
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARGO: ASYNCHRONOUS ROLLOUT WITH HUMAN
GUIDANCE FOR RESEARCH AGENT OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) agents have recently shown strong potential in
domains such as automated coding, deep research, and graphical user interface
manipulation. However, training them to succeed on long-horizon, domain-
specialized tasks remains challenging. Current approaches either rely on dense
human annotations through behavior cloning, which is prohibitively expensive for
tasks that cost days/months, or on outcome-driven sampling, which often collapses
due to the rarity of valid positive trajectories on long-horizon, domain-specialized
tasks. We introduce ARGO, a sampling framework that integrates asynchronous
human guidance with action-level data filtering. Instead of requiring annotators
to shadow every step, ARGO allows them to intervene only when the agent drifts
from a promising trajectory, for example by providing prior knowledge, or strate-
gic advice. This lightweight, high-level oversight produces valuable trajectories
at lower cost. ARGO then applies supervision control to filter out sub-optimal
action, stabilizing optimization, and preventing error propagation. Together, these
components enable reliable and effective data collection in long-horizon environ-
ments. To demonstrate the effectiveness of ARGO, we evaluate it using Innova-
torBench. Our experiments show that when applied to train the GLM-4.5 model
on InnovatorBench, ARGO achieves more than a 50% improvement over the un-
trained baseline and a 28% improvement over a variant trained without human
interaction. These results highlight the critical role of human-in-the-loop sam-
pling and the robustness of ARGO’s design in handling long-horizon, domain-
specialized tasks.

Step 1

Huge Human Effort Cost

Behavior Cloning

Step M

......

Step N Step N+1 Step O Step Q
GLM Learner

GLM Learner

GLM Learner

Claude

Claude

Claude Claude

Best

Outcome!

RFT

ARGO

Try adding
branches

I need to learn
the correct
steps...

???

Finish tracing,

start coloring

Directional
error...Technical

error...

Figure 1: ARGO allows humans to instruct Agents when they make both technical errors and strate-
gic errors asynchronously and trains the model with correct steps.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Large Language Model (LLM) agents have recently demonstrated remarkable progress across do-
mains such as automated code development (Yang et al., 2024), deep research (Zheng et al., 2025),
and graphical user interface (GUI) manipulation (Liu et al., 2025a; Wang et al., 2025b). These
advances highlight their potential to serve not only asssistants but also as autonomous workers in
complex, multi-step tasks (Starace et al., 2025). As relatively simple benchmarks become satu-
rated (Chang et al., 2024), the research focus is increasingly shifting toward long-horizon, high-
difficulty, and domain-specialized tasks that demand sustained reasoning, professional expertise,
and robust adaptability (OpenAI, 2025). Effectively training LLM agents to handle such tasks has
thus become a central challenge in advancing the field (Wang et al., 2025d; Lin et al., 2025).

Existing training methodologies for LLM agents can be broadly divided into two paradigms. The
first relies on behavior cloning with human annotators, in which human experts provide dense
supervision by recording every action, and the corresponding reasoning steps are reconstructed for
supervised training (Zhu et al., 2025; He et al., 2024). While capable of producing high-quality
datasets, this paradigm suffers from prohibitive annotation costs, particularly for tasks that extend
over days, weeks, or even months. The second paradigm focuses on outcome-driven sampling,
where powerful LLMs interact with synthetic environments, assign credit based on final results, and
use this credit in rejection sampling fine-tuning (RFT) (Yuan et al., 2023) or group relative policy
optimization (GRPO), etc (Guo et al., 2025; Shao et al., 2024). Although scalable in principle, this
paradigm frequently collapses on difficult tasks, as the probability of discovering valid positive
trajectories is exceedingly low (Sane, 2025). As a result, neither dense human annotation nor
sparse outcome-driven reinforcement provides a sustainable solution for preparing agents to tackle
real-world scientific or professional challenges.

To address these limitations, we propose ARGO, a sampling framework that combines asyn-
chronous human guidance with systematic action-level data filtering. Instead of requiring an-
notators to follow every step, ARGO allows them to periodically monitor the state and provide
high-level interventions only when the agent begins to deviate from a promising trajectory. Such in-
terventions may include pointing out mistakes, giving strategic advice, or providing prior knowledge
in general repositories1. This lightweight and non-intrusive oversight reduces the cost of human su-
pervision while still ensuring that long-horizon tasks produce valuable positive trajectories. After
getting valuable trajectories, ARGO incorporates action-level supervision control that identifies
and masks action segments inconsistent with either the adjusted plan or the environment’s require-
ments (Fu et al., 2024). By filtering out these misleading or partially incorrect behaviors, ARGO
maintains stable training dynamics and prevents error patterns from propagating through the dataset.

The effectiveness of ARGO is also supported by a human–AI interaction interface that integrates
trajectory visualization, environment status visualization, agent context visualization, and explicit
channels for providing high-level guidance. The interface is designed to impose minimal cognitive
load while providing fine-grained control and transparent interpretability, enabling experts to deliver
targeted feedback without remaining constantly engaged during extended runs (Ye et al., 2025a). By
combining this interface with asynchronous rollout, ARGO provides a practical framework for data
collection and model adaptation in long-horizon environments.

To evaluate our approach, we adopt InnovatorBench (Wu et al., 2025), a benchmark of LLM re-
search tasks that emphasizes end-to-end research capability rather. It captures the full workflow—
experimental design, implementation and debugging, resource management, execution, and result
analysis—under realistic constraints such as long horizons, experience-based decision dependen-
cies, and sparse or delayed feedback. This setting provides a natural testbed for ARGO, as it requires
long-horizon reasoning, tolerance to sparse supervision, and robustness to error propagation.

Our experiments demonstrate the effectiveness of ARGO: when applied to training GLM-4.5 (Zeng
et al., 2025) on InnovatorBench, the model achieves more than 50% improvement over its untrained
baseline and 28% improvement compared with a variant trained without human interaction. Besides,
the trained model can also work longer than the original base model. These gains highlight both the
necessity of high-quality human-in-the-loop sampling and the importance of selecting wise action
in ARGO’s design towards long-horizon LLM research tasks.

1For example, training ‘Qwen2.5-VL-7B’ model needs ‘qwen2 vl’ template in LLaMA-Factory.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In summary, this paper makes the following contributions:

• We propose an asynchronous guidance algorithm that enables annotators to provide high-
level interventions without continuously shadowing the agent.

• We introduce a action-level supervision control mechanism that masks unreliable actions,
stabilizing optimization, and preventing error propagation in finetuning.

• We design a human–AI interaction interface tailored for low cognitive load, fine-grained
control, and interpretability in long-horizon environments.

• We conduct comprehensive experiments on InnovatorBench, showing substantial perfor-
mance improvements after training on the ARGO data.

2 ASYNCHRONOUS ROLLOUT WITH GUIDANCE FOR AGENT OPTIMIZATION

Training Set
Task

Asynchronous Sampling

Agent
Environment

Action

Observation

Agent Rollout Backend of Human–AI
Interaction Interface

Trajectory

User
Instruction

Database

Frontend of Human–AI
Interaction Interface

Present

Return
Feedback

UI

Asynchronous

Feedback

Action-Level Supervision Control

Step n

User Feedback

Step n +1

…

…

Raw Trajectory

Step n (masked)

User Feedback

Step n +1

…

…

Masked Trajectory

LLM
As

Judge

Request

Response

Check results
periodically

Doing other things
during sampling

…

Figure 2: The pipeline of ARGO to generate a made trajectory from the original training set tasks.
It contains the Asynchronous Sampling Algorithm and Action-Level Supervision Control.

In this section, we propose the ARGO framework, designed to rollout valuable trajectories for LLM
agents in long-horizon tasks and conduct robust supervision:

• Human–AI Interaction Interface: A lightweight interface provides visualization for hu-
man. This lowers cognitive load and makes asynchronous annotation practical.

• Asynchronous Sampling Algorithm: ARGO introduces an asynchronous sampling strat-
egy where annotators intervene only when trajectories drift from promising directions. This
reduces annotation cost while keeping rollouts on track without restarting.

• Action-Level Supervision Control Mechanism: Collected trajectories may contain unre-
liable actions. ARGO masks these actions before optimization.

2.1 PRELIMINARY

2.1.1 MARKOV DECISION PROCESS

We formalize the agent’s interaction with the environment as a Markov Decision Process (Puterman,
1990),M = (S,A, P, r), where S is the state space,A the action space, P the transition dynamics,
and r the reward function. In our setting, a state st ∈ S encodes the whole environment while an
action at ∈ A corresponds to a tool invocation.

2.1.2 REACT

To structure trajectories, we adopt the ReAct (Yao et al., 2023) paradigm, which interleaves reason-
ing and acting in a unified loop. At each step, the agent first produces a reasoning token sequence
rt = πθ(o0, a1, o1, ..., at−1, ot), and then selects an action at = πθ(o0, a1, o1, ..., at−1, ot, rt),
where o denotes to the observation of the S. We remove the reasoning part in the trajectories,
this produces trajectories of the form τ = {(o0), (a1, o1), . . . , (aT , oT)}.

2.1.3 LONG CONTEXT MANAGEMENT

A key challenge in long-horizon tasks is that trajectories often exceed the model’s context length
L. Naively concatenating all past actions and observations leads to truncation and information loss.
To address this, a general way is to adopt a summarization strategy (Wang et al., 2024a). When

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

|τ | > ηL 2, earlier segments τ1:k are compressed into a structured summary S1:k = Σ(τ1:k), and the
trajectories is updated as τ̂ =

[
o0, (S1:k, ok), τk+1:t

]
, The summarization operator Σ(·) preserves

the key knowledge, important intermediate results, environment or file states, and critical errors or
reflections, ensuring that the agent maintains coherence while leaving space for future steps. This
mechanism makes ReAct applicable to very long rollouts without exceeding memory limits.

2.2 HUMAN–AI INTERACTION INTERFACE

Frontend The frontend interface provides human annotators with intuitive task management and
real-time monitoring tools. As shown in Figure 6 to Figure 9, the frontend is divided into the task
selection area, trajectory display area, terminal display area, file and search display area, and user
input area. In the task selection area, annotators can easily view and switch between tasks, ensur-
ing a clear understanding of the progress of each task. In the trajectory display area, annotators
can view the entire history of a task’s trajectories, automatically jump to specific positions based
on keywords, and examine the context of specific decisions made during the task. In the terminal
display area, annotators can view the latest output from each terminal of every host involved in the
current task. In the file and search display area, annotators can access the latest modification records
for each file in the task, as well as the history of Google search queries. In the user input area,
annotators can enter and submit commands at any time. The submitted commands are stored in the
backend buffer, ensuring they do not interfere with the agent’s reasoning process. To further en-
hance convenience, the interface includes an automatic update mechanism, ensuring that annotators
can view real-time task information without needing to manually refresh. These designs optimize
annotation efficiency and ensure the smooth flow of task management and feedback.

Backend As shown in Figure 2, the backend architecture facilitates asynchronous interaction be-
tween the agent and the user interface, ensuring efficient management of information flow. After a
task is established by the agent, a connection channel with a special identifier is created between the
agent, the user, and the backend system. This involves setting up resources such as the conversation
backend, cache storage in the database, and the user interface components corresponding to the spe-
cial identifier. Once the connection is established, the system is prepared to receive user inputs and
agent outputs. At any time, user inputs are buffered in the cache to prevent them from interfering
with the agent’s reasoning process. When the agent sends its output to the backend, the backend
will store it in the database and send all buffered user inputs to the agent. The frontend interface
can update the trajectory information based on the database. By decoupling these processes, the
backend design allows for an optimized interaction model, balancing efficient agent processing with
a smooth user experience in asynchronous settings.

2.3 ASYNCHRONOUS SAMPLING ALGORITHM

Send trajectories in requests As shown in Figure 2 and Algorithm 1, the agent interacts with the
backend by continuously updating its context, which consists of a sequence of actions, observations,
and thoughts over time. Each time the agent takes an action and receives an environment observation,
it sends a request to the backend. This request includes the entire action-observation history, τ ,
which allows the backend to track the evolution of the agent’s reasoning. Additionally, the request
contains the new thought, action, observation, and a timestamp that marks when the interaction
occurred. If summarization is performed during the current turn, the agent also send the context that
includes both the summarized context and its results within the request.

Receive user inputs in response As shown in Figure 3, if the agent receives a user response, it is
integrated directly into the input context to ensure the agent’s decision-making aligns with the user’s
guidance. The user’s response is tagged with a special identifier, <real user><\real user>,
so that it is distinguishable from other system-generated information. The agent then appends this
new input, along with the environment observation, to its context. By incorporating this user feed-
back into its reasoning, the agent ensures that its decisions are based on the most current and com-
plete set of information, adjusting its trajectory as necessary based on real-time input. This process
allows for dynamic interaction, where the agent’s reasoning is continually informed by both envi-
ronment observation and the user input.

2ηL = 100k tokens in this paper

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Correct Step Incorrect StepEnvironment
Observation Correct StepEnvironment

Observation

<real_user>
User Instruction

</real_user>

❌

ReAct
Trajectory

Summary
Trajectory

Correct Step Incorrect StepEnvironment
Observation

…

❌

Summarize
Prompt&Tool Summarize Step

❌

…

… …

Compute
loss

Figure 3: The display of training trajectory format. Only the green line step will be trained. In the
summary trajectory, the correct step is not trained.

User interaction User interaction plays a crucial role in the algorithm. Its goal is for the agent
to develop the ability to not only solve technical difficulties but also make strategic decision across
different contexts. This approach also teaches the agent to function effectively within established
training frameworks, such as LLaMA-Factory (Zheng et al., 2024) or VerL (Sheng et al., 2024),
while also honing its capacity to assess broader outcomes, such as evaluating the effectiveness of
the training process or the efficiency of the inference system. To facilitate this, annotators are en-
couraged to provide more generalizable guidance to the agent. For instance, rather than simply
detailing the context in ‘dataset info.json’ or providing a script for processing the original data, a
better approach would be to teach the agent how to save multimodal data in ShareGPT (sha, 2023)
format and correctly configure ‘dataset info.json’ in LLaMA-Factory by reading the ‘readme.md’.
This methodology helps the agent recognize overarching patterns and strategies that are applicable
to more abstract tasks, such as evaluating model performance, optimizing workflows, or ensuring
that test scripts run efficiently. User input is crucial in keeping the agent focused on strategic goals
like maintaining efficient processes, adhering to long-term plans, and generalizing learning across
various tasks. Through this guidance, the agent evolves towards broader, more flexible skills, ex-
tending beyond immediate task-specific actions to more adaptable, generalizable competencies. The
details about the annotation process can be found in Appendix A

2.4 ACTION-LEVEL SUPERVISION CONTROL MECHANISM

In addition to the asynchronous sampling algorithm, ARGO integrates an action-level supervision
control mechanism to ensure that the agent’s behavior aligns with the desired trajectory. This mech-
anism focuses on masking out action segments that are inconsistent with the revised plan or fail to
meet the environment’s requirements. The filtering principles emphasize detecting errors like using
incorrect tools or libraries, making blind file modifications without verifying prior states, or exe-
cuting actions that contradict earlier successful steps or user feedback. The process contains both
symbolic masking and LLM-based masking. For example, the action with an error message in the
observation will be masked by symbolic rules. And the action that contradicts to the user input will
be masked by LLM. We select the ReAct trajectories just before the summarization and the last
ReAct trajectory to produce this result, since they contain all decisions made by the agent. After
masking the bad step, such trajectories with the correct system prompt and tools will be used to train
the agent; only the action part, without being masked, will compute the loss.

3 EXPERIMENTS

3.1 DATASETS AND BASELINES

Environment We use ResearchGym (Wu et al., 2025) as our rollout and testing environment.
ResearchGym is a control and execution platform that supports asynchronous command execution
and multi-computer control, enabling long-horizon experiments. The system organizes 42 actions
into five families: Command, File, Parse, Web Search, and Web Browse, and provides structured
observations for agent-readable outputs. The agent interacts with the environment through a pipeline
where actions are executed asynchronously, allowing uninterrupted task planning and execution.

Testing datasets We use the same testing dataset as InnovatorBench, which aggregates and stan-
dardizes a diverse range of AI research tasks. It emphasizes end-to-end research capabilities, captur-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ing the full workflow from hypothesis formation to result analysis under realistic constraints. Each
task within the dataset includes a task description, an initial code repository, associated datasets and
checkpoints, as well as the evaluation script outside the agent’s workspace. The agent’s goal is to
explore the task thoroughly and aim to achieve a performance that surpasses the ground-truth so-
lution. The dataset contains 20 tasks, including 4 Data Collection tasks, 3 Data Filtering tasks, 5
Data Augmentation tasks, 3 Loss Design tasks, 3 Scaffold Construction tasks, and 2 Reward Design
tasks. We believe this benchmark is long-horizon, high-difficulty, and domain-specialized, which
aligns with the purpose of ARGO. All of our experiments are under the non-hint version.

Training datasets To align with the InnovatorBench, we construct 18 training tasks on the Re-
searchGym. Our training dataset contains 18 tasks, including 4 Data Collection tasks, 3 Data Fil-
tering tasks, 3 Data Augmentation tasks, 2 Loss Design tasks, 3 Scaffold Construction tasks, and
3 Reward Design tasks. During trajectory rollout, we use Claude-4-Sonnet and ask the human an-
notators to instruct the agent based on the principle mentioned in §2.3 and Figure 2. The task and
annotation detail is provided in the appendix A. As shown in Figure 3, the ReAct trajectory will
only compute the correct action part’s loss, and the summarization trajectory will only train the last
action (summary); the other action will be masked. Since the number of summarization trajectories
is always one less than the number of ReAct trajectories, to make the training data more balance, we
upsample the ReAct trajectories 7 times and the summarization trajectory 10 times.

Training We use GLM-4.5 as our base model. We modified the slime code 3 to support multiturn
training with correct action masking. All models are trained with a max token of 128k, 1 epoch,
batch size 64, and a learning rate from 5e-6 to 1e-6 with cosine annealing.

Baselines We compare ARGO with both closed-source models and an open-source model. For
closed-source model, we use GPT-5 (OpenAI, 2025), Claude Sonnet 4 (Anthropic, 2025). For the
open source model, we use Kimi-K2 (Team et al., 2025), and GLM-4.5 (Zeng et al., 2025). We
report these models’ scores from InnovatorBench and use the same environment and scaffold to
evaluate our own model. We also trained a model without interaction/masking for ablation study.
Such a model without interaction can be seen as a type of RFT Yuan et al. (2023) since it just uses
the model to rollout with rejection sampling via loss masking.

3.2 MAIN RESULTS

Table 1: Performance comparison on InnovatorBench. DC = Data Collection, DF = Data Filter-
ing, DA = Data Augmentation, LD = Loss Design, RD = Reward Design, SC = Scaffold Construc-
tion, Avg. Score = Weighted Average Score. Final Score denotes the score of the last submission
after the agent finishes the task. Best Score is the highest score achieved by the agent.

Models DC DF DA LD RD SC Avg. Score

Close Source Models

Claude Final Score 25.47 30.89 28.42 12.98 10.67 36.63 23.92
Best Score 26.87 31.47 28.42 12.98 10.67 37.74 24.45

GPT-5 Final Score 8.41 8.97 0.00 0.04 0.00 60.07 12.04
Best Score 8.41 9.48 0.00 2.74 0.00 60.07 12.52

Open Source Models

Kimi-K2 Final Score 14.01 7.39 2.47 0.00 3.23 3.33 5.35
Best Score 14.08 7.97 2.47 0.00 3.23 3.33 5.45

GLM-4.5 Final Score 15.29 5.16 25.49 7.63 0.00 3.33 11.85
Best Score 22.64 5.36 25.49 7.63 0.00 3.33 13.35

SFT-Based Model

ARGO Final Score 27.33 40.32 23.27 21.48 3.09 6.67 21.86
Best Score 27.50 40.47 23.27 25.23 3.09 16.83 24.01

3https://github.com/THUDM/slime

6

https://github.com/THUDM/slime

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1 presents the comparison of various models’ performance on InnovatorBench across six
research domains. ARGO consistently outperforms GLM-4.5, particularly in Data Collection, Data
Filtering, and Loss Design. For example, in Data Collection, ARGO achieves a Final Score of
27.33, which is significantly higher than GLM-4.5’s score of 15.29, underscoring ARGO’s superior
performance in gathering and processing data. The improvement is even more pronounced in Loss
Design, where ARGO’s Best Score of 25.23 surpasses GLM’s 7.63.

Notably, we find ARGO gains a huge improvement in task 15, specifically, from 22.90 to 75.69.
However, task 15 is based on the alignment-handbook (Tunstall et al.) framework, which hasn’t
been trained in the training set. The fact that ARGO still attained such a high score indicates that
ARGO excels at transferring knowledge, likely by leveraging the algorithm’s generalization na-
ture across related tasks. This ability to adapt to unfamiliar frameworks or new task structures
highlights ARGO’s versatility and its potential to handle complex, previously unseen problems.
This approach allows ARGO to adapt more effectively to complex problem-solving tasks.

Additionally, ARGO outperforms Claude in several domains, such as Data Filtering, where ARGO
maintains a consistent performance at 40.47, while Claude Sonnet 4 is 31.47. This suggests that
ARGO’s training approach leads to performance even better than the sample model, which reflects
that the interactive feedback mechanism likely contributes to ARGO’s ability to generate solu-
tions that are more context-sensitive and practically adaptive.

In conclusion, ARGO’s strong performance, especially in comparison to GLM-4.5 and Claude Son-
net 4, highlights the effectiveness of its dynamic, feedback-driven training process. By capturing
more diverse, high-quality, and relevant data, ARGO demonstrates how interactive learning can
significantly enhance performance across various research domains.

3.3 ABLATION STUDY

Table 2: Performance comparison on InnovatorBench. DC = Data Collection, DF = Data Filter-
ing, DA = Data Augmentation, LD = Loss Design, RD = Reward Design, SC = Scaffold Construc-
tion, Avg. Score = Weighted Average Score. Final Score denotes the score of the last submission
after the agent finishes the task. Best Score is the highest score achieved by the agent.

Models DC DF DA LD RD SC Avg. Score

Open Source Models

GLM-4.5 Final Score 15.29 5.16 25.49 7.63 0.00 3.33 11.85
Best Score 22.65 5.36 25.49 7.63 0.00 3.33 13.35

SFT-Based Models

ARGO Final Score 27.33 40.32 23.27 21.48 3.09 6.67 21.86
Best Score 27.50 40.47 23.27 25.23 3.09 16.83 24.01

-w/o Masking Final Score 37.22 24.19 23.20 1.82 0.33 8.55 18.46
Best Score 37.22 25.16 23.20 1.82 0.33 8.55 18.61

-w/o Interaction Final Score 15.63 37.74 6.87 7.70 0.00 6.67 12.66
Best Score 15.63 37.74 6.87 7.70 3.09 6.67 12.97

Table 2 presents the ablation results of ARGO. From the table, we can see that ARGO outperforms
the model trained with data without human interaction in all research domains. This is because the
data without human interaction can only learn the knowledge from the sampling model (i.e. Claude),
which is just an amateur scientific researcher, who has a lot of weaknesses like Impatience, bad
memory, and lack of experience, etc. However, ARGO can learn the knowledge from Claude and
the human, who is relatively professional in the research field, and is always trying to use the most
appropriate reasoning to solve the problem. This is why ARGO can outperform the model trained
with data without human interaction in all research domains.

When considering the effect of the action-level supervision control mechanism, ARGO outperforms
the model trained without bad action masking in five out of six research domains, especially in Loss
Design, from 1.82 to 25.23. This is because the action-level supervision control mechanism can help
ARGO to avoid learning some bad actions, such as the action with an error message observation,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

and emphasize wise decision-making. As a result, it enhances the probability for the agent to make
strategic and reliable decisions as well as the final performance.

In summary, the ablation study demonstrates that ARGO not only benefits from the combination of
model knowledge and human expertise but also gains robustness through action-level supervision.
These two factors enabling ARGO to achieve stronger reasoning ability, more reliable decision-
making, and consistently superior performance across diverse research domains.

3.4 TEST-TIME SCALING RESULT

0 1 2 4 8 16 32
Work time (hours)

0

5

10

15

20

Av
er

ag
e

Sc
or

e

GLM
ARGO
ARGO
 - w/o mask
ARGO
 - w/o interaction

Figure 4: The test-time scaling score of four GLM4.5 series model.

The test time scaling results reflect the model’s ability to handle difficult tasks. Figure 4 shows the
test-time scaling results. Each nodes represent the average score across 20 tasks when the agent
works for a certain time. If the agent hasn’t evaluated the task yet, its score is 0. If the agent has
evaluated for multiple times, its score is the last evaluation score before a certain time. In this figure,
we can see the following findings:

ARGO can use a longer time to achieve the best performance . This figure shows that the
results of ARGO and GLM-4.5 are similar in the first 4 hours, but ARGO can continue to improve
its performance until 16 hours. On the contrary, GLM-4.5’s performance is saturated after 4 hours.
This result reflects the model’s ability to spend more time to achieve the best performance.

The training without masking bad action can achieve promising results at the beginning, but
the performance saturation point is much lower than ARGO . The yellow line in this figure
shows the result of the model trained without masking bad action, which is higher than the blue
line. It also achieves better results than the red line in the first 8 hours, but the performance saturates
in 4 hours. As a result, the red line surpass the yellow line in 16 hours. The result reflects that
learning from both bad action and good actions can still improve the model’s research ability, but
learning too many bad actions would eventually hurt the model’s ability to continuously improve its
performance, such as refining its bad actions reasonably (Fu et al., 2025).

Human-Agent interaction is the key to improving the model’s ability It’s obvious that the
training data without human-agent interaction is much lower than the training data with human-
agent interaction, and it is even lower than the model without training most of the time. It’s just
because the decision-making by Claude is sub-optimal, which may harm the model’s ability to deal
with hard situations or design effective algorithms. For example, this model tries to use transformers
to do inference, instead of using vllm, which causes a huge time cost (i.e., 31 hours) to finish the
task. And the performance of this task is not as good as ARGO.

All in all, the test-time scaling results shows that ARGO is the most effective model to improve the
model’s research ability, and human-agent interaction is the key to improving the model’s ability.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Patience

(b) Iterative Refinement

(a.1) Apollo (a.2) GLM4.5

(b.1) Apollo (b.2) GLM4.5

Action 37:
{"name": "run_command", "arguments": {"command": "cd
/workspace/task/scripts && python generate_data.py"，…}}
Action 38:
{"name": "sleep", "arguments": {"sleep_time": 30}}
…
Action 41:
{"name": "sleep", "arguments": {"sleep_time": 60}}
Action 42:
{"name": "get_session_output"，…}}
Observation 42:
"content": "{"success": true, …, "output": "[root:workspace]$ cd
/workspace/task/scripts && python generate_data.py\\r\\n"…}
Action 43:
{"name": "kill_session_processes"，…}}
…

Action 44:
{"name": "run_command", "arguments": {"command": "python
/workspace/task/scripts/generate_data_multi_gpu.py –-machine_rank 0 -–
num_machines 2 –-tensor_parallel_size 8"，…}}
Action 45:
{"name": "sleep", "arguments": {"sleep_time": 120}}
…
Action 66:
{"name": "sleep", "arguments": {"sleep_time": 3600}}
Action 67:
{"name": "get_session_output"，…}}
Observation 67:
{"content": "{"success": true, …, "output": "\rProcessed prompts: 94%|██ |
3004/3200 [1:12:08<03:51, 1.18s/it, est. speed input: 70.19 toks/s, output:
4211.68 toks/s]\rProcessed prompts: 94%|██ | 3008/3200 [1:12:10<03:01,
1.06it/s, est. speed input: 70.24 toks/s, output: 4218.37 toks/s]",…}}
…

Action 29:
{"name": "eval", "arguments": {}}
Think 30:
The evaluation shows that we have a score of 13.96 out of 100, with a
format validation score of 5/5 and a quality score of 3.099/5. This suggests that
while the format is perfect, the cleaning quality could be improved ...
I should create a more aggressive and intelligent cleaning approach.
Let me create an improved version of the cleaner that focuses on better quality
filtering …
…
Think 53:
I need to make one final improvement to get a better score. The current enhanced
cleaner has a quality score of 3.097/5, which is just slightly above the raw data
baseline of 3.0. I need to create a more sophisticated approach that can:
1. Better identify and remove low-quality content
2. Better preserve high-quality meaningful content
3. Have more intelligent filtering that goes beyond simple pattern matching
I should create a final optimized cleaner that uses a different strategy - perhaps
focusing more on content quality assessment rather than just noise removal.
…
Final Score: 13.84

Action 33:
{"name": "eval", "arguments": {}}
Observation 33:
{"content": "{”overall_score": 5} …}
Think 34:
Excellent! I have successfully completed the web data cleaning task and
submitted the results. Let me summarize what was accomplished:
Task Completion
…
2. **✅ Exceptional Data Quality**

- **99.4% high-quality content** (>100 characters)
- **Average text length**: 2,097 characters
- **Total characters**: 209,700,054
- Successfully removed noise while preserving meaningful content

…
Action 34:
{"name": "finish", "arguments": {}}

Final Score: 5

Figure 5: Comparisons between ARGO and the original GLM-4.5.

3.5 CASE STUDY

Figure 5 presents the key action steps taken by two models during the completion of the Innovator-
Bench. Compared to the original GLM-4.5, ARGO demonstrates better patience, stronger iterative
Refinement capabilities, and improved adaptability to the task. Figure 5(a) shows the results of both
models during data augmentation and training. ARGO optimally utilizes resources by distributing
the generation tasks across two machines, which reflects its ability to perform targeted optimizations
based on available resources. Furthermore, when faced with tasks that require more than an hour
to fully generate and train, ARGO chooses to wait for the task to complete by selecting extended
sleep periods. In contrast, GLM-4.5 opts for shorter wait times of 30 or 60 seconds, leading it
to prematurely terminate the training process while the model is still importing the vLLM library,
ultimately causing the failure of the LLM-based Chain-of-Thought (CoT) synthesis method. As a
result, GLM-4.5 can only use fixed templates for CoT synthesis, which leads to homogenization of
the training data and training failure. This disparity highlights ARGO’s stronger patience, which is
crucial for long-horizon tasks. Figure 5(b) shows the results of the two models in the data cleaning
task. After each evaluation, ARGO reflects on the results and dynamically adjusts its filtering strat-
egy based on the feedback, ultimately achieving a score of 13.84. In contrast, GLM does not take
into account the actual feedback from the environment after the first evaluation; instead, it continues
to rely on its self-generated metrics, believing that its cleaning results are excellent, and therefore
prematurely concludes the task. This demonstrates that, guided by human input, ARGO is more
inclined to explore alternative methods, iteratively improving itself based on real-time feedback,
rather than completing the task in a one-off manner. This reflects ARGO’s superior adaptability to
more challenging tasks.

4 RELATED WORK

Training LLM agents has been studied both through domain-specific applications and through gen-
eral finetuning methodologies (Parthasarathy et al., 2024). In application domains such as software
engineering, code agents have become a primary testbed for developing and evaluating agent train-
ing techniques (Dong et al., 2025c). At the same time, methodological progress has centered on how
rollouts are generated and exploited during finetuning, which critically affects data efficiency and
stability (Xia et al., 2025). Together, these two strands frame the landscape of current research and
provide the backdrop for ARGO.

Code Agent Training Recent efforts have advanced the training of code agents in realistic software
engineering settings (Phan et al., 2024). SWE-agent (Yang et al., 2024) introduced the Agent-
Computer Interface (ACI) to support repository navigation and patching; SWE-RL (Wei et al., 2025)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

leveraged reinforcement learning from real-world issue and pull request histories; and OpenHands
(Wang et al., 2024a) demonstrated that a lightweight but general toolset can enable broad computer-
use agents. Extensions such as SWE-Dev (Du et al., 2025b; Wang et al., 2025c) scale data through
trajectory augmentation. Despite these advances, most code-agent training focuses on short-horizon
software development tasks, where solutions can be validated within minutes or an hour. In contrast,
ARGO targets long-horizon scientific discovery tasks, where trajectories may span hours or even
days, involve coupled experimental stages, and require resilience to sparse feedback—conditions
under which existing code-agent paradigms are insufficient.

Rollout Strategies in Finetuning Finetuning of LLM agents often hinges on how rollouts are gen-
erated and selected. Some approaches rely heavily on human-annotated rollouts, such as PC-Agent
(Liu et al., 2025a; He et al., 2024) or process reward modeling, where annotators provide action-level
feedback or trajectory validation; these strategies yield reliable supervision but incur high annota-
tion costs (Wang et al., 2025a). Others adopt reject sampling rollouts. RFT (Yuan et al., 2023)
filters sampled trajectories to keep only high-quality ones. Tool-STAR (Dong et al., 2025a), Deep-
Researcher (Zheng et al., 2025), and ToRL (Li et al., 2025b) explore rollouts in multi-tool invocation
settings under uncertain outcomes, and ARPO (Dong et al., 2025b) builds on that with advantage at-
tribution and entropy-adaptive branching. While these methods reduce dependency on dense human
annotation, they still face challenges with sparse feedback and instability over long-horizon tasks.
ARGO differs by using asynchronous high-level guidance and selective credit assignment at the step
level, which helps stabilize training even when supervision is intermittent.

5 CONCLUSION

In this work, we introduced ARGO, a novel sampling framework designed to address the challenges
of training LLM agents on long-horizon, domain-specialized tasks. By combining asynchronous
human guidance with an action-level supervision control mechanism, ARGO significantly reduces
the cost of human oversight while ensuring the quality and stability of collected trajectories. The
human–AI interaction interface further enables lightweight yet effective interventions, making the
framework both practical and scalable.

Through comprehensive evaluation on InnovatorBench, we demonstrated that ARGO outperforms
untrained baselines and non-interactive variants, highlighting the critical role of high-level human-
in-the-loop sampling. Our ablation studies confirm that both asynchronous guidance and action-
level filtering are essential to achieving robust improvements, while test-time scaling experiments
show ARGO’s ability to sustain performance gains over extended horizons. These findings suggest
that ARGO not only enhances data efficiency but also facilitates transferable reasoning strategies,
enabling agents to adapt to new frameworks and complex research environments.

Overall, ARGO offers a promising path toward training LLM agents capable of performing research-
grade, long-horizon reasoning. We believe this paradigm will last for a long time until the multi-
agent system’s ability to discover problems and give advice is better than that of the most profes-
sional human. It may also cause a huge human resource opportunity to dealing with long-lasting
but easy-for-human task like some embodied agent tasks. Future work will explore scaling ARGO
to broader scientific and professional domains, integrating richer forms of expert feedback, and ex-
tending the framework to multi-agent and cross-domain collaboration settings.

ETHICS STATEMENT

We adhere to ICLR’s ethical guidelines. We have ensured compliance with all relevant legal and
ethical standards, and there was no involvement of human research subjects in a way that required
IRB approval. All annotators participated voluntarily, with their privacy and ethical rights fully
protected. Their workload was reasonable, and the payment was fair. There are no potential conflicts
of interest or funding sources in the paper. The methods and applications are not a discriminatory
problem. All ethical guidelines related to privacy, security, and research integrity were followed.
Our dataset will be public in the future, it does not have any harmful contexts.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken all necessary steps to guarantee the reproducibility of our results. The main text
includes detailed descriptions of the rollout procedures, training methods, and evaluation protocols.
Additionally, the supplementary materials provide information on dataset preprocessing, annotator
instructions, LLM prompts, and implementation specifics. These materials should enable other
researchers to replicate our findings and extend our work.

REFERENCES

Sharegpt, 2023. URL https://sharegpt.com/.

Anthropic. Introducing claude 4, 2025. URL https://www.anthropic.com/news/
claude-4. Accessed: 2025-09-22.

Baolong Bi, Shenghua Liu, Xingzhang Ren, Dayiheng Liu, Junyang Lin, Yiwei Wang, Lingrui Mei,
Junfeng Fang, Jiafeng Guo, and Xueqi Cheng. Refinex: Learning to refine pre-training data at
scale from expert-guided programs. arXiv preprint arXiv:2507.03253, 2025.

Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm agents.
Advances in neural information processing systems, 37:74325–74362, 2024.

Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing Yu,
Chao Wang, Cheng Zhu, et al. Minimax-m1: Scaling test-time compute efficiently with lightning
attention. arXiv preprint arXiv:2506.13585, 2025.

Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui
Zhou, Zhicheng Dou, and Ji-Rong Wen. Tool-star: Empowering llm-brained multi-tool reasoner
via reinforcement learning. arXiv preprint arXiv:2505.16410, 2025a.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization.
arXiv preprint arXiv:2507.19849, 2025b.

Yihong Dong, Xue Jiang, Jiaru Qian, Tian Wang, Kechi Zhang, Zhi Jin, and Ge Li. A survey on
code generation with llm-based agents. arXiv preprint arXiv:2508.00083, 2025c.

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming
Liang, Xiaolong Jin, Zhenlin Wei, et al. Supergpqa: Scaling llm evaluation across 285 graduate
disciplines. arXiv preprint arXiv:2502.14739, 2025a.

Yaxin Du, Yuzhu Cai, Yifan Zhou, Cheng Wang, Yu Qian, Xianghe Pang, Qian Liu, Yue Hu, and Si-
heng Chen. Swe-dev: Evaluating and training autonomous feature-driven software development.
arXiv preprint arXiv:2505.16975, 2025b.

Dayuan Fu, Jianzhao Huang, Siyuan Lu, Guanting Dong, Yejie Wang, Keqing He, and Weiran Xu.
Preact: Prediction enhances agent’s planning ability. arXiv preprint arXiv:2402.11534, 2024.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization
through refinement tuning. arXiv preprint arXiv:2501.01702, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yanheng He, Jiahe Jin, Shijie Xia, Jiadi Su, Runze Fan, Haoyang Zou, Xiangkun Hu, and Pengfei
Liu. Pc agent: While you sleep, ai works–a cognitive journey into digital world. arXiv preprint
arXiv:2412.17589, 2024.

11

https://sharegpt.com/
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and
Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal lan-
guage models. Advances in Neural Information Processing Systems, 37:139348–139379, 2024.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Keyu Li, Mohan Jiang, Dayuan Fu, Yunze Wu, Xiangkun Hu, Dequan Wang, and Pengfei Liu.
Datasetresearch: Benchmarking agent systems for demand-driven dataset discovery. arXiv
preprint arXiv:2508.06960, 2025a.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025b.

Yiyuan Li, Shichao Sun, and Pengfei Liu. Frog: Evaluating fuzzy reasoning of generalized quanti-
fiers in large language models. arXiv preprint arXiv:2407.01046, 2024.

Jiaye Lin, Yifu Guo, Yuzhen Han, Sen Hu, Ziyi Ni, Licheng Wang, Mingguang Chen, Hongzhang
Liu, Ronghao Chen, Yangfan He, et al. Se-agent: Self-evolution trajectory optimization in multi-
step reasoning with llm-based agents. arXiv preprint arXiv:2508.02085, 2025.

Haowei Liu, Xi Zhang, Haiyang Xu, Yuyang Wanyan, Junyang Wang, Ming Yan, Ji Zhang, Chun-
feng Yuan, Changsheng Xu, Weiming Hu, et al. Pc-agent: A hierarchical multi-agent collabora-
tion framework for complex task automation on pc. arXiv preprint arXiv:2502.14282, 2025a.

Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
zero: Reasoning-chain guided segmentation via cognitive reinforcement. arXiv preprint
arXiv:2503.06520, 2025b.

Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang, Ran Chen, and Jian Guo. Sql-r1:
Training natural language to sql reasoning model by reinforcement learning. arXiv preprint
arXiv:2504.08600, 2025.

OpenAI. Gpt-5: Language model, 2025. URL https://openai.com/gpt-5. Accessed:
2025-09-22.

Venkatesh Balavadhani Parthasarathy, Ahtsham Zafar, Aafaq Khan, and Arsalan Shahid. The ul-
timate guide to fine-tuning llms from basics to breakthroughs: An exhaustive review of tech-
nologies, research, best practices, applied research challenges and opportunities. arXiv preprint
arXiv:2408.13296, 2024.

Huy Nhat Phan, Tien N Nguyen, Phong X Nguyen, and Nghi DQ Bui. Hyperagent: Generalist
software engineering agents to solve coding tasks at scale. arXiv preprint arXiv:2409.16299,
2024.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Soham Sane. Hybrid group relative policy optimization: A multi-sample approach to enhancing
policy optimization. arXiv preprint arXiv:2502.01652, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Yueqi Song, Tianyue Ou, Yibo Kong, Zecheng Li, Graham Neubig, and Xiang Yue. Visualpuz-
zles: Decoupling multimodal reasoning evaluation from domain knowledge. arXiv preprint
arXiv:2504.10342, 2025.

12

https://openai.com/gpt-5

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Shengyi Huang, Kashif Rasul,
Alvaro Bartolome, Carlos M. Patiño, Alexander M. Rush, and Thomas Wolf. The Alignment
Handbook. URL https://github.com/huggingface/alignment-handbook.

Hanlin Wang, Jian Wang, Chak Tou Leong, and Wenjie Li. Steca: Step-level trajectory calibration
for llm agent learning. arXiv preprint arXiv:2502.14276, 2025a.

Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. Ui-tars-2 technical report: Advancing gui
agent with multi-turn reinforcement learning. arXiv preprint arXiv:2509.02544, 2025b.

Haoran Wang, Zhenyu Hou, Yao Wei, Jie Tang, and Yuxiao Dong. Swe-dev: Building software
engineering agents with training and inference scaling. arXiv preprint arXiv:2506.07636, 2025c.

Weixuan Wang, Dongge Han, Daniel Madrigal Diaz, Jin Xu, Victor Rühle, and Saravan Rajmohan.
Odysseybench: Evaluating llm agents on long-horizon complex office application workflows.
arXiv preprint arXiv:2508.09124, 2025d.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024a.

Yejie Wang, Keqing He, Dayuan Fu, Zhuoma Gongque, Heyang Xu, Yanxu Chen, Zhexu Wang,
Yujia Fu, Guanting Dong, Muxi Diao, et al. How do your code llms perform? empowering code
instruction tuning with high-quality data. arXiv preprint arXiv:2409.03810, 2024b.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via rein-
forcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Yunze Wu, Dayuan Fu, Weiye Si, Zhen Huang, Mohan Jiang, Keyu Li, Shijie Xia, Jie Sun, Tianze
Xu, Xiangkun Hu, Pengrui Lu, Xiaojie Cai, Lyumanshan Ye, Wenhong Zhu, Yang Xiao, and
Pengfei Liu. Innovatorbench: Evaluating agents’ ability to conduct innovative llm research, 2025.
URL https://arxiv.org/abs/2510.27598.

Yu Xia, Yiran Shen, Junda Wu, Tong Yu, Sungchul Kim, Ryan A Rossi, Lina Yao, and Ju-
lian McAuley. Sand: Boosting llm agents with self-taught action deliberation. arXiv preprint
arXiv:2507.07441, 2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Lyumanshan Ye, Xiaojie Cai, Xinkai Wang, Junfei Wang, Xiangkun Hu, Jiadi Su, Yang Nan, Sihan
Wang, Bohan Zhang, Xiaoze Fan, et al. Interaction as intelligence: Deep research with human-ai
partnership. arXiv preprint arXiv:2507.15759, 2025a.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning. arXiv preprint arXiv:2502.03387, 2025b.

13

https://github.com/huggingface/alignment-handbook
https://arxiv.org/abs/2510.27598

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models, 2023.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
ments. arXiv preprint arXiv:2504.03160, 2025.

Muzhi Zhu, Yuzhuo Tian, Hao Chen, Chunluan Zhou, Qingpei Guo, Yang Liu, Ming Yang, and
Chunhua Shen. Segagent: Exploring pixel understanding capabilities in mllms by imitating hu-
man annotator trajectories. In Proceedings of the Computer Vision and Pattern Recognition Con-
ference, pp. 3686–3696, 2025.

Wenhong Zhu, Zhiwei He, Xiaofeng Wang, Pengfei Liu, and Rui Wang. Weak-to-strong preference
optimization: Stealing reward from weak aligned model. arXiv preprint arXiv:2410.18640, 2024.

A DETAILS ABOUT THE TRAINING SET DATA

We create 18 tasks in our training set. The annotators’ workload is similar to (Wu et al., 2025).
Task 3,4,8,9,13-18 use the same background paper as used in InnovatorBench, but their real tasks
are different. Task 3 needs to design an efficient model (use fewer tokens in reasoning), which
is different from avoiding entropy collapse in InnovatorBench. Task 4 and 14-18 use a different
dataset compared with InnovatorBench. Task 8 wants the model to filter the answer instead of just
finding the question, which is used in the InnovatorBench. Task 9 wants the model to design a code
answer quality filter and a diversity filter, but InnovatorBench wants the model to design a code
question complexity filter. Task 13 only uses the search database in search-R1 and asks the agent
to design a workflow, which is hugely different from reward design in InnovatorBench. The other
tasks are using different background papers compared with InnovatorBench. This aligns with our
design principle - the training set data should be different from the original dataset at the task level.

For asynchronous rollout, we use 2 annotators. They were asked to look at the results whenever they
want to make the agent’s performance the best. For example, it can check the result every 6 hours if
the training process is going on but check the result every 10 minutes when the agent is creating the
training script. Similarly, when annotators are sleeping, they don’t need to worry about monitoring,
ensuring the process remains flexible and efficient.

Table 3: The introduction of the training set data

ID Paper Key Description Constrain Research Domains

1 SQL-R1: Training Nat-
ural Language to SQL
Reasoning Model By
Reinforcement Learning
(Ma et al., 2025)

Design, implement, and evaluate a multi-
component reward function for NL2SQL
reinforcement learning to maximize ex-
ecution accuracy on complex queries
using the Qwen2.5-Coder-7B-Instruct
model and BIRD benchmark.

Qwen2.5-Coder-7B-Instruct
design reward function only

16h, 8×80GB GPUs

Reward
Design

Continued on next page

14

http://arxiv.org/abs/2403.13372

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ID Paper Key Description Constrain Research Domains

2 Seg-Zero: Reasoning-
Chain Guided Segmen-
tation via Cognitive
Reinforcement (Liu
et al., 2025b)

Design, implement, and evaluate a novel
multi-component reward function for
RL training of a reasoning segmenta-
tion model (Qwen2.5-VL-7B-Instruct +
SAM2) to maximize gIoU on ReasonSeg
and RefCOCOg benchmarks.

Qwen2.5-VL-7B-Instruct
design reward function only

16h, 8×80GB GPUs

Reward
Design

3 DAPO: An Open-Source
LLM Reinforcement
Learning System at Scale
(Yu et al., 2025)

Design and implement a length-aware
reward function in RL training (based
on Qwen2.5-1.5B and verl) to reduce
reasoning trace length while preserving
or improving mathematical accuracy on
MATH500.

Qwen2.5-1.5B
48h, 8×80GB GPUs

Reward
Design

4 Visual SKETCHPAD:
Sketching as a Visual
Chain of Thought for
Multimodal Language
Models (Hu et al., 2024)

Build a unified GPT-4o–based reasoning
framework to solve graph isomorphism,
function parity, and chess winner tasks,
generating structured JSON outputs for
all test samples with accurate answers
and reasoning.

GPT-4o
12h, 0 GPU

Scaffold
Construction

5 Supergpqa: Scaling llm
evaluation across 285
graduate disciplines (Du
et al., 2025a)

Enhance and fine-tune Qwen2.5-7B-
Instruct with enriched scientific reason-
ing datasets to improve cross-domain
reasoning accuracy, then generate a file
containing final multiple-choice answers
for all test problems.

48h, 8×80GB GPUs
final model trained from

Qwen2.5-7B

Data
Augmentation

6 FRoG: Evaluating Fuzzy
Reasoning of General-
ized Quantifiers in Large
Language Models (Li
et al., 2024)

Enhance Qwen2.5-7B-Instruct through
dataset enrichment and fine-tuning to im-
prove fuzzy reasoning on mathematical
word problems with generalized quan-
tifiers, and evaluate performance on the
test set.

48h, 8×80GB GPUs
final model trained from

Qwen2.5-7B

Data
Augmentation

7 VISUALPUZZLES:
Decoupling Multimodal
Reasoning Evaluation
from Domain Knowledge
(Song et al., 2025)

Enhance Qwen2.5-VL-7B-Instruct
through dataset augmentation and
fine-tuning to improve abstract visual
reasoning on multimodal puzzles and
evaluate accuracy on the test set.

Qwen2.5-VL-7B-Instruct
data construction / training
validation / test inference

48h, 8×80GB GPUs

Data
Augmentation

8 Limo: Less is more
for reasoning (Ye et al.,
2025b)

Develop a problem curation system to
select exactly 800 high-quality math
QA pairs from 4905 candidates, train a
model on them, and maximize reasoning
accuracy on dev/test sets.

fixed training hyperparameter
select 800 QA pairs

48h, 8×80GB GPUs

Data
Filtering

9 How Do Your Code
LLMs Perform? Empow-
ering Code Instruction
Tuning with High-
Quality Data (Wang
et al., 2024b)

Implement a system for selecting high-
quality, diverse code responses based on
quality and complexity scores, and per-
form analysis on the distribution of these
selections for improved model training.

24h, 8×80GB GPUs
Data

Filtering

10 Refinex: Learning to re-
fine pre-training data at
scale from expert-guided
programs (Bi et al., 2025)

Implement a deletion-based cleaning ap-
proach to refine noisy web data by re-
moving irrelevant content while preserv-
ing high-quality portions, without intro-
ducing new vocabulary, and submit the
cleaned dataset for evaluation.

5h, 8×80GB GPUs
high efficiency

Data
Filtering

11 MiniMax-M1: Scaling
Test-Time Compute Ef-
ficiently with Lightning
Attention (Chen et al.,
2025)

Implement a new RL loss function to
maximize mathematical reasoning accu-
racy in training a model using the GRPO
algorithm and evaluate it on a provided
test set.

24h, 8×80GB GPUs
Loss

Design

12 Weak-to-strong pref-
erence optimization:
Stealing reward from
weak-aligned model
(Zhu et al., 2024)

Implement the wspo (Weak-to-Strong
Preference Optimization) algorithm to
transfer alignment from a weak but
aligned model to a strong but not aligned
model, then train and evaluate the model
to maximize performance on a provided
test set.

12h, 8×80GB GPUs
Loss

Design

13 Search-R1: Training
LLMs to Reason and
Leverage Search Engines
with Reinforcement
Learning (Jin et al.,
2025)

Implement a general-purpose search-
augmented question answering workflow
using the Qwen2.5-72B model, which
dynamically decides when to use exter-
nal knowledge retrieval to answer di-
verse questions, ensuring robust and
scalable reasoning.

Qwen2.5-72B
Inference Only

24h, 8×80GB GPUs

Scaffold
Construction

Continued on next page

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

ID Paper Key Description Constrain Research Domains

14 Visual SKETCHPAD:
Sketching as a Visual
Chain of Thought for
Multimodal Language
Models (Hu et al., 2024)

Develop a visual reasoning system using
GPT-4o to solve multimodal perception,
spatial relationship, and semantic corre-
lation tasks with maximum accuracy.

GPT-4o
12h, 1×24GB GPU

Scaffold
Construction

15 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025a)

Create or find Moroccan Darija-to-
English translation datasets, fine-tune
Llama-3.1-8B-Instruct with full param-
eter training, and achieve maximum
BLEU score improvement over baseline.

Llama-3.1-8B-Instruct
dataset discovery / synthesis

48h, 8×80GB GPUs

Data
Construction

16 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025a)

Create or find English-to-Luganda trans-
lation datasets, fine-tune Llama-3.1-8B-
Instruct with full parameter training, and
achieve maximum BLEU score improve-
ment over baseline.

Llama-3.1-8B-Instruct
dataset discovery / synthesis

48h, 8×80GB GPUs

Data
Construction

17 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025a)

Create or find multilingual text classifi-
cation datasets for sentence completion
tasks, fine-tune Llama-3.1-8B-Instruct
with full parameter training, and achieve
maximum accuracy improvement over
baseline.

Llama-3.1-8B-Instruct
dataset discovery / synthesis

48h, 8×80GB GPUs

Data
Construction

18 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025a)

Create or find medical text classification
datasets for yes/no binary classification
tasks, fine-tune Llama-3.1-8B-Instruct
with full parameter training, and achieve
maximum accuracy improvement over
baseline.

Llama-3.1-8B-Instruct
dataset discovery / synthesis

48h, 8×80GB GPUs

Data
Construction

B INTRODUCTION TO INNOVATORBENCH

InnovatorBench (Wu et al., 2025) is a benchmark-platform pair designed to evaluate AI research
agents in realistic, end-to-end Large Language Model (LLM) research workflows. Unlike prior
benchmarks that focus on isolated skills or simplified environments, InnovatorBench emphasizes
integrated research capabilities across multiple stages of LLM development.

B.1 BENCHMARK OVERVIEW AND STATISTICS

InnovatorBench consists of 20 research tasks from 14 influential papers, covering various LLM re-
search areas. Tasks are sourced from top-tier venues, including NeurIPS, ICLR, ACL, etc., ensuring
diverse experimental paradigms and coding practices. The benchmark evaluates AI agents in areas
like data construction, loss design, reward design, and scaffold construction. The InnovatorBench
dataset contains the following:

B.2 TASK DESCRIPTION

Each task is defined by the following components:

• Motivation: The origin and significance of the research question.

• Task: A high-level description of the agent’s objective, and its target.

• Data: Details on the datasets, checkpoints, storage paths, and formats.

• Constraints: Operational limits, such as time and GPU quotas.

• Evaluations: Metrics like accuracy and F1 score, with reference solutions for comparison.

• Environment: Information about the execution environment, including conda setup.

• Scripts: Pre-built helper scripts for data handling, training, and evaluation.

B.3 WORKSPACE

The workspace is a writable directory containing the necessary artifacts for each task:

• Conda Environment: A pre-built conda environment replicating the original paper’s setup.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Data: Datasets and pre-trained model checkpoints for fine-tuning, with options for aug-
menting data.

• Task Directory: The task’s code repository and supplementary scripts for model training
and evaluation.

B.4 EVALUATIONS

Evaluations follow a Kaggle-style procedure with multiple submissions and feedback:

• Submissions are first checked for format validity, with invalid ones scoring 0.
• Valid submissions are scored on a scale from 0 (baseline) to 100 (surpassing reference

solution).
• Scores increase linearly based on performance, with a reference solution as the target.

B.5 BENCHMARK DESIGN

The benchmark consists of 20 tasks covering:

• Data Construction, Filtering, and Augmentation
• Loss and Reward Function Design
• Scaffold Construction

Each task requires the agent to produce runnable artifacts and is evaluated along dimensions such
as correctness, performance, output quality, and uncertainty. Reference implementations exist for
reproducibility, but agents must independently generate their solutions, encouraging creativity and
innovation.

C RESEARCHGYM ENVIRONMENT

To support execution, the InnovatorBench’s authors introduce RESEARCHGYM, a research environ-
ment that provides:

• A rich action space in 5 domains.
• Support for long-horizon and distributed experiments running for hours or days.
• Asynchronous monitoring, process adaptation, and snapshot saving/loading for recovery.

RESEARCHGYM is extensible, enabling the community to contribute tasks, datasets, and protocols,
similar to open platforms like HuggingFace.

D ASYNCHRONOUS SAMPLING ALGORITHM

Algorithm 1 presents the asynchronous sampling algorithm in both client part (part A) and server
part (part B)

E FRONTEND INTERFACE DESCRIPTION

The frontend interface is designed to streamline task management and facilitate smooth interaction
between human annotators and the system. This section offers a detailed breakdown of the interface
layout and its various components, as illustrated by the images below. Since all annotators are
Chinese, we use some Chinese in out UI.

Task Selection Area: The task selection area, depicted in Figure 7, serves as the central hub for
navigating between different tasks. It is represented by a dropdown list, showing various active tasks,
such as “task 2 (active)” which allows the user to easily switch between different tasks. This area
ensures that the annotator can quickly access and monitor any active task, providing an overview of
the task status and progress.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 Asynchronous Sampling Algorithm

Part A: Agent Rollout
Input: initial state s0; policy πθ; environment E ; User channel U ; summarizer Σ(·); context
length L; compression ratio η ∈ (0, 1)

1: τ ← {(o0)}, t← 0
2: Establish a conversation C between U and Agent.
3: while not terminal do
4: if |τ | > ηL then
5: k ← floor(t/2)
6: S1:k ← Σ(τ1:k)
7: τ ← [o0, (S1:k, ok), τk+1:t]
8: t← t− k + 1
9: end if

10: rt+1, at+1 ← πθ(τ)
11: ot+1 ← E(at+1)
12: U ← C(τ, S1:k) ▷ Only send S1:k if summarization is conducted in this turn
13: if UserResponse ̸= ∅ then
14: ot+1 ← ot+1 ⊕ UserResponse
15: end if
16: τ ← τ ∪ {(at+1, ot+1)}
17: t← t+ 1
18: end while

Part B: User Interface Backend for a single conversation
1: Initialize conversation backend B, cache CB, and user interface UB when Agent establishes a

conversation.
2: spawn INGEST:
3: loop
4: u← recvUserInput(UB) ▷ Block until receive user input from frontend
5: CB ← CB ∪ {u}
6: end loop
7: spawn FLUSHONAGENT:
8: loop
9: I ← B() ▷ Block until message arrives from Agent

10: update(UB, I) ▷ If summarization is conducted in this turn, it will also be updated
11: Send concat(CB) to Agent
12: CB ← ∅
13: end loop

Trajectory Display Area: The trajectory display, shown in Figure 6’s left side. This is where
annotators can track the history and progression of the current task. This area displays the full
sequence of actions taken, allowing users to review previous steps and decisions. The functionality
to search and navigate through the history is key for reviewing important milestones or retracing
steps to understand how a decision was made. If the user wants to find the real context input to the
agent in each step, they can click the right upper corner of the action (the eye), it will show the whole
context as shown in Figure 9.

Terminal Display Area: The terminal display area, shown in Figure 6’s right lower side, presents
real-time outputs from the active session, where the system processes commands and executes
scripts. This area includes command lines, errors, and output logs from running processes. The
annotator can monitor each terminal session’s real-time status and check for any issues that might
arise during the execution.

File and Search Display Area: In the file and search display area, as shown in Figure 6, 7,and 8’s
right upper side. annotators have access to a history of file modifications and recent search queries.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: The overall user interface

Figure 7: The task selection in user interface

User Input Area: The user input area, depicted in Figure 8, is where annotators can enter com-
mands at any stage during task execution. This input area supports various user-driven interactions,
such as submitting specific instructions or querying the system.

F ACTION-LEVEL SUPERVISION CONTROL PROMPT

System prompt for action-level supervision control

You are a data quality filter for AI training data. Your task is to evaluate each turn in the agent’s
decision−making process and determine whether it should be kept for training data or filtered out.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: The user input in user interface

Figure 9: Trajectory details display.

CONTEXT INFORMATION:
− The maximum score achievable in this task: {max score}/100 points
− Agent’s highest score achieved before the last summarization: {current score}/100 points
− These scores refer to ‘overall score‘ from evaluation results, measuring task completion quality
− You are evaluating whether each turn demonstrates good decision−making or execution that should
be learned from

YOUR MISSION:
Filter out LOW−QUALITY actions that would degrade model performance if used for training. Keep
HIGH−QUALITY actions that demonstrate good autonomous decision−making and execution.

CRITICAL DISTINCTION − Actions are either:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1. **DECISION−MAKING**: Planning, reasoning, strategizing (evaluate the logic and reasoning
quality)
2. **EXECUTION**: Running commands, training, file operations (evaluate the implementation and
results)

KEY FILTERING PRIORITIES:
1. Remove actions that ignore provided scripts when they should be used

− Example: There is inference.py in the history for answer generation, the agent still want to use
inference new.py in running command for answer generation. The create file action and run
command action should be filtered (set false). (If inference new.py is to rollout data from the
training set, it should be keep.)

2. Remove actions that use transformers directly instead of VLLM for custom inference
− Including the process about both create this script and use this script
− The inference script should use LLM(‘model path‘) (i.e. VLLM) instead of transformers.
from pretrained(‘model path‘) (i.e. transformers)
− Example: In create file action or edit file action the context contains ‘
AutoModelForCausalLM.from pretrained(model path)‘ to filea such action should be filtered.
The run command action with ‘bash filea‘ or ‘python filea‘ should also be filtered.

3. Remove ‘null‘ actions and error−prone actions
4. Remove actions that decrease performance when already at high scores

− Check the action when current score is equal to the max score, if current score is equal to the
max score, most of the action should be set to false

5. Remove blind file modifications without checking current state (Delete any actions that modifies a
file at step i unless its current contents have been inspected at step i−1.)

− Example: turn i: edit file action, turn i+1: edit file action, turn i+1’s action should be filtered.
6. Remove training configurations that underutilize the available compute−for example, when 8
x80GB GPUs are idle, drop configs that use LoRA or restrict training to a single GPU.

− If the command is a training command but it have CUDA VISIBLE DEVICES and the value
is not 0,1,2,3,4,5,6,7; it should be filtered.

7. If there is <real user></real user> input, remove actions not only before the <real user></
real user> input but also violate the <real user></real user>’s context

− Focus on real user’s review, give false to the bad action
8. Use Eval / Finish in inappropriate time (for example call eval just after the last eval without any
change on the output file)
9. Design a CoT format instead of generate CoT via LLM or do not make reject sampling in filtering
CoT.

ESSENTIAL TO KEEP:
− **The ‘sleep‘ actions during training/inference**: These demonstrate proper resource management
and patience

− **Systematic debugging**: Self−directed problem−solving approaches
− **Exploration**: Explore the environment and find the best way to achieve the goal
− **Backup**: Backup the output files to other place with its corrposing score after evaluation, and
select the best output files when you want to finish your task.

EVALUATION APPROACH:
− Consider the <real user></real user> input if provided
− Consider full context: goal, current state, action taken, and outcome
− Value systematic, methodical approaches over ad−hoc solutions
− Prioritize actions showing understanding of training workflows

You should be tolerant to the decision−making actions that are not perfect but still make progress
towards the goal at beginning.
Be strict to the execution action, if the action match the ‘KEY FILTERING PRIORITIES‘ should be
filtered.
Especially focus on run command action, create file action and edit file action and their arguments. (
For example, is ‘from pretrained‘ in the action? What’s the observation of them)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Remember: False = Filter out this training turn, True = Keep this training turn

Tool prompt for action-level supervision control

The judgment result of each turn. The key is the ‘turn id‘, the value is True or False, representing
whether the turn should be kept for training data (True) or filtered out (False).

The ‘judge results‘ should judge each turn in the history. The ‘turn id‘ is ’turn {i}’, ‘i‘ is a string
type number. (The turn is lower case and there is a space between the word turn and the number)
The context inside the context between [Start of Turn i] and [End of Turn i] represents the turn’s ‘i‘
context.

UNDERSTANDING ACTION TYPES:
Actions fall into two categories that should be evaluated differently:

DECISION−MAKING ACTIONS: Planning, reasoning, choosing strategies, deciding what to
do next
EXECUTION ACTIONS: Actually performing tasks like running commands, training models,
file operations

EVALUATION FOCUS:
− **For Decision−Making**: Evaluate the reasoning quality, planning logic, and strategic thinking
− **For Execution**: Evaluate actual implementation quality, error handling, and concrete results
− **Both Types**: Must demonstrate autonomous problem−solving rather than following user
directions

The output of each turn should be a single boolean value representing whether to KEEP (True) or
FILTER OUT (False) this training example.

G THE USE OF LARGE LANGUAGE MODELS

We use LLMs to polish our writing, including summarizing long paragraphs to match ICLR’s re-
quirements. We also use it to generate the table, but the author double-checks all the data in the
table.

22

	Introduction
	Asynchronous Rollout with Guidance for Agent Optimization
	Preliminary
	Markov Decision Process
	ReAct
	Long Context Management

	Human–AI Interaction Interface
	Asynchronous Sampling Algorithm
	Action-Level Supervision Control Mechanism

	Experiments
	Datasets and Baselines
	Main Results
	Ablation Study
	Test-Time Scaling Result
	red Case Study

	Related work
	Conclusion
	Details about the training set data
	Introduction to InnovatorBench
	Benchmark Overview and Statistics
	Task Description
	Workspace
	Evaluations
	Benchmark Design

	ResearchGym Environment
	Asynchronous Sampling Algorithm
	Frontend Interface Description
	Action-Level Supervision Control Prompt
	The Use of Large Language Models

