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ABSTRACT

The task of building general agents that perform well over a wide range of tasks has
been an important goal in reinforcement learning since its inception. The problem
has been subject of research of a large body of work, with performance frequently
measured by observing scores over the wide range of environments contained in the
Atari 57 benchmark. Agent57 was the first agent to surpass the human benchmark
on all 57 games, but this came at the cost of poor data-efficiency, requiring nearly
80 billion frames of experience to achieve. Taking Agent57 as a starting point, we
employ a diverse set of strategies to achieve a 200-fold reduction of experience
needed for all games to outperform the human baseline within our novel agent
MEME. We investigate a range of instabilities and bottlenecks we encountered
while reducing the data regime, and propose effective solutions to build a more
robust and efficient agent. We also demonstrate competitive performance with
high-performing methods such as Muesli and MuZero. Our contributions aim
to achieve faster propagation of learning signals related to rare events, stabilize
learning under differing value scales, improve the neural network architecture, and
make updates more robust under a rapidly-changing policy.

1 INTRODUCTION

To develop generally capable agents, the question of how to evaluate them is paramount. The Arcade
Learning Environment (ALE) (Bellemare et al., 2013) was introduced as a benchmark to evaluate
agents on an diverse set of tasks which are interesting to humans, and developed externally to the
Reinforcement Learning (RL) community. As a result, several games exhibit reward structures which
are highly adversarial to many popular algorithms. Mean and median human normalized scores
(HNS) (Mnih et al., 2015) over all games in the ALE have become standard metrics for evaluating
deep RL agents. Recent progress has allowed state-of-the-art algorithms to greatly exceed average
human-level performance on a large fraction of the games (Van Hasselt et al., 2016; Espeholt et al.,
2018; Schrittwieser et al., 2020). However, it has been argued that mean or median HNS might not be
well suited to assess generality because they tend to ignore the tails of the distribution (Badia et al.,
2019). Indeed, most state-of-the-art algorithms achieve very high scores by performing very well on
most games, but completely fail to learn on a small number of them.

Agent57 (Badia et al., 2020) was the first algorithm to obtain above human-average scores on all 57
Atari games. However, such generality came at the cost of data efficiency; requiring tens of billions
of environment interactions to achieve above average-human performance in some games, reaching a
figure of 78 billion frames before beating the human benchmark in all games. Data efficiency remains
a desirable property for agents to possess, as many real-world challenges are data-limited by time and
cost constraints (Dulac-Arnold et al., 2019). In this work, we develop an agent that is as general as
Agent57 but that requires only a fraction of the environment interactions to achieve the same result.

There exist two main trends in the literature when it comes to measuring improvements in the
learning capabilities of agents. One approach consists in measuring performance after a limited
budget of interactions with the environment. While this type of evaluation has led to important
progress (Espeholt et al., 2018; van Hasselt et al., 2019; Hessel et al., 2021), it tends to disregard
problems which are considered too hard to be solved within the allowed budget (Kaiser et al., 2019).
On the other hand, one can aim to achieve a target end-performance with as few interactions as

1



Published as a conference paper at ICLR 2023

Sk
iin

g
Pr

iv
at

e 
Ey

e
Pi

tfa
ll!

M
on

te
zu

m
a'

s R
ev

en
ge

Su
rro

un
d

As
te

ro
id

s
Ice

 H
oc

ke
y

So
la

ris
Bo

wl
in

g
Gr

av
ita

r
H.

E.
R.

O.
Be

rz
er

k
Fr

os
tb

ite
Te

nn
is

Al
ie

n
Tu

ta
nk

ha
m

Ri
ve

rra
id

M
s. 

Pa
c-

M
an

Po
ng

Be
am

 R
id

er
Ch

op
pe

r C
om

m
an

d
Se

aq
ue

st
Do

ub
le

 D
un

k
Fr

ee
wa

y
Sp

ac
e 

In
va

de
rs

Ba
nk

 H
ei

st
Ve

nt
ur

e
Ba

ttl
e 

Zo
ne

As
te

rix
Q*

BE
RT

Am
id

ar
Na

m
e 

Th
is 

Ga
m

e
Ya

rs
' R

ev
en

ge
Ph

oe
ni

x
Ti

m
e 

Pi
lo

t
De

m
on

 A
tta

ck
W

iza
rd

 O
f W

or
Br

ea
ko

ut
Vi

de
o 

Pi
nb

al
l

Fi
sh

in
g 

De
rb

y
En

du
ro

St
ar

gu
nn

er
As

sa
ul

t
Za

xx
on

Ja
m

es
bo

nd
Ce

nt
ip

ed
e

Ka
ng

ar
oo

At
la

nt
is

Up
'n

 D
ow

n
De

fe
nd

er
Bo

xi
ng

Ro
bo

ta
nk

Ku
ng

-F
u 

M
as

te
r

Go
ph

er
Ro

ad
 R

un
ne

r
Cr

az
y 

Cl
im

be
r

Kr
ul

l

1M

10M

100M

1B

10B

100B

Fr
am

es
 to

 >
 h

um
an

 sc
or

e
390M
200M

Agent57 MEME

Figure 1: Number of environment frames required by agents to outperform the human baseline on
each game (in log-scale). Lower is better. On average, MEME achieves above human scores using
62× fewer environment interactions than Agent57. The smallest improvement is 10× (Road Runner),
the maximum is 734× (Skiing), and the median across the suite is 36×. We observe small variance
across seeds (c.f. Figure 8).

possible (Silver et al., 2017; 2018; Schmitt et al., 2020). Since our goal is to show that our new agent
is as general as Agent57, while being more data-efficient, we focus on the latter approach.

Our contributions can be summarized as follows. Building off Agent57, we carefully examine
bottlenecks which slow down learning and address instabilities that arise when these bottlenecks are
removed. We propose a novel agent that we call MEME, for MEME is an Efficient Memory-based
Exploration agent, which introduces solutions to enable taking advantage of three approaches that
would otherwise lead to instabilities: training the value functions of the whole family of policies
from Agent57 in parallel, on all policies’ transitions (instead of just the behaviour policy transitions),
bootstrapping from the online network, and using high replay ratios. These solutions include
carefully normalising value functions with differing scales, as well as replacing the Retrace update
target (Munos et al., 2016) with a soft variant of Watkins’ Q(λ) (Watkins & Dayan, 1992) that
enables faster signal propagation by performing less aggressive trace-cutting, and introducing a
trust-region for value updates. Moreover, we explore several recent advances in deep learning and
determine which of them are beneficial for non-stationary problems like the ones considered in this
work. Finally, we examine approaches to robustify performance by introducing a policy distillation
mechanism that learns a policy head based on the actions obtained from the value network without
being sensitive to value magnitudes. Our agent outperforms the human baseline across all 57 Atari
games in 390M frames, using two orders of magnitude fewer interactions with the environment than
Agent57 as shown in Figure 1.

2 RELATED WORK

Large scale distributed agents have exhibited compelling results in recent years. Actor-critic (Espeholt
et al., 2018; Song et al., 2020) as well as value-based agents (Horgan et al., 2018; Kapturowski et al.,
2018) demonstrated strong performance in a wide-range of environments, including the Atari 57
benchmark. Moreover, approaches such as evolutionary strategies (Salimans et al., 2017) and large
scale genetic algorithms (Such et al., 2017) presented alternative learning algorithms that achieve
competitive results on Atari. Finally, search-augmented distributed agents (Schrittwieser et al., 2020;
Hessel et al., 2021) also hold high performance across many different tasks, and concretely they
hold the highest mean and median human normalized scores over the 57 Atari games. However, all
these methods show the same failure mode: they perform poorly in hard exploration games, such as
Pitfall!, and Montezuma’s Revenge. In contrast, Agent57 (Badia et al., 2020) surpassed the human
benchmark on all 57 games, showing better general performance. Go-Explore (Ecoffet et al., 2021)
similarly achieved such general performance, by relying on coarse-grained state representations via a
downscaling function that is highly specific to Atari.

Learning as much as possible from previous experience is key for data efficiency. Since it is often
desirable for approximate methods to make small updates to the policy (Kakade & Langford, 2002;
Schulman et al., 2015), approaches have been proposed for enabling multiple learning steps over
the same batch of experience in policy gradient methods to avoid collecting new transitions for
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every learning step (Schulman et al., 2017). This decoupling between collecting experience and
learning occurs naturally in off-policy learning agents with experience replay (Lin, 1992; Mnih et al.,
2015) and Fitted Q Iteration methods (Ernst et al., 2005; Riedmiller, 2005). Multiple approaches for
making more efficient use of a replay buffer have been proposed, including prioritized sampling of
transitions (Schaul et al., 2016), sharing experience across populations of agents (Schmitt et al., 2020),
learning multiple policies in parallel from a single stream of experience (Riedmiller et al., 2018), or
reanalyzing old trajectories with the most recent version of a learned model to generate new targets in
model-based settings (Schrittwieser et al., 2020; 2021) or to re-evaluate goals (Andrychowicz et al.,
2017).

The ATARI100k benchmark (Kaiser et al., 2019) was introduced to observe progress in improving
the data efficiency of reinforcement learning agents, by evaluating game scores after 100k agent steps
(400k frames). Work on this benchmark has focused on leveraging the use of models (Ye et al., 2021;
Kaiser et al., 2019; Long et al., 2022), unsupervised learning (Hansen et al., 2019; Schwarzer et al.,
2021; Srinivas et al., 2020; Liu & Abbeel, 2021), or greater use of replay data (van Hasselt et al.,
2019; Kielak, 2020) or augmentations (Kostrikov et al., 2021; Schwarzer et al., 2021). While we
consider this to be an important line of research, this tight budget produces an incentive to focus
on a subset of games where exploration is easier, and it is unclear some games can be solved from
scratch with such a small data budget. Such a setting is likely to prevent any meaningful learning on
hard-exploration games, which is in contrast with the goal of our work.

3 BACKGROUND: AGENT57

Our work builds on top of Agent57, which combines three main ideas: (i) a distributed deep
RL framework based on Recurrent Replay Distributed DQN (R2D2) (Kapturowski et al., 2018),
(ii) exploration with a family of policies and the Never Give Up (NGU) intrinsic reward (Badia
et al., 2019), and (iii) a meta-controller that dynamically adjusts the discount factor and balances
exploration and exploitation during training, by selecting from a family of policies. Below, we give a
general introduction to the problem setting and some of the relevant components of Agent57.

Problem definition. We consider the problem of discounted infinite-horizon RL in Markov Decision
Processes (MDP) (Puterman, 1994). The goal is to find a policy π that maximises the expected sum
of discounted future rewards, Eπ[

∑
t≥0 γ

trt], where γ ∈ [0, 1) is the discount factor, rt = r(xt, at)

is the reward at time t, xt is the state at time t, and at ∼ π(a|xt) is the action generated by following
some policy π. In the off-policy learning setting, data generated by a behavior policy µ is used to
learn about the target policy π. This can be achieved by employing a variant of Q-learning (Watkins &
Dayan, 1992) to estimate the action-value function, Qπ(x, a) = Eπ[

∑
t≥0 γ

trt|xt = x, at = a]. The
estimated action-value function can then be used to derive a new policy π(a|x) using the ϵ-greedy
operator Gϵ (Sutton & Barto, 2018) 1. This new policy can then be used as the target policy for
another iteration, repeating the process. Agent57 uses a deep neural network with parameters θ to
estimate action-value functions, Qπ(x, a; θ) 2, trained on return estimates Gt derived with Retrace
from sequences of off-policy data (Munos et al., 2016). In order to stabilize learning, a target network
is used for bootstrapping the return estimates using double Q-learning (Van Hasselt et al., 2016); the
parameters of this target network, θT , are periodically copied from the online network parameters
θ (Mnih et al., 2015). Finally, a value-function transformation is used to compress the wide range of
reward scales present in Atari, as in (Pohlen et al., 2018).

Distributed RL framework. Agent57 is a distributed deep RL agent based on R2D2 that decouples
acting from learning. Multiple actors interact with independent copies of the environment and feed
trajectories to a central replay buffer. A separate learning process obtains trajectories from this buffer
using prioritized sampling and updates the neural network parameters to predict action-values at each
state. Actors obtain parameters from the learner periodically. See Appendix E for more details.

Exploration with NGU. Agent57 uses the Never Give Up (NGU) intrinsic reward to encourage
exploration. It aims at learning a family of N = 32 policies which maximize different weightings
of the extrinsic reward given by the environment (ret ) and the intrinsic reward (rit), rj,t = ret + βjr

i
t

(βj ∈ R+, j ∈ {0, . . . , N−1}). The value of βj controls the degree of exploration, with higher values

1We also use G := G0 to denote the pure greedy operator (ϵ = 0).
2For convenience, we occasionally omit (x, a) or θ from Q(x, a; θ), π(a|x; θ) when it is unambiguous.
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Figure 2: MEME agent network architecture. The output of the LSTM block is passed to each of
the N members of the family of policies, depicted as a light-grey box. Each policy consists of an
Q-value and policy heads. The Q-value head is similar as in Agent57 paper, while the policy head is
introduced for acting and target computation, and trained via policy distillation.

encouraging more exploratory behaviors, and each policy in the family is optimized with a different
discount factor γj . The Universal Value Function Approximators (UVFA) framework (Schaul et al.,
2015) is employed to efficiently learn Qπj

(x, a; θ) = Eπj [
∑

t≥0 γ
t
jrj,t|xt = x, at = a] (we use a

shorthand notation Qj(x, a; θ)) for j ∈ {0, . . . , N − 1} using a single set of shared parameters θ.
The policy πj(a|x) can then be derived using the ϵ-greedy operator as GϵQ

j(x, a; θ). We refer the
reader to Appendix H for more details.

Meta-controller. Agent57 introduces an adaptive meta-controller that decides which policies from
the family of N policies to use for collecting experience based on their episodic returns. This
naturally creates a curriculum over βj and γj by adapting their value throughout training. The
optimization process is formulated as a non-stationary bandit problem. A detailed description about
the meta-controller implementation is provided in Appendix F.

Q-function separation. The architecture of the Q-function in Agent57 is implemented as two
separate networks in order to split the intrinsic and extrinsic components. The network parameters of
Qj(x, a; θe) and Qj(x, a; θi) are separate and independently optimized with rej and rij , respectively.
The main motivation behind this decomposition is to allow each network to adapt to the scale and
variance associated with their corresponding reward, as well as preventing the gradients of the
decomposed intrinsic and extrinsic value function heads from interfering with each other.

4 MEME: IMPROVING THE DATA EFFICIENCY OF AGENT57

This section describes the main algorithmic contributions of the MEME agent, aimed at improving the
data efficiency of Agent57. These contributions aim to achieve faster propagation of learning signals
related to rare events ( A ), stabilize learning under differing value scales ( B ), improve the neural
network architecture ( C ), and make updates more robust under a rapidly-changing policy ( D ). For
clarity of exposition, we label the contributions according to the type of limitation they address.

A1 Bootstrapping with online network. Target networks are frequently used in conjunction with
value-based agents due to their stabilizing effect when learning from off-policy data (Mnih et al.,
2015; Van Hasselt et al., 2016). This design choice places a fundamental restriction on how quickly
changes in the Q-function are able to propagate. This issue can be mitigated to some extent by
simply updating the target network more frequently, but the result is typically a less stable agent. To
accelerate signal propagation while maintaining stability, we use online network bootstrapping, and
we stabilize the learning by introducing an approximate trust region for value updates that allows us
to filter which samples contribute to the loss. The trust region masks out the loss at any timestep for
which both of the following conditions hold:

|Qj(xt, at; θ)−Qj(xt, at; θT )| > ασj (1)

sgn(Qj(xt, at; θ)−Qj(xt, at; θT )) ̸= sgn(Qj(xt, at; θ)−Gt) (2)

where α is a fixed hyperparameter, Gt denotes the return estimate, θ and θT denote the online and
target parameters respectively, and σj is the standard deviation of the TD-errors (a more precise
description of which we defer until B1 ). Intuitively, we only mask if the current value of the
online network is outside of the trust region (Equation 1) and the sign of the TD-error points away
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from the trust region (Equation 2), as depicted in Figure 3 in red. We note that a very similar
trust region scheme is used for the value-function in most Proximal Policy Optimization (PPO)
implementations (Schulman et al., 2017), though not described in the original paper. In contrast, the
PPO version instead uses a constant threshold, and thus is not able to adapt to differing scales of
value functions.

Qj(xt,at;θT) Qj(xt,at;θT) + ασjQj(xt,at;θT) - ασj
Qj(xt,at;θ)

Figure 3: Trust region. The position of dots is given by the relationship between the values predicted
by the online network, Qj(xt, at; θ), and the values predicted by the target network, Qj(xt, at; θT )
(Equation 1 and left hand side of Equation 2), the box represents the trust region bounds defined in
Equation 1, and the direction of the arrow is given by the right hand side of Equation 2. Green-colored
transitions are used in the loss computation, whereas red ones are masked out.

A2 Target computation with tolerance. Agent57 uses Retrace (Munos et al., 2016) to compute
return estimates from off-policy data, but we observed that it tends to cut traces too aggressively when
using ϵ-greedy policies thus slowing down the propagation of information into the value function.
Preliminary experiments showed that data efficiency was improved in many dense-reward tasks when
replacing Retrace with Peng’s Q(λ) (Peng & Williams, 1994), but its lack of off-policy corrections
tends to result in degraded performance as data becomes more off-policy (e.g. by increasing the
expected number of times that a sequence is sampled from replay, or by sharing data across a family
of policies). This motivates us to propose an alternative return estimator, which we derive from
Q(λ) (Watkins & Dayan, 1992):

Gt = max
a

Q(xt, a) +
∑
k≥0

(
k−1∏
i=0

λi

)
γk(rt+k + γmax

a
Q(xt+k+1, a)−max

a
Q(xt+k, a)) (3)

where
∏k−1

i=0 λi ∈ [0, 1] effectively controls how much information from the future is used in the
return estimation and is generally used as a trace cutting coefficient to perform off-policy correction.
Peng’s Q(λ) does not perform any kind of off-policy correction and sets λi = λ, whereas Watkins’
Q(λ) (Watkins & Dayan, 1992) aggressively cuts traces whenever it encounters an off-policy action
by using λi = λIai∈argmaxaQ(xi,a), where I denotes the indicator function. We propose to use a softer
trace cutting mechanism by adding a fixed tolerance parameter κ and taking the expectation of trace
coefficients under π:

λi = λEa∼π(a|xt)

[
I[Q(xt,at;θ)≥Q(xt,a;θ)−κ|Q(xi,a;θ)|]

]
(4)

Finally, we replace all occurrences of the max operator in Equation 3 with the expectation under π.
The resulting return estimator, which we denote Soft Watkins Q(λ), leads to more transitions being
used and increased sample efficiency. Note that Watkins Q(λ) is recovered when setting κ = 0 and
π = G(Q).

B1 Loss and priority normalization. As we learn a family of Q-functions which vary over a
wide range of discount factors and intrinsic reward scales, we expect that the Q-functions will vary
considerably in scale. This may cause the larger-scale Q-values to dominate learning and destabilize
learning of smaller Q-values. This is a particular concern in environments with very small extrinsic
reward scales. To counteract this effect we introduce a normalization scheme on the TD-errors similar
to that used in Schaul et al. (2021). Specifically, we compute a running estimate of the standard
deviation of TD-errors of the online network σrunning

j as well as a batch standard deviation σbatch
j , and

compute σj = max(σrunning
j , σbatch

j , ϵ), where ϵ acts as small threshold to avoid amplification of noise
past a specified scale, which we fix to 0.01 in all our experiments. We then divide the TD-errors by
σj when computing both the loss and priorities. As opposed to Schaul et al. (2021) we compute the
running statistics on the learner, and we use importance sampling to correct the sampling distribution.
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B2 Cross-mixture training. Agent57 only trains the policy j which was used to collect a given
trajectory, but it is natural to ask whether data efficiency and robustness may be improved by training
all policies at once. We propose a training loss L according to the following weighting scheme
between the behavior policy loss and the mean over all losses:

L = ηLjµ +
1− η

N

N−1∑
j=0

Lj (5)

where Lj denotes the Q-learning loss for policy j, and jµ denotes the index for the behavior policy
selected by the meta-controller for the sampled trajectory. We find that an intermediate value for the
mixture parameter of η = 0.5 tends to work well. To achieve better compute-efficiency we choose
to deviate from the original UVFA architecture which fed a 1-hot encoding of the policy index to
the LSTM, and instead modify the Q-value heads to output N sets of Q-values, one for each of the
members in the family of policies introduced in Section 3. Therefore, in the end we output values for
all combinations of actions and policies (see Figure 2). We note that in this setting, there is also less
deviation in the recurrent states when learning across different mixture policies.

C1 Normalizer-free torso network. Normalization layers are a common feature of ResNet architec-
tures, and which are known to aid in training of very deep networks, but preliminary investigation
revealed that several commonly used normalization layers are in fact detrimental to performance in
our setting. Instead, we employ a variation of the NFNet architecture (Brock et al., 2021) for our
policy torso network, which combines a variance-scaling strategy with scaled weight standardization
and careful initialization to achieve state-of-the-art performance on ImageNet without the need for
normalization layers. We adopt their use of stochastic depth (Huang et al., 2016) at training-time but
omit the application of ordinary dropout to fully-connected layers as we did not observe any benefit
from this form of regularization. Some care is required when using stochastic depth in conjunction
with multi-step returns, as resampling of the stochastic depth mask at each timestep injects additional
noise into the bootstrap values, resulting in a higher-variance return estimator. As such, we employ a
temporally-consistent stochastic depth mask which remains fixed over the length of each training
trajectory.

C2 Shared torso with combined loss. Agent57 decomposes the combined Q-function into intrinsic
and extrinsic components, Qe and Qi, which are represented by separate networks. Such a decompo-
sition prevents the gradients of the decomposed value functions from interfering with each other. This
interference may occur in environments where the intrinsic reward is poorly aligned with the task
objective, as defined by the extrinsic reward. However, the choice to use separate separate networks
comes at an expensive computational cost, and potentially limits sample-efficiency since generic
low-level features cannot be shared. To alleviate these issues, we introduce a shared torso for the two
Q-functions while retaining separate heads.

While the form of the decomposition in Agent57 was chosen so as to ensure convergence to the optimal
value-function Q⋆ in the tabular setting, this does not generally hold under function approximation.
Comparing the combined and decomposed losses we observe a mismatch in the gradients due to the
absence of cross-terms Qi(θ)

∂Qe(θ)
∂θ and Qe(θ)

∂Qi(θ)
∂θ in the decomposed loss:

∂
∂θ

[
1
2 (Q(θ)−G)2

]
︸ ︷︷ ︸

combined loss

̸= ∂
∂θ

[
1
2 (Qe(θ)−Ge)

2 + 1
2 (βQi(θ)− βGi)

2
]

︸ ︷︷ ︸
decomposed loss

(6)

[
Qe(θ)+βQi(θ)−G

] ∂
∂θ

[
Qe(θ)+βQi(θ)

]
̸=
[
Qe(θ)−Ge

]∂Qe(θ)

∂θ
+β2

[
Qi(θ)−Gi

]∂Qi(θ)

∂θ
(7)

Since we use a behavior policy induced by the total Q-function Q = Qe + βQi rather than the
individual components, theory would suggest to use the combined loss instead. In addition, from a
practical implementation perspective, this switch to the combined loss greatly simplifies the design
choices involved in our proposed trust region method described in A1 . The penalty paid for this
choice is that the decomposition of the value function into extrinsic and intrinsic components no
longer carries a strict semantic meaning. Nevertheless we do still retain an implicit inductive bias
induced by multiplication of Qi with the intrinsic reward weight βj .

D Robustifying behavior via policy distillation. Schaul et al. (2022) describe the effect of
policy churn, whereby the greedy action of value-based RL algorithms may change frequently over
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consecutive parameter updates. This can have a deleterious effect on off-policy correction methods:
traces will be cut more aggressively than with a stochastic policy, and bootstrap values will change
frequently which can result in a higher variance return estimator. In addition, our choice of training
with temporally-consistent stochastic depth masks can be interpreted as learning an implicit ensemble
of Q-functions; thus it is natural to ask whether we may see additional benefit from leveraging the
policy induced by this ensemble.

We propose to train an explicit policy head πdist (see Figure 2) via policy distillation to match the
ϵ-greedy policy induced by the Q-function. In expectation over multiple gradient steps this should
help to smooth out the policy over time, as well as over the ensemble, while being much faster to
evaluate than the individual members of the ensemble. Similarly to the trust-region described in A1 ,
we mask the policy distillation loss at any timestep where a KL constraint CKL is violated:

Lπ = −
∑
a,t

Gϵ

(
Q(xt, a; θ)

)
log πdist(a|xt; θ) ∀t s.t. KL

(
πdist(a|xt; θT ))||πdist(a|xt; θ)

)
≤ CKL

(8)
We use a fixed value of ϵ = 10−4 to act as a simple regularizer to prevent the policy logits from
growing too large. We then use π′dist = softmax( log πdist

τ ) as the target policy in our Soft Watkins
Q(λ) return estimator, where τ is a fixed temperature parameter. We tested values of τ in the range
[0, 1] and found that any choice of τ in this range yields improvement compared to not using the
distilled policy, but values closer to 1 tend to exhibit greater stability, while those closer to 0 tend to
learn more efficiently. We settled on an intermediate τ = 0.25 to help balance between these two
effects. We found that sampling from π′dist at behavior-time was less effective in some sparse reward
environments, and instead opt to have the agent act according to Gϵ

(
πdist

)
.

5 EXPERIMENTS

Methods constituting MEME proposed in Section 4 aim at improving the data efficiency of Agent57,
but such efficiency gains must not come at the cost of end performance. For this reason, we train
our agent with a budget of 1B environment frames3. This budget allows us to validate that the
asymptotic performance is maintained, i.e. the agent converges and is stable when improving data
efficiency. Hyperparameters have been tuned over a subset of eight games, encompassing games with
different reward density, scale and requiring credit assignment over different time horizons: Frostbite,
H.E.R.O., Montezuma’s Revenge, Pitfall!, Skiing, Solaris, Surround, and Tennis. Specifically, we
selected Montezuma’s Revenge, Pitfall!, and H.E.R.O. as these are games exhibiting very sparse and
large scale reward signal, requiring long-term credit assignment, while being partially observable.
Additionally, Solaris and Skiing also require long-term credit assignment, but have medium scale and
large negative scale rewards, respectively. Having a high degree of randomness in the observations is
also a property of Solaris which our agents should be robust to. Finally, Surround and Tennis can be
considered as fully-observable and having small-scale, moderately sparse rewards. In particular, due
to the improvements in stability, we find it beneficial to use a higher samples per insert ratio (SPI)
than the published values of Agent57 or R2D2. For all our experiments SPI is fixed to 6. An ablation
on the effect of different SPI values can be found in Appendix L. An exhaustive description of the
hyperparameters used is provided in Appendix A, and the network architecture in Appendix B. We
report results averaged over six seeds per game for all experiments. We also show similar results with
sticky actions (Machado et al., 2018) in Appendix K. Metrics for previous methods are computed
using the mean final score per game reported in their respective publications: Agent57 (Badia
et al., 2020), MuZero 20B (Schrittwieser et al., 2020), MuZero 200M (Schrittwieser et al., 2021),
Muesli (Hessel et al., 2021). Data efficiency comparisons with Agent57 are based on the results
reported by Badia et al. (2020).

5.1 SUMMARY OF RESULTS

In this section, we show that the proposed MEME agent is able to achieve a 200-fold reduction in the
number of frames required for all games to surpass the human benchmark. The last game to surpass

3This corresponds to 250M agent-environment interactions due to the standard action repeat of 4 in the Atari
benchmark.
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Table 1: Number of games above human, capped mean, mean and median human normalized scores
for the 57 Atari games. Similarly to Badia et al. (2020), we first compute the final score per game
by averaging results from all random seeds, and then aggregate the scores of all 57 games. We
sample three out of the six seeds per game without replacement and report the average as well as 95%
confidence intervals over 10,000 repetitions of this process.

200M frames > 200M frames
Statistic MEME Muesli MuZero MEME Agent57 MuZero
Env frames 200M 200M 200M 1B 90B 20B
Number of games > human 54(53,55) 52 49 57(57,57) 57 51
Capped mean 98(97,98) 92 89 100(100,100) 100 87
Mean 3305(3163,3446) 2523 2856 4087(3723,4445) 4766 4998
Median 848(829,895) 1077 1006 1185(1085,1325) 1933 2041
25th percentile 282(269,303) 269 153 478(429,515) 387 276
5th percentile 100(89,108) 15 28 119(119,120) 116 0

human score with MEME is Pitfall! at 390M frames, as compared to 78B frames required for Skiing,
the last game for Agent57.

Figure 1 gives further details per game, about the required number of frames to reach the human
baseline, and shows that hard exploration games such as Private Eye, Pitfall! and Montezuma’s
Revenge pose the hardest challenge for both agents, being among the last ones in which the human
baseline is surpassed. This can be explained by the fact that in these games the agent might need a
very large number of episodes before it is able to generate useful experience from which to learn.
Notably, our agent is able to reduce the number of interactions required to outperform the human
baseline in each of the 57 Atari games, by 62× on average. In addition to the improved sample-
efficiency, MEME shows competitive performance compared to the state-of-the-art methods shown
in Table 1, while being trained for only 1B frames. When comparing with state-of-the-art agents such
as MuZero (Schrittwieser et al., 2020) or Muesli (Hessel et al., 2021), we observe a similar pattern
to that reported by Badia et al. (2020): they achieve very high scores in most games, as denoted
by their high mean and median scores, but struggle to learn completely on a few of them (Agarwal
et al., 2021). It is important to note that our agent achieves the human benchmark in all games, as
demonstrated by its higher scores on the lower percentiles.

5.2 ABLATIONS

We analyze the contribution of all the components introduced in Section 4 through ablation experi-
ments on the same subset of eight games. We compare methods based on the area under the score
curve in order to capture end performance and data efficiency under a single metric4. The magnitude
of this quantity varies across games, so we normalize it by its maximum value per game in order to
obtain a score between 0 and 1, and report results on the eight ablation games in Figure 4. Appendix J
includes full learning curves for all ablation experiments as well as ablations of other design choices
(e.g. the number of times each sample is replayed on average, optimizer hyperparameters).

Results in Figure 4 demonstrate that all proposed methods play a role in the performance and stability
of the agent. Disabling the trust region and using the target network for bootstrapping ( A1 ) produces
the most important performance drop among all ablations, likely due to the target network being
slower at propagating information into the targets. Interestingly, we have observed that the trust
region is beneficial even when using target networks for bootstrapping (c.f. Figure 24 in Appendix
N), which suggests that the trust region may produce an additional stabilizing effect beyond what
target networks alone can provide. Besides having a similar stabilizing effect, policy distillation ( D )
also speeds up convergence on some games and has less tendency to converge to local optima on
some others. The Soft Watkins’ Q(λ) loss ( A2 ) boosts data efficiency especially in games with
sparse rewards and requiring long-term credit assignment, and we have empirically verified that

4We first compute scores at 10,000 equally spaced points in [0, 1B] frames by applying piecewise linear
interpolation to the scores logged during training. After averaging the scores at each of these points over all
random seeds seeds, the trapezoidal rule is used to compute the area under the averaged curve.
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Montezuma's Revenge

Pitfall!

Tennis

Surround

Solaris

Skiing

H.E.R.O.

Frostbite
MEME

 Combined loss (C2)
 Normalization (B1)
 Soft Watkins' Q( ) (A2)
 Cross-mixture training (B2)
 NFNet torso (C1)
 Policy distillation (D)
 Trust-region  Online boostrapping (A1)

Figure 4: Results of ablating individual components. For each experiment, we first average the score
over three seeds up to 1B frames, then compute the area under the score curve as it captures not only
final performance but also the amount of interaction required to achieve it. As absolute values vary
across games, we report relative quantities by dividing by the maximum value obtained in each game.

it uses longer traces than other losses (c.f. Figure 5 in Appendix C). Cross-mixture training ( B2 )
and the combined loss ( C2 ) tend to provide efficiency gains across most games. Finally, while we
observe overall gains in performance from using normalization of TD errors ( B1 ), the effect is less
pronounced than that of other improvements. We hypothesize that the normalization has a high
degree of overlap with other regularizing enhancements, such as including the trust region.

We further study the benefits of the proposed components in an agent-agnostic context, by examining
their performance when using the R2D2 agent (Kapturowski et al., 2018), which we present in
Appendix M.

6 DISCUSSION

We present a novel agent MEME that outperforms the human-level baseline in a data-efficient manner
on all 57 Atari games. Our agent outperforms the human baseline across all 57 Atari games in
390M frames, using two orders of magnitude fewer interactions with the environment than Agent57,
which leads to a 62× speed-up on average. As Atari games are played at 60 FPS, this translates to
approximately 75 days of training, compared to more than 41 years of gameplay required by Agent57.

To achieve this, the agent employs a set of improvements that address the issues apparent in the
previous state-of-the art methods. Our contributions aim to achieve faster propagation of learning
signals related to rare events, stabilize learning under differing value scales, improve the neural
network architecture, and make updates more robust under a rapidly-changing policy. We ran ablation
experiments to evaluate the contribution of each of the algorithmic and network improvements.
Introducing online network bootstrapping with a trust-region has the most impact on the performance
among these changes, while certain games require multiple improvements to maintain stability and
performance. The increased stability enables more aggressive optimization, e.g. through higher
samples per insert ratios or a centralized bandit that aggregates statistics from all actors, leading to
more data-efficient learning.

Although our agent achieves above average-human performance on all 57 Atari games within 390M
frames with the same set of hyperparameters, the agent is separately trained on each game. An
interesting research direction to pursue would be to devise a training scheme such that the agent with
the same set of weights can achieve similar performance and data efficiency as the proposed agent on
all games. Furthermore, the improvements that we propose do not necessarily only apply to Agent57,
and further study could analyze the impact of these components in other state-of-the-art agents. We
also expect that the generality of the agent could be expanded further. While this work focuses on
Atari due to its wide range of tasks and reward structures, future research is required to analyze the
ability of the agent to tackle other important challenges, such as more complex observation spaces
(e.g. 3D navigation, multi-modal inputs), complex action spaces, or longer-term credit assignment.
All such improvements would lead MEME towards achieving greater generality.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

We would like to thank Tom Schaul for his excellent feedback on improving this manuscript, and
Pablo Sprechmann, Alex Vitvitskyi, Alaa Saade, Daniele Calandriello, Jake Bruce, Will Dabney,
Mark Rowland, Bilal Piot, and Daniel Guo for helpful discussions throughout the development of
this work.

REPRODUCIBILITY STATEMENT

In this manuscript we made additional efforts to make sure that the explanations of the proposed
methods are detailed enough to be easily reproduced by the community. Regarding the training
setup, we detail the distributed setting and the computation resources used in Appendices E and G,
respectively. The optimiser details are presented in Appendix D, while the comprehensive list of
hyperparameters used is given in Appendix A. We explain the implementation details of the neural
network architecture in Appendix B with the help of Figure 2. Finally, we give additional details about
the components such as the bandit (Appendix F), the NGU and RND intrinsic rewards (Appendix H),
target computation (Appendix C), and further clarify the proposed trust region with Figure 3.

ETHICS STATEMENT

We would like to note that large scale RL experiments require a significant amount of compute, as
outlined in the Appendix G. In some cases the results obtained may not justify the incurred compute
and environmental costs. However, to this end, our paper greatly improves the sample-efficiency of
such RL methods, and we expect its development cost and environmental impact to be amortized
over many subsequent applications.

We hope that in the future, researchers will leverage the contributions presented in this paper in their
work on large-scale RL, and help reduce the environmental impact their research might have.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. NeurIPS, 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. NeurIPS,
2017.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 2002.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never
give up: Learning directed exploration strategies. In ICLR, 2019.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In ICML, 2020.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. JAIR, 2013.

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale image
recognition without normalization. In ICML, 2021.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In ICLR, 2019.

Albin Cassirer, Gabriel Barth-Maron, Eugene Brevdo, Sabela Ramos, Toby Boyd, Thibault Sottiaux,
and Manuel Kroiss. Reverb: a framework for experience replay. arXiv preprint arXiv:2102.04736,
2021.

10



Published as a conference paper at ICLR 2023

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. In ICML, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 2021.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
JMLR, 2005.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In ICML, 2018.

Aurelien Garivier and Eric Moulines. On upper-confidence bound policies for non-stationary bandit
problems. arXiv preprint arXiv:0805.3415, 2008.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit
problems. In ALT, 2011.

Steven Hansen, Will Dabney, Andre Barreto, David Warde-Farley, Tom Van de Wiele, and Volodymyr
Mnih. Fast task inference with variational intrinsic successor features. In ICLR, 2019.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theo-
phane Weber, David Silver, and Hado Van Hasselt. Muesli: Combining improvements in policy
optimization. In ICML, 2021.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. In ICLR, 2018.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In ECCV, 2016.

Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad
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A HYPER-PARAMETERS

Table 2: Agent Hyper-parameters.
Parameter Value
Num Mixtures 16
Bandit β 1.0
Bandit ϵ 0.5
Bandit γ 0.999
Max Discount 0.9997
Min Discount 0.97
Replay Period 80
Burn-in 0
Trace Length 160
AP Embedding Size 32
RND Scale 0.5
RND Clip Threshold 5.0
IM Reward Scale βIM 0.1
βstd 2.0
Max KL CKL 0.5
Cross-Mixture η 0.5
π′dist Softmax Temperature τ 0.25
Soft Watkins-Q(λ) Threshold κ 0.01
λ 0.95
Residual Drop Rate 0.25
Eval Parameter Decay ηeval 0.995
RND Stats Decay αRND 0.9999
TD Stats Decay αTD 0.9999
Priority Exponent 0.6
Importance Sampling Exponent 0.4
Max Priority Weight 0.9
Replay Ratio 6.0
Replay Capacity 2× 105 trajectories
Value function rescaling sgn(x)

(√
x2 + 1− 1

)
+ 0.001x

Batch Size 64
Adam β1 0.9
Adam β2 0.999
Adam ϵ 10−8

RL Adam Learning Rate 3× 10−4

AP Adam Learning Rate 6× 10−4

RND Adam Learning Rate 6× 10−4

RL Weight Decay 0.05
AP Weight Decay 0.05
RND Weight Decay 0.0
Gradient clipping percentile pclip 0.99
Gradient clipping decay αclip 0.999

Table 3: Environment Hyper-parameters.
Parameter Value
Input Shape 210 × 160
Grayscaling True
Action Repeat 4
Num Stacked Frames 1
Pooled Frames 2
Max Episode Length 108000 frames (30 minutes game time)
Life Loss Signal Not used

B NETWORK ARCHITECTURE

B.1 TORSO

We use a modified version of the NFNet architecture (Brock et al., 2021). We use a simplified stem,
consisting of a single 7× 7 convolution with stride 4. We also forgo bottleneck residual blocks in
favor of 2 layers of 3× 3 convolutions, followed by a Squeeze-Excite block.
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In addition, we make some minor modifications to the downsampling blocks. Specifically, we apply
an activation prior to the average pooling and multiply the output by the stride in order to maintain
the variance of the activations. This is then followed by a 3× 3 convolution.

All convolutions use a Scaled Weight Standardization scheme (Qiao et al., 2019). The block section
parameters are as follows:

• num blocks: (2, 3, 4, 4)
• num channels: (64, 128, 128, 64)
• strides: (1, 2, 2, 2)

B.2 NON-IMAGE FEATURES

We also feed the following features into the network:

• previous action (encoded as a size-32 embedding)
• previous extrinsic reward
• previous intrinsic reward
• previous RND component of intrinsic reward
• previous Episodic component of intrinsic reward
• previous Action Prediction embedding

These are fed into a single linear layer of size 256 and activation and then concatenated with the
output of the torso and input into the recurrent core.

B.3 RECURRENT CORE

The recurrent core is composed of single LSTM with hidden size 1024. The output is then concate-
nated together with the core input and fed into the Action-Value and Policy heads.

B.4 ACTION-VALUE AND POLICY HEADS

We utilize separate dueling heads for the intrinsic and extrinsic components of the value function,
and a simple MLP for the policy. All heads use two hidden layers of size 1024 and output size
num_actions× num_mixtures.

C TARGET COMPUTATION AND TRACE COEFFICIENTS

As motivated in Section 4 A2 , we introduce Soft Watkins Q(λ) as a trade-off between aggressive trace
cutting used within Retrace and Watkins Q(λ), and the lack of off-policy correction in Peng’s Q(λ).
We investigate this hypothesis by observing the average trace coefficients for each of the methods in
Figure 5. The lower values of the trace coefficient λ lead to more aggressive trace cutting as soon as
the data is off-policy. Conversely, the λ value of 1 signifies no trace cutting whatsoever. As expected,
Retrace’s trace coefficient is significantly lower than the other methods considered. The proposed
Soft Watkins Q(λ) has a parameter κ that allows us to control the permissiveness of the trace-cutting
which in turn affects the final trace coefficient. We ran a course sweep of this parameter over the
values {0, .1, .01} and found values of κ = 0.01 to generally perform best in our setting. As can be
seen from Figure 5 this choice considerably increases the average trace coefficient of Soft Watkins’
Q(λ) relative to κ = 0, and concentrates the distribution of trace coefficients without causing it to
collapse.

D OPTIMIZER

We use separate optimizers for each of the RL, Action Prediction, and RND Networks, with the only
differences between them being the choice of learning rate and weight decay. The base optimizer
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Figure 5: Average trace coefficients for each method on the set of ablation games. For each method,
we average the trace length for transitions generated between 200M and 250M frames, as we observe
that their values tend to stabilize after an initial transient period. Each violin plot is thus generated
from num_seeds × num_games × num_mixtures data points.

used is AdamW with Nesterov Momentum. A linear learning rate warmup is used for the first 200
updates, to allow time for the Adam statistics to stabilize. Most notably, we employ an adaptive
element-wise gradient clipping strategy whereby we maintain running estimates of the mean and
standard deviation of the element-wise gradients using an Exponential Moving Average (EMA) with
αclip = 0.999, and only clip when the gradient magnitude exceeds the mean by some factor c of
the standard deviation. Concretely, the factor c is determined by specifying a percentile pclip (that
we fix to 0.99) which is then input to the inverse CDF of a standard normal distribution. In general
we found this clipping strategy to yield a small but consistent improvement in stability across many
environments compared to global norm clipping. We ablate some of the optimizer choices in Figure
19.

E DISTRIBUTED SETTING

All experiments are run using a distributed setting. The experiment consists of the actors, learner,
bandit and evaluators, as well as a replay buffer.

The actors and evaluators are the two types of workers that draw samples from the environment. Since
actors collect experience with non-greedy policies, we follow the common practice in this type of
agent and report scores from separate evaluator processes that continually execute the greedy policy
and whose experience is not added to the replay buffer (Kapturowski et al., 2018). Therefore, only
the actor workers write to the replay buffer, while the evaluation workers are used purely for reporting
the performance. The evaluation scheme differs from R2D2 (Kapturowski et al., 2018) in that a
separate set of eval parameters are maintained, which are computed as an EMA of the online network
with ηeval = 0.995; and these eval parameters are continually updated throughout each episode. We
observed that the use of these eval parameters provided a consistent performance boost across almost
all environments, but we continue to use the online network for the actors in order to obtain more
varied experience.

In the replay buffer, we store fixed-length sequences of (ret , r
NGU
t , xt, at) tuples. These sequences

never cross episode boundaries. For Atari, we apply the standard DQN pre-processing, as used in
R2D2. The replay buffer is split into 8 shards, to improve robustness due to computational constraints,
with each shard maintaining an independent prioritisation of the entries. We use prioritized experience
replay with the same prioritization scheme proposed by Kapturowski et al. (2018) which used a
weighted mixture of max and mean TD-errors over the sequence. Each of the actor workers writes
to a specific shard which is consistent throughout training. The replay buffer is implemented using
Reverb (Cassirer et al., 2021).

Given a single batch of trajectories we unroll both online and target networks on the same sequence
of states to generate value estimates. These estimates are used to execute the learner update step,
which updates the model weights used by the actors, and the exponential moving average (EMA) of
the weights used by the evaluator models, as this yields best performance which we report.

Acting in the environment is accelerated by sending observations from actors and evaluators to a
shared server that runs batched inference. The remote inference server allows multiple clients such as
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actor and evaluator workers to connect to it, and executes their inputs as a batch on the corresponding
inference models. The actor and evaluator inference model parameters are queried periodically from
the learner. Also, the recurrent state is persisted on the inference server so that the actor does need to
communicate it. However, the episodic memory lookup required to compute the intrinsic reward is
performed locally on actors to reduce the communication overhead.

At the beginning of each episode, parameters β and γ are queried from the bandit worker, i.e.
meta-controller. The parameters are selected from a set of coefficients {(βj , γj)}N−1j=0 with N = 16,
which correspond to the N -heads of the network. The actors query optimal (β, γ) tuples, while the
evaluators query the tuple corresponding to the greedy action. After each actor episode, the bandit
stats are updated based on the episode rewards by updating the distribution over actions, according to
Discounted UCB (Garivier & Moulines, 2011).

The following subsections describe how actors, evaluators, and learner are run in each stage.

LEARNER

• Sample a sequence of extrinsic rewards ret , intrinsic rewards rNGU
t , observations xt and

actions at, from the replay buffer.

• Use Q-network to learn from (ret , r
NGU
t , x, a) with our modified version of Watkins’

Q(λ) (Watkins & Dayan, 1992) using the same procedure as in R2D2.

• Compute the actor model weights and EMA for the evaluator model weights.

• Use the sampled sequences to train the action prediction network in NGU.

• Use the sampled sequences to train the predictor of RND.

ACTOR

• Query optimal bandit action (β, γ).

• Obtain xt from the environment.

• Obtain rNGU
t and at from the inference model.

• Insert xt, at, rNGU
t and ret in the replay buffer.

• Step on the environment with at.

EVALUATOR

• Query greedy bandit action (β, γ).

• Obtain xt from the environment.

• Obtain rNGU
t and at from the inference model.

• Step on the environment with at.

BANDIT

• Periodically checkpoints bandit action values.

• Queried for optimal action by actors.

• Queried for greedy action by evaluators.

• Updates the stats when actors pass the episode rewards for a certain action.

F BANDIT IMPLEMENTATION

While Agent57 maintains a separate bandit for each actor, we instead utilize a centralized bandit
worker. The bandit selects between a family of policies generated by tuples of intrinsic reward weight
and discount factor (βi, γi), parameterized as:
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Figure 6: β and γ for each of the 16 policies.

βi =


0 if i = 0

βIM if i = N − 1

βIMσ(8 2i−(N−2)
N−2 ) otherwise

(9)

γi = 1− exp
(N − 1− i

N − 1
log(1− γmax) +

i

N − 1
log(1− γmax)

)
(10)

where N is the number of policies, i is the policy index, σ is the sigmoid function, βIM is the
maximum intrinsic reward weight, and γmax and γint are the maximum and minimum discount
factors, respectively.

At the beginning of each episode an actor will sample a policy index with which to act for the duration
of the episode. At the end of which, the actor will update the bandit with the obtained extrinsic return
for that policy. We use a discounted variant of UCB-Tuned bandit algorithm (Garivier & Moulines
(2008) and Auer et al. (2002)). In practice the bandit hyper-parameters did not seem to be very
important. We hypothesize that the use of cross-mixture training may reduce the sensitivity of the
agent to these parameters, though we have not explored this relationship thoroughly.

G COMPUTE RESOURCES

For the experiments we used the TPUv4, with the 2× 2× 1 topology used for the learner. Acting is
accelerated by sending observations from actors to a shared server that runs batched inference using
a 1× 1× 1 TPUv4, which is used for inference within the actor and evaluation workers.

On average, the learner performs 3.8 updates per second. The rate at which environment frames are
written to the replay buffer by the actors is approximately 12,970 frames per second.

Each experiment consists of 64 actors with 2 threads, each of them acting with their own independent
instance of the environment. The collected experience is stored in the replay buffer split in 8 shards,
each with independent prioritization. This accumulated experience is used by a single learner worker,
while the performance is evaluated on 5 evaluator workers.

H INTRINSIC REWARDS

H.1 RANDOM NETWORK DISTILLATION

The Random Network Distillation (RND) intrinsic reward (Burda et al., 2019) is computed by
introducing a random, untrained convolutional network g : X → Rd, and training a network
ĝ : X → Rd to predict the outputs of g on all the observations that are seen during training by
minimizing the prediction error errRND(xt) = ||ĝ(xt; θ)− g(xt)||2 with respect to θ. The intuition is
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that the prediction error will be large on states that have been visited less frequently by the agent.
The dimensionality of the random embedding, d, is a hyperparameter of the algorithm.

The RND intrinsic reward is obtained by normalising the prediction error. In this work, we use a
slightly different normalization from that reported in Burda et al. (2019). The RND reward at time t
is given by

rRND
t =

errRND(xt)

σe
(11)

where σe is the running standard deviation of errRND(xt). As with the TD-error statistics, we compute
σe on the learner using importance sampling weights to correct the sampling distribution.

H.2 NEVER GIVE UP

The NGU intrinsic reward modulates an episodic intrinsic reward, repisodic
t , with a life long signal αt:

rNGU
t = repisodic

t ·min {max {αt, 1} , L} , (12)
where L is a fixed maximum reward scaling. The life-long novelty signal is computed using RND
with the normalisation:

αt =
errRND(xt)− µe

σe
(13)

where errRND(xt) is the prediction error described in Appendix H.1, and µe and σe are its running
mean and standard deviation, respectively. The episodic intrinsic reward at time t is computed
according to formula:

repisodic
t =

1√∑
f(xi)∈Nk

K(f(xt), f(xi)) + c
(14)

where Nk is the set containing the k-nearest neighbors of f(xt) in M , c is a constant and K :
Rp×Rp → R+ is a kernel function satisfying K(x, x) = 1 (which can be thought of as approximating
pseudo-counts Badia et al. (2019)). Algorithm 1 shows a detailed description of how the episodic
intrinsic reward is computed. Below we describe the different components used in Algorithm 1:

• M : episodic memory containing at time t the previous embeddings
{f(x0), f(x1), . . . , f(xt−1)}. This memory starts empty at each episode

• k: number of nearest neighbours
• Nk = {f(xi)}ki=1: set of k-nearest neighbours of f(xt) in the memory M ; we call Nk[i] =
f(xi) ∈ Nk for ease of notation

• K: kernel defined as K(x, y) = ϵ
d2(x,y)

d2m
+ϵ

where ϵ is a small constant, d is the Euclidean

distance and d2m is a running average of the squared Euclidean distance of the k-nearest
neighbors 5

• c: pseudo-counts constant
• ξ: cluster distance
• sm: maximum similarity
• f(x): action prediction network output for observation x as in Badia et al. (2020).

I OTHER THINGS WE TRIED

I.1 FUNCTIONAL REGULARIZATION IN PLACE OF TRUST REGION

Concurrently with the development of our trust region method we experimented with using an explicit
L2 regularization term in the loss, acting on the difference between the online and target networks,
similar to (Piche et al., 2021). Prior to implementation of our normalization scheme we found that
this method stabilized learning early on in training but was prone to eventually becoming unstable
if run for long enough. With normalization this instability did not occur, but sample efficiency was
worse compared to the trust region in most instances we observed.

5As opposed to Agent57 which stored d2m separately per actor, we aggregate over all actors
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Algorithm 1: Computation of the episodic intrinsic reward at time t: repisodic
t .

Input :M ; k; f(xt); c; ϵ; ξ; xm; d2
m

Output :repisodic
t

Compute the k-nearest neighbours of f(xt) in M and store them in a list Nk

Create a list of floats dk of size k
/* The list dk will contain the distances between the embedding f(xt) and its neighbours

Nk. */
for i ∈ {1, . . . , k} do

dk[i]← d2(f(xt), Nk[i])
end
Update the moving average d2

m with the list of distances dk

/* Normalize the distances dk with the updated moving average d2
m. */

dn ←
dk
d2m

/* Cluster the normalized distances dn i.e. they become 0 if too small and 0k is a list of
k zeros. */

dn ← max(dn − ξ, 0k)
/* Compute the Kernel values between the embedding f(xt) and its neighbours Nk. */
Kv ← ϵ

dn+ϵ

/* Compute the similarity between the embedding f(st) and its neighbours Nk. */

s←
√∑k

i=1 Kv [i] + c

/* Compute the episodic intrinsic reward at time t: rit. */
if x > xm then

repisodic
t ← 0

else
repisodic
t ← 1/s

I.2 APPROXIMATE THOMPSON SAMPLING

We considered using an approximate Thompson Sampling scheme scheme similar to Bootstrapped
DQN (Osband et al., 2016) whereby the stochastic depth mask was fixed for some period of time at
inference (such as once per episode, or every 100 timesteps). We observed some marginal benefit
in certain games, but in our view this difference was not enough to justify the added complexity of
implementation. We hypothesize that the added exploration this provides is not significant when a
strong intrinsic reward is already present in the learning algorithm, but it may have a larger effect if
this is not the case.

I.3 MIXTURE OF ONLINE AND REPLAY DATA

We considered using a mixture of online and replay data as was done in the Muesli agent (Hessel
et al., 2021). This was beneficial for overall stability, but it also degraded performance in the harder
exploration games such as Pitfall!. We were not able to find an easy remedy for this so we did not
investigate further in this direction.

I.4 ESTIMATING Qe(θ) + βQi(θ)

Agent57 uses two neural networks with completely independent weights to estimate Qe and Qi. As
mentioned in the work, this provides the network with more robustness to the different scales and
variance that re and ri have for many tasks.

MEME changes the separation of networks, whereby the Qe and Qi are still estimated separately, but
they share a common torso and recurrent core. However, since many of the components we introduce
are geared toward improving stability, even this separation may no longer be necessary. To analyze
this we run an experiment where the agent network has a single head that estimates Qe(θ) + βQi(θ).
Note that in this case we still estimate N sets of Q-values. Indeed, as results of Figure 7 show,
we observe similar results as our proposed method. This indicates that the inductive bias that was
introduced in maintaining separate heads for intrinsic and extrinsic Q-values is no longer important.
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Figure 7: Results for the two approaches to estimating the total loss.
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Figure 11: Median and mean scores over the course of training.

K STICKY ACTIONS RESULTS

This section reproduces the main results of the paper, but enabling sticky actions (Machado et al.,
2018) during both training and evaluation. Since our agent does not exploit the determinism in the
original Atari benchmark, it is still able to outperform the human baseline with sticky actions enabled.
We observe a slight decrease in mean scores, which we attribute to label corruption in the action
prediction loss used to learn the controllable representations used in the episodic reward computation:
due to the implementation of sticky actions proposed by Machado et al. (2018) the agent actions are
ignored in a fraction of the timesteps. This phenomenon is aggravated by the frame stacking used in
the standard Atari pre-processing, as the action being executed in the environment can vary within
each stack of frames. We hypothesize that the gap between the two versions of the environment
would be much smaller with a different implementation of sticky actions that did not corrupt the
action labels used by the representation learning module.

All reported results are the average over six different random seeds.
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Figure 12: Number of games with scores above the human benchmark when training and evaluating
with sticky actions (Machado et al., 2018).
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Table 4: Number of games above human, capped mean, mean and median human normalized scores
for the 57 Atari games when training and evaluating with sticky actions (Machado et al., 2018).
Metrics for previous methods are computed using the final score per game reported in their respective
publications: MuZero (Schrittwieser et al., 2021), Muesli (Hessel et al., 2021).

200M frames > 200M frames

Statistic MEME Muesli MuZero MEME

Env frames 200M 200M 200M 1B
Number of games > human 54 52 49 57
Capped mean 97.51 92.52 89.78 100.0
Mean 2967.52 2523.99 2856.24 3462.93
Median 830.57 1077.47 1006.4 1074.25
25th percentile 299.65 269.25 153.1 402.56
5th percentile 103.86 15.91 28.76 118.78
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L EFFECT OF SAMPLES PER INSERT RATIO

Results of the ablation on the amount of replay that the learner performs per sequence of experience
that the actors produce can be seen in Figure 15. We can see that, while a samples per insert ratio (SPI)
of 10 still provides moderate boosts in data efficiency in games such as H.E.R.O., Montezuma’s
Revenge and Pitfall!, it is not as pronounced as the increase that is seen from SPI of 3 to 6. This
implies that with an SPI of 10 we obtain a much worse return in terms of wall-clock time as we replay
more frequently.
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Figure 15: Sweep over sample per insert ratios on the full ablation set.
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M R2D2 ABLATIONS

We further study the benefits of the proposed components in an agent-agnostic context, by examining
their performance when used with the R2D2 agent (Kapturowski et al., 2018), as shown in Figure 16.
Similarly to the original ablations of MEME, we can see that the trust region and online bootstrap-
ping constitute the most important component, which once removed deteriorates the performance
significantly. In general, the rest of the components are beneficial as well, as MEME R2D2 can be
seen to obtain human-level performance on the largest number of games; although the set of Atari
games used in this ablation is not fully representative as Montezuma’s Revenge, Pitfall! and Skiing
are not expected to be solvable without intrinsic motivation or the ability to leverage larger discount
factors.
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Figure 16: Ablation study of the proposed components while using the R2D2 agent.
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N FULL ABLATIONS
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Figure 17: Comparison between our combined loss and the separate losses used by Agent57 on the
full ablation set.

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

0

200k

400k

Frostbite

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

0

100k

200k

300k
H.E.R.O.

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

0

5k

10k

15k
Montezuma's Revenge

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

0

20k

40k

60k

80k

100k

Pitfall!

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

-30k

-25k

-20k

-15k

-10k

-5k

Skiing

MEME
 Normalization

 Cross-mixture training
 Cross-mixture training  Normalization

Human baseline

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

0

10k

20k

30k

40k
Solaris

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

-10

-5

0

5

10
Surround

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

-20

-10

0

10

20

Tennis

Figure 18: Results without cross-mixture training and TD normalization on the full ablation set.

27



Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

0

200k

400k

Frostbite

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

0

100k

200k

300k
H.E.R.O.

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

0

5k

10k

15k
Montezuma's Revenge

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

0

20k

40k

60k

80k

100k

Pitfall!

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

-30k

-25k

-20k

-15k

-10k

-5k

Skiing

MEME  Nesterov momentum  Percentile clipping Human baseline

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

0

10k

20k

30k

40k
Solaris

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

-5

0

5

10
Surround

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e9

-20

-10

0

10

20

Tennis

Figure 19: Ablation experiments over different optimizer features.
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Figure 20: Results without policy distillation on the full ablation set.
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Figure 21: Results for agents with different amounts of regularization on the full ablation set.
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Figure 22: Results with different learning targets on the full ablation set.
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Figure 23: Results for agents with different torsos on the full ablation set.
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Figure 24: Results for agents without online bootstrapping and trust-region on the full ablation set.
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Figure 25: Comparison of head architectures. The single-headed architecture is similar to the one in
Agent57, where the network is conditioned on a one-hot encoding of the mixture id. All experiments
are run without cross-mixture training and TD normalization for fairness. These results demonstrate
that our multi-headed architecture, introduced to enable efficient computation of Q values for all
mixtures in parallel, does not degrade performance.
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O SCORES PER GAME

Table 5: Scores per game.
Game Agent57 @ 1B Agent57 @ 90B MEME @ 200M MEME @ 1B
Alien 3094.46± 1682.49 252889.92± 31085.48 41048.78± 8702.03 83683.43± 16688.58
Amidar 329.99± 124.14 28671.19± 1046.52 7363.47± 1033.44 14368.90± 2775.86
Assault 1183.25± 482.14 49198.37± 9469.92 33266.67± 6143.71 46635.86± 14846.53
Asterix 2777.67± 697.39 763476.87± 105395.98 861780.67± 97588.31 769803.92± 143061.91
Asteroids 2422.64± 412.96 105058.07± 45380.23 217586.98± 17304.43 364492.07± 13982.31
Atlantis 44844.67± 15838.85 1508119.97± 24913.10 1535634.17± 20700.45 1669226.33± 3906.17
Bank Heist 364.26± 156.87 17274.04± 12145.09 15563.35± 14565.74 87792.55± 104611.67
Battle Zone 19065.86± 999.82 868540.57± 26523.78 733206.67± 84295.20 776770.00± 19734.15
Beam Rider 2056.68± 131.88 283845.01± 11289.64 68534.71± 4443.34 51870.20± 2906.10
Berzerk 614.26± 84.32 31565.12± 34278.20 7003.12± 2592.61 38838.35± 14783.99
Bowling 34.00± 4.19 240.33± 18.96 261.83± 2.30 261.74± 8.42
Boxing 97.92± 1.08 99.93± 0.03 99.77± 0.17 99.85± 0.14
Breakout 62.09± 34.67 696.94± 63.20 747.62± 64.06 831.08± 6.18
Centipede 14411.24± 1780.60 348288.74± 11957.45 112609.74± 42701.73 245892.18± 39060.78
Chopper Command 3535.40± 1031.08 959747.29± 10225.76 842327.17± 168089.18 912225.00± 112906.65
Crazy Climber 85166.13± 9121.39 456653.80± 13192.11 295413.67± 5974.67 339274.67± 14818.41
Defender 33613.13± 6856.21 666433.14± 17493.30 518605.50± 18011.92 543979.50± 7639.27
Demon Attack 1786.19± 911.24 140474.21± 2931.07 139349.75± 1927.91 142176.58± 1223.59
Double Dunk −21.76± 0.52 23.64± 0.06 23.60± 0.06 23.70± 0.44
Enduro 437.34± 97.19 2349.03± 7.46 2338.62± 38.96 2360.64± 3.19
Fishing Derby −43.36± 19.65 83.42± 4.11 67.19± 5.30 77.05± 3.97
Freeway 22.46± 0.49 32.13± 0.71 33.82± 0.14 33.97± 0.02
Frostbite 980.15± 581.61 507775.65± 35925.95 136691.77± 35672.33 526239.50± 18289.50
Gopher 9760.20± 1790.84 98786.14± 4600.57 117557.53± 3264.72 119457.53± 4077.33
Gravitar 666.43± 304.08 18180.26± 627.48 13049.67± 272.66 20875.00± 844.41
H.E.R.O. 8850.63± 1313.70 102145.96± 50561.27 33872.29± 6917.14 199880.60± 44074.56
Ice Hockey −14.87± 1.71 62.33± 5.77 26.07± 4.48 47.22± 4.41
Jamesbond 534.53± 408.19 107266.11± 15584.58 137333.17± 21939.77 117009.92± 55411.15
Kangaroo 3178.86± 996.26 18505.37± 5016.41 15863.50± 675.45 17311.17± 419.17
Krull 9179.71± 1222.12 194179.21± 21451.96 157943.83± 26699.67 155915.32± 43127.45
Kung-Fu Master 31613.73± 8854.35 192616.60± 9019.89 364755.65± 387274.47 476539.53± 518479.85
Montezuma’s Revenge 200.43± 192.50 8666.10± 2928.92 2863.00± 117.94 12437.00± 1648.44
Ms. Pac-Man 3348.12± 630.07 57402.56± 3077.27 22853.12± 2843.55 29747.91± 2472.33
Name This Game 4463.97± 1747.50 48644.27± 2390.83 31369.93± 2637.53 40077.73± 2274.25
Phoenix 7359.04± 5542.07 858909.13± 37669.01 602393.53± 43967.79 849969.25± 43573.52
Pitfall! 274.33± 413.21 13655.05± 5288.29 574.32± 811.43 46734.79± 30468.85
Pong −15.02± 1.96 20.29± 0.65 17.91± 6.61 19.31± 2.42
Private Eye 5727.66± 1619.10 79347.98± 29315.82 64145.31± 21106.93 100798.90± 1.07
Q*BERT 3806.99± 1654.33 437607.43± 111087.57 96189.83± 17377.23 238453.50± 272386.91
Riverraid 6077.47± 1810.98 56276.56± 6593.69 40266.92± 4087.60 90333.12± 4694.40
Road Runner 25303.07± 4360.56 168665.40± 40390.00 447833.33± 128698.32 399511.83± 111036.59
Robotank 13.67± 2.55 116.93± 10.64 87.79± 5.85 114.46± 3.71
Seaquest 2146.63± 1574.51 999063.77± 1160.16 577162.47± 56947.06 960181.39± 25453.79
Skiing −25261.49± 1193.77 −4289.49± 628.37 −3401.56± 185.93 −3273.43± 4.67
Solaris 2968.25± 1470.62 39844.08± 6788.17 13514.80± 1231.17 28175.53± 4859.26
Space Invaders 640.13± 185.45 35150.40± 3388.53 33214.80± 5372.10 57828.45± 7551.63
Stargunner 11214.14± 4667.13 796115.29± 73384.04 221215.33± 13974.19 264286.33± 10019.21
Surround −8.57± 0.69 8.83± 0.58 9.64± 0.17 9.82± 0.05
Tennis −18.34± 2.41 23.40± 0.15 23.18± 0.53 22.79± 0.65
Time Pilot 3561.51± 1114.00 382111.86± 17388.79 169812.33± 37012.23 404751.67± 17305.23
Tutankham 106.68± 13.87 2012.54± 2853.44 402.16± 22.73 1030.27± 11.88
Up’n Down 15986.44± 2213.66 614068.80± 32336.64 472283.82± 23901.66 524631.00± 20108.60
Venture 477.71± 251.24 2544.90± 403.53 2261.17± 66.39 2859.83± 195.14
Video Pinball 18042.46± 2773.10 885718.05± 54583.24 778530.78± 79425.86 617640.95± 127005.48
Wizard Of Wor 3402.48± 1210.12 134441.09± 8913.57 67072.67± 13768.12 71942.00± 6552.86
Yars’ Revenge 26310.18± 6442.63 976142.42± 3219.52 654338.02± 100597.12 633867.66± 128824.41
Zaxxon 7323.83± 1819.10 195043.97± 18131.20 79120.00± 9783.55 77942.17± 6614.61
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Table 6: Scores per game when training and evaluating with sticky actions (Machado et al., 2018).
Game MEME @ 200M MEME @ 1B Go-Explore

Alien 48076.48± 10310.65 68634.82± 15653.10
Amidar 7280.27± 808.09 20776.93± 4859.39
Assault 27838.75± 4337.41 31708.64± 14199.48
Asterix 843493.60± 126291.56 729820.40± 82360.83
Asteroids 212460.60± 5585.36 335137.50± 32384.14
Atlantis 1462275.60± 144898.14 1622960.80± 1958.79
Bank Heist 6448.48± 3066.16 45019.92± 8611.39
Battle Zone 756298.00± 71092.41 763666.00± 53978.21
Beam Rider 54395.06± 8299.92 38049.60± 3714.79
Berzerk 16265.88± 10497.83 45729.94± 13228.29 197376 (@10B)
Bowling 264.73± 0.89 212.70± 65.93 260 (@10B)
Boxing 99.77± 0.10 99.86± 0.11
Breakout 521.32± 49.04 475.87± 53.73
Centipede 55068.43± 6370.11 63792.64± 24203.69 1422628 (@10B)
Chopper Command 170450.00± 318026.00 181573.80± 342149.46
Crazy Climber 272227.40± 24884.40 291033.20± 5966.79
Defender 521330.30± 10194.48 561521.30± 7955.85
Demon Attack 130545.44± 9343.72 142393.12± 1119.30
Double Dunk 23.12± 0.58 23.78± 0.09
Enduro 2339.31± 13.75 2352.94± 14.33
Fishing Derby 68.12± 4.92 79.65± 2.65
Freeway 33.88± 0.08 33.92± 0.02 34 (@10B)
Frostbite 137638.50± 38943.68 498640.46± 38753.40
Gopher 105836.08± 13458.22 96034.76± 17422.13
Gravitar 12864.10± 260.14 19489.40± 825.38 7588 (@10B)
H.E.R.O. 27998.94± 5920.99 175258.87± 15772.55
Ice Hockey 38.14± 9.23 52.51± 10.04
Jamesbond 144864.80± 8709.86 118539.20± 47454.71
Kangaroo 15559.00± 1494.83 16951.60± 275.12
Krull 127340.42± 27604.33 93638.02± 28863.77
Kung-Fu Master 182036.20± 4195.48 208166.80± 2714.94
Montezuma’s Revenge 2890.40± 42.06 9429.20± 1485.32 43791 (@10B)
Ms. Pac-Man 25158.68± 1786.43 27054.73± 152.14
Name This Game 29029.20± 2237.35 34471.30± 2135.99
Phoenix 440354.08± 70760.72 788107.78± 33424.51
Pitfall! 235.90± 493.77 7820.94± 16815.61 6954 (@10B)
Pong 19.38± 0.58 20.71± 0.08
Private Eye 90596.05± 19942.76 100775.10± 15.57 95756 (@10B)
Q*BERT 137998.15± 86896.43 328686.85± 257052.72
Riverraid 36680.36± 1287.15 67631.40± 4517.53
Road Runner 515838.00± 153908.19 543316.20± 64169.67
Robotank 93.47± 4.18 114.60± 4.61
Seaquest 474164.86± 62059.73 744392.88± 41259.26
Skiing −3339.21± 14.59 −3305.77± 8.09 −3660 (@10B)
Solaris 13124.24± 657.30 28386.28± 2381.29 19671 (@20B)
Space Invaders 26243.09± 6053.57 52254.64± 4421.24
Stargunner 173677.60± 19678.82 190235.40± 6141.42
Surround 9.60± 0.24 9.66± 0.23
Tennis 22.65± 0.73 22.61± 0.53
Time Pilot 159728.20± 39442.90 354559.80± 22172.76
Tutankham 383.85± 61.43 924.47± 130.59
Up’n Down 478535.54± 15969.44 528786.12± 5200.79
Venture 2318.20± 56.39 2583.40± 175.95 2281 (@10B)
Video Pinball 750858.98± 115759.28 759284.69± 37920.13
Wizard Of Wor 65005.80± 7034.75 66627.00± 9196.92
Yars’ Revenge 654251.90± 121823.94 556157.86± 147800.84
Zaxxon 85322.00± 12413.86 69809.20± 2229.49
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Figure 26: Score per game as a function of the number of environment frames, both with and without
sticky actions (Machado et al., 2018). Shading shows maximum and minimum over 6 runs, while
dark lines indicate the mean.
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