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ABSTRACT

State-of-the-art models in natural language processing rely on separate rigid sub-
word tokenization algorithms, which limit their generalization ability and adap-
tation to new settings. In this paper, we propose a new model inductive bias that
learns a subword tokenization end-to-end as part of the model. To this end, we
introduce a soft gradient-based subword tokenization module (GBST) that automat-
ically learns latent subword representations from characters in a data-driven fashion.
Concretely, GBST enumerates candidate subword blocks and learns to score them
in a position-wise fashion using a block scoring network. We additionally introduce
CHARFORMER, a deep Transformer model that integrates GBST and operates on
the byte level. Via extensive experiments on English GLUE, multilingual, and noisy
text datasets, we show that CHARFORMER outperforms a series of competitive
byte-level baselines while generally performing on par and sometimes outperform-
ing subword-based models. Additionally, CHARFORMER is fast, improving the
speed of both vanilla byte-level and subword-level Transformers by 28-100% while
maintaining competitive quality. We believe this work paves the way for highly
performant token-free models that are trained completely end-to-end.

1 INTRODUCTION

Neural networks have achieved tremendous success in natural language processing (NLP) by replacing
feature-engineered models with stacks of functions that are learned end-to-end from vast amounts
of data (Mikolov et al., 2013; Peters et al., 2018; Howard and Ruder, 2018). The single component
of the traditional NLP pipeline (Manning and Schütze, 1999) that has so far resisted gradient-based
learning is tokenization, which is commonly applied as a pre-processing step. State-of-the-art
pre-trained language models (Devlin et al., 2019) generally rely on data-driven subword-based
tokenization algorithms (Schuster and Nakajima, 2012; Sennrich et al., 2016; Wu et al., 2016; Kudo
and Richardson, 2018) while expert-crafted segmentation algorithms are still common for languages
without whitespace separation such as Chinese, Thai, and Korean (cf. Lample and Conneau, 2019).

This reliance on rigid tokenization methods introduces a bottleneck into current NLP systems that
limits their capabilities. Subword segmentation algorithms split tokens into subwords solely based on
frequency, without taking into account lexical or semantic similarity. As a result, models are brittle to
rare words (Gong et al., 2018) and perturbations, both natural and adversarial (Belinkov and Bisk,
2018; Pruthi et al., 2019; Sun et al., 2020). In multilingual models, tokens in low-resource languages
are split into many subwords, which impacts performance on those languages and deteriorates cross-
lingual transfer (Hu et al., 2020; Wang et al., 2021). Finally, a separate tokenization algorithm leads to
a mismatch between the pre-training and downstream distribution of words when adapting pre-trained
language models to new settings, which requires significant engineering effort to overcome.

The direct application of character-level modelling into pre-trained language models in turn results in
severely increased computational and memory complexity due to an increased sequence length and
generally lower performance. To address this problem, we propose gradient-based subword tokeniza-
tion (GBST), a new method that combines the compositionality of character-level representations
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with the efficiency of subword tokenization while enabling end-to-end learning. Our method learns
latent subword representations from characters using large amounts of unlabeled data. Specifically,
GBST learns a position-wise soft selection over candidate subword blocks by scoring them with a
scoring network. In contrast to prior tokenization-free methods (Clark et al., 2021), GBST learns
interpretable latent subwords, which enables easy inspection of lexical representations and is more
efficient than other byte-based models (Xue et al., 2021). Given that simply applying a standard
Transformer on a sequence of characters and bytes is computationally prohibitive, GBST paves the
way for usable, practical and highly performant character-level models. A high level overview of how
the GBST module is applied can be found at Figure 3 (Appendix).

We furthermore introduce CHARFORMER, a Transformer encoder-decoder model that uses GBST
to operate directly on the byte level. In addition, we experiment with a re-scaled variant of CHAR-
FORMER, which allocates additional capacity to the encoder to make up for the lack of discrete
subword embeddings.

We evaluate our model on a range of standard and non-standard English, and multilingual downstream
tasks. On English GLUE and long document classification tasks, CHARFORMER outperforms strong
byte-level baselines and overall achieves performance on par with subword-based models such as
BERT (Devlin et al., 2019) and T5 (Raffel et al., 2020). On toxicity detection in social media datasets
(Borkan et al., 2019; Wulczyn et al., 2017), CHARFORMER outperforms byte-level baselines as
well as subword-based models, demonstrating robustness to spelling variation and non-standard
language. Finally, a multilingually pre-trained CHARFORMER performs on par or outperforms strong
subword-based multilingual baselines on standard cross-lingual datasets.

We additionally demonstrate CHARFORMER is more efficient compared to byte-level and subword-
based models with similar numbers of parameters. On a comparable setup, CHARFORMER out-
performs a baseline similar to the recent state-of-the-art byte-level model ByT5 (Xue et al., 2021)
while being 2×more memory efficient and 10–93% faster. CHARFORMER also trains 28% faster than
the subword-level mT5 model (Xue et al., 2020), has 3× fewer parameters and achieves comparable
quality on well-established benchmarks. Finally, we demonstrate via visualization that the latent
subwords learned by CHARFORMER are interpretable to some extent.

2 CHARFORMER

This section introduces our efficient character-level architecture, CHARFORMER. CHARFORMER
is comprised of a Gradient-Based Subword Tokenization (GBST) module, followed by deep Trans-
former layers. The input to the GBST module is a sequence of characters or bytes1, which is then
downsampled to construct latent subwords.

2.1 GRADIENT-BASED SUBWORD TOKENIZATION (GBST)

The input to GBST is a tensor of shape X ∈ RL×d where L is the number of input characters and d is
the character embedding dimension. The key idea behind GBST is for the model to learn to perform
a latent subword segmentation of the input by selecting the most suitable subword block at every
character position. A block is a contiguous span of characters Xi:i+b of length b for 1 ≤ i ≤ L− b.

2.1.1 CONSTRUCTING CANDIDATE LATENT SUBWORD BLOCKS

We first enumerate all possible subword blocks of size b up to a maximum block size M . In
order to learn subword block embeddings, we use a non-parameterized strided pooling function
F : Rb×d → Rd that projects a subword block consisting of a sequence of character embeddings
Xi:i+b ∈ Rb×d to a single subword block representation Xb,i ∈ Rd for block size b at position i. We
compute subword blocks Xb,i with a stride s:

Xb = [F (Xi:i+b);F (X(i+s):(i+s)+b); . . .] (1)

1We choose bytes rather than characters (Unicode code points) as this allows us to use a vocabulary of
256 possible byte values for all settings. We note that for languages with a Latin alphabet, many characters
correspond to a single byte. For other languages, each character corresponds to 2–3 bytes in general. For
simplicity and to align with prior work, we will generally talk about characters unless stated otherwise.
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(a) Formation of subword blocks to be scored by FR.
Offsets and/or pre-GBST convolutions not shown.

(b) Block scores that have been expanded
back to length L. Softmax is taken over block
scores at each position i to form block weights for
constructing latent subword representations.

Figure 1: Illustration of subword block formation and scoring.

In practice we set s = b, thus Xb ∈ RL
b ×d. The construction of latent subword blocks creates a

shorter overall sequence length by downsampling. We construct Xb for b ∈ 1, . . . ,M , which can be
seen in Figure 1 for M = 4.

Considering Offsets A limitation of a strided implementation is that it is unable to model all
possible subword windows. For instance, for the character sequence [a, b, c, d] we would only be able
to allocate [a, b] and [c, d] as subword blocks of length b = 2 and would ignore the subword block
[b, c]. Offsets can be used to model sliding windows of all possible subword blocks. We consider
enumerating all possible strided blocks by additionally shifting sequences up until the offset s. As this
increases computation, we instead propose to first apply a 1D convolution to X , prior to enumerating
subword blocks. This effectively “smoothes” over the subword blocks. We use the variant with 1D
convolutions in our main experiments and provide additional ablations in §8.3 of the Appendix.

Considering Intra-block Positions It is important to preserve the ordering of the characters within
the block Xi, Xi+1, . . . , Xi+b. E.g., the output of F should differ for the blocks abc and bca. For
certain choices of F it may be valuable to add a positional embedding (Vaswani et al., 2017) to
Xi:i+b before applying F . Note that this positional embedding would only be for individual blocks,
and is not global to the entire input sequence. That is, only positional embedding values for positions
1, . . . , b would be used. However, in practice we apply a 1D convolution before the GBST layer and
use the mean-pooling function for F . We find this to be sufficient to distinguish between same sized
blocks with different character orders.

2.1.2 BLOCK SCORING NETWORK

In order to allow the model to learn which block to select for every character position, we introduce
a block scoring network. The block scoring network is simply a parameterized function FR(.) that
produces a score for each candidate block. Given a subword candidate block Xb,i ∈ Rd, we compute
a score pb,i associated with the block using a simple linear transformation FR : Rd → R:

pb,i = FR(Xb,i) (2)

We perform ranking of subword blocks with regard to each character position in the original sequence.
At every position i, the model learns to select the most suitable subword block Xb,i among all
block sizes 1 ≤ b ≤ M . As each sequence of subword blocks Xb is downsampled, we realign the
representations of the subword blocks by upsampling each Xb to its original sequence length L.
Specifically, for a block size of b, we replicate each block representation Xb,i b times. We then score
each candidate block at each position i using the softmax function:

Pi = softmax([p1,i, p1,i, · · · , pM,i]), (3)

which computes a relative score of each candidate block at each position and Pi ∈ RM . We show the
scoring of realigned blocks in Figure 1.
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2.1.3 FORMING LATENT SUBWORDS

We then sum the representations of all subword blocks Xb,i at each position i multiplied by their
learned probability Pb,i to form a latent subword representation X̂i ∈ Rd:

X̂i =

M∑
b

Pb,iXb,i (4)

Intuitively, the model learns an ideal subword block for each position. In contrast to standard
deterministic subword tokenization algorithms, this selection is soft and can thus consider different
possible segmentations at every position i. In general, however, this formulation still assumes that
subwords are contiguous sequences of characters. While additional context can be considered via the
convolutions in §2.1.1, non-concatenative morphology where morphemes are discontinuous may be
harder for the method to model.2

2.1.4 POSITION-WISE SCORE CALIBRATION

In the above approach, the scoring of each position is independent of other positions. We hypothesize
that it may be beneficial for block scores at each position to be aware of each other. To this end, we
introduce an optional module that enables learning a consensus among block scores by calculating
dot products across the scores Pi across all positions i ∈ [1, L]. This can be viewed as a form of
self-attention across block scores, albeit without any projections for computational efficiency. To
learn the new scores P̂ ∈ RL×M , we compute P̂ = softmax(PP>)P.

2.1.5 DOWNSAMPLING

After learning a candidate block or mixture of blocks for each position, we use a downsampling func-
tion FD : RL×d → R

L
ds
×d that downsamples the sequence of latent subwords X̂ = [X̂1, . . . , X̂L] to

X̃ , reducing its sequence length by a factor of ds. We choose FD to be a non-parameterized mean
pooling operation. Notably, such simple stride-based pooling removes potential redundancies caused
by adjacent positions selecting similar blocks as the mean pool of two identical block embeddings
produces the same outcome. Intuitively, as the downsampling operation is fixed, the parameterized
components preceding it should learn an optimal subword tokenization given the downsampling.

2.2 TRANSFORMER STACK

The remainder of the CHARFORMER model remains identical to a regular Transformer encoder-
decoder model. The Transformer stack operates on the downsampled latent subwords X̃ instead of
subword embeddings.

Re-scaling of the Transformer Stack While subword-based models allocate much of their capacity
to subword embeddings—up to 71% of all parameters for contemporary multilingual models (Chung
et al., 2021)—, the character vocabulary of character-level models is much smaller and thus less
expressive. Similar to Xue et al. (2021), we hypothesize that character-level models require deeper
encoder stacks than subword-based models to make up for their smaller embedding capacity. Conse-
quently, we explore a scaling variant of CHARFORMER that puts more parameters at the encoder at the
expense of the decoder while preferring a deep narrow model over a larger wide model. Specifically,
we re-configure the Base model size to be similar to the T5 Small model size, with an expanded
24 layers in the encoder. The resulting CHARFORMERSBase (Scaled Base) has 134M parameters,
which is about 67% the parameter footprint of the standard base T5 model (200M parameters; Raffel
et al., 2020). Moreover, this particular CHARFORMER model is approximately 50-100% faster than
the T5 base model (see §4).3 For the re-scaled variant, we also used the GLU variant described in
(Shazeer, 2020) which is commonly referred to as the V1.1 variant in the T5 library.

2Future work could explicitly seek to model discontinuous morphological processes by considering skip-
grams in addition to character n-grams, although this would increase computational costs.

3The benefits of such re-scaling have also been observed for subword-based encoder-decoder neural machine
translation models (Devlin, 2017; Kasai et al., 2021).
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A Note on Comparing Character-level and Subword-based Methods Prior work on efficient
methods generally compares models with the same number of parameters (Chung et al., 2021).
However, whereas embedding look-up even with large vocabularies in subword-based methods is
O(1), re-distributing the subword embedding parameters in character-level models such as ByT5
(Xue et al., 2021) to dense layers incurs much higher computational costs—a 25% penalty in training
speed. We believe that a fair re-scaling of character-level models should not only aim to match the
number of parameters but also the compute and inference costs of subword-based models under the
assumption that char/byte-level models will require longer sequences (see §4 for a comparison).

Span-based Pre-training Our pre-training scheme follows T5 quite closely. We maskN contiguous
characters and train to predict them in a sequence-to-sequence architecture following Xue et al. (2021).
The model optimizes the cross-entropy loss and is trained with teacher forcing.

3 EXPERIMENTS

We evaluate our method both in English as well as in a multilingual setting on relevant benchmarks
and compare against state-of-the-art character-level and subword-based methods.

3.1 EXPERIMENTS ON MONOLINGUAL ENGLISH DATASETS

Data To showcase the effectiveness of the proposed method, we evaluate on a diverse set of standard
English tasks from GLUE covering sentiment classification (SST-2; Socher et al., 2013), natural
language inference (MNLI, QNLI; Williams et al., 2018; Rajpurkar et al., 2016), paraphrase detection
(Dolan and Brockett, 2005, MRPC, QQP) and sentence similarity (Cer et al., 2017). In addition, we
evaluate on tasks that require dealing with long documents, both for sentiment analysis (IMDb; Maas
et al., 2011) and news classification (AGNews; Zhang et al., 2015).

Baselines We compare CHARFORMER against the following state-of-the-art subword-based models:
BERT (Devlin et al., 2019), an encoder-only pre-trained masked language model; and T5 (Raffel
et al., 2020), an encoder-decoder model. We also compare against Byte-level T5 (Xue et al., 2021), a
T5 model that is directly applied to bytes. We additionally evaluate the impact of the downsampling
in CHARFORMER by comparing it to the downsampling used by the character-level CANINE (Clark
et al., 2021) model in our framework. CANINE downsamples a character sequence using local
attention and pooling via strided convolutions. As the original CANINE uses an encoder-only model
and was only trained on multilingual data, we integrate CANINE-style downsampling into Byte-level
T5, which we refer to as Byte-level T5+LASC (local attention–strided convolution).4 As an ablation
for the GBST inductive bias, we compare against Byte-level T5+ConvBase a convolutional baseline
of Byte-level T5 with a 1D convolution of filter size 5 placed before the encoder. Note that in all the
baselines and for CHARFORMER base models, in the spirit of fair comparison, we compare them at
an equal parameterization (size). Our scaling experiments are reserved for our SBase models, which
is intended to only be compared with subword T5 models, and not to unscaled byte-level baselines.
Finally, we include an SBase scaled version of Byte-level T5 for comparison.

Setup We evaluate Base and SBase configurations of CHARFORMER with 203M and 134M
parameters respectively. We compare to Base configurations of BERT and T5 that have a similar
number of parameters. We pre-train all models on the C4 corpus for 1M steps using a batch size
of 64 and sequence length of 1024. All non-subword models use a vocabulary of 256 bytes.5 Our
pre-training scheme corrupts spans with a mean length of 20 bytes. Each model is pre-trained on 16
TPU V3 chips. We pre-train our models with the Adafactor optimizer with an inverse square root
learning rate. We then fine-tune on each individual task separately using a constant learning rate of
10−3. More details can be found in the Appendix.

4Compared to CANINE, Byte-level T5+LASC does not operate on Unicode codepoints and has a decoder. It
thus forgoes character hash embeddings and upsampling procedures respectively.

5Following Xue et al. (2021) we discard illegal UTF-8 sequences and reuse the final 100 byte IDs as sentinel
tokens.
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Table 1: Comparison of CHARFORMER against other subword and character-level models with
different parameter sizes on diverse standard English datasets.

Model |θ| SST-2 MNLI QNLI MRPC QQP STSB COLA AVG

BERTBase,Subword 110M 92.7 84.4/- 88.4 86.7/- - - - -
T5Base,Subword 220M 92.7 84.2/84.6 90.5 88.9/92.1 91.6/88.7 88.0 53.8 84.3

Byte-level T5Base 200M 91.6 82.5/82.7 88.7 87.3/91.0 90.9/87.7 84.3 45.1 81.5
Byte-level T5+ConvBase 205M 89.8 81.1/82.5 89.2 83.6/89.2 90.7/87.7 85.0 47.1 81.2
Byte-level T5+LASCBase 205M 90.0 80.0/80.8 87.1 82.8/88.1 89.0/85.4 83.7 25.3 77.0
CHARFORMERBase 203M 91.6 82.6/82.7 89.0 87.3/91.1 91.2/88.1 85.3 42.6 81.4

Byte-level T5SBase 133M 91.2 83.9/83.7 90.9 85.5/89.2 91.1/88.1 85.7 49.3 82.6
CHARFORMERSBase 134M 91.5 83.7/84.4 91.0 87.5/91.4 91.4/88.5 87.3 51.8 83.6

Table 2: Results on comment classification on Civil Com-
ments and Wiki Comments. Metrics are accuracy and
AUC-PR. T5 baseline results are from (Tay et al., 2021).

Model Civil Comments Wiki Comments

T5Base,Subword 81.2 / - 91.5 / -

Byte-level T5Base 82.8 / 78.7 93.2 / 75.4
Byte-level T5+LASCBase 82.9 / 78.2 93.0 / 75.0
CHARFORMERBase 83.0 / 78.8 92.7 / 79.7

CHARFORMERSBase 83.0 / 78.9 93.5 / 75.5

Table 3: Results on text classification on
long documents.

Model IMDb News

T5Base,Subword 94.2 93.5

Byte-level T5Base 91.5 93.6
Byte-level T5+LASCBase 91.1 93.5
CHARFORMERBase 91.5 94.0

CHARFORMERSBase 94.4 94.1

Results For all result tables, we divide the table into three sections: subword baseline(s), un-scaled
byte-level baselines, and scaled CHARFORMER results. If a section and task combination has more
than one model result, we underline the best result. We show result for GLUE in Table 1. CHAR-
FORMER outperforms other character-level baselines trained under the same conditions with the same
number of parameters across all tasks, while being considerably faster and requiring less compute
than T5-style models that are directly applied to bytes or characters (see §4). CHARFORMERSBase

performs even better despite having a smaller number of parameters compared to the Base configu-
ration, demonstrating the usefulness of rescaling the transformer stack for character-level models.
CHARFORMERSBase furthermore is the only model that performs on par or even outperforms the
standard subword-based models on some tasks in standard English. In Table 3 we provide results
for text classification of long documents. Here, CHARFORMERSBase is the only byte-level model
to outperform T5Base,Subword on the IMDb classification task, and both CHARFORMER models
outperform byte and subword level baselines on AGNews.

3.2 EXPERIMENTS ON NON-STANDARD ENGLISH DATASETS

The previous set of experiments demonstrated the ability of CHARFORMER to perform well on clean
datasets consisting of standard English. However, character-level models are particularly suited to
data that is noisy, containing spelling variations, typos, and other non-standard language.

Data To demonstrate CHARFORMER’s ability to perform well on such data, we evaluate on toxicity
detection using the Civil Comments (Borkan et al., 2019) and the Wikipedia Comments (Wulczyn
et al., 2017) datasets. Both are standard benchmarks that require estimating the toxicity of user-
generated content. We use the same setup as for the standard English datasets.

Results We show results in Table 2. Character-level models outperform the subword-based T5
model on both datasets, demonstrating their suitability to deal with such noisy, user-generated data.
CHARFORMER achieves performs on par or outperforms other character-level methods on both
datasets across the different model sizes.

3.3 MULTILINGUAL EXPERIMENTS

Data To evaluate the effectiveness of character-level models on multilingual data, we evaluate on
standard cross-lingual question answering and classification tasks. In particular, we evaluate on the
question answering tasks TyDiQA-GoldP (Clark et al., 2020), XQuAD (Artetxe et al., 2020), and
MLQA (Lewis et al., 2020) as well as the natural language inference task XNLI (Conneau et al., 2018)
and the paraphrase detection task PAWS-X (Yang et al., 2019) from XTREME (Hu et al., 2020). We
evaluate on the in-language multi-task setting for TyDiQA-GoldP (Clark et al., 2020) where models
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Table 4: Multilingual comparison of CHARFORMER against subword and byte-level models on
in-language multi-task, translate-train multi-task, and cross-lingual zero-shot (training on English)
settings. Model sizes are the same as those in Table 1. mBERT and mT5 baseline results are from
(Xue et al., 2020).

In-Language Translate-Train-All Zero-Shot

Model |θ| TyDiQA-GoldP XQuAD MLQA XNLI PAWS-X XNLI PAWS-X

mBERTBase (Subword) 179M 77.6/68.0 -/- -/- - - 65.4 81.9
mT5Base (Subword) 582M 80.8/70.0 75.3/59.7 67.6/48.5 75.9 89.3 75.4 86.4

Byte-level T5Base 200M 75.6/65.4 68.6/54.3 61.8/44.4 69.4 87.1 57.4 80.9
Byte-level T5+LASCBase 205M 70.6/59.7 66.8/52.1 58.8/41.1 67.9 84.8 55.2 79.0
CHARFORMERBase 203M 75.9/65.6 70.2/55.9 62.6/44.9 71.1 87.2 57.6 81.6

CHARFORMERSBase 134M 79.1/68.8 73.6/59.0 66.3/48.5 72.2 88.2 66.6 85.2
CHARFORMERSBase,LongPT 134M 81.2/71.3 74.2/59.8 67.2/49.4 72.8 88.6 67.8 83.7

Table 5: Comparison of pre-training compute metrics for mT5 (Subword) versus comparable qual-
ity CHARFORMER models on the mC4 dataset. 64 TPUv3 chips were used for this experiment.
CHARFORMERSBase sees the same number of tokens after downsampling as mT5Base, while
CHARFORMERSBase,LongPT roughly sees the same amount of raw text as mT5Base, given that a
SentencePiece subword token is about 4.1 bytes on average (Xue et al., 2021). CHARFORMERSBase

is 28% faster than mT5Base, while using 33% of the FLOPS.
Model Batch Size L ds |θ| Speed (steps/s) FLOPS

mT5Base (Subword) 1024 1024 - 582M 1.54 1.3× 1015

CHARFORMERSBase 1024 2048 2 134M 1.98 4.3× 1014

CHARFORMERSBase,LongPT 2048 2048 2 134M 1.01 4.3× 1014

are fine-tuned on the combined gold data in all target languages and the translate-train-all setting
where models are fine-tuned on English training data plus translations in all target languages for the
other datasets. Both are the best-performing settings for the respective tasks in (Hu et al., 2020). In
addition, we evaluate on zero-shot cross-lingual transfer from English on XNLI and PAWS-X.

Baselines We compare to strong multilingual subword-based baselines including multilingual BERT
(Devlin et al., 2019) and multilingual T5 (Xue et al., 2020). In addition, we compare to the byte-level
models from §3.1, which we pre-train on multilingual data.

Setup We pre-train CHARFORMER as well as the Byte-level T5 and Byte-level T5+LASC baselines
on multilingual mC4 Common Crawl (Xue et al., 2020) in 101 languages. Base size models were
trained for 1M steps using a batch size of 64 and sequence length of 2048, with the exception
of Byte-level T5Base, which was trained with a sequence length of 1024, as training speed was
prohibitively slow (see Table 11). CHARFORMERSBase and CHARFORMERSBase,LongPT (longer
pre-training) are trained with larger batch sizes for fair comparison with mT5. In particular, CHAR-
FORMERSBase pre-trains on the same amount of tokens after downsampling as mT5Base, while
CHARFORMERSBase,LongPT pre-trains on roughly the same amount of raw text as mT5Base, given
that a SentencePiece subword token is about 4.1 bytes on average (Xue et al., 2021); see Table 5
for further details. All models were fine-tuned with an input sequence length of 4096 for question-
answering tasks and 2048 for inference tasks. Score calibration was not used for these experiments,
as it did not benefit the model in the multilingual setting. For XNLI and PAWS-X (both translate-train
and zero-shot settings), we also observed that performance improved if the GBST layer was not
updated during fine-tuning; the reported CHARFORMER numbers reflect this configuration. Otherwise,
all other hyper-parameters and model sizes are unchanged from the English experimental setup.

Results We show in-language multi-task, translate-train, and cross-lingual zero-shot results in
Table 4. CHARFORMERSBase is competitive with standard subword-based models and CHAR-
FORMERSBase,LongPT outperforms subword-based models on TyDiQA-GoldP (in-language multi-
task). Additionally, in the translate-train setting CHARFORMERSBase,LongPT is on par with subword
models on XQuAD and MLQA, and close to parity on PAWS-X. Furthermore, CHARFORMER
outperforms other character-level models in the zero-shot setting. However, we observe that this
setting still remains a challenge for token-free models in general. We hypothesize that model size
may be a major factor here. Finally, we provide additional comparison between GBST and LASC at
a fixed down-sampling rate in Section 8.4 (Appendix), showing that GBST significantly outperforms
LASC on TyDiQA.
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Table 6: Pre-training compute metrics of models at different input lengths, downsampling rates,
and model sizes on the English C4 dataset. 16 TPUv3 chips were used for this experiment. These
numbers reflect a batch size of 64. Memory refers to per-device peak memory usage on TPUv3 chips.

Model L ds |θ| Speed (steps/s) FLOPS Peak Mem.

T5Base (Subword) 512 - 220M 9.3 1.1× 1013 -

Byte-level T5Base 1024 1 200M 8.2 2.9× 1013 3.09GB
Byte-level T5+LASCBase 1024 4 205M 15 9.9× 1012 1.62GB
CHARFORMERBase 1024 2 206M 11 1.6× 1013 1.95GB
CHARFORMERBase 1024 3 203M 15 1.1× 1013 1.63GB
CHARFORMERSBase 1024 2 134M 14 1.3× 1013 1.73GB
CHARFORMERSBase 1024 3 134M 20 8.7× 1012 1.34GB

Figure 2: Visualization of block scores (softmax weights) for every byte position from multilingual
CHARFORMERSBase on an example English input.

4 SPEED, MEMORY AND PARAMETERS

Table 6 reports the speed (global training steps per second), parameter sizes and number of float-
ing point operations (FLOPS) for each forward pass of the models used in our experiments. All
experiments were run on 16 TPU-v3 chips and speed is benchmarked on English C4 pre-training
at the 1K input length (L). CHARFORMER models are generally more efficient both in terms of
speed and FLOPS compared to other character-level models at different parameter sizes. With a low
down-sampling rate ds for CHARFORMER, Byte-level T5+LASC is more efficient due to using a
higher down-sampling rate. Directly consuming the character sequence with a Transformer model
is slow and requires a large number of FLOPS, which is exacerbated with longer sequence lengths
where Byte-level T5 is more than 2× slower than the fastest CHARFORMER. This difference is even
larger at longer input sequence lengths, which we report in the Appendix. CHARFORMERSBase

achieves better performance (see §3) with fewer parameters but more FLOPS by using a deep thin
encoder and is twice as fast as the subword-based model with similar performance, T5Base.

5 VISUALIZING LATENT SUBWORDS

One benefit of CHARFORMER compared to other character-level methods is that the subwords it
learns are directly interpretable and may give some indications to the behaviour of the underlying
model. We visualize the scores the multilingual CHARFORMER has learned to assign to subword
blocks of different sizes for the string ‘on subword tokenization’ in Figure 2. We observe that the
model learns to allocate single-character subword blocks predominantly to vowels and whitespace in
English. Moreover, in English the model allocates larger subword blocks to the beginning and end
consonants of a subword. Together, we believe this suggests that the model has learned a meaningful
segmentation of the input, and that it is able to dynamically mix between byte-level and subword-level
features. Such behaviour could also parallel the relative importance attributed to consonants for word
identification observed during reading in humans (Lee et al., 2001; Carreiras et al., 2008).

6 RELATED WORK

Subword tokenization Standard algorithms for deterministic subword tokenization are Byte Pair
Encoding (BPE; Sennrich et al., 2016), Wordpiece (Wu et al., 2016), and SentencePiece (Kudo
and Richardson, 2018). Prior work has highlighted issues with some of these algorithms (Bostrom
and Durrett, 2020) and has generally observed that models learned with such rigid tokenization
do not cope well with variation in language (Sun et al., 2020). To make a model more robust to
morphological and compositional generalization, probabilistic segmentation algorithms such as
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subword regularization (Kudo, 2018) and BPE-dropout (Provilkov et al., 2020) have been proposed,
which sample different segmentations during training. Recent methods propose to make models
more robust for downstream tasks by enforcing prediction consistency between deterministic and
probabilistic segmentations (Wang et al., 2021) and propose to update the tokenizer based on the
downstream loss under different segmentations (Hiraoka et al., 2020; 2021). He et al. (2020)
proposed DPE (dynamic programming encoding), a segmentation-based tokenization algorithm based
on dynamic programming. Such methods, however, incur large computation costs due multiple
forward passes needing to be performed for each segmentation of an example or due to the expensive
DP computation, which make them unsuitable for pre-training.

Character-level models For recurrent neural networks, pure character-level models that take a
sequence of characters as input (Graves, 2013; Zhang et al., 2015; Hwang and Sung, 2017) have
mostly been superseded by character-aware methods that compute a token-level representation using
a CNN over characters (Kim et al., 2016; Jozefowicz et al., 2016; Peters et al., 2018) due to poor
performance when learning directly from characters. Such character-aware representations have
lately been applied to deep Transformer models (El Boukkouri et al., 2020; Ma et al., 2020). These
methods, however, still require tokenization for pre-processing and cannot be directly applied to
languages without whitespace separation. Prior work also learned segmentation as part of the model
but did not scale very well (Wang et al., 2017; Kreutzer and Sokolov, 2018; Kawakami et al., 2019).
One notable exception is (Lee et al., 2017), which enabled fully character-level neural machine
translation, using stacked convolutions, max pooling, and highway networks. Building on this, recent
tokenization-free approaches such as CANINE (Clark et al., 2021) revisit the original character-level
setting in the context of large pre-trained language models with a focus on multilingual models.
Our method outperforms CANINE-style downsampling (local attention, strided convolutions) and
also leads to improvements in the monolingual setting, while using less compute and parameters to
down-sample than both Lee et al. (2017) and Clark et al. (2021). Recently, ByT5 (Xue et al., 2021)
set new start-of-the-art results for tokenization-free models, by operating on the byte-level. This work
performs on par with or outperforms ByT5, with significant gains in speed and compute efficiency.

Multilingual models Current multilingual models are generally analogues to successful monolingual
Transformer models (Ruder et al., 2021). Consequently, models such as multilingual BERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020) employ the same subword tokenization algorithms as
monolingual models, now applied to a massively multilingual corpus. In the multilingual setting, the
problems of subword-based tokenization are exacerbated as tokens in languages with few data are
over-segmented while high-frequency tokens are under-segmented, which limits cross-lingual transfer
(Wang et al., 2021). This motivates our work as well as recent work on character-level models.

Efficient Transformers Moving from subwords to characters significantly increases the sequence
length, which is an issue for Transformers due to the quadratic complexity of self-attention. Many ef-
ficient self-attention models have been proposed (Choromanski et al., 2020; Wang et al., 2020; Zaheer
et al., 2020) to tackle this problem; see (Tay et al., 2020b;a) for a comprehensive overview. Notably,
the CANINE model uses local attention (Parmar et al., 2018), which could also be swapped with
another efficient Transformer variant. We note that the problem of efficiency is important but not the
only challenge towards developing performant tokenization-free models. While applying an efficient
attention mechanism might solve the fundamental computational costs of employing character-level
models, there is no guarantee that these models will learn locally meaningful compositions.

7 CONCLUSION

We have proposed CHARFORMER, a re-scaled Transformer architecture that integrates gradient-based
subword tokenization, a novel lightweight tokenization method that enables efficient end-to-end
learning of latent subwords directly from characters. We have demonstrated that English and
multilingual variants of CHARFORMER outperform strong character-level baselines across various
datasets while being more efficient. CHARFORMER achieves performance on par with subword-based
models on standard English tasks and outperforms subword-based models on noisy social media
data. On multilingual data, CHARFORMER generally performs on par with subword-based models,
while being faster than both byte-level and subword-level baselines. Finally, we provide a method to
inspect the inner workings of the GBST module. Overall, we believe that the strong results presented
in this paper pave the way for highly effective and powerful token-free models.
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ETHICS STATEMENT

Standard subword tokenization algorithms produce segmentations that do not equally represents
words and phrases in different languages. Instead, they are biased towards languages that already
have many resources available, which leads to multilingual models performing worse on under-
represented languages (Wang et al., 2021). Tokenization-free approaches such as the one proposed in
this paper may help to ameliorate this to some extent. Another challenge to using large multilingual
models in practice is their relative computational inefficiency, which makes them unsuitable in
resource-constrained settings common in scenarios where under-represented languages are spoken.
CHARFORMER trains 28% faster than mT5 and has 3× fewer parameters, so may be a more suitable
choice in such settings compared to state-of-the-art multilingual models.

REPRODUCIBILITY STATEMENT

All code to train the core byte-level Transformer encoder-decoder for CHARFORMER its variants
is already open-sourced as a part of the Mesh Tensorflow6 (Shazeer et al., 2018), T57 (Raffel et al.,
2020), and ByT58 (Xue et al., 2021) libraries. Additionally, an implementation of Charformer GBST
compatible with existing open-source models has been open-sourced9. We also include a simplified
Tensorflow implementation of GBST in Section 8.7 of the Appendix. All detailed experiment and
hyperparameter settings required to reproduce our experiments can be found in Section 8.2 of the
Appendix.
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8 APPENDIX

8.1 OVERVIEW

Figure 3: High-level differences between traditional subword Transformer models and Charformer
which uses gradient-based subword tokenization.

8.2 HYPERPARAMETERS

This section describes the hyperparameters that we use in our experiments.

Monolingual English Datasets Our small model follows the T5 small model size with 6 encoder
layers and 6 decoder layers, hidden size dmodel of 512, 8 heads, dkv of 32 and dff of 2048. This
corresponds to bi_v1_small.gin in the T5 codebase. The base model (corresponding to bi_v1.gin) has
12 encoder layers, 12 decoder layers, dmodel of 768, dff of 3072 and 12 heads. The SBase model has
24 encoder layers and 6 decoder layers, while the remainder of its hyperparameters remain identical
to the small model. All Transformer stacks use relative attention over positional encodings as per
(Raffel et al., 2020). For pre-training, we run our models for 1M steps on C4 with a batch size of
64. The maximum sequence length for all tasks is set to 1024. TPU packing is not activated for
Charformer. For Charformer, the filter size of the pre-GBST convolution is set to 5 by default. For
CHARFORMER, the downsampling rate is tuned in the range of {2, 3, 4}. For smaller models, the rate
of 2 seems to work consistently the best. For base models, the best models used a downsampling rate
of either 2 or 3. For the SBase models, the optimal downsampling rate was often 3.

Multilingual Datasets Hyperparameters are kept constant between English and multilingual tasks
except for the following differences. For pre-training, we run our models for 1M steps with a
batch size of 64, except for CHARFORMERSBase which uses a batch size of 1024 and CHAR-
FORMERSBase,LongPT which usees a batch size of 2048. Models were pre-trained with a maximum
sequence length of 2048 and fine-tuned with a maximum sequence length of 4096 for TyDiQA,
XQuAD, and MLQA, and 2048 for XNLI and PAWS-X. Byte-level T5Base was the only model to
be pre-trained with a maximum sequence length of 1024, as it was prohibitively slow, see Table 11.
Fine-tuning and inference for this model, however still used 4096 and 2048 input lengths identical to
other models. For all tasks, CHARFORMER models used a downsampling rate of 2, while Byte-level
T5+LASC models used a downsampling rate of 4 (Clark et al., 2021). The downsampling rate of 2
was picked by ablating the downsampling rate on the TyDiQA-GoldP validation set. CHARFORMER
models for XNLI and PAWS-X additionally did not back-propagate into the GBST layer during
fine-tuning. Checkpoints were picked based on the dev set metrics, and then evaluated on test set.
Reported metrics represent the macro-average of all languages in the task.
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8.3 ABLATION STUDY

This section presents our ablation experiments for both English and multilingual tasks. We analyze the
impact of various hyper-parameters and modeling choices such as using offsets vs 1D convolutions.
Across experiments, we find that pre-GBST convolutions are preferred to enumerating offset blocks,
as it results in similar (or better) quality but a more efficient implementation. For English tasks, block
score calibration (BC) improves performance. We note that in the multilingual setting, block score
calibration has little effect. The impact of different downsampling rates varies across tasks and model
sizes. We also experimented with different convolution filter sizes in English and found that they
did not significantly impact performance. Likewise, using a different character span corruption rate
during pre-training did not significantly impact performance. Adding feed-forward layers to the
CHARFORMER module in similar fashion to a Transformer block was also not obviously helpful.

Table 7: Ablation studies with CHARFORMERSmall on English tasks.
Ablation ds Size SST-2 MNLImm IMDb

Offsets 2 S 89.11 79.50 90.49
Conv 2 S 89.11 79.65 90.63
Conv + BC 2 S 89.56 80.15 90.60
Conv + Offsets + BC 2 S 89.11 79.68 90.48

Conv 3 S 89.45 80.07 90.15
Conv 4 S 89.11 79.82 90.21

Conv 2 B 90.60 82.92 91.46
Conv 3 B 91.40 82.74 91.46
Conv 4 B 91.40 82.67 92.33

Table 8: Effect of freezing the GBST layer for XNLI and PAWS-X.
Model ds Freeze GBST XNLI (Zero) XNLI (Translate) PAWS-X (Zero) PAWS-X (Translate)

CHARFORMERSmall 2 No 44.5 62.7 27.9 37.5
CHARFORMERSmall 2 Yes 50.9 68.7 77.1 84.8
CHARFORMERSmall 3 No 47.9 67.9 29.5 36.8
CHARFORMERSmall 3 Yes 43.2 68.6 77.8 83.7
CHARFORMERSmall 4 No 47.5 47.5 30.9 36.9
CHARFORMERSmall 4 Yes 43.6 43.6 77.9 83.5

8.4 COMPARING DOWNSAMPLING APPROACHES

In Table 10, we compare GBST downsampling with LASC downsampling (Clark et al., 2021) on
TyDiQA-GoldP. For this experiment we use the same hyperparameters as in Section 3.3, except the
pre-training input length is 1024 instead of 2048. Note that this difference is negligible (0.1 F1) for
CHARFORMERBase, ds = 2 which also appears in Table 4. All hyperparameters are fixed between
CHARFORMER and Byte-level T5+LASC. Following (Clark et al., 2021) we set ds = 4 for LASC,
and we compare CHARFORMER at the same downsampling rate. We additionally include ds = 2 and
ds = 3 for CHARFORMER for comparison. With the same hyperparameters and downsampling rate,
CHARFORMER outperforms Byte-level T5+LASC on TyDiQA-GoldP.

Table 9: Effect of ds on TyDiQA-GoldP (in-language multi-task).
Model ds TyDiQA-GoldP F1

CHARFORMERSmall 2 69.6
CHARFORMERSmall 3 68.1
CHARFORMERSmall 4 66.6
Byte-level T5+LASCSmall 4 64.9

CHARFORMERBase 2 75.8
CHARFORMERBase 3 74.3
CHARFORMERBase 4 73.2
Byte-level T5+LASCBase 4 70.6
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8.5 LARGE-SCALE EXPERIMENTS

In this section we report preliminary results for scaling Charformer using the same number of
parameters as mT5Large and ByT5Large (1.23B). We follow a model scaling configuration identical
to ByT5 in these experiments, and use the same hyperparameter settings as our main multilingual
results.

Table 10: Comparison on TyDiQA at 1.23B parameters. *Due to resource constraints, the Charformer
result below uses ∼100K less pretraining steps than ByT5 and mT5.

Model TyDiQA-GoldP F1 / EM

mT5Large 85.3 / 75.3
ByT5Large 87.7 / 79.2
CHARFORMER* 86.3 / 77.3

Results The CHARFORMER model under the same scaling as ByT5Large was able to outperform
mT5Large, a very strong baseline. Our preliminary results at this scale shows that CHARFORMER is
competitive with, but is 1.4 F1 behind ByT5Large. However, we point out two important notes. First,
the CHARFORMER result is undertrained compared to ByT5Large since 10% of the pretraining has
not finished. Second, the CHARFORMER model is also twice as fast as ByT5, as seen from Table 11.

8.6 MULTILINGUAL EXPERIMENTS

This section contains detailed results for our multilingual experiments.

Table 11: Compute metrics of base models at longer (2K) input length on the mC4 pre-training
corpus, using a batch size of 64 on 16 TPU-v3 chips.

Model L ds |θ| Speed (steps/s) FLOPS

Byte-level T5Base 2048 1 200M 2.7 2.0× 1013

Byte-level T5+LASCBase 2048 4 205M 11 5.5× 1012

CHARFORMERBase 2048 2 203M 6.1 9.5× 1012

CHARFORMERBase 2048 3 203M 10 6.5× 1012

CHARFORMERSBase 2048 2 134M 6.1 9.2× 1012

Table 12: Per-language breakdown of in-language multi-task TyDiQA-GoldP results.
Model |θ| ar bn en fi id ko ru sw te Avg.

mBERTBase (Subword) 179M -/- -/- -/- -/- -/- -/- -/- -/- -/- 77.6/68.0
mT5Base (Subword) 582M 84.2/71.8 80.0/69.0 76.6/65.2 80.1/69.3 85.5/75.0 70.3/61.6 77.5/64.4 83.6/74.9 88.2/78.0 80.8 / 70.0

Byte-level T5Base 200M 81.4/67.0 66.8/56.6 69.8/59.5 75.6/63.0 81.6/72.4 64.6/58.7 74.1/60.8 81.8/74.3 85.0/76.1 75.6/65.4
Byte-level T5+LASCBase 205M 78.1/62.3 61.1/50.4 66.7/55.2 72.5/60.4 79.9/68.3 51.5/43.5 70.4/58.7 74.7/67.5 80.2/71.2 70.6/59.7
CHARFORMERBase 203M 81.8/67.9 69.1/60.2 71.4/60.5 76.3/64.2 83.0/73.1 62.7/54.3 74.7/61.7 80.2/73.3 83.6/75.0 75.9/65.6

CHARFORMERSBase 134M 82.4/68.1 78.1/67.3 75.4/64.3 79.5/68.2 85.0/75.9 66.6/58.0 77.0/64.3 81.5/74.1 86.5/78.6 79.1/68.8
CHARFORMERSBase,LongPT 134M 85.7/74.5 78.7/67.3 76.8/65.9 81.9/70.6 86.7/79.1 69.4/61.6 79.2/67.1 83.7/75.2 88.8/80.6 81.2/71.3

Table 13: Per-language breakdown of translate-train-all XQuAD results.
Model |θ| ar de el en es hi ru th tr vi zh Avg.

mT5Base (Subword) 582M 72.4/55.2 76.9/59.7 76.8/58.8 83.1/70.3 79.0/61.2 71.4/53.4 76.1/58.5 67.9/62.0 72.5/51.4 75.9/56.3 76.9/69.7 75.3/59.7

Byte-level T5Base 200M 64.8/47.9 74.3/58.3 69.2/51.8 81.5/70.4 77.2/60.4 67.0/51.5 72.3/55.5 48.3/41.9 69.6/51.7 73.3/54.4 57.3/53.3 68.6/54.3
Byte-level T5+LASCBase 205M 62.9/45.5 70.6/54.2 68.3/52.3 80.1/68.4 74.8/57.9 63.1/46.2 68.2/52.2 50.0/43.4 67.1/48.2 71.7/51.8 57.7/52.7 66.8/52.1
CHARFORMERBase 203M 65.7/49.8 74.2/58.0 71.1/53.1 82.2/70.5 77.8/61.0 67.0/51.3 73.4/57.6 54.3/48.0 70.3/53.0 74.6/55.6 62.0/56.6 70.2/55.9

CHARFORMERSBase 134M 70.3/53.7 78.6/61.4 74.4/55.1 85.1/73.7 79.8/63.6 69.1/52.7 76.7/61.3 57.6/51.2 73.9/55.8 76.8/57.6 67.4/62.4 73.6/59.0
CHARFORMERSBase,LongPT 134M 72.6/55.0 79.0/62.3 74.9/56.1 85.4/74.5 80.4/63.4 70.6/56.1 77.8/62.2 56.1/49.2 76.1/58.2 77.7/59.4 66.0/61.8 74.2/59.8
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Table 14: Per-language breakdown of translate-train-all MLQA results.
Model |θ| ar de en es hi vi zh Avg.

mT5Base (Subword) 582M 61.1/40.7 65.5/49.2 80.7/66.3 70.7/52.1 63.6/44.3 68.0/47.6 63.5/39.4 67.6/48.5

Byte-level T5Base 200M 52.6/34.2 60.5/46.1 77.7/64.8 67.1/49.2 52.9/36.5 63.6/43.8 58.3/36.4 61.8/44.4
Byte-level T5+LASCBase 205M 50.8/32.0 58.1/43.5 75.8/62.2 64.7/46.7 49.2/32.6 60.4/40.4 52.6/30.6 58.8/41.1
CHARFORMERBase 203M 53.5/34.5 61.3/46.8 78.5/65.4 67.2/49.3 54.5/37.6 64.3/43.9 58.8/36.6 62.6/44.9

CHARFORMERSBase 134M 58.3/39.1 65.7/50.5 81.8/68.7 71.0/53.1 57.7/40.8 67.3/46.8 62.7/40.8 66.3/48.5
CHARFORMERSBase,LongPT 134M 59.6/40.0 66.6/51.3 82.2/69.0 72.1/54.5 59.7/42.9 68.2/47.4 62.4/40.7 67.2/49.4

Table 15: Per-language breakdown of translate-train-all and cross-lingual zero-shot XNLI results.
Model |θ| ar bg de el en es fr hi ru sw th tr ur vi zh Avg.

Translate-Train-All

mT5Base (Subword) 582M 74.4 78.5 77.7 78.1 82.0 79.1 77.9 72.2 76.5 71.5 75.0 74.8 70.4 74.5 76.0 75.9

Byte-level T5Base 200M 67.1 72.0 71.0 70.6 76.9 74.0 73.4 63.7 69.2 66.2 65.7 69.4 62.8 69.6 69.0 69.4
Byte-level T5+LASCBase 205M 65.6 72.1 70.5 67.9 75.6 73.4 72.2 63.5 68.6 65.4 64.5 67.4 62.4 68.3 61.0 67.9
CHARFORMERBase 203M 69.5 72.9 72.7 72.6 78.2 74.5 73.6 67.0 71.7 67.9 68.1 70.8 65.0 70.7 71.5 71.1

CHARFORMERSBase 134M 70.8 75.7 75.9 73.1 80.9 76.9 76.8 65.6 74.7 65.7 67.7 72.0 63.1 72.9 71.5 72.2
CHARFORMERSBase,LongPT 134M 71.1 75.9 73.6 74.2 80.8 76.6 76.8 69.2 72.2 68.2 71.0 71.2 65.7 72.9 73.0 72.8

Cross-Lingual Zero-Shot

mBERTBase (Subword) 179M 64.3 68.0 70.0 65.3 80.8 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
mT5Base (Subword) 582M 73.3 78.6 77.4 77.1 84.7 80.3 79.1 70.8 77.1 69.4 73.2 72.8 68.3 74.2 74.1 75.4

Byte-level T5Base 200M 56.7 61.2 63.0 60.9 79.2 70.1 65.3 43.9 61.0 45.5 43.5 52.0 44.3 58.3 55.6 57.4
Byte-level T5+LASCBase 205M 53.3 58.8 62.2 54.9 77.1 68.6 65.4 44.7 58.4 46.1 43.6 50.4 42.8 55.9 46.1 55.2
CHARFORMERBase 203M 55.7 61.1 64.8 60.1 77.3 69.9 67.9 44.4 60.2 45.3 47.9 54.0 43.5 59.1 53.4 57.6

CHARFORMERSBase 134M 66.4 71.0 72.7 68.6 82.4 77.1 75.4 57.6 70.6 48.7 61.4 61.8 54.1 68.9 62.8 66.6
CHARFORMERSBase,LongPT 134M 68.4 70.9 74.3 70.2 82.4 77.0 76.6 59.9 71.0 42.6 64.0 65.5 56.5 71.2 66.0 67.8

Table 16: Per-language breakdown of translate-train-all and cross-lingual zero-shot PAWS-X results.
Model |θ| de en es fr ja ko zh Avg.

Translate-Train-All

mT5Base (Subword) 582M 90.9 95.5 91.4 92.5 83.6 84.8 86.4 89.3

Byte-level T5Base 200M 89.3 94.6 90.1 90.3 81.4 81.1 82.3 87.0
Byte-level T5+LASCBase 205M 87.3 93.1 89.2 89.2 81.0 72.9 80.8 84.8
CHARFORMERBase 203M 89.9 94.6 89.8 91.4 82.7 78.4 83.3 87.2

CHARFORMERSBase 134M 89.9 95.9 91.8 92.2 83.9 78.9 84.4 88.2
CHARFORMERSBase,LongPT 134M 90.7 95.1 92.2 92.2 84.1 81.6 84.6 88.6

Cross-Lingual Zero-Shot

mBERTBase (Subword) 179M 85.7 94.0 87.4 87.0 73.0 69.6 77.0 81.9
mT5Base (Subword) 582M 89.4 95.4 89.6 91.2 79.8 78.5 81.1 86.4

Byte-level T5Base 200M 84.7 93.8 85.8 86.4 72.2 67.9 75.2 80.9
Byte-level T5+LASCBase 205M 83.2 93.2 84.1 85.0 67.9 66.4 73.4 79.0
CHARFORMERBase 203M 86.1 94.8 87.2 88.0 70.1 69.7 75.5 81.6

CHARFORMERSBase 134M 89.6 95.2 90.7 90.7 77.1 74.4 78.9 85.2
CHARFORMERSBase,LongPT 134M 89.8 95.3 88.7 89.7 74.5 68.9 78.9 83.7

8.7 EXAMPLE IMPLEMENTATION

For additional clarity, we include a simplified implementation of the GBST module in Tensorflow
below. Default hyper-parameters here match those used in the paper.

from typing import Optional

import tensorflow as tf

keras_layers = tf.keras.layers

class GBSTLayer(keras_layers.Layer):
"""Performs Charformer GBST on a sequence.

Attributes:
input_shape: Shape [len, embedding_size] of input tensor in future calls,
without batch dimension.

downsample_rate: Integer of how much to downsample by.
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max_subword_block_width: Integer of max block size to use for enumeration.
block_attention: Hhether to use block score calibration.
block_scoring_network: module for parameterized block scoring.
conv_kernel_size: Integer of the size of the pre-GBST convolution kernel.

"""

def __init__(self,
input_shape: tf.Tensor,
downsample_rate: int = 2,
max_subword_block_width: int = 4,
block_attention: bool = False,
conv_kernel_size: Optional[int] = 5):

super(GBSTLayer, self).__init__()
self.downsample_rate = downsample_rate
self.max_subword_block_width = max_subword_block_width
self.conv_kernel_size = conv_kernel_size
self.conv_layer = keras_layers.Conv1D(

input_shape[-1], self.conv_kernel_size, input_shape=input_shape)
self.block_attention = block_attention
self.block_scoring_network = keras_layers.Dense(1, use_bias=False)

def call(self, inputs):
"""Performs downsampling on the character-scale input representation.

Args:
inputs: float Tensor of shape [batch_size, seq_length,
embedding_size].

Returns:
<float>[batch_size, seq_length / downsample_rate , embedding_size].
Downsampled sequences.

"""
length = inputs.shape[1]

if self.conv_kernel_size:
inputs = self.conv_layer(inputs)

all_block_scores = []
all_sequences = []
for subword_len in range(1, self.max_subword_block_width):
padded_input = inputs
# Pad the sequence length if needed.
if length % subword_len != 0:
pad_amt = subword_len - int(length % subword_len)
padding = tf.constant([[0, 0], [0, pad_amt], [0, 0]])
padded_input = tf.pad(inputs, padding)

# For this block size, form candidate block embeddings and scores.
# candidates shape: [batch, seq_len/subword_len, dim]
# block_scores shape: [batch, seq_len/subword_len, 1]
candidates = tf.nn.avg_pool(

padded_input, [subword_len], strides=[subword_len], padding="VALID")
block_scores = self.block_scoring_network(candidates)

# Upsample it back to the original sequence length.
retiled_seq = tf.repeat(candidates, subword_len, axis=1)
retiled_block_scores = tf.repeat(block_scores, subword_len, axis=1)

# Repad the upsampled sequence if needed.
if retiled_block_scores.shape[1] < length:
repad_amt = length - retiled_block_scores.shape[1]
repadding = tf.constant([[0, 0], [0, repad_amt], [0, 0]])
retiled_seq = tf.pad(retiled_seq, repadding)
retiled_block_scores = tf.pad(retiled_block_scores, repadding)

# Make sure everything is the right length and add new dimension to concat
# candidate blocks on.
retiled_block_scores = retiled_block_scores[:, :length, :, None]
retiled_seq = retiled_seq[:, :length, :, None]
all_block_scores.append(retiled_block_scores)
all_sequences.append(retiled_seq)

block_scores = tf.concat(all_block_scores, axis=-1)
block_scores = tf.nn.softmax(block_scores, axis=-1)
candidates = tf.concat(all_sequences, axis=-1)

# TODO: Block score calibration / block-by-block attention is omitted in this implementation.
# batch_size x num_candidates x length x dim
candidates = candidates * block_scores
output = tf.reduce_sum(candidates, axis=-1) # bsz x length x dim

# Downsample by mean pooling.
if self.downsample_rate > 1:
output = tf.nn.avg_pool(

output, (self.downsample_rate,),
strides=(self.downsample_rate,),
padding="VALID")

return output
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