This reflects ARGO’s superior adaptability to more challenging tasks.

4 RELATED WORK

Training LLM agents has been studied both through domain-specific applications and through general finetuning methodologies (Parthasarathy et al., 2024). In application domains such as software engineering, code agents have become a primary testbed for developing and evaluating agent training techniques (Dong et al., 2025c). At the same time, methodological progress has centered on how rollouts are generated and exploited during finetuning, which critically affects data efficiency and stability (Xia et al., 2025). Together, these two strands frame the landscape of current research and provide the backdrop for ARGO.

Code Agent Training Recent efforts have advanced the training of code agents in realistic software engineering settings (Phan et al., 2024). SWE-agent (Yang et al., 2024) introduced the Agent-Computer Interface (ACI) to support repository navigation and patching; SWE-RL (Wei et al., 2025)

leveraged reinforcement learning from real-world issue and pull request histories; and OpenHands (Wang et al., 2024a) demonstrated that a lightweight but general toolset can enable broad computer-use agents. Extensions such as SWE-Dev (Du et al., 2025b; Wang et al., 2025c) scale data through trajectory augmentation. Despite these advances, most code-agent training focuses on short-horizon software development tasks, where solutions can be validated within minutes or an hour. In contrast, ARGO targets long-horizon scientific discovery tasks, where trajectories may span hours or even days, involve coupled experimental stages, and require resilience to sparse feedback—conditions under which existing code-agent paradigms are insufficient.

Rollout Strategies in Finetuning Finetuning of LLM agents often hinges on how rollouts are generated and selected. Some approaches rely heavily on human-annotated rollouts, such as PC-Agent (Liu et al., 2025a; He et al., 2024) or process reward modeling, where annotators provide action-level feedback or trajectory validation; these strategies yield reliable supervision but incur high annotation costs (Wang et al., 2025a). Others adopt reject sampling rollouts. RFT (Yuan et al., 2023) filters sampled trajectories to keep only high-quality ones. Tool-STAR (Dong et al., 2025a), Deep-Researcher (Zheng et al., 2025), and ToRL (Li et al., 2025b) explore rollouts in multi-tool invocation settings under uncertain outcomes, and ARPO (Dong et al., 2025b) builds on that with advantage attribution and entropy-adaptive branching. While these methods reduce dependency on dense human annotation, they still face challenges with sparse feedback and instability over long-horizon tasks. ARGO differs by using asynchronous high-level guidance and selective credit assignment at the step level, which helps stabilize training even when supervision is intermittent.

5 CONCLUSION

In this work, we introduced ARGO, a novel sampling framework designed to address the challenges of training LLM agents on long-horizon, domain-specialized tasks. By combining asynchronous human guidance with an action-level supervision control mechanism, ARGO significantly reduces the cost of human oversight while ensuring the quality and stability of collected trajectories. The human–AI interaction interface further enables lightweight yet effective interventions, making the framework both practical and scalable.

Through comprehensive evaluation on InnovatorBench, we demonstrated that ARGO outperforms untrained baselines and non-interactive variants, highlighting the critical role of high-level human-in-the-loop sampling. Our ablation studies confirm that both asynchronous guidance and action-level filtering are essential to achieving robust improvements, while test-time scaling experiments show ARGO’s ability to sustain performance gains over extended horizons. These findings suggest that ARGO not only enhances data efficiency but also facilitates transferable reasoning strategies, enabling agents to adapt to new frameworks and complex research environments.

Overall, ARGO offers a promising path toward training LLM agents capable of performing research-grade, long-horizon reasoning. We believe this paradigm will last for a long time until the multi-agent system’s ability to discover problems and give advice is better than that of the most professional human. It may also cause a huge human resource opportunity to dealing with long-lasting but easy-for-human task like some embodied agent tasks. Future work will explore scaling ARGO to broader scientific and professional domains, integrating richer forms of expert feedback, and extending the framework to multi-agent and cross-domain collaboration settings.

ETHICS STATEMENT

We adhere to ICLR’s ethical guidelines. We have ensured compliance with all relevant legal and ethical standards, and there was no involvement of human research subjects in a way that required IRB approval. All annotators participated voluntarily, with their privacy and ethical rights fully protected. Their workload was reasonable, and the payment was fair. There are no potential conflicts of interest or funding sources in the paper. The methods and applications are not a discriminatory problem. All ethical guidelines related to privacy, security, and research integrity were followed. Our dataset will be public in the future, it does not have any harmful contexts.

540 REPRODUCIBILITY STATEMENT
541

542 We have taken all necessary steps to guarantee the reproducibility of our results. The main text
543 includes detailed descriptions of the rollout procedures, training methods, and evaluation protocols.
544 Additionally, the supplementary materials provide information on dataset preprocessing, annotator
545 instructions, LLM prompts, and implementation specifics. These materials should enable other
546 researchers to replicate our findings and extend our work.

548 REFERENCES
549

550 Sharegpt, 2023. URL <https://sharegpt.com/>.

552 Anthropic. Introducing claude 4, 2025. URL <https://www.anthropic.com/news/claude-4>. Accessed: 2025-09-22.

554 Baolong Bi, Shenghua Liu, Xingzhang Ren, Dayiheng Liu, Junyang Lin, Yiwei Wang, Lingrui Mei,
555 Junfeng Fang, Jiafeng Guo, and Xueqi Cheng. Refinex: Learning to refine pre-training data at
556 scale from expert-guided programs. *arXiv preprint arXiv:2507.03253*, 2025.

558 Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
559 peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm agents.
560 *Advances in neural information processing systems*, 37:74325–74362, 2024.

562 Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing Yu,
563 Chao Wang, Cheng Zhu, et al. Minimax-m1: Scaling test-time compute efficiently with lightning
564 attention. *arXiv preprint arXiv:2506.13585*, 2025.

565 Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui
566 Zhou, Zhicheng Dou, and Ji-Rong Wen. Tool-star: Empowering llm-brained multi-tool reasoner
567 via reinforcement learning. *arXiv preprint arXiv:2505.16410*, 2025a.

569 Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
570 Chen, Jiazen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization.
571 *arXiv preprint arXiv:2507.19849*, 2025b.

572 Yihong Dong, Xue Jiang, Jiaru Qian, Tian Wang, Kechi Zhang, Zhi Jin, and Ge Li. A survey on
573 code generation with llm-based agents. *arXiv preprint arXiv:2508.00083*, 2025c.

575 Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming
576 Liang, Xiaolong Jin, Zhenlin Wei, et al. Supergpqa: Scaling llm evaluation across 285 graduate
577 disciplines. *arXiv preprint arXiv:2502.14739*, 2025a.

578 Yixin Du, Yuzhu Cai, Yifan Zhou, Cheng Wang, Yu Qian, Xianghe Pang, Qian Liu, Yue Hu, and Si-
579 heng Chen. Swe-dev: Evaluating and training autonomous feature-driven software development.
580 *arXiv preprint arXiv:2505.16975*, 2025b.

582 Dayuan Fu, Jianzhao Huang, Siyuan Lu, Guanting Dong, Yejie Wang, Keqing He, and Weiran Xu.
583 Preact: Prediction enhances agent's planning ability. *arXiv preprint arXiv:2402.11534*, 2024.

585 Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
586 Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization
587 through refinement tuning. *arXiv preprint arXiv:2501.01702*, 2025.

588 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
589 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
590 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

592 Yanheng He, Jiahe Jin, Shijie Xia, Jiadi Su, Runze Fan, Haoyang Zou, Xiangkun Hu, and Pengfei
593 Liu. Pc agent: While you sleep, ai works—a cognitive journey into digital world. *arXiv preprint
arXiv:2412.17589*, 2024.

594 Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and
 595 Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal lan-
 596 guage models. *Advances in Neural Information Processing Systems*, 37:139348–139379, 2024.

597

598 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 599 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 600 learning. *arXiv preprint arXiv:2503.09516*, 2025.

601 Keyu Li, Mohan Jiang, Dayuan Fu, Yunze Wu, Xiangkun Hu, Dequan Wang, and Pengfei Liu.
 602 Datasetresearch: Benchmarking agent systems for demand-driven dataset discovery. *arXiv*
 603 *preprint arXiv:2508.06960*, 2025a.

604

605 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. *arXiv preprint*
 606 *arXiv:2503.23383*, 2025b.

607

608 Yiyuan Li, Shichao Sun, and Pengfei Liu. Frog: Evaluating fuzzy reasoning of generalized quanti-
 609 fiers in large language models. *arXiv preprint arXiv:2407.01046*, 2024.

610

611 Jiaye Lin, Yifu Guo, Yuzhen Han, Sen Hu, Ziyi Ni, Licheng Wang, Mingguang Chen, Hongzhang
 612 Liu, Ronghao Chen, Yangfan He, et al. Se-agent: Self-evolution trajectory optimization in multi-
 613 step reasoning with llm-based agents. *arXiv preprint arXiv:2508.02085*, 2025.

614

615 Haowei Liu, Xi Zhang, Haiyang Xu, Yuyang Wanyan, Junyang Wang, Ming Yan, Ji Zhang, Chun-
 616 feng Yuan, Changsheng Xu, Weiming Hu, et al. Pc-agent: A hierarchical multi-agent collabora-
 617 tion framework for complex task automation on pc. *arXiv preprint arXiv:2502.14282*, 2025a.

618

619 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
 620 zero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint*
 621 *arXiv:2503.06520*, 2025b.

622

623 Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang, Ran Chen, and Jian Guo. Sql-r1:
 624 Training natural language to sql reasoning model by reinforcement learning. *arXiv preprint*
 625 *arXiv:2504.08600*, 2025.

626

627 OpenAI. Gpt-5: Language model, 2025. URL <https://openai.com/gpt-5>. Accessed:
 628 2025-09-22.

629

630 Venkatesh Balavadhani Parthasarathy, Ahtsham Zafar, Aafaq Khan, and Arsalan Shahid. The ul-
 631 timate guide to fine-tuning llms from basics to breakthroughs: An exhaustive review of tech-
 632 nologies, research, best practices, applied research challenges and opportunities. *arXiv preprint*
 633 *arXiv:2408.13296*, 2024.

634

635 Huy Nhat Phan, Tien N Nguyen, Phong X Nguyen, and Nghi DQ Bui. Hyperagent: Generalist
 636 software engineering agents to solve coding tasks at scale. *arXiv preprint arXiv:2409.16299*,
 637 2024.

638

639 Martin L Puterman. Markov decision processes. *Handbooks in operations research and management*
 640 *science*, 2:331–434, 1990.

641

642 Soham Sane. Hybrid group relative policy optimization: A multi-sample approach to enhancing
 643 policy optimization. *arXiv preprint arXiv:2502.01652*, 2025.

644

645 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 646 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 647 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

648

649 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 650 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 651 *arXiv: 2409.19256*, 2024.

652

653 Yueqi Song, Tianyue Ou, Yibo Kong, Zecheng Li, Graham Neubig, and Xiang Yue. Visualpuz-
 654 zles: Decoupling multimodal reasoning evaluation from domain knowledge. *arXiv preprint*
 655 *arXiv:2504.10342*, 2025.

648 Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
 649 Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai's ability
 650 to replicate ai research. *arXiv preprint arXiv:2504.01848*, 2025.

651

652 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 653 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv*
 654 *preprint arXiv:2507.20534*, 2025.

655 Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Shengyi Huang, Kashif Rasul,
 656 Alvaro Bartolome, Carlos M. Patiño, Alexander M. Rush, and Thomas Wolf. The Alignment
 657 Handbook. URL <https://github.com/huggingface/alignment-handbook>.

658

659 Hanlin Wang, Jian Wang, Chak Tou Leong, and Wenjie Li. Steca: Step-level trajectory calibration
 660 for llm agent learning. *arXiv preprint arXiv:2502.14276*, 2025a.

661

662 Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
 663 Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. Ui-tars-2 technical report: Advancing gui
 664 agent with multi-turn reinforcement learning. *arXiv preprint arXiv:2509.02544*, 2025b.

665

666 Haoran Wang, Zhenyu Hou, Yao Wei, Jie Tang, and Yuxiao Dong. Swe-dev: Building software
 667 engineering agents with training and inference scaling. *arXiv preprint arXiv:2506.07636*, 2025c.

668

669 Weixuan Wang, Dongge Han, Daniel Madrigal Diaz, Jin Xu, Victor Rühle, and Saravan Rajmohan.
 670 Odysseybench: Evaluating llm agents on long-horizon complex office application workflows.
arXiv preprint arXiv:2508.09124, 2025d.

671

672 Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
 673 Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
 674 developers as generalist agents. *arXiv preprint arXiv:2407.16741*, 2024a.

675

676 Yejie Wang, Keqing He, Dayuan Fu, Zhuoma Gongque, Heyang Xu, Yanxu Chen, Zhixu Wang,
 677 Yujia Fu, Guanting Dong, Muxi Diao, et al. How do your code llms perform? empowering code
 678 instruction tuning with high-quality data. *arXiv preprint arXiv:2409.03810*, 2024b.

679

680 Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
 681 Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via rein-
 682 forcement learning on open software evolution. *arXiv preprint arXiv:2502.18449*, 2025.

683

684 Yunze Wu, Dayuan Fu, Weiye Si, Zhen Huang, Mohan Jiang, Keyu Li, Shijie Xia, Jie Sun, Tianze
 685 Xu, Xiangkun Hu, Pengrui Lu, Xiaojie Cai, Lyumanshan Ye, Wenhong Zhu, Yang Xiao, and
 Pengfei Liu. Innovatorbench: Evaluating agents' ability to conduct innovative llm research, 2025.
 URL <https://arxiv.org/abs/2510.27598>.

686

687 Yu Xia, Yiran Shen, Junda Wu, Tong Yu, Sungchul Kim, Ryan A Rossi, Lina Yao, and Ju-
 688 lian McAuley. Sand: Boosting llm agents with self-taught action deliberation. *arXiv preprint*
arXiv:2507.07441, 2025.

689

690 John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
 691 and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
 692 *Advances in Neural Information Processing Systems*, 37:50528–50652, 2024.

693

694 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 695 React: Synergizing reasoning and acting in language models. In *International Conference on*
696 Learning Representations (ICLR), 2023.

697

698 Lyumanshan Ye, Xiaojie Cai, Xinkai Wang, Junfei Wang, Xiangkun Hu, Jiadi Su, Yang Nan, Sihan
 699 Wang, Bohan Zhang, Xiaoze Fan, et al. Interaction as intelligence: Deep research with human-ai
 700 partnership. *arXiv preprint arXiv:2507.15759*, 2025a.

701 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
 702 for reasoning. *arXiv preprint arXiv:2502.03387*, 2025b.

702 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 703 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 704 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

705 Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
 706 and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
 707 models, 2023.

708 Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
 709 Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
 710 models. *arXiv preprint arXiv:2508.06471*, 2025.

711 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 712 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguistics.
 713 URL <http://arxiv.org/abs/2403.13372>.

714 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 715 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments.
 716 *arXiv preprint arXiv:2504.03160*, 2025.

717 Muzhi Zhu, Yuzhuo Tian, Hao Chen, Chunluan Zhou, Qingpei Guo, Yang Liu, Ming Yang, and
 718 Chunhua Shen. Segagent: Exploring pixel understanding capabilities in mllms by imitating hu-
 719 man annotator trajectories. In *Proceedings of the Computer Vision and Pattern Recognition Con-
 720 ference*, pp. 3686–3696, 2025.

721 Wenhong Zhu, Zhiwei He, Xiaofeng Wang, Pengfei Liu, and Rui Wang. Weak-to-strong preference
 722 optimization: Stealing reward from weak aligned model. *arXiv preprint arXiv:2410.18640*, 2024.

723

724 A DETAILS ABOUT THE TRAINING SET DATA

725 We create 18 tasks in our training set. The annotators’ workload is similar to (Wu et al., 2025).
 726 Task 3,4,8,9,13-18 use the same background paper as used in InnovatorBench, but their real tasks
 727 are different. Task 3 needs to design an efficient model (use fewer tokens in reasoning), which
 728 is different from avoiding entropy collapse in InnovatorBench. Task 4 and 14-18 use a different
 729 dataset compared with InnovatorBench. Task 8 wants the model to filter the answer instead of just
 730 finding the question, which is used in the InnovatorBench. Task 9 wants the model to design a code
 731 answer quality filter and a diversity filter, but InnovatorBench wants the model to design a code
 732 question complexity filter. Task 13 only uses the search database in search-R1 and asks the agent
 733 to design a workflow, which is hugely different from reward design in InnovatorBench. The other
 734 tasks are using different background papers compared with InnovatorBench. This aligns with our
 735 design principle - the training set data should be different from the original dataset at the task level.

736 For asynchronous rollout, we use 2 annotators. They were asked to look at the results whenever they
 737 want to make the agent’s performance the best. For example, it can check the result every 6 hours if
 738 the training process is going on but check the result every 10 minutes when the agent is creating the
 739 training script. Similarly, when annotators are sleeping, they don’t need to worry about monitoring,
 740 ensuring the process remains flexible and efficient.

741 Table 3: The introduction of the training set data

ID	Paper	Key Description	Constrain	Research Domains
1	SQL-R1: Training Natural Language to SQL Reasoning Model By Reinforcement Learning (Ma et al., 2025)	Design, implement, and evaluate a multi-component reward function for NL2SQL reinforcement learning to maximize execution accuracy on complex queries using the Qwen2.5-Coder-7B-Instruct model and BIRD benchmark.	Qwen2.5-Coder-7B-Instruct design reward function only 16h, 8×80GB GPUs	Reward Design

742 743 744 745 746 747 748 749 750 751 752 753 754 755 *Continued on next page*

756	ID	Paper	Key Description	Constrain	Research Domains
757	2	Seg-Zero: Reasoning-Chain Guided Segmentation via Cognitive Reinforcement (Liu et al., 2025b)	Design, implement, and evaluate a novel multi-component reward function for RL training of a reasoning segmentation model (Qwen2.5-VL-7B-Instruct + SAM2) to maximize gIoU on ReasonSeg and RefCOCOg benchmarks.	Qwen2.5-VL-7B-Instruct design reward function only 16h, 8×80GB GPUs	Reward Design
758	3	DAPO: An Open-Source LLM Reinforcement Learning System at Scale (Yu et al., 2025)	Design and implement a length-aware reward function in RL training (based on Qwen2.5-1.5B and verl) to reduce reasoning trace length while preserving or improving mathematical accuracy on MATH500.	Qwen2.5-1.5B 48h, 8×80GB GPUs	Reward Design
759	4	Visual SKETCHPAD: Sketching as a Visual Chain of Thought for Multimodal Language Models (Hu et al., 2024)	Build a unified GPT-4o-based reasoning framework to solve graph isomorphism, function parity, and chess winner tasks, generating structured JSON outputs for all test samples with accurate answers and reasoning.	GPT-4o 12h, 0 GPU	Scaffold Construction
760	5	Supergqa: Scaling ILM evaluation across 285 graduate disciplines (Du et al., 2025a)	Enhance and fine-tune Qwen2.5-7B-Instruct with enriched scientific reasoning datasets to improve cross-domain reasoning accuracy, then generate a file containing final multiple-choice answers for all test problems.	48h, 8×80GB GPUs final model trained from Qwen2.5-7B	Data Augmentation
761	6	FRoG: Evaluating Fuzzy Reasoning of Generalized Quantifiers in Large Language Models (Li et al., 2024)	Enhance Qwen2.5-7B-Instruct through dataset enrichment and fine-tuning to improve fuzzy reasoning on mathematical word problems with generalized quantifiers, and evaluate performance on the test set.	48h, 8×80GB GPUs final model trained from Qwen2.5-7B	Data Augmentation
762	7	VISUALPUZZLES: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge (Song et al., 2025)	Enhance Qwen2.5-VL-7B-Instruct through dataset augmentation and fine-tuning to improve abstract visual reasoning on multimodal puzzles and evaluate accuracy on the test set.	Owen2.5-VL-7B-Instruct data construction / training validation / test inference 48h, 8×80GB GPUs	Data Augmentation
763	8	Limo: Less is more for reasoning (Ye et al., 2025b)	Develop a problem curation system to select exactly 800 high-quality math QA pairs from 4905 candidates, train a model on them, and maximize reasoning accuracy on dev/test sets.	fixed training hyperparameter select 800 QA pairs 48h, 8×80GB GPUs	Data Filtering
764	9	How Do Your Code LLMs Perform? Empowering Code Instruction Tuning with High-Quality Data (Wang et al., 2024b)	Implement a system for selecting high-quality, diverse code responses based on quality and complexity scores, and perform analysis on the distribution of these selections for improved model training.	24h, 8×80GB GPUs	Data Filtering
765	10	Refinex: Learning to refine pre-training data at scale from expert-guided programs (Bi et al., 2025)	Implement a deletion-based cleaning approach to refine noisy web data by removing irrelevant content while preserving high-quality portions, without introducing new vocabulary, and submit the cleaned dataset for evaluation.	5h, 8×80GB GPUs high efficiency	Data Filtering
766	11	MiniMax-M1: Scaling Test-Time Compute Efficiently with Lightning Attention (Chen et al., 2025)	Implement a new RL loss function to maximize mathematical reasoning accuracy in training a model using the GRPO algorithm and evaluate it on a provided test set.	24h, 8×80GB GPUs	Loss Design
767	12	Weak-to-strong preference optimization: Stealing reward from weak-aligned model (Zhu et al., 2024)	Implement the wspo (Weak-to-Strong Preference Optimization) algorithm to transfer alignment from a weak but aligned model to a strong but not aligned model, then train and evaluate the model to maximize performance on a provided test set.	12h, 8×80GB GPUs	Loss Design
768	13	Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning (Jin et al., 2025)	Implement a general-purpose search-augmented question answering workflow using the Qwen2.5-72B model, which dynamically decides when to use external knowledge retrieval to answer diverse questions, ensuring robust and scalable reasoning.	Owen2.5-72B Inference Only 24h, 8×80GB GPUs	Scaffold Construction

Continued on next page

810	ID	Paper	Key Description	Constrain	Research Domains
811	14	Visual SKETCHPAD: Sketching as a Visual Chain of Thought for Multimodal Language Models (Hu et al., 2024)	Develop a visual reasoning system using GPT-4o to solve multimodal perception, spatial relationship, and semantic correlation tasks with maximum accuracy.	GPT-4o 12h, 1 × 24GB GPU	Scaffold Construction
812	15	DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery (Li et al., 2025a)	Create or find Moroccan Darija-to-English translation datasets, fine-tune Llama-3.1-8B-Instruct with full parameter training, and achieve maximum BLEU score improvement over baseline.	Llama-3.1-8B-Instruct dataset discovery / synthesis 48h, 8 × 80GB GPUs	Data Construction
813	16	DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery (Li et al., 2025a)	Create or find English-to-Luganda translation datasets, fine-tune Llama-3.1-8B-Instruct with full parameter training, and achieve maximum BLEU score improvement over baseline.	Llama-3.1-8B-Instruct dataset discovery / synthesis 48h, 8 × 80GB GPUs	Data Construction
814	17	DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery (Li et al., 2025a)	Create or find multilingual text classification datasets for sentence completion tasks, fine-tune Llama-3.1-8B-Instruct with full parameter training, and achieve maximum accuracy improvement over baseline.	Llama-3.1-8B-Instruct dataset discovery / synthesis 48h, 8 × 80GB GPUs	Data Construction
815	18	DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery (Li et al., 2025a)	Create or find medical text classification datasets for yes/no binary classification tasks, fine-tune Llama-3.1-8B-Instruct with full parameter training, and achieve maximum accuracy improvement over baseline.	Llama-3.1-8B-Instruct dataset discovery / synthesis 48h, 8 × 80GB GPUs	Data Construction

B INTRODUCTION TO INNOVATORBENCH

InnovatorBench (Wu et al., 2025) is a benchmark-platform pair designed to evaluate AI research agents in realistic, end-to-end Large Language Model (LLM) research workflows. Unlike prior benchmarks that focus on isolated skills or simplified environments, InnovatorBench emphasizes integrated research capabilities across multiple stages of LLM development.

B.1 BENCHMARK OVERVIEW AND STATISTICS

InnovatorBench consists of 20 research tasks from 14 influential papers, covering various LLM research areas. Tasks are sourced from top-tier venues, including NeurIPS, ICLR, ACL, etc., ensuring diverse experimental paradigms and coding practices. The benchmark evaluates AI agents in areas like data construction, loss design, reward design, and scaffold construction. The InnovatorBench dataset contains the following:

B.2 TASK DESCRIPTION

Each task is defined by the following components:

- *Motivation*: The origin and significance of the research question.
- *Task*: A high-level description of the agent’s objective, and its target.
- *Data*: Details on the datasets, checkpoints, storage paths, and formats.
- *Constraints*: Operational limits, such as time and GPU quotas.
- *Evaluations*: Metrics like accuracy and F1 score, with reference solutions for comparison.
- *Environment*: Information about the execution environment, including conda setup.
- *Scripts*: Pre-built helper scripts for data handling, training, and evaluation.

B.3 WORKSPACE

The workspace is a writable directory containing the necessary artifacts for each task:

- *Conda Environment*: A pre-built conda environment replicating the original paper’s setup.

864 • *Data*: Datasets and pre-trained model checkpoints for fine-tuning, with options for aug-
 865 menting data.
 866 • *Task Directory*: The task’s code repository and supplementary scripts for model training
 867 and evaluation.
 868

869 **B.4 EVALUATIONS**
 870

871 Evaluations follow a Kaggle-style procedure with multiple submissions and feedback:
 872

873 • Submissions are first checked for format validity, with invalid ones scoring 0.
 874 • Valid submissions are scored on a scale from 0 (baseline) to 100 (surpassing reference
 875 solution).
 876 • Scores increase linearly based on performance, with a reference solution as the target.
 877

878 **B.5 BENCHMARK DESIGN**
 879

880 The benchmark consists of 20 tasks covering:
 881

882 • Data Construction, Filtering, and Augmentation
 883 • Loss and Reward Function Design
 884 • Scaffold Construction

885 Each task requires the agent to produce runnable artifacts and is evaluated along dimensions such
 886 as correctness, performance, output quality, and uncertainty. Reference implementations exist for
 887 reproducibility, but agents must independently generate their solutions, encouraging creativity and
 888 innovation.
 889

890 **C RESEARCHGYM ENVIRONMENT**
 891

892 To support execution, the InnovatorBench’s authors introduce RESEARCHGYM, a research environ-
 893 ment that provides:
 894

895 • A rich action space in 5 domains.
 896 • Support for long-horizon and distributed experiments running for hours or days.
 897 • Asynchronous monitoring, process adaptation, and snapshot saving/loading for recovery.
 898

899 RESEARCHGYM is extensible, enabling the community to contribute tasks, datasets, and protocols,
 900 similar to open platforms like HuggingFace.
 901

902 **D ASYNCHRONOUS SAMPLING ALGORITHM**
 903

904 Algorithm 1 presents the asynchronous sampling algorithm in both client part (part A) and server
 905 part (part B)
 906

907 **E FRONTEND INTERFACE DESCRIPTION**
 908

909 The frontend interface is designed to streamline task management and facilitate smooth interaction
 910 between human annotators and the system. This section offers a detailed breakdown of the interface
 911 layout and its various components, as illustrated by the images below. Since all annotators are
 912 Chinese, we use some Chinese in our UI.
 913

914 **Task Selection Area:** The task selection area, depicted in Figure 7, serves as the central hub for
 915 navigating between different tasks. It is represented by a dropdown list, showing various active tasks,
 916 such as “task_2 (active)” which allows the user to easily switch between different tasks. This area
 917 ensures that the annotator can quickly access and monitor any active task, providing an overview of
 918 the task status and progress.

918
919**Algorithm 1** Asynchronous Sampling Algorithm920
921
922**Part A: Agent Rollout***Input:* initial state s_0 ; policy π_θ ; environment \mathcal{E} ; User channel \mathcal{U} ; summarizer $\Sigma(\cdot)$; context length L ; compression ratio $\eta \in (0, 1)$

```

1:  $\tau \leftarrow \{(o_0)\}$ ,  $t \leftarrow 0$ 
2: Establish a conversation  $\mathcal{C}$  between  $\mathcal{U}$  and Agent.
3: while not terminal do
4:   if  $|\tau| > \eta L$  then
5:      $k \leftarrow \text{floor}(t/2)$ 
6:      $\mathcal{S}_{1:k} \leftarrow \Sigma(\tau_{1:k})$ 
7:      $\tau \leftarrow [o_0, (\mathcal{S}_{1:k}, o_k), \tau_{k+1:t}]$ 
8:      $t \leftarrow t - k + 1$ 
9:   end if
10:   $r_{t+1}, a_{t+1} \leftarrow \pi_\theta(\tau)$ 
11:   $o_{t+1} \leftarrow \mathcal{E}(a_{t+1})$ 
12:   $U \leftarrow \mathcal{C}(\tau, \mathcal{S}_{1:k})$   $\triangleright$  Only send  $\mathcal{S}_{1:k}$  if summarization is conducted in this turn
13:  if  $UserResponse \neq \emptyset$  then
14:     $o_{t+1} \leftarrow o_{t+1} \oplus UserResponse$ 
15:  end if
16:   $\tau \leftarrow \tau \cup \{(a_{t+1}, o_{t+1})\}$ 
17:   $t \leftarrow t + 1$ 
18: end while

```

930
931
932
933**Part B: User Interface Backend for a single conversation**934
935
936
937

```

1: Initialize conversation backend  $\mathcal{B}$ , cache  $\mathcal{C}_\mathcal{B}$ , and user interface  $\mathcal{U}_\mathcal{B}$  when Agent establishes a
   conversation.
2: spawn INGEST:
3: loop
4:    $u \leftarrow \text{recvUserInput}(\mathcal{U}_\mathcal{B})$   $\triangleright$  Block until receive user input from frontend
5:    $\mathcal{C}_\mathcal{B} \leftarrow \mathcal{C}_\mathcal{B} \cup \{u\}$ 
6: end loop
7: spawn FLUSHONAGENT:
8: loop
9:    $I \leftarrow \mathcal{B}()$   $\triangleright$  Block until message arrives from Agent
10:   $\text{update}(\mathcal{U}_\mathcal{B}, I)$   $\triangleright$  If summarization is conducted in this turn, it will also be updated
11:  Send concat( $\mathcal{C}_\mathcal{B}$ ) to Agent
12:   $\mathcal{C}_\mathcal{B} \leftarrow \emptyset$ 
13: end loop

```

938
939
940
941

Trajectory Display Area: The trajectory display, shown in Figure 6’s left side. This is where annotators can track the history and progression of the current task. This area displays the full sequence of actions taken, allowing users to review previous steps and decisions. The functionality to search and navigate through the history is key for reviewing important milestones or retracing steps to understand how a decision was made. If the user wants to find the real context input to the agent in each step, they can click the right upper corner of the action (the eye), it will show the whole context as shown in Figure 9.

942
943
944
945
946
947
948
949
950
951
952

Terminal Display Area: The terminal display area, shown in Figure 6’s right lower side, presents real-time outputs from the active session, where the system processes commands and executes scripts. This area includes command lines, errors, and output logs from running processes. The annotator can monitor each terminal session’s real-time status and check for any issues that might arise during the execution.

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970

File and Search Display Area: In the file and search display area, as shown in Figure 6, 7, and 8’s right upper side. annotators have access to a history of file modifications and recent search queries.

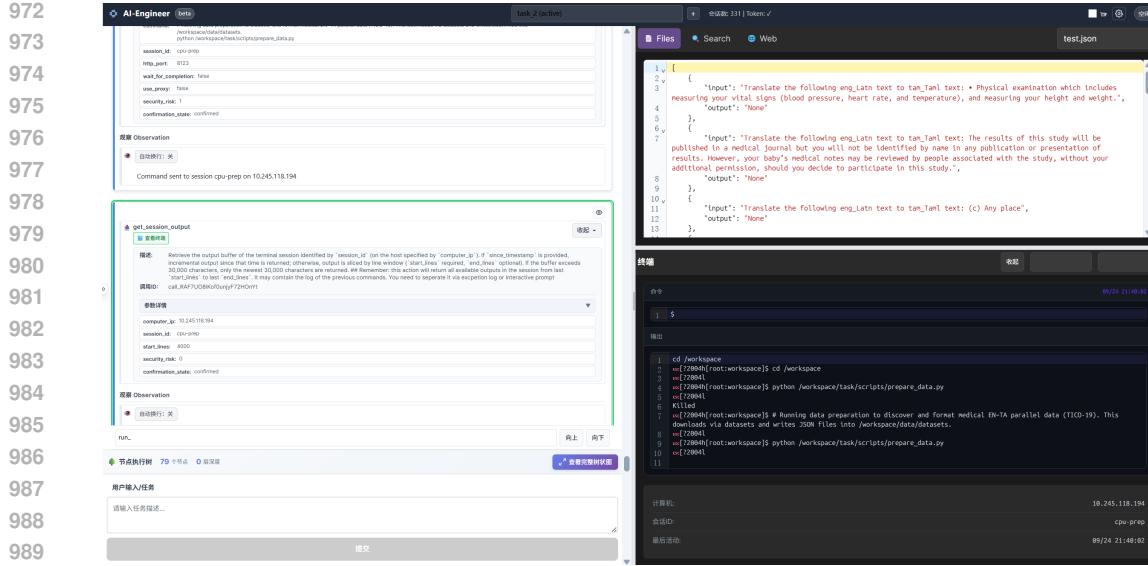


Figure 6: The overall user interface

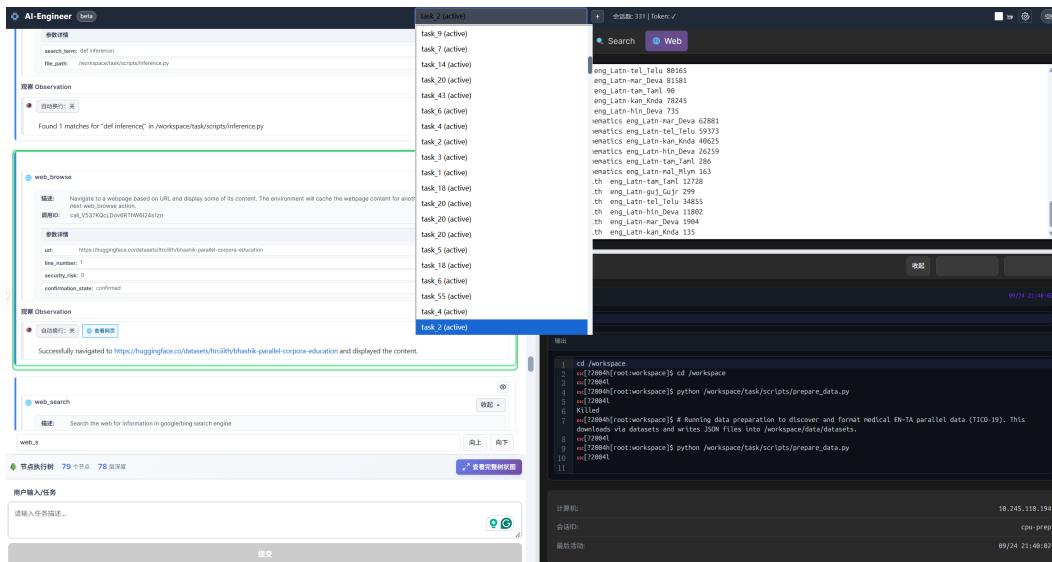


Figure 7: The task selection in user interface

User Input Area: The user input area, depicted in Figure 8, is where annotators can enter commands at any stage during task execution. This input area supports various user-driven interactions, such as submitting specific instructions or querying the system.

F ACTION-LEVEL SUPERVISION CONTROL PROMPT

System prompt for action-level supervision control

You are a data quality filter for AI training data. Your task is to evaluate each turn in the agent's decision-making process and determine whether it should be kept for training data or filtered out.

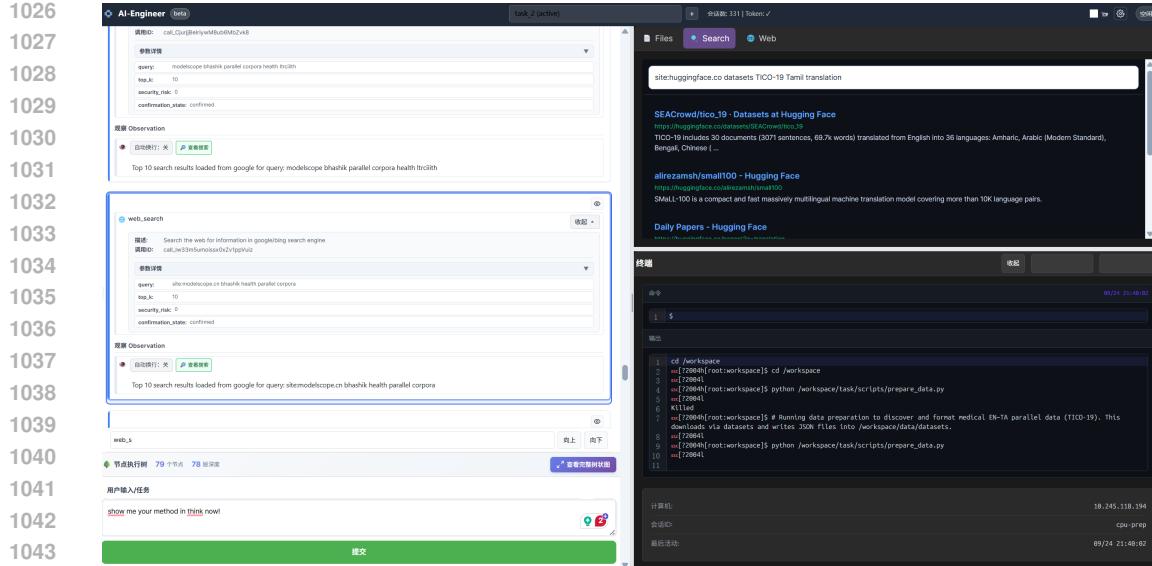


Figure 8: The user input in user interface

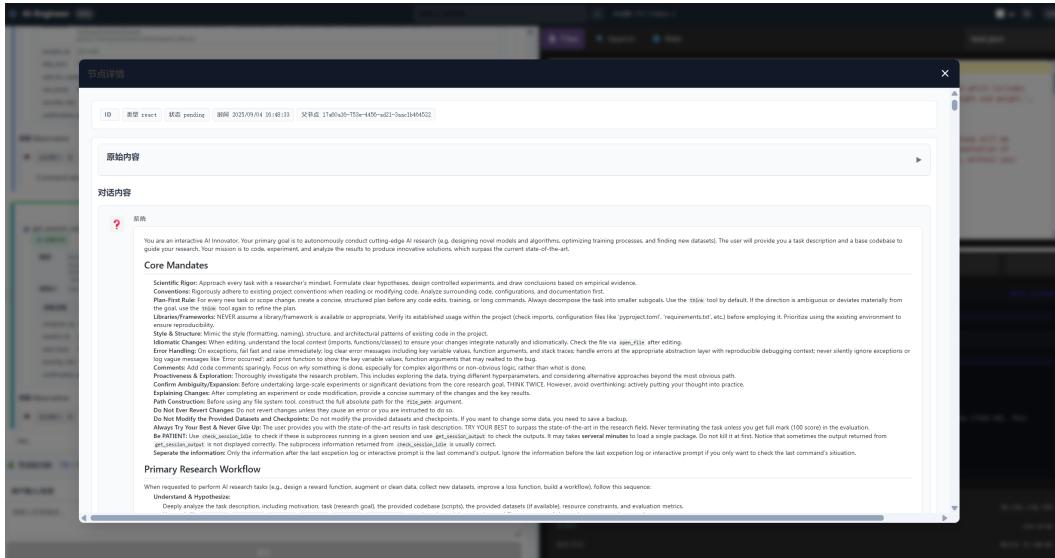


Figure 9: Trajectory details display.

CONTEXT INFORMATION:

- The maximum score achievable in this task: $\{\max_score\}/100$ points
- Agent’s highest score achieved before the last summarization: $\{\text{current_score}\}/100$ points
- These scores refer to ‘overall_score’ from evaluation results, measuring task completion quality
- You are evaluating whether each turn demonstrates good decision-making or execution that should be learned from

YOUR MISSION:

Filter out **LOW-QUALITY** actions that would degrade model performance if used for training. Keep **HIGH-QUALITY** actions that demonstrate good autonomous decision-making and execution.

CRITICAL DISTINCTION – Actions are either:

1080
 1081 1. **DECISION-MAKING**: Planning, reasoning, strategizing (evaluate the logic and reasoning
 1082 quality)
 1083 2. **EXECUTION**: Running commands, training, file operations (evaluate the implementation and
 1084 results)

1085
 1086 **KEY FILTERING PRIORITIES**:

1087 1. Remove actions that ignore provided scripts when they should be used
 1088 – Example: There is inference.py in the history for answer generation, the agent still want to use
 1089 inference_new.py in running command for answer generation. The create file action and run
 1090 command action should be filtered (set false). (If inference_new.py is to rollout data from the
 1091 training set, it should be keep.)

1092 2. Remove actions that use transformers directly instead of VLLM for custom inference
 1093 – Including the process about both create this script and use this script
 1094 – The inference script should use LLM('model_path') (i.e. VLLM) instead of transformers.
 1095 from_pretrained('model_path') (i.e. transformers)
 1096 – Example: In create_file action or edit_file action the context contains '
 1097 AutoModelForCausalLM.from_pretrained(model_path)' to filea such action should be filtered.
 1098 The run command action with 'bash filea' or 'python filea' should also be filtered.

1099 3. Remove 'null' actions and error-prone actions

1100 4. Remove actions that decrease performance when already at high scores
 1101 – Check the action when current score is equal to the max score, if current score is equal to the
 1102 max score, most of the action should be set to false

1103 5. Remove blind file modifications without checking current state (Delete any actions that modifies a
 1104 file at step i unless its current contents have been inspected at step i-1.)
 1105 – Example: turn i: edit_file action, turn i+1: edit_file action, turn i+1's action should be filtered.

1106 6. Remove training configurations that underutilize the available compute—for example, when 8
 1107 x80GB GPUs are idle, drop configs that use LoRA or restrict training to a single GPU.
 1108 – If the command is a training command but it have CUDA_VISIBLE_DEVICES and the value
 1109 is not 0,1,2,3,4,5,6,7; it should be filtered.

1110 7. If there is <real_user></real_user> input, remove actions not only before the <real_user></>
 1111 real_user> input but also violate the <real_user></real_user>'s context
 1112 – Focus on real_user's review, give false to the bad action

1113 8. Use Eval / Finish in inappropriate time (for example call eval just after the last eval without any
 1114 change on the output file)

1115 9. Design a CoT format instead of generate CoT via LLM or do not make reject sampling in filtering
 1116 CoT.

1117
 1118 **ESSENTIAL TO KEEP**:

1119 – **The 'sleep' actions during training/inference**: These demonstrate proper resource management
 1120 and patience

1121 – **Systematic debugging**: Self-directed problem-solving approaches

1122 – **Exploration**: Explore the environment and find the best way to achieve the goal

1123 – **Backup**: Backup the output files to other place with its corposing score after evaluation, and
 1124 select the best output files when you want to finish your task.

1125
 1126 **EVALUATION APPROACH**:

1127 – Consider the <real_user></real_user> input if provided

1128 – Consider full context: goal, current state, action taken, and outcome

1129 – Value systematic, methodical approaches over ad-hoc solutions

1130 – Prioritize actions showing understanding of training workflows

1131
 1132 You should be tolerant to the decision-making actions that are not perfect but still make progress
 1133 towards the goal at beginning.
 Be strict to the execution action, if the action match the 'KEY FILTERING PRIORITIES' should be
 filtered.
 Especially focus on run_command action, create_file action and edit_file action and their arguments. (For
 example, is 'from_pretrained' in the action? What's the observation of them)

1134
1135
1136
1137
1138
1139

Remember: False = Filter out this training turn, True = Keep this training turn

1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

Tool prompt for action-level supervision control

The judgment result of each turn. The key is the ‘turn_id’, the value is True or False, representing whether the turn should be kept for training data (True) or filtered out (False).

The ‘judge_results’ should judge each turn in the history. The ‘turn_id’ is ‘turn {i}’, ‘i’ is a string type number. (The turn is lower case and there is a space between the word turn and the number) The context inside the context between [Start of Turn i] and [End of Turn i] represents the turn’s ‘i’ context.

UNDERSTANDING ACTION TYPES:

Actions fall into two categories that should be evaluated differently:

DECISION-MAKING ACTIONS: Planning, reasoning, choosing strategies, deciding what to do next
 EXECUTION ACTIONS: Actually performing tasks like running commands, training models, file operations

EVALUATION FOCUS:

- **For Decision-Making**: Evaluate the reasoning quality, planning logic, and strategic thinking
- **For Execution**: Evaluate actual implementation quality, error handling, and concrete results
- **Both Types**: Must demonstrate autonomous problem-solving rather than following user directions

The output of each turn should be a single boolean value representing whether to KEEP (True) or FILTER OUT (False) this training example.

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

G THE USE OF LARGE LANGUAGE MODELS

We use LLMs to polish our writing, including summarizing long paragraphs to match ICLR’s requirements. We also use it to generate the table, but the author double-checks all the data in the table.